1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "linux/string.h"
29 #include "linux/bitops.h"
30 #include "drmP.h"
31 #include "drm.h"
32 #include "i915_drm.h"
33 #include "i915_drv.h"
34 
35 /** @file i915_gem_tiling.c
36  *
37  * Support for managing tiling state of buffer objects.
38  *
39  * The idea behind tiling is to increase cache hit rates by rearranging
40  * pixel data so that a group of pixel accesses are in the same cacheline.
41  * Performance improvement from doing this on the back/depth buffer are on
42  * the order of 30%.
43  *
44  * Intel architectures make this somewhat more complicated, though, by
45  * adjustments made to addressing of data when the memory is in interleaved
46  * mode (matched pairs of DIMMS) to improve memory bandwidth.
47  * For interleaved memory, the CPU sends every sequential 64 bytes
48  * to an alternate memory channel so it can get the bandwidth from both.
49  *
50  * The GPU also rearranges its accesses for increased bandwidth to interleaved
51  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
52  * it does it a little differently, since one walks addresses not just in the
53  * X direction but also Y.  So, along with alternating channels when bit
54  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
55  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56  * are common to both the 915 and 965-class hardware.
57  *
58  * The CPU also sometimes XORs in higher bits as well, to improve
59  * bandwidth doing strided access like we do so frequently in graphics.  This
60  * is called "Channel XOR Randomization" in the MCH documentation.  The result
61  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62  * decode.
63  *
64  * All of this bit 6 XORing has an effect on our memory management,
65  * as we need to make sure that the 3d driver can correctly address object
66  * contents.
67  *
68  * If we don't have interleaved memory, all tiling is safe and no swizzling is
69  * required.
70  *
71  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
72  * 17 is not just a page offset, so as we page an objet out and back in,
73  * individual pages in it will have different bit 17 addresses, resulting in
74  * each 64 bytes being swapped with its neighbor!
75  *
76  * Otherwise, if interleaved, we have to tell the 3d driver what the address
77  * swizzling it needs to do is, since it's writing with the CPU to the pages
78  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81  * to match what the GPU expects.
82  */
83 
84 /**
85  * Detects bit 6 swizzling of address lookup between IGD access and CPU
86  * access through main memory.
87  */
88 void
i915_gem_detect_bit_6_swizzle(struct drm_device * dev)89 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90 {
91 	drm_i915_private_t *dev_priv = dev->dev_private;
92 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94 
95 	if (IS_GEN5(dev) || IS_GEN6(dev)) {
96 		/* On Ironlake whatever DRAM config, GPU always do
97 		 * same swizzling setup.
98 		 */
99 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
100 		swizzle_y = I915_BIT_6_SWIZZLE_9;
101 	} else if (IS_GEN2(dev)) {
102 		/* As far as we know, the 865 doesn't have these bit 6
103 		 * swizzling issues.
104 		 */
105 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
106 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
107 	} else if (IS_MOBILE(dev)) {
108 		uint32_t dcc;
109 
110 		/* On mobile 9xx chipsets, channel interleave by the CPU is
111 		 * determined by DCC.  For single-channel, neither the CPU
112 		 * nor the GPU do swizzling.  For dual channel interleaved,
113 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
114 		 * 9 for Y tiled.  The CPU's interleave is independent, and
115 		 * can be based on either bit 11 (haven't seen this yet) or
116 		 * bit 17 (common).
117 		 */
118 		dcc = I915_READ(DCC);
119 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
120 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
121 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
122 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
123 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
124 			break;
125 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
126 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
127 				/* This is the base swizzling by the GPU for
128 				 * tiled buffers.
129 				 */
130 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
131 				swizzle_y = I915_BIT_6_SWIZZLE_9;
132 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
133 				/* Bit 11 swizzling by the CPU in addition. */
134 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
135 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
136 			} else {
137 				/* Bit 17 swizzling by the CPU in addition. */
138 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
139 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
140 			}
141 			break;
142 		}
143 		if (dcc == 0xffffffff) {
144 			DRM_ERROR("Couldn't read from MCHBAR.  "
145 				  "Disabling tiling.\n");
146 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
147 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
148 		}
149 	} else {
150 		/* The 965, G33, and newer, have a very flexible memory
151 		 * configuration.  It will enable dual-channel mode
152 		 * (interleaving) on as much memory as it can, and the GPU
153 		 * will additionally sometimes enable different bit 6
154 		 * swizzling for tiled objects from the CPU.
155 		 *
156 		 * Here's what I found on the G965:
157 		 *    slot fill         memory size  swizzling
158 		 * 0A   0B   1A   1B    1-ch   2-ch
159 		 * 512  0    0    0     512    0     O
160 		 * 512  0    512  0     16     1008  X
161 		 * 512  0    0    512   16     1008  X
162 		 * 0    512  0    512   16     1008  X
163 		 * 1024 1024 1024 0     2048   1024  O
164 		 *
165 		 * We could probably detect this based on either the DRB
166 		 * matching, which was the case for the swizzling required in
167 		 * the table above, or from the 1-ch value being less than
168 		 * the minimum size of a rank.
169 		 */
170 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
171 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
172 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
173 		} else {
174 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
175 			swizzle_y = I915_BIT_6_SWIZZLE_9;
176 		}
177 	}
178 
179 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
180 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
181 }
182 
183 /* Check pitch constriants for all chips & tiling formats */
184 static bool
i915_tiling_ok(struct drm_device * dev,int stride,int size,int tiling_mode)185 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
186 {
187 	int tile_width;
188 
189 	/* Linear is always fine */
190 	if (tiling_mode == I915_TILING_NONE)
191 		return true;
192 
193 	if (IS_GEN2(dev) ||
194 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
195 		tile_width = 128;
196 	else
197 		tile_width = 512;
198 
199 	/* check maximum stride & object size */
200 	if (INTEL_INFO(dev)->gen >= 4) {
201 		/* i965 stores the end address of the gtt mapping in the fence
202 		 * reg, so dont bother to check the size */
203 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
204 			return false;
205 	} else {
206 		if (stride > 8192)
207 			return false;
208 
209 		if (IS_GEN3(dev)) {
210 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
211 				return false;
212 		} else {
213 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
214 				return false;
215 		}
216 	}
217 
218 	/* 965+ just needs multiples of tile width */
219 	if (INTEL_INFO(dev)->gen >= 4) {
220 		if (stride & (tile_width - 1))
221 			return false;
222 		return true;
223 	}
224 
225 	/* Pre-965 needs power of two tile widths */
226 	if (stride < tile_width)
227 		return false;
228 
229 	if (stride & (stride - 1))
230 		return false;
231 
232 	return true;
233 }
234 
235 /* Is the current GTT allocation valid for the change in tiling? */
236 static bool
i915_gem_object_fence_ok(struct drm_i915_gem_object * obj,int tiling_mode)237 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
238 {
239 	u32 size;
240 
241 	if (tiling_mode == I915_TILING_NONE)
242 		return true;
243 
244 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
245 		return true;
246 
247 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
248 		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
249 			return false;
250 	} else {
251 		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
252 			return false;
253 	}
254 
255 	/*
256 	 * Previous chips need to be aligned to the size of the smallest
257 	 * fence register that can contain the object.
258 	 */
259 	if (INTEL_INFO(obj->base.dev)->gen == 3)
260 		size = 1024*1024;
261 	else
262 		size = 512*1024;
263 
264 	while (size < obj->base.size)
265 		size <<= 1;
266 
267 	if (obj->gtt_space->size != size)
268 		return false;
269 
270 	if (obj->gtt_offset & (size - 1))
271 		return false;
272 
273 	return true;
274 }
275 
276 /**
277  * Sets the tiling mode of an object, returning the required swizzling of
278  * bit 6 of addresses in the object.
279  */
280 int
i915_gem_set_tiling(struct drm_device * dev,void * data,struct drm_file * file)281 i915_gem_set_tiling(struct drm_device *dev, void *data,
282 		   struct drm_file *file)
283 {
284 	struct drm_i915_gem_set_tiling *args = data;
285 	drm_i915_private_t *dev_priv = dev->dev_private;
286 	struct drm_i915_gem_object *obj;
287 	int ret = 0;
288 
289 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
290 	if (&obj->base == NULL)
291 		return -ENOENT;
292 
293 	if (!i915_tiling_ok(dev,
294 			    args->stride, obj->base.size, args->tiling_mode)) {
295 		drm_gem_object_unreference_unlocked(&obj->base);
296 		return -EINVAL;
297 	}
298 
299 	if (obj->pin_count) {
300 		drm_gem_object_unreference_unlocked(&obj->base);
301 		return -EBUSY;
302 	}
303 
304 	if (args->tiling_mode == I915_TILING_NONE) {
305 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
306 		args->stride = 0;
307 	} else {
308 		if (args->tiling_mode == I915_TILING_X)
309 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
310 		else
311 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
312 
313 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
314 		 * from aborting the application on sw fallbacks to bit 17,
315 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
316 		 * If there was a user that was relying on the swizzle
317 		 * information for drm_intel_bo_map()ed reads/writes this would
318 		 * break it, but we don't have any of those.
319 		 */
320 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
321 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
322 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
323 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
324 
325 		/* If we can't handle the swizzling, make it untiled. */
326 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
327 			args->tiling_mode = I915_TILING_NONE;
328 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
329 			args->stride = 0;
330 		}
331 	}
332 
333 	mutex_lock(&dev->struct_mutex);
334 	if (args->tiling_mode != obj->tiling_mode ||
335 	    args->stride != obj->stride) {
336 		/* We need to rebind the object if its current allocation
337 		 * no longer meets the alignment restrictions for its new
338 		 * tiling mode. Otherwise we can just leave it alone, but
339 		 * need to ensure that any fence register is cleared.
340 		 */
341 		i915_gem_release_mmap(obj);
342 
343 		obj->map_and_fenceable =
344 			obj->gtt_space == NULL ||
345 			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
346 			 i915_gem_object_fence_ok(obj, args->tiling_mode));
347 
348 		/* Rebind if we need a change of alignment */
349 		if (!obj->map_and_fenceable) {
350 			u32 unfenced_alignment =
351 				i915_gem_get_unfenced_gtt_alignment(obj);
352 			if (obj->gtt_offset & (unfenced_alignment - 1))
353 				ret = i915_gem_object_unbind(obj);
354 		}
355 
356 		if (ret == 0) {
357 			obj->tiling_changed = true;
358 			obj->tiling_mode = args->tiling_mode;
359 			obj->stride = args->stride;
360 		}
361 	}
362 	/* we have to maintain this existing ABI... */
363 	args->stride = obj->stride;
364 	args->tiling_mode = obj->tiling_mode;
365 	drm_gem_object_unreference(&obj->base);
366 	mutex_unlock(&dev->struct_mutex);
367 
368 	return ret;
369 }
370 
371 /**
372  * Returns the current tiling mode and required bit 6 swizzling for the object.
373  */
374 int
i915_gem_get_tiling(struct drm_device * dev,void * data,struct drm_file * file)375 i915_gem_get_tiling(struct drm_device *dev, void *data,
376 		   struct drm_file *file)
377 {
378 	struct drm_i915_gem_get_tiling *args = data;
379 	drm_i915_private_t *dev_priv = dev->dev_private;
380 	struct drm_i915_gem_object *obj;
381 
382 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
383 	if (&obj->base == NULL)
384 		return -ENOENT;
385 
386 	mutex_lock(&dev->struct_mutex);
387 
388 	args->tiling_mode = obj->tiling_mode;
389 	switch (obj->tiling_mode) {
390 	case I915_TILING_X:
391 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
392 		break;
393 	case I915_TILING_Y:
394 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
395 		break;
396 	case I915_TILING_NONE:
397 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
398 		break;
399 	default:
400 		DRM_ERROR("unknown tiling mode\n");
401 	}
402 
403 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
404 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
405 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
406 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
407 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
408 
409 	drm_gem_object_unreference(&obj->base);
410 	mutex_unlock(&dev->struct_mutex);
411 
412 	return 0;
413 }
414 
415 /**
416  * Swap every 64 bytes of this page around, to account for it having a new
417  * bit 17 of its physical address and therefore being interpreted differently
418  * by the GPU.
419  */
420 static void
i915_gem_swizzle_page(struct page * page)421 i915_gem_swizzle_page(struct page *page)
422 {
423 	char temp[64];
424 	char *vaddr;
425 	int i;
426 
427 	vaddr = kmap(page);
428 
429 	for (i = 0; i < PAGE_SIZE; i += 128) {
430 		memcpy(temp, &vaddr[i], 64);
431 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
432 		memcpy(&vaddr[i + 64], temp, 64);
433 	}
434 
435 	kunmap(page);
436 }
437 
438 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj)439 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
440 {
441 	struct drm_device *dev = obj->base.dev;
442 	drm_i915_private_t *dev_priv = dev->dev_private;
443 	int page_count = obj->base.size >> PAGE_SHIFT;
444 	int i;
445 
446 	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
447 		return;
448 
449 	if (obj->bit_17 == NULL)
450 		return;
451 
452 	for (i = 0; i < page_count; i++) {
453 		char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
454 		if ((new_bit_17 & 0x1) !=
455 		    (test_bit(i, obj->bit_17) != 0)) {
456 			i915_gem_swizzle_page(obj->pages[i]);
457 			set_page_dirty(obj->pages[i]);
458 		}
459 	}
460 }
461 
462 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj)463 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
464 {
465 	struct drm_device *dev = obj->base.dev;
466 	drm_i915_private_t *dev_priv = dev->dev_private;
467 	int page_count = obj->base.size >> PAGE_SHIFT;
468 	int i;
469 
470 	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
471 		return;
472 
473 	if (obj->bit_17 == NULL) {
474 		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
475 					   sizeof(long), GFP_KERNEL);
476 		if (obj->bit_17 == NULL) {
477 			DRM_ERROR("Failed to allocate memory for bit 17 "
478 				  "record\n");
479 			return;
480 		}
481 	}
482 
483 	for (i = 0; i < page_count; i++) {
484 		if (page_to_phys(obj->pages[i]) & (1 << 17))
485 			__set_bit(i, obj->bit_17);
486 		else
487 			__clear_bit(i, obj->bit_17);
488 	}
489 }
490