1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/posix-clock.h>
7
8 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
9 * the fundamental clock design. However, the clock operations are much simpler
10 * in the XL710 because the device supports a full 64 bits of nanoseconds.
11 * Because the field is so wide, we can forgo the cycle counter and just
12 * operate with the nanosecond field directly without fear of overflow.
13 *
14 * Much like the 82599, the update period is dependent upon the link speed:
15 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
16 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
17 * At 1Gb link, the period is multiplied by 20. (32ns)
18 * 1588 functionality is not supported at 100Mbps.
19 */
20 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL
21 #define I40E_PTP_10GB_INCVAL_MULT 2
22 #define I40E_PTP_5GB_INCVAL_MULT 2
23 #define I40E_PTP_1GB_INCVAL_MULT 20
24 #define I40E_ISGN 0x80000000
25
26 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
28 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
29 #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB
30
31 enum i40e_ptp_pin {
32 SDP3_2 = 0,
33 SDP3_3,
34 GPIO_4
35 };
36
37 enum i40e_can_set_pins_t {
38 CANT_DO_PINS = -1,
39 CAN_SET_PINS,
40 CAN_DO_PINS
41 };
42
43 static struct ptp_pin_desc sdp_desc[] = {
44 /* name idx func chan */
45 {"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
46 {"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
47 {"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
48 };
49
50 enum i40e_ptp_gpio_pin_state {
51 end = -2,
52 invalid,
53 off,
54 in_A,
55 in_B,
56 out_A,
57 out_B,
58 };
59
60 static const char * const i40e_ptp_gpio_pin_state2str[] = {
61 "off", "in_A", "in_B", "out_A", "out_B"
62 };
63
64 enum i40e_ptp_led_pin_state {
65 led_end = -2,
66 low = 0,
67 high,
68 };
69
70 struct i40e_ptp_pins_settings {
71 enum i40e_ptp_gpio_pin_state sdp3_2;
72 enum i40e_ptp_gpio_pin_state sdp3_3;
73 enum i40e_ptp_gpio_pin_state gpio_4;
74 enum i40e_ptp_led_pin_state led2_0;
75 enum i40e_ptp_led_pin_state led2_1;
76 enum i40e_ptp_led_pin_state led3_0;
77 enum i40e_ptp_led_pin_state led3_1;
78 };
79
80 static const struct i40e_ptp_pins_settings
81 i40e_ptp_pin_led_allowed_states[] = {
82 {off, off, off, high, high, high, high},
83 {off, in_A, off, high, high, high, low},
84 {off, out_A, off, high, low, high, high},
85 {off, in_B, off, high, high, high, low},
86 {off, out_B, off, high, low, high, high},
87 {in_A, off, off, high, high, high, low},
88 {in_A, in_B, off, high, high, high, low},
89 {in_A, out_B, off, high, low, high, high},
90 {out_A, off, off, high, low, high, high},
91 {out_A, in_B, off, high, low, high, high},
92 {in_B, off, off, high, high, high, low},
93 {in_B, in_A, off, high, high, high, low},
94 {in_B, out_A, off, high, low, high, high},
95 {out_B, off, off, high, low, high, high},
96 {out_B, in_A, off, high, low, high, high},
97 {off, off, in_A, high, high, low, high},
98 {off, out_A, in_A, high, low, low, high},
99 {off, in_B, in_A, high, high, low, low},
100 {off, out_B, in_A, high, low, low, high},
101 {out_A, off, in_A, high, low, low, high},
102 {out_A, in_B, in_A, high, low, low, high},
103 {in_B, off, in_A, high, high, low, low},
104 {in_B, out_A, in_A, high, low, low, high},
105 {out_B, off, in_A, high, low, low, high},
106 {off, off, out_A, low, high, high, high},
107 {off, in_A, out_A, low, high, high, low},
108 {off, in_B, out_A, low, high, high, low},
109 {off, out_B, out_A, low, low, high, high},
110 {in_A, off, out_A, low, high, high, low},
111 {in_A, in_B, out_A, low, high, high, low},
112 {in_A, out_B, out_A, low, low, high, high},
113 {in_B, off, out_A, low, high, high, low},
114 {in_B, in_A, out_A, low, high, high, low},
115 {out_B, off, out_A, low, low, high, high},
116 {out_B, in_A, out_A, low, low, high, high},
117 {off, off, in_B, high, high, low, high},
118 {off, in_A, in_B, high, high, low, low},
119 {off, out_A, in_B, high, low, low, high},
120 {off, out_B, in_B, high, low, low, high},
121 {in_A, off, in_B, high, high, low, low},
122 {in_A, out_B, in_B, high, low, low, high},
123 {out_A, off, in_B, high, low, low, high},
124 {out_B, off, in_B, high, low, low, high},
125 {out_B, in_A, in_B, high, low, low, high},
126 {off, off, out_B, low, high, high, high},
127 {off, in_A, out_B, low, high, high, low},
128 {off, out_A, out_B, low, low, high, high},
129 {off, in_B, out_B, low, high, high, low},
130 {in_A, off, out_B, low, high, high, low},
131 {in_A, in_B, out_B, low, high, high, low},
132 {out_A, off, out_B, low, low, high, high},
133 {out_A, in_B, out_B, low, low, high, high},
134 {in_B, off, out_B, low, high, high, low},
135 {in_B, in_A, out_B, low, high, high, low},
136 {in_B, out_A, out_B, low, low, high, high},
137 {end, end, end, led_end, led_end, led_end, led_end}
138 };
139
140 static int i40e_ptp_set_pins(struct i40e_pf *pf,
141 struct i40e_ptp_pins_settings *pins);
142
143 /**
144 * i40e_ptp_extts0_work - workqueue task function
145 * @work: workqueue task structure
146 *
147 * Service for PTP external clock event
148 **/
i40e_ptp_extts0_work(struct work_struct * work)149 static void i40e_ptp_extts0_work(struct work_struct *work)
150 {
151 struct i40e_pf *pf = container_of(work, struct i40e_pf,
152 ptp_extts0_work);
153 struct i40e_hw *hw = &pf->hw;
154 struct ptp_clock_event event;
155 u32 hi, lo;
156
157 /* Event time is captured by one of the two matched registers
158 * PRTTSYN_EVNT_L: 32 LSB of sampled time event
159 * PRTTSYN_EVNT_H: 32 MSB of sampled time event
160 * Event is defined in PRTTSYN_EVNT_0 register
161 */
162 lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
163 hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
164
165 event.timestamp = (((u64)hi) << 32) | lo;
166
167 event.type = PTP_CLOCK_EXTTS;
168 event.index = hw->pf_id;
169
170 /* fire event */
171 ptp_clock_event(pf->ptp_clock, &event);
172 }
173
174 /**
175 * i40e_is_ptp_pin_dev - check if device supports PTP pins
176 * @hw: pointer to the hardware structure
177 *
178 * Return true if device supports PTP pins, false otherwise.
179 **/
i40e_is_ptp_pin_dev(struct i40e_hw * hw)180 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
181 {
182 return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
183 hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
184 }
185
186 /**
187 * i40e_can_set_pins - check possibility of manipulating the pins
188 * @pf: board private structure
189 *
190 * Check if all conditions are satisfied to manipulate PTP pins.
191 * Return CAN_SET_PINS if pins can be set on a specific PF or
192 * return CAN_DO_PINS if pins can be manipulated within a NIC or
193 * return CANT_DO_PINS otherwise.
194 **/
i40e_can_set_pins(struct i40e_pf * pf)195 static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
196 {
197 if (!i40e_is_ptp_pin_dev(&pf->hw)) {
198 dev_warn(&pf->pdev->dev,
199 "PTP external clock not supported.\n");
200 return CANT_DO_PINS;
201 }
202
203 if (!pf->ptp_pins) {
204 dev_warn(&pf->pdev->dev,
205 "PTP PIN manipulation not allowed.\n");
206 return CANT_DO_PINS;
207 }
208
209 if (pf->hw.pf_id) {
210 dev_warn(&pf->pdev->dev,
211 "PTP PINs should be accessed via PF0.\n");
212 return CAN_DO_PINS;
213 }
214
215 return CAN_SET_PINS;
216 }
217
218 /**
219 * i40_ptp_reset_timing_events - Reset PTP timing events
220 * @pf: Board private structure
221 *
222 * This function resets timing events for pf.
223 **/
i40_ptp_reset_timing_events(struct i40e_pf * pf)224 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
225 {
226 u32 i;
227
228 spin_lock_bh(&pf->ptp_rx_lock);
229 for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
230 /* reading and automatically clearing timing events registers */
231 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
232 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
233 pf->latch_events[i] = 0;
234 }
235 /* reading and automatically clearing timing events registers */
236 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
237 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
238
239 pf->tx_hwtstamp_timeouts = 0;
240 pf->tx_hwtstamp_skipped = 0;
241 pf->rx_hwtstamp_cleared = 0;
242 pf->latch_event_flags = 0;
243 spin_unlock_bh(&pf->ptp_rx_lock);
244 }
245
246 /**
247 * i40e_ptp_verify - check pins
248 * @ptp: ptp clock
249 * @pin: pin index
250 * @func: assigned function
251 * @chan: channel
252 *
253 * Check pins consistency.
254 * Return 0 on success or error on failure.
255 **/
i40e_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)256 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
257 enum ptp_pin_function func, unsigned int chan)
258 {
259 switch (func) {
260 case PTP_PF_NONE:
261 case PTP_PF_EXTTS:
262 case PTP_PF_PEROUT:
263 break;
264 case PTP_PF_PHYSYNC:
265 return -EOPNOTSUPP;
266 }
267 return 0;
268 }
269
270 /**
271 * i40e_ptp_read - Read the PHC time from the device
272 * @pf: Board private structure
273 * @ts: timespec structure to hold the current time value
274 * @sts: structure to hold the system time before and after reading the PHC
275 *
276 * This function reads the PRTTSYN_TIME registers and stores them in a
277 * timespec. However, since the registers are 64 bits of nanoseconds, we must
278 * convert the result to a timespec before we can return.
279 **/
i40e_ptp_read(struct i40e_pf * pf,struct timespec64 * ts,struct ptp_system_timestamp * sts)280 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
281 struct ptp_system_timestamp *sts)
282 {
283 struct i40e_hw *hw = &pf->hw;
284 u32 hi, lo;
285 u64 ns;
286
287 /* The timer latches on the lowest register read. */
288 ptp_read_system_prets(sts);
289 lo = rd32(hw, I40E_PRTTSYN_TIME_L);
290 ptp_read_system_postts(sts);
291 hi = rd32(hw, I40E_PRTTSYN_TIME_H);
292
293 ns = (((u64)hi) << 32) | lo;
294
295 *ts = ns_to_timespec64(ns);
296 }
297
298 /**
299 * i40e_ptp_write - Write the PHC time to the device
300 * @pf: Board private structure
301 * @ts: timespec structure that holds the new time value
302 *
303 * This function writes the PRTTSYN_TIME registers with the user value. Since
304 * we receive a timespec from the stack, we must convert that timespec into
305 * nanoseconds before programming the registers.
306 **/
i40e_ptp_write(struct i40e_pf * pf,const struct timespec64 * ts)307 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
308 {
309 struct i40e_hw *hw = &pf->hw;
310 u64 ns = timespec64_to_ns(ts);
311
312 /* The timer will not update until the high register is written, so
313 * write the low register first.
314 */
315 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
316 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
317 }
318
319 /**
320 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
321 * @hwtstamps: Timestamp structure to update
322 * @timestamp: Timestamp from the hardware
323 *
324 * We need to convert the NIC clock value into a hwtstamp which can be used by
325 * the upper level timestamping functions. Since the timestamp is simply a 64-
326 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
327 **/
i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps * hwtstamps,u64 timestamp)328 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
329 u64 timestamp)
330 {
331 memset(hwtstamps, 0, sizeof(*hwtstamps));
332
333 hwtstamps->hwtstamp = ns_to_ktime(timestamp);
334 }
335
336 /**
337 * i40e_ptp_adjfine - Adjust the PHC frequency
338 * @ptp: The PTP clock structure
339 * @scaled_ppm: Scaled parts per million adjustment from base
340 *
341 * Adjust the frequency of the PHC by the indicated delta from the base
342 * frequency.
343 *
344 * Scaled parts per million is ppm with a 16 bit binary fractional field.
345 **/
i40e_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)346 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
347 {
348 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
349 struct i40e_hw *hw = &pf->hw;
350 u64 adj, base_adj;
351
352 smp_mb(); /* Force any pending update before accessing. */
353 base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
354
355 adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
356
357 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
358 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
359
360 return 0;
361 }
362
363 /**
364 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
365 * @pf: the PF private data structure
366 *
367 * Configure 1PPS signal used for PTP pins
368 **/
i40e_ptp_set_1pps_signal_hw(struct i40e_pf * pf)369 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
370 {
371 struct i40e_hw *hw = &pf->hw;
372 struct timespec64 now;
373 u64 ns;
374
375 wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
376 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
377 wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
378
379 i40e_ptp_read(pf, &now, NULL);
380 now.tv_sec += I40E_PTP_2_SEC_DELAY;
381 now.tv_nsec = 0;
382 ns = timespec64_to_ns(&now);
383
384 /* I40E_PRTTSYN_TGT_L(1) */
385 wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
386 /* I40E_PRTTSYN_TGT_H(1) */
387 wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
388 wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
389 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
390 wr32(hw, I40E_PRTTSYN_AUX_0(1),
391 I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
392 }
393
394 /**
395 * i40e_ptp_adjtime - Adjust the PHC time
396 * @ptp: The PTP clock structure
397 * @delta: Offset in nanoseconds to adjust the PHC time by
398 *
399 * Adjust the current clock time by a delta specified in nanoseconds.
400 **/
i40e_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)401 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
402 {
403 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
404 struct i40e_hw *hw = &pf->hw;
405
406 mutex_lock(&pf->tmreg_lock);
407
408 if (delta > -999999900LL && delta < 999999900LL) {
409 int neg_adj = 0;
410 u32 timadj;
411 u64 tohw;
412
413 if (delta < 0) {
414 neg_adj = 1;
415 tohw = -delta;
416 } else {
417 tohw = delta;
418 }
419
420 timadj = tohw & 0x3FFFFFFF;
421 if (neg_adj)
422 timadj |= I40E_ISGN;
423 wr32(hw, I40E_PRTTSYN_ADJ, timadj);
424 } else {
425 struct timespec64 then, now;
426
427 then = ns_to_timespec64(delta);
428 i40e_ptp_read(pf, &now, NULL);
429 now = timespec64_add(now, then);
430 i40e_ptp_write(pf, (const struct timespec64 *)&now);
431 i40e_ptp_set_1pps_signal_hw(pf);
432 }
433
434 mutex_unlock(&pf->tmreg_lock);
435
436 return 0;
437 }
438
439 /**
440 * i40e_ptp_gettimex - Get the time of the PHC
441 * @ptp: The PTP clock structure
442 * @ts: timespec structure to hold the current time value
443 * @sts: structure to hold the system time before and after reading the PHC
444 *
445 * Read the device clock and return the correct value on ns, after converting it
446 * into a timespec struct.
447 **/
i40e_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)448 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
449 struct ptp_system_timestamp *sts)
450 {
451 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
452
453 mutex_lock(&pf->tmreg_lock);
454 i40e_ptp_read(pf, ts, sts);
455 mutex_unlock(&pf->tmreg_lock);
456
457 return 0;
458 }
459
460 /**
461 * i40e_ptp_settime - Set the time of the PHC
462 * @ptp: The PTP clock structure
463 * @ts: timespec64 structure that holds the new time value
464 *
465 * Set the device clock to the user input value. The conversion from timespec
466 * to ns happens in the write function.
467 **/
i40e_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)468 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
469 const struct timespec64 *ts)
470 {
471 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
472
473 mutex_lock(&pf->tmreg_lock);
474 i40e_ptp_write(pf, ts);
475 mutex_unlock(&pf->tmreg_lock);
476
477 return 0;
478 }
479
480 /**
481 * i40e_pps_configure - configure PPS events
482 * @ptp: ptp clock
483 * @rq: clock request
484 * @on: status
485 *
486 * Configure PPS events for external clock source.
487 * Return 0 on success or error on failure.
488 **/
i40e_pps_configure(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int i40e_pps_configure(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq,
491 int on)
492 {
493 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
494
495 if (!!on)
496 i40e_ptp_set_1pps_signal_hw(pf);
497
498 return 0;
499 }
500
501 /**
502 * i40e_pin_state - determine PIN state
503 * @index: PIN index
504 * @func: function assigned to PIN
505 *
506 * Determine PIN state based on PIN index and function assigned.
507 * Return PIN state.
508 **/
i40e_pin_state(int index,int func)509 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
510 {
511 enum i40e_ptp_gpio_pin_state state = off;
512
513 if (index == 0 && func == PTP_PF_EXTTS)
514 state = in_A;
515 if (index == 1 && func == PTP_PF_EXTTS)
516 state = in_B;
517 if (index == 0 && func == PTP_PF_PEROUT)
518 state = out_A;
519 if (index == 1 && func == PTP_PF_PEROUT)
520 state = out_B;
521
522 return state;
523 }
524
525 /**
526 * i40e_ptp_enable_pin - enable PINs.
527 * @pf: private board structure
528 * @chan: channel
529 * @func: PIN function
530 * @on: state
531 *
532 * Enable PTP pins for external clock source.
533 * Return 0 on success or error code on failure.
534 **/
i40e_ptp_enable_pin(struct i40e_pf * pf,unsigned int chan,enum ptp_pin_function func,int on)535 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
536 enum ptp_pin_function func, int on)
537 {
538 enum i40e_ptp_gpio_pin_state *pin = NULL;
539 struct i40e_ptp_pins_settings pins;
540 int pin_index;
541
542 /* Use PF0 to set pins. Return success for user space tools */
543 if (pf->hw.pf_id)
544 return 0;
545
546 /* Preserve previous state of pins that we don't touch */
547 pins.sdp3_2 = pf->ptp_pins->sdp3_2;
548 pins.sdp3_3 = pf->ptp_pins->sdp3_3;
549 pins.gpio_4 = pf->ptp_pins->gpio_4;
550
551 /* To turn on the pin - find the corresponding one based on
552 * the given index. To to turn the function off - find
553 * which pin had it assigned. Don't use ptp_find_pin here
554 * because it tries to lock the pincfg_mux which is locked by
555 * ptp_pin_store() that calls here.
556 */
557 if (on) {
558 pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
559 if (pin_index < 0)
560 return -EBUSY;
561
562 switch (pin_index) {
563 case SDP3_2:
564 pin = &pins.sdp3_2;
565 break;
566 case SDP3_3:
567 pin = &pins.sdp3_3;
568 break;
569 case GPIO_4:
570 pin = &pins.gpio_4;
571 break;
572 default:
573 return -EINVAL;
574 }
575
576 *pin = i40e_pin_state(chan, func);
577 } else {
578 pins.sdp3_2 = off;
579 pins.sdp3_3 = off;
580 pins.gpio_4 = off;
581 }
582
583 return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
584 }
585
586 /**
587 * i40e_ptp_feature_enable - Enable external clock pins
588 * @ptp: The PTP clock structure
589 * @rq: The PTP clock request structure
590 * @on: To turn feature on/off
591 *
592 * Setting on/off PTP PPS feature for pin.
593 **/
i40e_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)594 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
595 struct ptp_clock_request *rq,
596 int on)
597 {
598 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
599
600 enum ptp_pin_function func;
601 unsigned int chan;
602
603 /* TODO: Implement flags handling for EXTTS and PEROUT */
604 switch (rq->type) {
605 case PTP_CLK_REQ_EXTTS:
606 func = PTP_PF_EXTTS;
607 chan = rq->extts.index;
608 break;
609 case PTP_CLK_REQ_PEROUT:
610 func = PTP_PF_PEROUT;
611 chan = rq->perout.index;
612 break;
613 case PTP_CLK_REQ_PPS:
614 return i40e_pps_configure(ptp, rq, on);
615 default:
616 return -EOPNOTSUPP;
617 }
618
619 return i40e_ptp_enable_pin(pf, chan, func, on);
620 }
621
622 /**
623 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
624 * @pf: the PF data structure
625 *
626 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
627 * for noticed latch events. This allows the driver to keep track of the first
628 * time a latch event was noticed which will be used to help clear out Rx
629 * timestamps for packets that got dropped or lost.
630 *
631 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
632 * expected to be called only while under the ptp_rx_lock.
633 **/
i40e_ptp_get_rx_events(struct i40e_pf * pf)634 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
635 {
636 struct i40e_hw *hw = &pf->hw;
637 u32 prttsyn_stat, new_latch_events;
638 int i;
639
640 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
641 new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
642
643 /* Update the jiffies time for any newly latched timestamp. This
644 * ensures that we store the time that we first discovered a timestamp
645 * was latched by the hardware. The service task will later determine
646 * if we should free the latch and drop that timestamp should too much
647 * time pass. This flow ensures that we only update jiffies for new
648 * events latched since the last time we checked, and not all events
649 * currently latched, so that the service task accounting remains
650 * accurate.
651 */
652 for (i = 0; i < 4; i++) {
653 if (new_latch_events & BIT(i))
654 pf->latch_events[i] = jiffies;
655 }
656
657 /* Finally, we store the current status of the Rx timestamp latches */
658 pf->latch_event_flags = prttsyn_stat;
659
660 return prttsyn_stat;
661 }
662
663 /**
664 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
665 * @pf: The PF private data structure
666 *
667 * This watchdog task is scheduled to detect error case where hardware has
668 * dropped an Rx packet that was timestamped when the ring is full. The
669 * particular error is rare but leaves the device in a state unable to timestamp
670 * any future packets.
671 **/
i40e_ptp_rx_hang(struct i40e_pf * pf)672 void i40e_ptp_rx_hang(struct i40e_pf *pf)
673 {
674 struct i40e_hw *hw = &pf->hw;
675 unsigned int i, cleared = 0;
676
677 /* Since we cannot turn off the Rx timestamp logic if the device is
678 * configured for Tx timestamping, we check if Rx timestamping is
679 * configured. We don't want to spuriously warn about Rx timestamp
680 * hangs if we don't care about the timestamps.
681 */
682 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
683 return;
684
685 spin_lock_bh(&pf->ptp_rx_lock);
686
687 /* Update current latch times for Rx events */
688 i40e_ptp_get_rx_events(pf);
689
690 /* Check all the currently latched Rx events and see whether they have
691 * been latched for over a second. It is assumed that any timestamp
692 * should have been cleared within this time, or else it was captured
693 * for a dropped frame that the driver never received. Thus, we will
694 * clear any timestamp that has been latched for over 1 second.
695 */
696 for (i = 0; i < 4; i++) {
697 if ((pf->latch_event_flags & BIT(i)) &&
698 time_is_before_jiffies(pf->latch_events[i] + HZ)) {
699 rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
700 pf->latch_event_flags &= ~BIT(i);
701 cleared++;
702 }
703 }
704
705 spin_unlock_bh(&pf->ptp_rx_lock);
706
707 /* Log a warning if more than 2 timestamps got dropped in the same
708 * check. We don't want to warn about all drops because it can occur
709 * in normal scenarios such as PTP frames on multicast addresses we
710 * aren't listening to. However, administrator should know if this is
711 * the reason packets aren't receiving timestamps.
712 */
713 if (cleared > 2)
714 dev_dbg(&pf->pdev->dev,
715 "Dropped %d missed RXTIME timestamp events\n",
716 cleared);
717
718 /* Finally, update the rx_hwtstamp_cleared counter */
719 pf->rx_hwtstamp_cleared += cleared;
720 }
721
722 /**
723 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
724 * @pf: The PF private data structure
725 *
726 * This watchdog task is run periodically to make sure that we clear the Tx
727 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
728 * time. It is unexpected in the normal case but if it occurs it results in
729 * permanently preventing timestamps of future packets.
730 **/
i40e_ptp_tx_hang(struct i40e_pf * pf)731 void i40e_ptp_tx_hang(struct i40e_pf *pf)
732 {
733 struct sk_buff *skb;
734
735 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
736 return;
737
738 /* Nothing to do if we're not already waiting for a timestamp */
739 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
740 return;
741
742 /* We already have a handler routine which is run when we are notified
743 * of a Tx timestamp in the hardware. If we don't get an interrupt
744 * within a second it is reasonable to assume that we never will.
745 */
746 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
747 skb = pf->ptp_tx_skb;
748 pf->ptp_tx_skb = NULL;
749 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
750
751 /* Free the skb after we clear the bitlock */
752 dev_kfree_skb_any(skb);
753 pf->tx_hwtstamp_timeouts++;
754 }
755 }
756
757 /**
758 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
759 * @pf: Board private structure
760 *
761 * Read the value of the Tx timestamp from the registers, convert it into a
762 * value consumable by the stack, and store that result into the shhwtstamps
763 * struct before returning it up the stack.
764 **/
i40e_ptp_tx_hwtstamp(struct i40e_pf * pf)765 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
766 {
767 struct skb_shared_hwtstamps shhwtstamps;
768 struct sk_buff *skb = pf->ptp_tx_skb;
769 struct i40e_hw *hw = &pf->hw;
770 u32 hi, lo;
771 u64 ns;
772
773 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
774 return;
775
776 /* don't attempt to timestamp if we don't have an skb */
777 if (!pf->ptp_tx_skb)
778 return;
779
780 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
781 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
782
783 ns = (((u64)hi) << 32) | lo;
784 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
785
786 /* Clear the bit lock as soon as possible after reading the register,
787 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
788 * applications might wake up and attempt to request another transmit
789 * timestamp prior to the bit lock being cleared.
790 */
791 pf->ptp_tx_skb = NULL;
792 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
793
794 /* Notify the stack and free the skb after we've unlocked */
795 skb_tstamp_tx(skb, &shhwtstamps);
796 dev_kfree_skb_any(skb);
797 }
798
799 /**
800 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
801 * @pf: Board private structure
802 * @skb: Particular skb to send timestamp with
803 * @index: Index into the receive timestamp registers for the timestamp
804 *
805 * The XL710 receives a notification in the receive descriptor with an offset
806 * into the set of RXTIME registers where the timestamp is for that skb. This
807 * function goes and fetches the receive timestamp from that offset, if a valid
808 * one exists. The RXTIME registers are in ns, so we must convert the result
809 * first.
810 **/
i40e_ptp_rx_hwtstamp(struct i40e_pf * pf,struct sk_buff * skb,u8 index)811 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
812 {
813 u32 prttsyn_stat, hi, lo;
814 struct i40e_hw *hw;
815 u64 ns;
816
817 /* Since we cannot turn off the Rx timestamp logic if the device is
818 * doing Tx timestamping, check if Rx timestamping is configured.
819 */
820 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
821 return;
822
823 hw = &pf->hw;
824
825 spin_lock_bh(&pf->ptp_rx_lock);
826
827 /* Get current Rx events and update latch times */
828 prttsyn_stat = i40e_ptp_get_rx_events(pf);
829
830 /* TODO: Should we warn about missing Rx timestamp event? */
831 if (!(prttsyn_stat & BIT(index))) {
832 spin_unlock_bh(&pf->ptp_rx_lock);
833 return;
834 }
835
836 /* Clear the latched event since we're about to read its register */
837 pf->latch_event_flags &= ~BIT(index);
838
839 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
840 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
841
842 spin_unlock_bh(&pf->ptp_rx_lock);
843
844 ns = (((u64)hi) << 32) | lo;
845
846 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
847 }
848
849 /**
850 * i40e_ptp_set_increment - Utility function to update clock increment rate
851 * @pf: Board private structure
852 *
853 * During a link change, the DMA frequency that drives the 1588 logic will
854 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
855 * we must update the increment value per clock tick.
856 **/
i40e_ptp_set_increment(struct i40e_pf * pf)857 void i40e_ptp_set_increment(struct i40e_pf *pf)
858 {
859 struct i40e_link_status *hw_link_info;
860 struct i40e_hw *hw = &pf->hw;
861 u64 incval;
862 u32 mult;
863
864 hw_link_info = &hw->phy.link_info;
865
866 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
867
868 switch (hw_link_info->link_speed) {
869 case I40E_LINK_SPEED_10GB:
870 mult = I40E_PTP_10GB_INCVAL_MULT;
871 break;
872 case I40E_LINK_SPEED_5GB:
873 mult = I40E_PTP_5GB_INCVAL_MULT;
874 break;
875 case I40E_LINK_SPEED_1GB:
876 mult = I40E_PTP_1GB_INCVAL_MULT;
877 break;
878 case I40E_LINK_SPEED_100MB:
879 {
880 static int warn_once;
881
882 if (!warn_once) {
883 dev_warn(&pf->pdev->dev,
884 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
885 warn_once++;
886 }
887 mult = 0;
888 break;
889 }
890 case I40E_LINK_SPEED_40GB:
891 default:
892 mult = 1;
893 break;
894 }
895
896 /* The increment value is calculated by taking the base 40GbE incvalue
897 * and multiplying it by a factor based on the link speed.
898 */
899 incval = I40E_PTP_40GB_INCVAL * mult;
900
901 /* Write the new increment value into the increment register. The
902 * hardware will not update the clock until both registers have been
903 * written.
904 */
905 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
906 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
907
908 /* Update the base adjustement value. */
909 WRITE_ONCE(pf->ptp_adj_mult, mult);
910 smp_mb(); /* Force the above update. */
911 }
912
913 /**
914 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
915 * @pf: Board private structure
916 * @ifr: ioctl data
917 *
918 * Obtain the current hardware timestamping settigs as requested. To do this,
919 * keep a shadow copy of the timestamp settings rather than attempting to
920 * deconstruct it from the registers.
921 **/
i40e_ptp_get_ts_config(struct i40e_pf * pf,struct ifreq * ifr)922 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
923 {
924 struct hwtstamp_config *config = &pf->tstamp_config;
925
926 if (!(pf->flags & I40E_FLAG_PTP))
927 return -EOPNOTSUPP;
928
929 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
930 -EFAULT : 0;
931 }
932
933 /**
934 * i40e_ptp_free_pins - free memory used by PTP pins
935 * @pf: Board private structure
936 *
937 * Release memory allocated for PTP pins.
938 **/
i40e_ptp_free_pins(struct i40e_pf * pf)939 static void i40e_ptp_free_pins(struct i40e_pf *pf)
940 {
941 if (i40e_is_ptp_pin_dev(&pf->hw)) {
942 kfree(pf->ptp_pins);
943 kfree(pf->ptp_caps.pin_config);
944 pf->ptp_pins = NULL;
945 }
946 }
947
948 /**
949 * i40e_ptp_set_pin_hw - Set HW GPIO pin
950 * @hw: pointer to the hardware structure
951 * @pin: pin index
952 * @state: pin state
953 *
954 * Set status of GPIO pin for external clock handling.
955 **/
i40e_ptp_set_pin_hw(struct i40e_hw * hw,unsigned int pin,enum i40e_ptp_gpio_pin_state state)956 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
957 unsigned int pin,
958 enum i40e_ptp_gpio_pin_state state)
959 {
960 switch (state) {
961 case off:
962 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
963 break;
964 case in_A:
965 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
966 I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
967 break;
968 case in_B:
969 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
970 I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
971 break;
972 case out_A:
973 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
974 I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
975 break;
976 case out_B:
977 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
978 I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
979 break;
980 default:
981 break;
982 }
983 }
984
985 /**
986 * i40e_ptp_set_led_hw - Set HW GPIO led
987 * @hw: pointer to the hardware structure
988 * @led: led index
989 * @state: led state
990 *
991 * Set status of GPIO led for external clock handling.
992 **/
i40e_ptp_set_led_hw(struct i40e_hw * hw,unsigned int led,enum i40e_ptp_led_pin_state state)993 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
994 unsigned int led,
995 enum i40e_ptp_led_pin_state state)
996 {
997 switch (state) {
998 case low:
999 wr32(hw, I40E_GLGEN_GPIO_SET,
1000 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1001 break;
1002 case high:
1003 wr32(hw, I40E_GLGEN_GPIO_SET,
1004 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1005 I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1006 break;
1007 default:
1008 break;
1009 }
1010 }
1011
1012 /**
1013 * i40e_ptp_init_leds_hw - init LEDs
1014 * @hw: pointer to a hardware structure
1015 *
1016 * Set initial state of LEDs
1017 **/
i40e_ptp_init_leds_hw(struct i40e_hw * hw)1018 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1019 {
1020 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1021 I40E_GLGEN_GPIO_CTL_LED_INIT);
1022 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1023 I40E_GLGEN_GPIO_CTL_LED_INIT);
1024 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1025 I40E_GLGEN_GPIO_CTL_LED_INIT);
1026 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1027 I40E_GLGEN_GPIO_CTL_LED_INIT);
1028 }
1029
1030 /**
1031 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1032 * @pf: Board private structure
1033 *
1034 * This function sets GPIO pins for PTP
1035 **/
i40e_ptp_set_pins_hw(struct i40e_pf * pf)1036 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1037 {
1038 const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1039 struct i40e_hw *hw = &pf->hw;
1040
1041 /* pin must be disabled before it may be used */
1042 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1043 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1044 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1045
1046 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1047 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1048 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1049
1050 i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1051 i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1052 i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1053 i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1054
1055 dev_info(&pf->pdev->dev,
1056 "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
1057 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1058 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1059 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1060 }
1061
1062 /**
1063 * i40e_ptp_set_pins - set PTP pins in HW
1064 * @pf: Board private structure
1065 * @pins: PTP pins to be applied
1066 *
1067 * Validate and set PTP pins in HW for specific PF.
1068 * Return 0 on success or negative value on error.
1069 **/
i40e_ptp_set_pins(struct i40e_pf * pf,struct i40e_ptp_pins_settings * pins)1070 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1071 struct i40e_ptp_pins_settings *pins)
1072 {
1073 enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1074 int i = 0;
1075
1076 if (pin_caps == CANT_DO_PINS)
1077 return -EOPNOTSUPP;
1078 else if (pin_caps == CAN_DO_PINS)
1079 return 0;
1080
1081 if (pins->sdp3_2 == invalid)
1082 pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1083 if (pins->sdp3_3 == invalid)
1084 pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1085 if (pins->gpio_4 == invalid)
1086 pins->gpio_4 = pf->ptp_pins->gpio_4;
1087 while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1088 if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1089 pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1090 pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1091 pins->led2_0 =
1092 i40e_ptp_pin_led_allowed_states[i].led2_0;
1093 pins->led2_1 =
1094 i40e_ptp_pin_led_allowed_states[i].led2_1;
1095 pins->led3_0 =
1096 i40e_ptp_pin_led_allowed_states[i].led3_0;
1097 pins->led3_1 =
1098 i40e_ptp_pin_led_allowed_states[i].led3_1;
1099 break;
1100 }
1101 i++;
1102 }
1103 if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1104 dev_warn(&pf->pdev->dev,
1105 "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
1106 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1107 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1108 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1109
1110 return -EPERM;
1111 }
1112 memcpy(pf->ptp_pins, pins, sizeof(*pins));
1113 i40e_ptp_set_pins_hw(pf);
1114 i40_ptp_reset_timing_events(pf);
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * i40e_ptp_alloc_pins - allocate PTP pins structure
1121 * @pf: Board private structure
1122 *
1123 * allocate PTP pins structure
1124 **/
i40e_ptp_alloc_pins(struct i40e_pf * pf)1125 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1126 {
1127 if (!i40e_is_ptp_pin_dev(&pf->hw))
1128 return 0;
1129
1130 pf->ptp_pins =
1131 kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1132
1133 if (!pf->ptp_pins) {
1134 dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1135 return -ENOMEM;
1136 }
1137
1138 pf->ptp_pins->sdp3_2 = off;
1139 pf->ptp_pins->sdp3_3 = off;
1140 pf->ptp_pins->gpio_4 = off;
1141 pf->ptp_pins->led2_0 = high;
1142 pf->ptp_pins->led2_1 = high;
1143 pf->ptp_pins->led3_0 = high;
1144 pf->ptp_pins->led3_1 = high;
1145
1146 /* Use PF0 to set pins in HW. Return success for user space tools */
1147 if (pf->hw.pf_id)
1148 return 0;
1149
1150 i40e_ptp_init_leds_hw(&pf->hw);
1151 i40e_ptp_set_pins_hw(pf);
1152
1153 return 0;
1154 }
1155
1156 /**
1157 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1158 * @pf: Board private structure
1159 * @config: hwtstamp settings requested or saved
1160 *
1161 * Control hardware registers to enter the specific mode requested by the
1162 * user. Also used during reset path to ensure that timestamp settings are
1163 * maintained.
1164 *
1165 * Note: modifies config in place, and may update the requested mode to be
1166 * more broad if the specific filter is not directly supported.
1167 **/
i40e_ptp_set_timestamp_mode(struct i40e_pf * pf,struct hwtstamp_config * config)1168 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1169 struct hwtstamp_config *config)
1170 {
1171 struct i40e_hw *hw = &pf->hw;
1172 u32 tsyntype, regval;
1173
1174 /* Selects external trigger to cause event */
1175 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1176 /* Bit 17:16 is EVNTLVL, 01B rising edge */
1177 regval &= 0;
1178 regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1179 /* regval: 0001 0000 0000 0000 0000 */
1180 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1181
1182 /* Enabel interrupts */
1183 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1184 regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1185 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1186
1187 INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1188
1189 switch (config->tx_type) {
1190 case HWTSTAMP_TX_OFF:
1191 pf->ptp_tx = false;
1192 break;
1193 case HWTSTAMP_TX_ON:
1194 pf->ptp_tx = true;
1195 break;
1196 default:
1197 return -ERANGE;
1198 }
1199
1200 switch (config->rx_filter) {
1201 case HWTSTAMP_FILTER_NONE:
1202 pf->ptp_rx = false;
1203 /* We set the type to V1, but do not enable UDP packet
1204 * recognition. In this way, we should be as close to
1205 * disabling PTP Rx timestamps as possible since V1 packets
1206 * are always UDP, since L2 packets are a V2 feature.
1207 */
1208 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1209 break;
1210 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1211 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1212 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1213 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1214 return -ERANGE;
1215 pf->ptp_rx = true;
1216 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1217 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1218 I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1219 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1220 break;
1221 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1222 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1223 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1224 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1225 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1226 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1227 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1228 return -ERANGE;
1229 fallthrough;
1230 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1231 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1232 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1233 pf->ptp_rx = true;
1234 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1235 I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1236 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1237 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1238 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1239 } else {
1240 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1241 }
1242 break;
1243 case HWTSTAMP_FILTER_NTP_ALL:
1244 case HWTSTAMP_FILTER_ALL:
1245 default:
1246 return -ERANGE;
1247 }
1248
1249 /* Clear out all 1588-related registers to clear and unlatch them. */
1250 spin_lock_bh(&pf->ptp_rx_lock);
1251 rd32(hw, I40E_PRTTSYN_STAT_0);
1252 rd32(hw, I40E_PRTTSYN_TXTIME_H);
1253 rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1254 rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1255 rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1256 rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1257 pf->latch_event_flags = 0;
1258 spin_unlock_bh(&pf->ptp_rx_lock);
1259
1260 /* Enable/disable the Tx timestamp interrupt based on user input. */
1261 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1262 if (pf->ptp_tx)
1263 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1264 else
1265 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1266 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1267
1268 regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1269 if (pf->ptp_tx)
1270 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1271 else
1272 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1273 wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1274
1275 /* Although there is no simple on/off switch for Rx, we "disable" Rx
1276 * timestamps by setting to V1 only mode and clear the UDP
1277 * recognition. This ought to disable all PTP Rx timestamps as V1
1278 * packets are always over UDP. Note that software is configured to
1279 * ignore Rx timestamps via the pf->ptp_rx flag.
1280 */
1281 regval = rd32(hw, I40E_PRTTSYN_CTL1);
1282 /* clear everything but the enable bit */
1283 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1284 /* now enable bits for desired Rx timestamps */
1285 regval |= tsyntype;
1286 wr32(hw, I40E_PRTTSYN_CTL1, regval);
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1293 * @pf: Board private structure
1294 * @ifr: ioctl data
1295 *
1296 * Respond to the user filter requests and make the appropriate hardware
1297 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1298 * logic, so keep track in software of whether to indicate these timestamps
1299 * or not.
1300 *
1301 * It is permissible to "upgrade" the user request to a broader filter, as long
1302 * as the user receives the timestamps they care about and the user is notified
1303 * the filter has been broadened.
1304 **/
i40e_ptp_set_ts_config(struct i40e_pf * pf,struct ifreq * ifr)1305 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1306 {
1307 struct hwtstamp_config config;
1308 int err;
1309
1310 if (!(pf->flags & I40E_FLAG_PTP))
1311 return -EOPNOTSUPP;
1312
1313 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1314 return -EFAULT;
1315
1316 err = i40e_ptp_set_timestamp_mode(pf, &config);
1317 if (err)
1318 return err;
1319
1320 /* save these settings for future reference */
1321 pf->tstamp_config = config;
1322
1323 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1324 -EFAULT : 0;
1325 }
1326
1327 /**
1328 * i40e_init_pin_config - initialize pins.
1329 * @pf: private board structure
1330 *
1331 * Initialize pins for external clock source.
1332 * Return 0 on success or error code on failure.
1333 **/
i40e_init_pin_config(struct i40e_pf * pf)1334 static int i40e_init_pin_config(struct i40e_pf *pf)
1335 {
1336 int i;
1337
1338 pf->ptp_caps.n_pins = 3;
1339 pf->ptp_caps.n_ext_ts = 2;
1340 pf->ptp_caps.pps = 1;
1341 pf->ptp_caps.n_per_out = 2;
1342
1343 pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1344 sizeof(*pf->ptp_caps.pin_config),
1345 GFP_KERNEL);
1346 if (!pf->ptp_caps.pin_config)
1347 return -ENOMEM;
1348
1349 for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1350 snprintf(pf->ptp_caps.pin_config[i].name,
1351 sizeof(pf->ptp_caps.pin_config[i].name),
1352 "%s", sdp_desc[i].name);
1353 pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1354 pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1355 pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1356 }
1357
1358 pf->ptp_caps.verify = i40e_ptp_verify;
1359 pf->ptp_caps.enable = i40e_ptp_feature_enable;
1360
1361 pf->ptp_caps.pps = 1;
1362
1363 return 0;
1364 }
1365
1366 /**
1367 * i40e_ptp_create_clock - Create PTP clock device for userspace
1368 * @pf: Board private structure
1369 *
1370 * This function creates a new PTP clock device. It only creates one if we
1371 * don't already have one, so it is safe to call. Will return error if it
1372 * can't create one, but success if we already have a device. Should be used
1373 * by i40e_ptp_init to create clock initially, and prevent global resets from
1374 * creating new clock devices.
1375 **/
i40e_ptp_create_clock(struct i40e_pf * pf)1376 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1377 {
1378 /* no need to create a clock device if we already have one */
1379 if (!IS_ERR_OR_NULL(pf->ptp_clock))
1380 return 0;
1381
1382 strscpy(pf->ptp_caps.name, i40e_driver_name,
1383 sizeof(pf->ptp_caps.name) - 1);
1384 pf->ptp_caps.owner = THIS_MODULE;
1385 pf->ptp_caps.max_adj = 999999999;
1386 pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1387 pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1388 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1389 pf->ptp_caps.settime64 = i40e_ptp_settime;
1390 if (i40e_is_ptp_pin_dev(&pf->hw)) {
1391 int err = i40e_init_pin_config(pf);
1392
1393 if (err)
1394 return err;
1395 }
1396
1397 /* Attempt to register the clock before enabling the hardware. */
1398 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1399 if (IS_ERR(pf->ptp_clock))
1400 return PTR_ERR(pf->ptp_clock);
1401
1402 /* clear the hwtstamp settings here during clock create, instead of
1403 * during regular init, so that we can maintain settings across a
1404 * reset or suspend.
1405 */
1406 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409 /* Set the previous "reset" time to the current Kernel clock time */
1410 ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1411 pf->ptp_reset_start = ktime_get();
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1418 * @pf: Board private structure
1419 *
1420 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1421 * be called at the end of preparing to reset, just before hardware reset
1422 * occurs, in order to preserve the PTP time as close as possible across
1423 * resets.
1424 */
i40e_ptp_save_hw_time(struct i40e_pf * pf)1425 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1426 {
1427 /* don't try to access the PTP clock if it's not enabled */
1428 if (!(pf->flags & I40E_FLAG_PTP))
1429 return;
1430
1431 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1432 /* Get a monotonic starting time for this reset */
1433 pf->ptp_reset_start = ktime_get();
1434 }
1435
1436 /**
1437 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1438 * @pf: Board private structure
1439 *
1440 * Restore the PTP hardware clock registers. We previously cached the PTP
1441 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1442 * update this value based on the time delta since the time was saved, using
1443 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1444 *
1445 * This ensures that the hardware clock is restored to nearly what it should
1446 * have been if a reset had not occurred.
1447 */
i40e_ptp_restore_hw_time(struct i40e_pf * pf)1448 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1449 {
1450 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1451
1452 /* Update the previous HW time with the ktime delta */
1453 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1454
1455 /* Restore the hardware clock registers */
1456 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1457 }
1458
1459 /**
1460 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1461 * @pf: Board private structure
1462 *
1463 * This function sets device up for 1588 support. The first time it is run, it
1464 * will create a PHC clock device. It does not create a clock device if one
1465 * already exists. It also reconfigures the device after a reset.
1466 *
1467 * The first time a clock is created, i40e_ptp_create_clock will set
1468 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1469 * expected that this timespec will be set to the last known PTP clock time,
1470 * in order to preserve the clock time as close as possible across a reset.
1471 **/
i40e_ptp_init(struct i40e_pf * pf)1472 void i40e_ptp_init(struct i40e_pf *pf)
1473 {
1474 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1475 struct i40e_hw *hw = &pf->hw;
1476 u32 pf_id;
1477 long err;
1478
1479 /* Only one PF is assigned to control 1588 logic per port. Do not
1480 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1481 */
1482 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1483 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1484 if (hw->pf_id != pf_id) {
1485 pf->flags &= ~I40E_FLAG_PTP;
1486 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1487 __func__,
1488 netdev->name);
1489 return;
1490 }
1491
1492 mutex_init(&pf->tmreg_lock);
1493 spin_lock_init(&pf->ptp_rx_lock);
1494
1495 /* ensure we have a clock device */
1496 err = i40e_ptp_create_clock(pf);
1497 if (err) {
1498 pf->ptp_clock = NULL;
1499 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1500 __func__);
1501 } else if (pf->ptp_clock) {
1502 u32 regval;
1503
1504 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1505 dev_info(&pf->pdev->dev, "PHC enabled\n");
1506 pf->flags |= I40E_FLAG_PTP;
1507
1508 /* Ensure the clocks are running. */
1509 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1510 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1511 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1512 regval = rd32(hw, I40E_PRTTSYN_CTL1);
1513 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1514 wr32(hw, I40E_PRTTSYN_CTL1, regval);
1515
1516 /* Set the increment value per clock tick. */
1517 i40e_ptp_set_increment(pf);
1518
1519 /* reset timestamping mode */
1520 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1521
1522 /* Restore the clock time based on last known value */
1523 i40e_ptp_restore_hw_time(pf);
1524 }
1525
1526 i40e_ptp_set_1pps_signal_hw(pf);
1527 }
1528
1529 /**
1530 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1531 * @pf: Board private structure
1532 *
1533 * This function handles the cleanup work required from the initialization by
1534 * clearing out the important information and unregistering the PHC.
1535 **/
i40e_ptp_stop(struct i40e_pf * pf)1536 void i40e_ptp_stop(struct i40e_pf *pf)
1537 {
1538 struct i40e_hw *hw = &pf->hw;
1539 u32 regval;
1540
1541 pf->flags &= ~I40E_FLAG_PTP;
1542 pf->ptp_tx = false;
1543 pf->ptp_rx = false;
1544
1545 if (pf->ptp_tx_skb) {
1546 struct sk_buff *skb = pf->ptp_tx_skb;
1547
1548 pf->ptp_tx_skb = NULL;
1549 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1550 dev_kfree_skb_any(skb);
1551 }
1552
1553 if (pf->ptp_clock) {
1554 ptp_clock_unregister(pf->ptp_clock);
1555 pf->ptp_clock = NULL;
1556 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1557 pf->vsi[pf->lan_vsi]->netdev->name);
1558 }
1559
1560 if (i40e_is_ptp_pin_dev(&pf->hw)) {
1561 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1562 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1563 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1564 }
1565
1566 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1567 regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1568 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1569
1570 /* Disable interrupts */
1571 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1572 regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1573 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1574
1575 i40e_ptp_free_pins(pf);
1576 }
1577