1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2008-2015 Intel Corporation
4 */
5
6 #include <linux/highmem.h>
7
8 #include "display/intel_display.h"
9 #include "i915_drv.h"
10 #include "i915_reg.h"
11 #include "i915_scatterlist.h"
12 #include "i915_pvinfo.h"
13 #include "i915_vgpu.h"
14 #include "intel_gt_regs.h"
15 #include "intel_mchbar_regs.h"
16
17 /**
18 * DOC: fence register handling
19 *
20 * Important to avoid confusions: "fences" in the i915 driver are not execution
21 * fences used to track command completion but hardware detiler objects which
22 * wrap a given range of the global GTT. Each platform has only a fairly limited
23 * set of these objects.
24 *
25 * Fences are used to detile GTT memory mappings. They're also connected to the
26 * hardware frontbuffer render tracking and hence interact with frontbuffer
27 * compression. Furthermore on older platforms fences are required for tiled
28 * objects used by the display engine. They can also be used by the render
29 * engine - they're required for blitter commands and are optional for render
30 * commands. But on gen4+ both display (with the exception of fbc) and rendering
31 * have their own tiling state bits and don't need fences.
32 *
33 * Also note that fences only support X and Y tiling and hence can't be used for
34 * the fancier new tiling formats like W, Ys and Yf.
35 *
36 * Finally note that because fences are such a restricted resource they're
37 * dynamically associated with objects. Furthermore fence state is committed to
38 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
39 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
40 * for cpu access. Also note that some code wants an unfenced view, for those
41 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
42 *
43 * Internally these functions will synchronize with userspace access by removing
44 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
45 */
46
47 #define pipelined 0
48
fence_to_i915(struct i915_fence_reg * fence)49 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
50 {
51 return fence->ggtt->vm.i915;
52 }
53
fence_to_uncore(struct i915_fence_reg * fence)54 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
55 {
56 return fence->ggtt->vm.gt->uncore;
57 }
58
i965_write_fence_reg(struct i915_fence_reg * fence)59 static void i965_write_fence_reg(struct i915_fence_reg *fence)
60 {
61 i915_reg_t fence_reg_lo, fence_reg_hi;
62 int fence_pitch_shift;
63 u64 val;
64
65 if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
66 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
67 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
68 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
69
70 } else {
71 fence_reg_lo = FENCE_REG_965_LO(fence->id);
72 fence_reg_hi = FENCE_REG_965_HI(fence->id);
73 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
74 }
75
76 val = 0;
77 if (fence->tiling) {
78 unsigned int stride = fence->stride;
79
80 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
81
82 val = fence->start + fence->size - I965_FENCE_PAGE;
83 val <<= 32;
84 val |= fence->start;
85 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
86 if (fence->tiling == I915_TILING_Y)
87 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
88 val |= I965_FENCE_REG_VALID;
89 }
90
91 if (!pipelined) {
92 struct intel_uncore *uncore = fence_to_uncore(fence);
93
94 /*
95 * To w/a incoherency with non-atomic 64-bit register updates,
96 * we split the 64-bit update into two 32-bit writes. In order
97 * for a partial fence not to be evaluated between writes, we
98 * precede the update with write to turn off the fence register,
99 * and only enable the fence as the last step.
100 *
101 * For extra levels of paranoia, we make sure each step lands
102 * before applying the next step.
103 */
104 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
105 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
106
107 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
108 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
109 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
110 }
111 }
112
i915_write_fence_reg(struct i915_fence_reg * fence)113 static void i915_write_fence_reg(struct i915_fence_reg *fence)
114 {
115 u32 val;
116
117 val = 0;
118 if (fence->tiling) {
119 unsigned int stride = fence->stride;
120 unsigned int tiling = fence->tiling;
121 bool is_y_tiled = tiling == I915_TILING_Y;
122
123 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
124 stride /= 128;
125 else
126 stride /= 512;
127 GEM_BUG_ON(!is_power_of_2(stride));
128
129 val = fence->start;
130 if (is_y_tiled)
131 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
132 val |= I915_FENCE_SIZE_BITS(fence->size);
133 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
134
135 val |= I830_FENCE_REG_VALID;
136 }
137
138 if (!pipelined) {
139 struct intel_uncore *uncore = fence_to_uncore(fence);
140 i915_reg_t reg = FENCE_REG(fence->id);
141
142 intel_uncore_write_fw(uncore, reg, val);
143 intel_uncore_posting_read_fw(uncore, reg);
144 }
145 }
146
i830_write_fence_reg(struct i915_fence_reg * fence)147 static void i830_write_fence_reg(struct i915_fence_reg *fence)
148 {
149 u32 val;
150
151 val = 0;
152 if (fence->tiling) {
153 unsigned int stride = fence->stride;
154
155 val = fence->start;
156 if (fence->tiling == I915_TILING_Y)
157 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
158 val |= I830_FENCE_SIZE_BITS(fence->size);
159 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
160 val |= I830_FENCE_REG_VALID;
161 }
162
163 if (!pipelined) {
164 struct intel_uncore *uncore = fence_to_uncore(fence);
165 i915_reg_t reg = FENCE_REG(fence->id);
166
167 intel_uncore_write_fw(uncore, reg, val);
168 intel_uncore_posting_read_fw(uncore, reg);
169 }
170 }
171
fence_write(struct i915_fence_reg * fence)172 static void fence_write(struct i915_fence_reg *fence)
173 {
174 struct drm_i915_private *i915 = fence_to_i915(fence);
175
176 /*
177 * Previous access through the fence register is marshalled by
178 * the mb() inside the fault handlers (i915_gem_release_mmaps)
179 * and explicitly managed for internal users.
180 */
181
182 if (GRAPHICS_VER(i915) == 2)
183 i830_write_fence_reg(fence);
184 else if (GRAPHICS_VER(i915) == 3)
185 i915_write_fence_reg(fence);
186 else
187 i965_write_fence_reg(fence);
188
189 /*
190 * Access through the fenced region afterwards is
191 * ordered by the posting reads whilst writing the registers.
192 */
193 }
194
gpu_uses_fence_registers(struct i915_fence_reg * fence)195 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
196 {
197 return GRAPHICS_VER(fence_to_i915(fence)) < 4;
198 }
199
fence_update(struct i915_fence_reg * fence,struct i915_vma * vma)200 static int fence_update(struct i915_fence_reg *fence,
201 struct i915_vma *vma)
202 {
203 struct i915_ggtt *ggtt = fence->ggtt;
204 struct intel_uncore *uncore = fence_to_uncore(fence);
205 intel_wakeref_t wakeref;
206 struct i915_vma *old;
207 int ret;
208
209 fence->tiling = 0;
210 if (vma) {
211 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
212 !i915_gem_object_get_tiling(vma->obj));
213
214 if (!i915_vma_is_map_and_fenceable(vma))
215 return -EINVAL;
216
217 if (gpu_uses_fence_registers(fence)) {
218 /* implicit 'unfenced' GPU blits */
219 ret = i915_vma_sync(vma);
220 if (ret)
221 return ret;
222 }
223
224 GEM_BUG_ON(vma->fence_size > i915_vma_size(vma));
225 fence->start = i915_ggtt_offset(vma);
226 fence->size = vma->fence_size;
227 fence->stride = i915_gem_object_get_stride(vma->obj);
228 fence->tiling = i915_gem_object_get_tiling(vma->obj);
229 }
230 WRITE_ONCE(fence->dirty, false);
231
232 old = xchg(&fence->vma, NULL);
233 if (old) {
234 /* XXX Ideally we would move the waiting to outside the mutex */
235 ret = i915_active_wait(&fence->active);
236 if (ret) {
237 fence->vma = old;
238 return ret;
239 }
240
241 i915_vma_flush_writes(old);
242
243 /*
244 * Ensure that all userspace CPU access is completed before
245 * stealing the fence.
246 */
247 if (old != vma) {
248 GEM_BUG_ON(old->fence != fence);
249 i915_vma_revoke_mmap(old);
250 old->fence = NULL;
251 }
252
253 list_move(&fence->link, &ggtt->fence_list);
254 }
255
256 /*
257 * We only need to update the register itself if the device is awake.
258 * If the device is currently powered down, we will defer the write
259 * to the runtime resume, see intel_ggtt_restore_fences().
260 *
261 * This only works for removing the fence register, on acquisition
262 * the caller must hold the rpm wakeref. The fence register must
263 * be cleared before we can use any other fences to ensure that
264 * the new fences do not overlap the elided clears, confusing HW.
265 */
266 wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
267 if (!wakeref) {
268 GEM_BUG_ON(vma);
269 return 0;
270 }
271
272 WRITE_ONCE(fence->vma, vma);
273 fence_write(fence);
274
275 if (vma) {
276 vma->fence = fence;
277 list_move_tail(&fence->link, &ggtt->fence_list);
278 }
279
280 intel_runtime_pm_put(uncore->rpm, wakeref);
281 return 0;
282 }
283
284 /**
285 * i915_vma_revoke_fence - force-remove fence for a VMA
286 * @vma: vma to map linearly (not through a fence reg)
287 *
288 * This function force-removes any fence from the given object, which is useful
289 * if the kernel wants to do untiled GTT access.
290 */
i915_vma_revoke_fence(struct i915_vma * vma)291 void i915_vma_revoke_fence(struct i915_vma *vma)
292 {
293 struct i915_fence_reg *fence = vma->fence;
294 intel_wakeref_t wakeref;
295
296 lockdep_assert_held(&vma->vm->mutex);
297 if (!fence)
298 return;
299
300 GEM_BUG_ON(fence->vma != vma);
301 GEM_BUG_ON(!i915_active_is_idle(&fence->active));
302 GEM_BUG_ON(atomic_read(&fence->pin_count));
303
304 fence->tiling = 0;
305 WRITE_ONCE(fence->vma, NULL);
306 vma->fence = NULL;
307
308 /*
309 * Skip the write to HW if and only if the device is currently
310 * suspended.
311 *
312 * If the driver does not currently hold a wakeref (if_in_use == 0),
313 * the device may currently be runtime suspended, or it may be woken
314 * up before the suspend takes place. If the device is not suspended
315 * (powered down) and we skip clearing the fence register, the HW is
316 * left in an undefined state where we may end up with multiple
317 * registers overlapping.
318 */
319 with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
320 fence_write(fence);
321 }
322
fence_is_active(const struct i915_fence_reg * fence)323 static bool fence_is_active(const struct i915_fence_reg *fence)
324 {
325 return fence->vma && i915_vma_is_active(fence->vma);
326 }
327
fence_find(struct i915_ggtt * ggtt)328 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
329 {
330 struct i915_fence_reg *active = NULL;
331 struct i915_fence_reg *fence, *fn;
332
333 list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
334 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
335
336 if (fence == active) /* now seen this fence twice */
337 active = ERR_PTR(-EAGAIN);
338
339 /* Prefer idle fences so we do not have to wait on the GPU */
340 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
341 if (!active)
342 active = fence;
343
344 list_move_tail(&fence->link, &ggtt->fence_list);
345 continue;
346 }
347
348 if (atomic_read(&fence->pin_count))
349 continue;
350
351 return fence;
352 }
353
354 /* Wait for completion of pending flips which consume fences */
355 if (intel_has_pending_fb_unpin(ggtt->vm.i915))
356 return ERR_PTR(-EAGAIN);
357
358 return ERR_PTR(-ENOBUFS);
359 }
360
__i915_vma_pin_fence(struct i915_vma * vma)361 int __i915_vma_pin_fence(struct i915_vma *vma)
362 {
363 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
364 struct i915_fence_reg *fence;
365 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
366 int err;
367
368 lockdep_assert_held(&vma->vm->mutex);
369
370 /* Just update our place in the LRU if our fence is getting reused. */
371 if (vma->fence) {
372 fence = vma->fence;
373 GEM_BUG_ON(fence->vma != vma);
374 atomic_inc(&fence->pin_count);
375 if (!fence->dirty) {
376 list_move_tail(&fence->link, &ggtt->fence_list);
377 return 0;
378 }
379 } else if (set) {
380 fence = fence_find(ggtt);
381 if (IS_ERR(fence))
382 return PTR_ERR(fence);
383
384 GEM_BUG_ON(atomic_read(&fence->pin_count));
385 atomic_inc(&fence->pin_count);
386 } else {
387 return 0;
388 }
389
390 err = fence_update(fence, set);
391 if (err)
392 goto out_unpin;
393
394 GEM_BUG_ON(fence->vma != set);
395 GEM_BUG_ON(vma->fence != (set ? fence : NULL));
396
397 if (set)
398 return 0;
399
400 out_unpin:
401 atomic_dec(&fence->pin_count);
402 return err;
403 }
404
405 /**
406 * i915_vma_pin_fence - set up fencing for a vma
407 * @vma: vma to map through a fence reg
408 *
409 * When mapping objects through the GTT, userspace wants to be able to write
410 * to them without having to worry about swizzling if the object is tiled.
411 * This function walks the fence regs looking for a free one for @obj,
412 * stealing one if it can't find any.
413 *
414 * It then sets up the reg based on the object's properties: address, pitch
415 * and tiling format.
416 *
417 * For an untiled surface, this removes any existing fence.
418 *
419 * Returns:
420 *
421 * 0 on success, negative error code on failure.
422 */
i915_vma_pin_fence(struct i915_vma * vma)423 int i915_vma_pin_fence(struct i915_vma *vma)
424 {
425 int err;
426
427 if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
428 return 0;
429
430 /*
431 * Note that we revoke fences on runtime suspend. Therefore the user
432 * must keep the device awake whilst using the fence.
433 */
434 assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
435 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
436
437 err = mutex_lock_interruptible(&vma->vm->mutex);
438 if (err)
439 return err;
440
441 err = __i915_vma_pin_fence(vma);
442 mutex_unlock(&vma->vm->mutex);
443
444 return err;
445 }
446
447 /**
448 * i915_reserve_fence - Reserve a fence for vGPU
449 * @ggtt: Global GTT
450 *
451 * This function walks the fence regs looking for a free one and remove
452 * it from the fence_list. It is used to reserve fence for vGPU to use.
453 */
i915_reserve_fence(struct i915_ggtt * ggtt)454 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
455 {
456 struct i915_fence_reg *fence;
457 int count;
458 int ret;
459
460 lockdep_assert_held(&ggtt->vm.mutex);
461
462 /* Keep at least one fence available for the display engine. */
463 count = 0;
464 list_for_each_entry(fence, &ggtt->fence_list, link)
465 count += !atomic_read(&fence->pin_count);
466 if (count <= 1)
467 return ERR_PTR(-ENOSPC);
468
469 fence = fence_find(ggtt);
470 if (IS_ERR(fence))
471 return fence;
472
473 if (fence->vma) {
474 /* Force-remove fence from VMA */
475 ret = fence_update(fence, NULL);
476 if (ret)
477 return ERR_PTR(ret);
478 }
479
480 list_del(&fence->link);
481
482 return fence;
483 }
484
485 /**
486 * i915_unreserve_fence - Reclaim a reserved fence
487 * @fence: the fence reg
488 *
489 * This function add a reserved fence register from vGPU to the fence_list.
490 */
i915_unreserve_fence(struct i915_fence_reg * fence)491 void i915_unreserve_fence(struct i915_fence_reg *fence)
492 {
493 struct i915_ggtt *ggtt = fence->ggtt;
494
495 lockdep_assert_held(&ggtt->vm.mutex);
496
497 list_add(&fence->link, &ggtt->fence_list);
498 }
499
500 /**
501 * intel_ggtt_restore_fences - restore fence state
502 * @ggtt: Global GTT
503 *
504 * Restore the hw fence state to match the software tracking again, to be called
505 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
506 * the fences, to be reacquired by the user later.
507 */
intel_ggtt_restore_fences(struct i915_ggtt * ggtt)508 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
509 {
510 int i;
511
512 for (i = 0; i < ggtt->num_fences; i++)
513 fence_write(&ggtt->fence_regs[i]);
514 }
515
516 /**
517 * DOC: tiling swizzling details
518 *
519 * The idea behind tiling is to increase cache hit rates by rearranging
520 * pixel data so that a group of pixel accesses are in the same cacheline.
521 * Performance improvement from doing this on the back/depth buffer are on
522 * the order of 30%.
523 *
524 * Intel architectures make this somewhat more complicated, though, by
525 * adjustments made to addressing of data when the memory is in interleaved
526 * mode (matched pairs of DIMMS) to improve memory bandwidth.
527 * For interleaved memory, the CPU sends every sequential 64 bytes
528 * to an alternate memory channel so it can get the bandwidth from both.
529 *
530 * The GPU also rearranges its accesses for increased bandwidth to interleaved
531 * memory, and it matches what the CPU does for non-tiled. However, when tiled
532 * it does it a little differently, since one walks addresses not just in the
533 * X direction but also Y. So, along with alternating channels when bit
534 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
535 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
536 * are common to both the 915 and 965-class hardware.
537 *
538 * The CPU also sometimes XORs in higher bits as well, to improve
539 * bandwidth doing strided access like we do so frequently in graphics. This
540 * is called "Channel XOR Randomization" in the MCH documentation. The result
541 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
542 * decode.
543 *
544 * All of this bit 6 XORing has an effect on our memory management,
545 * as we need to make sure that the 3d driver can correctly address object
546 * contents.
547 *
548 * If we don't have interleaved memory, all tiling is safe and no swizzling is
549 * required.
550 *
551 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
552 * 17 is not just a page offset, so as we page an object out and back in,
553 * individual pages in it will have different bit 17 addresses, resulting in
554 * each 64 bytes being swapped with its neighbor!
555 *
556 * Otherwise, if interleaved, we have to tell the 3d driver what the address
557 * swizzling it needs to do is, since it's writing with the CPU to the pages
558 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
559 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
560 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
561 * to match what the GPU expects.
562 */
563
564 /**
565 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
566 * @ggtt: Global GGTT
567 *
568 * Detects bit 6 swizzling of address lookup between IGD access and CPU
569 * access through main memory.
570 */
detect_bit_6_swizzle(struct i915_ggtt * ggtt)571 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
572 {
573 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
574 struct drm_i915_private *i915 = ggtt->vm.i915;
575 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
576 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
577
578 if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
579 /*
580 * On BDW+, swizzling is not used. We leave the CPU memory
581 * controller in charge of optimizing memory accesses without
582 * the extra address manipulation GPU side.
583 *
584 * VLV and CHV don't have GPU swizzling.
585 */
586 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
587 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
588 } else if (GRAPHICS_VER(i915) >= 6) {
589 if (i915->preserve_bios_swizzle) {
590 if (intel_uncore_read(uncore, DISP_ARB_CTL) &
591 DISP_TILE_SURFACE_SWIZZLING) {
592 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
593 swizzle_y = I915_BIT_6_SWIZZLE_9;
594 } else {
595 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
596 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
597 }
598 } else {
599 u32 dimm_c0, dimm_c1;
600
601 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
602 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
603 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
604 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
605 /*
606 * Enable swizzling when the channels are populated
607 * with identically sized dimms. We don't need to check
608 * the 3rd channel because no cpu with gpu attached
609 * ships in that configuration. Also, swizzling only
610 * makes sense for 2 channels anyway.
611 */
612 if (dimm_c0 == dimm_c1) {
613 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
614 swizzle_y = I915_BIT_6_SWIZZLE_9;
615 } else {
616 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
617 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
618 }
619 }
620 } else if (GRAPHICS_VER(i915) == 5) {
621 /*
622 * On Ironlake whatever DRAM config, GPU always do
623 * same swizzling setup.
624 */
625 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
626 swizzle_y = I915_BIT_6_SWIZZLE_9;
627 } else if (GRAPHICS_VER(i915) == 2) {
628 /*
629 * As far as we know, the 865 doesn't have these bit 6
630 * swizzling issues.
631 */
632 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
633 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
634 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
635 /*
636 * The 965, G33, and newer, have a very flexible memory
637 * configuration. It will enable dual-channel mode
638 * (interleaving) on as much memory as it can, and the GPU
639 * will additionally sometimes enable different bit 6
640 * swizzling for tiled objects from the CPU.
641 *
642 * Here's what I found on the G965:
643 * slot fill memory size swizzling
644 * 0A 0B 1A 1B 1-ch 2-ch
645 * 512 0 0 0 512 0 O
646 * 512 0 512 0 16 1008 X
647 * 512 0 0 512 16 1008 X
648 * 0 512 0 512 16 1008 X
649 * 1024 1024 1024 0 2048 1024 O
650 *
651 * We could probably detect this based on either the DRB
652 * matching, which was the case for the swizzling required in
653 * the table above, or from the 1-ch value being less than
654 * the minimum size of a rank.
655 *
656 * Reports indicate that the swizzling actually
657 * varies depending upon page placement inside the
658 * channels, i.e. we see swizzled pages where the
659 * banks of memory are paired and unswizzled on the
660 * uneven portion, so leave that as unknown.
661 */
662 if (intel_uncore_read16(uncore, C0DRB3_BW) ==
663 intel_uncore_read16(uncore, C1DRB3_BW)) {
664 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
665 swizzle_y = I915_BIT_6_SWIZZLE_9;
666 }
667 } else {
668 u32 dcc = intel_uncore_read(uncore, DCC);
669
670 /*
671 * On 9xx chipsets, channel interleave by the CPU is
672 * determined by DCC. For single-channel, neither the CPU
673 * nor the GPU do swizzling. For dual channel interleaved,
674 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
675 * 9 for Y tiled. The CPU's interleave is independent, and
676 * can be based on either bit 11 (haven't seen this yet) or
677 * bit 17 (common).
678 */
679 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
680 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
681 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
682 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
683 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
684 break;
685 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
686 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
687 /*
688 * This is the base swizzling by the GPU for
689 * tiled buffers.
690 */
691 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
692 swizzle_y = I915_BIT_6_SWIZZLE_9;
693 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
694 /* Bit 11 swizzling by the CPU in addition. */
695 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
696 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
697 } else {
698 /* Bit 17 swizzling by the CPU in addition. */
699 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
700 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
701 }
702 break;
703 }
704
705 /* check for L-shaped memory aka modified enhanced addressing */
706 if (GRAPHICS_VER(i915) == 4 &&
707 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
708 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
709 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
710 }
711
712 if (dcc == 0xffffffff) {
713 drm_err(&i915->drm, "Couldn't read from MCHBAR. "
714 "Disabling tiling.\n");
715 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
716 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
717 }
718 }
719
720 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
721 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
722 /*
723 * Userspace likes to explode if it sees unknown swizzling,
724 * so lie. We will finish the lie when reporting through
725 * the get-tiling-ioctl by reporting the physical swizzle
726 * mode as unknown instead.
727 *
728 * As we don't strictly know what the swizzling is, it may be
729 * bit17 dependent, and so we need to also prevent the pages
730 * from being moved.
731 */
732 i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
733 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
734 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
735 }
736
737 to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
738 to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
739 }
740
741 /*
742 * Swap every 64 bytes of this page around, to account for it having a new
743 * bit 17 of its physical address and therefore being interpreted differently
744 * by the GPU.
745 */
swizzle_page(struct page * page)746 static void swizzle_page(struct page *page)
747 {
748 char temp[64];
749 char *vaddr;
750 int i;
751
752 vaddr = kmap(page);
753
754 for (i = 0; i < PAGE_SIZE; i += 128) {
755 memcpy(temp, &vaddr[i], 64);
756 memcpy(&vaddr[i], &vaddr[i + 64], 64);
757 memcpy(&vaddr[i + 64], temp, 64);
758 }
759
760 kunmap(page);
761 }
762
763 /**
764 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
765 * @obj: i915 GEM buffer object
766 * @pages: the scattergather list of physical pages
767 *
768 * This function fixes up the swizzling in case any page frame number for this
769 * object has changed in bit 17 since that state has been saved with
770 * i915_gem_object_save_bit_17_swizzle().
771 *
772 * This is called when pinning backing storage again, since the kernel is free
773 * to move unpinned backing storage around (either by directly moving pages or
774 * by swapping them out and back in again).
775 */
776 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)777 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
778 struct sg_table *pages)
779 {
780 struct sgt_iter sgt_iter;
781 struct page *page;
782 int i;
783
784 if (obj->bit_17 == NULL)
785 return;
786
787 i = 0;
788 for_each_sgt_page(page, sgt_iter, pages) {
789 char new_bit_17 = page_to_phys(page) >> 17;
790
791 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
792 swizzle_page(page);
793 set_page_dirty(page);
794 }
795
796 i++;
797 }
798 }
799
800 /**
801 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
802 * @obj: i915 GEM buffer object
803 * @pages: the scattergather list of physical pages
804 *
805 * This function saves the bit 17 of each page frame number so that swizzling
806 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
807 * be called before the backing storage can be unpinned.
808 */
809 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)810 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
811 struct sg_table *pages)
812 {
813 const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
814 struct sgt_iter sgt_iter;
815 struct page *page;
816 int i;
817
818 if (obj->bit_17 == NULL) {
819 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
820 if (obj->bit_17 == NULL) {
821 drm_err(obj->base.dev,
822 "Failed to allocate memory for bit 17 record\n");
823 return;
824 }
825 }
826
827 i = 0;
828
829 for_each_sgt_page(page, sgt_iter, pages) {
830 if (page_to_phys(page) & (1 << 17))
831 __set_bit(i, obj->bit_17);
832 else
833 __clear_bit(i, obj->bit_17);
834 i++;
835 }
836 }
837
intel_ggtt_init_fences(struct i915_ggtt * ggtt)838 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
839 {
840 struct drm_i915_private *i915 = ggtt->vm.i915;
841 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
842 int num_fences;
843 int i;
844
845 INIT_LIST_HEAD(&ggtt->fence_list);
846 INIT_LIST_HEAD(&ggtt->userfault_list);
847
848 detect_bit_6_swizzle(ggtt);
849
850 if (!i915_ggtt_has_aperture(ggtt))
851 num_fences = 0;
852 else if (GRAPHICS_VER(i915) >= 7 &&
853 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
854 num_fences = 32;
855 else if (GRAPHICS_VER(i915) >= 4 ||
856 IS_I945G(i915) || IS_I945GM(i915) ||
857 IS_G33(i915) || IS_PINEVIEW(i915))
858 num_fences = 16;
859 else
860 num_fences = 8;
861
862 if (intel_vgpu_active(i915))
863 num_fences = intel_uncore_read(uncore,
864 vgtif_reg(avail_rs.fence_num));
865 ggtt->fence_regs = kcalloc(num_fences,
866 sizeof(*ggtt->fence_regs),
867 GFP_KERNEL);
868 if (!ggtt->fence_regs)
869 num_fences = 0;
870
871 /* Initialize fence registers to zero */
872 for (i = 0; i < num_fences; i++) {
873 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
874
875 i915_active_init(&fence->active, NULL, NULL, 0);
876 fence->ggtt = ggtt;
877 fence->id = i;
878 list_add_tail(&fence->link, &ggtt->fence_list);
879 }
880 ggtt->num_fences = num_fences;
881
882 intel_ggtt_restore_fences(ggtt);
883 }
884
intel_ggtt_fini_fences(struct i915_ggtt * ggtt)885 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
886 {
887 int i;
888
889 for (i = 0; i < ggtt->num_fences; i++) {
890 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
891
892 i915_active_fini(&fence->active);
893 }
894
895 kfree(ggtt->fence_regs);
896 }
897
intel_gt_init_swizzling(struct intel_gt * gt)898 void intel_gt_init_swizzling(struct intel_gt *gt)
899 {
900 struct drm_i915_private *i915 = gt->i915;
901 struct intel_uncore *uncore = gt->uncore;
902
903 if (GRAPHICS_VER(i915) < 5 ||
904 to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
905 return;
906
907 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
908
909 if (GRAPHICS_VER(i915) == 5)
910 return;
911
912 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
913
914 if (GRAPHICS_VER(i915) == 6)
915 intel_uncore_write(uncore,
916 ARB_MODE,
917 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
918 else if (GRAPHICS_VER(i915) == 7)
919 intel_uncore_write(uncore,
920 ARB_MODE,
921 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
922 else if (GRAPHICS_VER(i915) == 8)
923 intel_uncore_write(uncore,
924 GAMTARBMODE,
925 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
926 else
927 MISSING_CASE(GRAPHICS_VER(i915));
928 }
929