1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24 {
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53 dtype_cmd |= add ?
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 }
71
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
88 bool add)
89 {
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
93 struct i40e_vsi *vsi;
94 struct device *dev;
95 dma_addr_t dma;
96 u32 td_cmd = 0;
97 u16 i;
98
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 if (!vsi)
102 return -ENOENT;
103
104 tx_ring = vsi->tx_rings[0];
105 dev = tx_ring->dev;
106
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 if (!i)
110 return -EAGAIN;
111 msleep_interruptible(1);
112 }
113
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
117 goto dma_fail;
118
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
123
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
128
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
136
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
148 */
149 wmb();
150
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
153
154 writel(tx_ring->next_to_use, tx_ring->tail);
155 return 0;
156
157 dma_fail:
158 return -1;
159 }
160
161 /**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
172 {
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan = {};
175 struct ipv6hdr ipv6 = {};
176 struct ethhdr eth = {};
177 struct iphdr ip = {};
178 u8 *tmp;
179
180 if (ipv4) {
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
183 ip.version = 0x4;
184 ip.ihl = 0x5;
185
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
188 } else {
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
191 ipv6.version = 0x6;
192
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 sizeof(__be32) * 4);
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 sizeof(__be32) * 4);
197 }
198
199 if (is_vlan) {
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
203 }
204
205 tmp = dummy_packet;
206 memcpy(tmp, ð, sizeof(eth));
207 tmp += sizeof(eth);
208
209 if (is_vlan) {
210 memcpy(tmp, &vlan, sizeof(vlan));
211 tmp += sizeof(vlan);
212 }
213
214 if (ipv4) {
215 memcpy(tmp, &ip, sizeof(ip));
216 tmp += sizeof(ip);
217 } else {
218 memcpy(tmp, &ipv6, sizeof(ipv6));
219 tmp += sizeof(ipv6);
220 }
221
222 return tmp;
223 }
224
225 /**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
236 {
237 struct udphdr *udp;
238 u8 *tmp;
239
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
244 }
245
246 /**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
257 {
258 struct tcphdr *tcp;
259 u8 *tmp;
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
270 }
271
272 /**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 u8 l4proto,
283 struct i40e_fdir_filter *data)
284 {
285 struct sctphdr *sctp;
286 u8 *tmp;
287
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
293 }
294
295 /**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
311 {
312 int ret;
313
314 if (fd_data->flex_filter) {
315 u8 *payload;
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
318
319 payload = packet_addr + payload_offset;
320
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
324
325 *((__force __be16 *)(payload + off)) = pattern;
326 }
327
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 if (ret) {
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
335 return -EOPNOTSUPP;
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 if (add)
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 else
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
345 }
346
347 return ret;
348 }
349
350 /**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
361 {
362 if (add) {
363 if (ipv4)
364 (*ipv4_filter_num)++;
365 else
366 (*ipv6_filter_num)++;
367 } else {
368 if (ipv4)
369 (*ipv4_filter_num)--;
370 else
371 (*ipv6_filter_num)--;
372 }
373 }
374
375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
377 /**
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
383 *
384 * Returns 0 if the filters were successfully added or removed
385 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
388 bool add,
389 bool ipv4)
390 {
391 struct i40e_pf *pf = vsi->back;
392 u8 *raw_packet;
393 int ret;
394
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 if (!raw_packet)
397 return -ENOMEM;
398
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400
401 if (ipv4)
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 else
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411
412 if (ret) {
413 kfree(raw_packet);
414 return ret;
415 }
416
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
419
420 return 0;
421 }
422
423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
425 /**
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
431 *
432 * Returns 0 if the filters were successfully added or removed
433 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
436 bool add,
437 bool ipv4)
438 {
439 struct i40e_pf *pf = vsi->back;
440 u8 *raw_packet;
441 int ret;
442
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 if (!raw_packet)
445 return -ENOMEM;
446
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 if (ipv4)
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 else
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458
459 if (ret) {
460 kfree(raw_packet);
461 return ret;
462 }
463
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
466
467 if (add) {
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 }
473 return 0;
474 }
475
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
478 /**
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
485 *
486 * Returns 0 if the filters were successfully added or removed
487 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
490 bool add,
491 bool ipv4)
492 {
493 struct i40e_pf *pf = vsi->back;
494 u8 *raw_packet;
495 int ret;
496
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 if (!raw_packet)
499 return -ENOMEM;
500
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502
503 if (ipv4)
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 else
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513
514 if (ret) {
515 kfree(raw_packet);
516 return ret;
517 }
518
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
521
522 return 0;
523 }
524
525 #define I40E_IP_DUMMY_PACKET_LEN 34
526 #define I40E_IP6_DUMMY_PACKET_LEN 54
527 /**
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
534 *
535 * Returns 0 if the filters were successfully added or removed
536 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
539 bool add,
540 bool ipv4)
541 {
542 struct i40e_pf *pf = vsi->back;
543 int payload_offset;
544 u8 *raw_packet;
545 int iter_start;
546 int iter_end;
547 int ret;
548 int i;
549
550 if (ipv4) {
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 } else {
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 }
557
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 if (!raw_packet)
561 return -ENOMEM;
562
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 fd_data);
567
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 payload_offset, i);
572 if (ret)
573 goto err;
574 }
575
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
578
579 return 0;
580 err:
581 kfree(raw_packet);
582 return ret;
583 }
584
585 /**
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
590 *
591 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
594 {
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
597 int ret;
598
599 switch (input->flow_type & ~FLOW_EXT) {
600 case TCP_V4_FLOW:
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 break;
603 case UDP_V4_FLOW:
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 break;
606 case SCTP_V4_FLOW:
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 break;
609 case TCP_V6_FLOW:
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 break;
612 case UDP_V6_FLOW:
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 break;
615 case SCTP_V6_FLOW:
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 break;
618 case IP_USER_FLOW:
619 switch (input->ipl4_proto) {
620 case IPPROTO_TCP:
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 break;
623 case IPPROTO_UDP:
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 break;
626 case IPPROTO_SCTP:
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 break;
629 case IPPROTO_IP:
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 break;
632 default:
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 input->ipl4_proto);
636 return -EINVAL;
637 }
638 break;
639 case IPV6_USER_FLOW:
640 switch (input->ipl4_proto) {
641 case IPPROTO_TCP:
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 break;
644 case IPPROTO_UDP:
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 break;
647 case IPPROTO_SCTP:
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 break;
650 case IPPROTO_IP:
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 break;
653 default:
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 input->ipl4_proto);
657 return -EINVAL;
658 }
659 break;
660 default:
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 input->flow_type);
663 return -EINVAL;
664 }
665
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
671 */
672 return ret;
673 }
674
675 /**
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
681 *
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
684 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
687 {
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
692 u32 error;
693
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 pf->fd_inv);
704
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
709 * be cleared.
710 */
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 return;
713
714 pf->fd_add_err++;
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
724 * issue in practice
725 */
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 }
729
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
736 */
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 pf->state))
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 }
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
748 }
749 }
750
751 /**
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
755 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
758 {
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
764 else
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
775 DMA_TO_DEVICE);
776 }
777
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
782 }
783
784 /**
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
787 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 unsigned long bi_size;
791 u16 i;
792
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
795 } else {
796 /* ring already cleared, nothing to do */
797 if (!tx_ring->tx_bi)
798 return;
799
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
803 &tx_ring->tx_bi[i]);
804 }
805
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
808
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
811
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
814
815 if (!tx_ring->netdev)
816 return;
817
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821
822 /**
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
825 *
826 * Free all transmit software resources
827 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
833
834 if (tx_ring->desc) {
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
838 }
839 }
840
841 /**
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
845 *
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
848 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 u32 head, tail;
852
853 if (!in_sw) {
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
856 } else {
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
859 }
860
861 if (head != tail)
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
864
865 return 0;
866 }
867
868 /**
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
871 *
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
879 unsigned int i;
880 int packets;
881
882 if (!vsi)
883 return;
884
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 return;
887
888 netdev = vsi->netdev;
889 if (!netdev)
890 return;
891
892 if (!netif_carrier_ok(netdev))
893 return;
894
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
900 * queue.
901 *
902 * prev_pkt_ctr would be negative if there was no
903 * pending work.
904 */
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
908 continue;
909 }
910
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
913 */
914 smp_rmb();
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 }
918 }
919 }
920
921 /**
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 * @tx_cleaned: Out parameter set to the number of TXes cleaned
927 *
928 * Returns true if there's any budget left (e.g. the clean is finished)
929 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 struct i40e_ring *tx_ring, int napi_budget,
932 unsigned int *tx_cleaned)
933 {
934 int i = tx_ring->next_to_clean;
935 struct i40e_tx_buffer *tx_buf;
936 struct i40e_tx_desc *tx_head;
937 struct i40e_tx_desc *tx_desc;
938 unsigned int total_bytes = 0, total_packets = 0;
939 unsigned int budget = vsi->work_limit;
940
941 tx_buf = &tx_ring->tx_bi[i];
942 tx_desc = I40E_TX_DESC(tx_ring, i);
943 i -= tx_ring->count;
944
945 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946
947 do {
948 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949
950 /* if next_to_watch is not set then there is no work pending */
951 if (!eop_desc)
952 break;
953
954 /* prevent any other reads prior to eop_desc */
955 smp_rmb();
956
957 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 /* we have caught up to head, no work left to do */
959 if (tx_head == tx_desc)
960 break;
961
962 /* clear next_to_watch to prevent false hangs */
963 tx_buf->next_to_watch = NULL;
964
965 /* update the statistics for this packet */
966 total_bytes += tx_buf->bytecount;
967 total_packets += tx_buf->gso_segs;
968
969 /* free the skb/XDP data */
970 if (ring_is_xdp(tx_ring))
971 xdp_return_frame(tx_buf->xdpf);
972 else
973 napi_consume_skb(tx_buf->skb, napi_budget);
974
975 /* unmap skb header data */
976 dma_unmap_single(tx_ring->dev,
977 dma_unmap_addr(tx_buf, dma),
978 dma_unmap_len(tx_buf, len),
979 DMA_TO_DEVICE);
980
981 /* clear tx_buffer data */
982 tx_buf->skb = NULL;
983 dma_unmap_len_set(tx_buf, len, 0);
984
985 /* unmap remaining buffers */
986 while (tx_desc != eop_desc) {
987 i40e_trace(clean_tx_irq_unmap,
988 tx_ring, tx_desc, tx_buf);
989
990 tx_buf++;
991 tx_desc++;
992 i++;
993 if (unlikely(!i)) {
994 i -= tx_ring->count;
995 tx_buf = tx_ring->tx_bi;
996 tx_desc = I40E_TX_DESC(tx_ring, 0);
997 }
998
999 /* unmap any remaining paged data */
1000 if (dma_unmap_len(tx_buf, len)) {
1001 dma_unmap_page(tx_ring->dev,
1002 dma_unmap_addr(tx_buf, dma),
1003 dma_unmap_len(tx_buf, len),
1004 DMA_TO_DEVICE);
1005 dma_unmap_len_set(tx_buf, len, 0);
1006 }
1007 }
1008
1009 /* move us one more past the eop_desc for start of next pkt */
1010 tx_buf++;
1011 tx_desc++;
1012 i++;
1013 if (unlikely(!i)) {
1014 i -= tx_ring->count;
1015 tx_buf = tx_ring->tx_bi;
1016 tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 }
1018
1019 prefetch(tx_desc);
1020
1021 /* update budget accounting */
1022 budget--;
1023 } while (likely(budget));
1024
1025 i += tx_ring->count;
1026 tx_ring->next_to_clean = i;
1027 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 i40e_arm_wb(tx_ring, vsi, budget);
1029
1030 if (ring_is_xdp(tx_ring))
1031 return !!budget;
1032
1033 /* notify netdev of completed buffers */
1034 netdev_tx_completed_queue(txring_txq(tx_ring),
1035 total_packets, total_bytes);
1036
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 /* Make sure that anybody stopping the queue after this
1041 * sees the new next_to_clean.
1042 */
1043 smp_mb();
1044 if (__netif_subqueue_stopped(tx_ring->netdev,
1045 tx_ring->queue_index) &&
1046 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 netif_wake_subqueue(tx_ring->netdev,
1048 tx_ring->queue_index);
1049 ++tx_ring->tx_stats.restart_queue;
1050 }
1051 }
1052
1053 *tx_cleaned = total_packets;
1054 return !!budget;
1055 }
1056
1057 /**
1058 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059 * @vsi: the VSI we care about
1060 * @q_vector: the vector on which to enable writeback
1061 *
1062 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1063 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 struct i40e_q_vector *q_vector)
1065 {
1066 u16 flags = q_vector->tx.ring[0].flags;
1067 u32 val;
1068
1069 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070 return;
1071
1072 if (q_vector->arm_wb_state)
1073 return;
1074
1075 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078
1079 wr32(&vsi->back->hw,
1080 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081 val);
1082 } else {
1083 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085
1086 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087 }
1088 q_vector->arm_wb_state = true;
1089 }
1090
1091 /**
1092 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093 * @vsi: the VSI we care about
1094 * @q_vector: the vector on which to force writeback
1095 *
1096 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1097 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098 {
1099 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 /* allow 00 to be written to the index */
1105
1106 wr32(&vsi->back->hw,
1107 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108 } else {
1109 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 /* allow 00 to be written to the index */
1114
1115 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 }
1117 }
1118
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1119 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 struct i40e_ring_container *rc)
1121 {
1122 return &q_vector->rx == rc;
1123 }
1124
i40e_itr_divisor(struct i40e_q_vector * q_vector)1125 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126 {
1127 unsigned int divisor;
1128
1129 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 case I40E_LINK_SPEED_40GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132 break;
1133 case I40E_LINK_SPEED_25GB:
1134 case I40E_LINK_SPEED_20GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136 break;
1137 default:
1138 case I40E_LINK_SPEED_10GB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140 break;
1141 case I40E_LINK_SPEED_1GB:
1142 case I40E_LINK_SPEED_100MB:
1143 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144 break;
1145 }
1146
1147 return divisor;
1148 }
1149
1150 /**
1151 * i40e_update_itr - update the dynamic ITR value based on statistics
1152 * @q_vector: structure containing interrupt and ring information
1153 * @rc: structure containing ring performance data
1154 *
1155 * Stores a new ITR value based on packets and byte
1156 * counts during the last interrupt. The advantage of per interrupt
1157 * computation is faster updates and more accurate ITR for the current
1158 * traffic pattern. Constants in this function were computed
1159 * based on theoretical maximum wire speed and thresholds were set based
1160 * on testing data as well as attempting to minimize response time
1161 * while increasing bulk throughput.
1162 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1163 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 struct i40e_ring_container *rc)
1165 {
1166 unsigned int avg_wire_size, packets, bytes, itr;
1167 unsigned long next_update = jiffies;
1168
1169 /* If we don't have any rings just leave ourselves set for maximum
1170 * possible latency so we take ourselves out of the equation.
1171 */
1172 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173 return;
1174
1175 /* For Rx we want to push the delay up and default to low latency.
1176 * for Tx we want to pull the delay down and default to high latency.
1177 */
1178 itr = i40e_container_is_rx(q_vector, rc) ?
1179 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181
1182 /* If we didn't update within up to 1 - 2 jiffies we can assume
1183 * that either packets are coming in so slow there hasn't been
1184 * any work, or that there is so much work that NAPI is dealing
1185 * with interrupt moderation and we don't need to do anything.
1186 */
1187 if (time_after(next_update, rc->next_update))
1188 goto clear_counts;
1189
1190 /* If itr_countdown is set it means we programmed an ITR within
1191 * the last 4 interrupt cycles. This has a side effect of us
1192 * potentially firing an early interrupt. In order to work around
1193 * this we need to throw out any data received for a few
1194 * interrupts following the update.
1195 */
1196 if (q_vector->itr_countdown) {
1197 itr = rc->target_itr;
1198 goto clear_counts;
1199 }
1200
1201 packets = rc->total_packets;
1202 bytes = rc->total_bytes;
1203
1204 if (i40e_container_is_rx(q_vector, rc)) {
1205 /* If Rx there are 1 to 4 packets and bytes are less than
1206 * 9000 assume insufficient data to use bulk rate limiting
1207 * approach unless Tx is already in bulk rate limiting. We
1208 * are likely latency driven.
1209 */
1210 if (packets && packets < 4 && bytes < 9000 &&
1211 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 goto adjust_by_size;
1214 }
1215 } else if (packets < 4) {
1216 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 * bulk mode and we are receiving 4 or fewer packets just
1218 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 * that the Rx can relax.
1220 */
1221 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 I40E_ITR_ADAPTIVE_MAX_USECS)
1224 goto clear_counts;
1225 } else if (packets > 32) {
1226 /* If we have processed over 32 packets in a single interrupt
1227 * for Tx assume we need to switch over to "bulk" mode.
1228 */
1229 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230 }
1231
1232 /* We have no packets to actually measure against. This means
1233 * either one of the other queues on this vector is active or
1234 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235 *
1236 * Between 4 and 56 we can assume that our current interrupt delay
1237 * is only slightly too low. As such we should increase it by a small
1238 * fixed amount.
1239 */
1240 if (packets < 56) {
1241 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245 }
1246 goto clear_counts;
1247 }
1248
1249 if (packets <= 256) {
1250 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 itr &= I40E_ITR_MASK;
1252
1253 /* Between 56 and 112 is our "goldilocks" zone where we are
1254 * working out "just right". Just report that our current
1255 * ITR is good for us.
1256 */
1257 if (packets <= 112)
1258 goto clear_counts;
1259
1260 /* If packet count is 128 or greater we are likely looking
1261 * at a slight overrun of the delay we want. Try halving
1262 * our delay to see if that will cut the number of packets
1263 * in half per interrupt.
1264 */
1265 itr /= 2;
1266 itr &= I40E_ITR_MASK;
1267 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269
1270 goto clear_counts;
1271 }
1272
1273 /* The paths below assume we are dealing with a bulk ITR since
1274 * number of packets is greater than 256. We are just going to have
1275 * to compute a value and try to bring the count under control,
1276 * though for smaller packet sizes there isn't much we can do as
1277 * NAPI polling will likely be kicking in sooner rather than later.
1278 */
1279 itr = I40E_ITR_ADAPTIVE_BULK;
1280
1281 adjust_by_size:
1282 /* If packet counts are 256 or greater we can assume we have a gross
1283 * overestimation of what the rate should be. Instead of trying to fine
1284 * tune it just use the formula below to try and dial in an exact value
1285 * give the current packet size of the frame.
1286 */
1287 avg_wire_size = bytes / packets;
1288
1289 /* The following is a crude approximation of:
1290 * wmem_default / (size + overhead) = desired_pkts_per_int
1291 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293 *
1294 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296 * formula down to
1297 *
1298 * (170 * (size + 24)) / (size + 640) = ITR
1299 *
1300 * We first do some math on the packet size and then finally bitshift
1301 * by 8 after rounding up. We also have to account for PCIe link speed
1302 * difference as ITR scales based on this.
1303 */
1304 if (avg_wire_size <= 60) {
1305 /* Start at 250k ints/sec */
1306 avg_wire_size = 4096;
1307 } else if (avg_wire_size <= 380) {
1308 /* 250K ints/sec to 60K ints/sec */
1309 avg_wire_size *= 40;
1310 avg_wire_size += 1696;
1311 } else if (avg_wire_size <= 1084) {
1312 /* 60K ints/sec to 36K ints/sec */
1313 avg_wire_size *= 15;
1314 avg_wire_size += 11452;
1315 } else if (avg_wire_size <= 1980) {
1316 /* 36K ints/sec to 30K ints/sec */
1317 avg_wire_size *= 5;
1318 avg_wire_size += 22420;
1319 } else {
1320 /* plateau at a limit of 30K ints/sec */
1321 avg_wire_size = 32256;
1322 }
1323
1324 /* If we are in low latency mode halve our delay which doubles the
1325 * rate to somewhere between 100K to 16K ints/sec
1326 */
1327 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328 avg_wire_size /= 2;
1329
1330 /* Resultant value is 256 times larger than it needs to be. This
1331 * gives us room to adjust the value as needed to either increase
1332 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333 *
1334 * Use addition as we have already recorded the new latency flag
1335 * for the ITR value.
1336 */
1337 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 I40E_ITR_ADAPTIVE_MIN_INC;
1339
1340 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 }
1344
1345 clear_counts:
1346 /* write back value */
1347 rc->target_itr = itr;
1348
1349 /* next update should occur within next jiffy */
1350 rc->next_update = next_update + 1;
1351
1352 rc->total_bytes = 0;
1353 rc->total_packets = 0;
1354 }
1355
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1356 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357 {
1358 return &rx_ring->rx_bi[idx];
1359 }
1360
1361 /**
1362 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363 * @rx_ring: rx descriptor ring to store buffers on
1364 * @old_buff: donor buffer to have page reused
1365 *
1366 * Synchronizes page for reuse by the adapter
1367 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1368 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 struct i40e_rx_buffer *old_buff)
1370 {
1371 struct i40e_rx_buffer *new_buff;
1372 u16 nta = rx_ring->next_to_alloc;
1373
1374 new_buff = i40e_rx_bi(rx_ring, nta);
1375
1376 /* update, and store next to alloc */
1377 nta++;
1378 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379
1380 /* transfer page from old buffer to new buffer */
1381 new_buff->dma = old_buff->dma;
1382 new_buff->page = old_buff->page;
1383 new_buff->page_offset = old_buff->page_offset;
1384 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1385
1386 /* clear contents of buffer_info */
1387 old_buff->page = NULL;
1388 }
1389
1390 /**
1391 * i40e_clean_programming_status - clean the programming status descriptor
1392 * @rx_ring: the rx ring that has this descriptor
1393 * @qword0_raw: qword0
1394 * @qword1: qword1 representing status_error_len in CPU ordering
1395 *
1396 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397 * status being successful or not and take actions accordingly. FCoE should
1398 * handle its context/filter programming/invalidation status and take actions.
1399 *
1400 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1402 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403 u64 qword1)
1404 {
1405 u8 id;
1406
1407 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409
1410 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412 }
1413
1414 /**
1415 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416 * @tx_ring: the tx ring to set up
1417 *
1418 * Return 0 on success, negative on error
1419 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1420 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421 {
1422 struct device *dev = tx_ring->dev;
1423 int bi_size;
1424
1425 if (!dev)
1426 return -ENOMEM;
1427
1428 /* warn if we are about to overwrite the pointer */
1429 WARN_ON(tx_ring->tx_bi);
1430 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 if (!tx_ring->tx_bi)
1433 goto err;
1434
1435 u64_stats_init(&tx_ring->syncp);
1436
1437 /* round up to nearest 4K */
1438 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 /* add u32 for head writeback, align after this takes care of
1440 * guaranteeing this is at least one cache line in size
1441 */
1442 tx_ring->size += sizeof(u32);
1443 tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 &tx_ring->dma, GFP_KERNEL);
1446 if (!tx_ring->desc) {
1447 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448 tx_ring->size);
1449 goto err;
1450 }
1451
1452 tx_ring->next_to_use = 0;
1453 tx_ring->next_to_clean = 0;
1454 tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 return 0;
1456
1457 err:
1458 kfree(tx_ring->tx_bi);
1459 tx_ring->tx_bi = NULL;
1460 return -ENOMEM;
1461 }
1462
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1463 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464 {
1465 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466 }
1467
1468 /**
1469 * i40e_clean_rx_ring - Free Rx buffers
1470 * @rx_ring: ring to be cleaned
1471 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1472 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473 {
1474 u16 i;
1475
1476 /* ring already cleared, nothing to do */
1477 if (!rx_ring->rx_bi)
1478 return;
1479
1480 if (rx_ring->xsk_pool) {
1481 i40e_xsk_clean_rx_ring(rx_ring);
1482 goto skip_free;
1483 }
1484
1485 /* Free all the Rx ring sk_buffs */
1486 for (i = 0; i < rx_ring->count; i++) {
1487 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488
1489 if (!rx_bi->page)
1490 continue;
1491
1492 /* Invalidate cache lines that may have been written to by
1493 * device so that we avoid corrupting memory.
1494 */
1495 dma_sync_single_range_for_cpu(rx_ring->dev,
1496 rx_bi->dma,
1497 rx_bi->page_offset,
1498 rx_ring->rx_buf_len,
1499 DMA_FROM_DEVICE);
1500
1501 /* free resources associated with mapping */
1502 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 i40e_rx_pg_size(rx_ring),
1504 DMA_FROM_DEVICE,
1505 I40E_RX_DMA_ATTR);
1506
1507 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508
1509 rx_bi->page = NULL;
1510 rx_bi->page_offset = 0;
1511 }
1512
1513 skip_free:
1514 if (rx_ring->xsk_pool)
1515 i40e_clear_rx_bi_zc(rx_ring);
1516 else
1517 i40e_clear_rx_bi(rx_ring);
1518
1519 /* Zero out the descriptor ring */
1520 memset(rx_ring->desc, 0, rx_ring->size);
1521
1522 rx_ring->next_to_alloc = 0;
1523 rx_ring->next_to_clean = 0;
1524 rx_ring->next_to_process = 0;
1525 rx_ring->next_to_use = 0;
1526 }
1527
1528 /**
1529 * i40e_free_rx_resources - Free Rx resources
1530 * @rx_ring: ring to clean the resources from
1531 *
1532 * Free all receive software resources
1533 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1534 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1535 {
1536 i40e_clean_rx_ring(rx_ring);
1537 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539 rx_ring->xdp_prog = NULL;
1540 kfree(rx_ring->rx_bi);
1541 rx_ring->rx_bi = NULL;
1542
1543 if (rx_ring->desc) {
1544 dma_free_coherent(rx_ring->dev, rx_ring->size,
1545 rx_ring->desc, rx_ring->dma);
1546 rx_ring->desc = NULL;
1547 }
1548 }
1549
1550 /**
1551 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1553 *
1554 * Returns 0 on success, negative on failure
1555 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1556 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1557 {
1558 struct device *dev = rx_ring->dev;
1559
1560 u64_stats_init(&rx_ring->syncp);
1561
1562 /* Round up to nearest 4K */
1563 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1564 rx_ring->size = ALIGN(rx_ring->size, 4096);
1565 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1566 &rx_ring->dma, GFP_KERNEL);
1567
1568 if (!rx_ring->desc) {
1569 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1570 rx_ring->size);
1571 return -ENOMEM;
1572 }
1573
1574 rx_ring->next_to_alloc = 0;
1575 rx_ring->next_to_clean = 0;
1576 rx_ring->next_to_process = 0;
1577 rx_ring->next_to_use = 0;
1578
1579 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1580
1581 rx_ring->rx_bi =
1582 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1583 if (!rx_ring->rx_bi)
1584 return -ENOMEM;
1585
1586 return 0;
1587 }
1588
1589 /**
1590 * i40e_release_rx_desc - Store the new tail and head values
1591 * @rx_ring: ring to bump
1592 * @val: new head index
1593 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1594 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1595 {
1596 rx_ring->next_to_use = val;
1597
1598 /* update next to alloc since we have filled the ring */
1599 rx_ring->next_to_alloc = val;
1600
1601 /* Force memory writes to complete before letting h/w
1602 * know there are new descriptors to fetch. (Only
1603 * applicable for weak-ordered memory model archs,
1604 * such as IA-64).
1605 */
1606 wmb();
1607 writel(val, rx_ring->tail);
1608 }
1609
1610 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1611 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1612 unsigned int size)
1613 {
1614 unsigned int truesize;
1615
1616 truesize = rx_ring->rx_offset ?
1617 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1618 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1619 SKB_DATA_ALIGN(size);
1620 return truesize;
1621 }
1622 #endif
1623
1624 /**
1625 * i40e_alloc_mapped_page - recycle or make a new page
1626 * @rx_ring: ring to use
1627 * @bi: rx_buffer struct to modify
1628 *
1629 * Returns true if the page was successfully allocated or
1630 * reused.
1631 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1632 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1633 struct i40e_rx_buffer *bi)
1634 {
1635 struct page *page = bi->page;
1636 dma_addr_t dma;
1637
1638 /* since we are recycling buffers we should seldom need to alloc */
1639 if (likely(page)) {
1640 rx_ring->rx_stats.page_reuse_count++;
1641 return true;
1642 }
1643
1644 /* alloc new page for storage */
1645 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1646 if (unlikely(!page)) {
1647 rx_ring->rx_stats.alloc_page_failed++;
1648 return false;
1649 }
1650
1651 rx_ring->rx_stats.page_alloc_count++;
1652
1653 /* map page for use */
1654 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1655 i40e_rx_pg_size(rx_ring),
1656 DMA_FROM_DEVICE,
1657 I40E_RX_DMA_ATTR);
1658
1659 /* if mapping failed free memory back to system since
1660 * there isn't much point in holding memory we can't use
1661 */
1662 if (dma_mapping_error(rx_ring->dev, dma)) {
1663 __free_pages(page, i40e_rx_pg_order(rx_ring));
1664 rx_ring->rx_stats.alloc_page_failed++;
1665 return false;
1666 }
1667
1668 bi->dma = dma;
1669 bi->page = page;
1670 bi->page_offset = rx_ring->rx_offset;
1671 page_ref_add(page, USHRT_MAX - 1);
1672 bi->pagecnt_bias = USHRT_MAX;
1673
1674 return true;
1675 }
1676
1677 /**
1678 * i40e_alloc_rx_buffers - Replace used receive buffers
1679 * @rx_ring: ring to place buffers on
1680 * @cleaned_count: number of buffers to replace
1681 *
1682 * Returns false if all allocations were successful, true if any fail
1683 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1684 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1685 {
1686 u16 ntu = rx_ring->next_to_use;
1687 union i40e_rx_desc *rx_desc;
1688 struct i40e_rx_buffer *bi;
1689
1690 /* do nothing if no valid netdev defined */
1691 if (!rx_ring->netdev || !cleaned_count)
1692 return false;
1693
1694 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1695 bi = i40e_rx_bi(rx_ring, ntu);
1696
1697 do {
1698 if (!i40e_alloc_mapped_page(rx_ring, bi))
1699 goto no_buffers;
1700
1701 /* sync the buffer for use by the device */
1702 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1703 bi->page_offset,
1704 rx_ring->rx_buf_len,
1705 DMA_FROM_DEVICE);
1706
1707 /* Refresh the desc even if buffer_addrs didn't change
1708 * because each write-back erases this info.
1709 */
1710 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1711
1712 rx_desc++;
1713 bi++;
1714 ntu++;
1715 if (unlikely(ntu == rx_ring->count)) {
1716 rx_desc = I40E_RX_DESC(rx_ring, 0);
1717 bi = i40e_rx_bi(rx_ring, 0);
1718 ntu = 0;
1719 }
1720
1721 /* clear the status bits for the next_to_use descriptor */
1722 rx_desc->wb.qword1.status_error_len = 0;
1723
1724 cleaned_count--;
1725 } while (cleaned_count);
1726
1727 if (rx_ring->next_to_use != ntu)
1728 i40e_release_rx_desc(rx_ring, ntu);
1729
1730 return false;
1731
1732 no_buffers:
1733 if (rx_ring->next_to_use != ntu)
1734 i40e_release_rx_desc(rx_ring, ntu);
1735
1736 /* make sure to come back via polling to try again after
1737 * allocation failure
1738 */
1739 return true;
1740 }
1741
1742 /**
1743 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1744 * @vsi: the VSI we care about
1745 * @skb: skb currently being received and modified
1746 * @rx_desc: the receive descriptor
1747 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1748 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1749 struct sk_buff *skb,
1750 union i40e_rx_desc *rx_desc)
1751 {
1752 struct i40e_rx_ptype_decoded decoded;
1753 u32 rx_error, rx_status;
1754 bool ipv4, ipv6;
1755 u8 ptype;
1756 u64 qword;
1757
1758 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1759 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1760 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1761 I40E_RXD_QW1_ERROR_SHIFT;
1762 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1763 I40E_RXD_QW1_STATUS_SHIFT;
1764 decoded = decode_rx_desc_ptype(ptype);
1765
1766 skb->ip_summed = CHECKSUM_NONE;
1767
1768 skb_checksum_none_assert(skb);
1769
1770 /* Rx csum enabled and ip headers found? */
1771 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1772 return;
1773
1774 /* did the hardware decode the packet and checksum? */
1775 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1776 return;
1777
1778 /* both known and outer_ip must be set for the below code to work */
1779 if (!(decoded.known && decoded.outer_ip))
1780 return;
1781
1782 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1783 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1784 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1785 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1786
1787 if (ipv4 &&
1788 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1789 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1790 goto checksum_fail;
1791
1792 /* likely incorrect csum if alternate IP extension headers found */
1793 if (ipv6 &&
1794 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1795 /* don't increment checksum err here, non-fatal err */
1796 return;
1797
1798 /* there was some L4 error, count error and punt packet to the stack */
1799 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1800 goto checksum_fail;
1801
1802 /* handle packets that were not able to be checksummed due
1803 * to arrival speed, in this case the stack can compute
1804 * the csum.
1805 */
1806 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1807 return;
1808
1809 /* If there is an outer header present that might contain a checksum
1810 * we need to bump the checksum level by 1 to reflect the fact that
1811 * we are indicating we validated the inner checksum.
1812 */
1813 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1814 skb->csum_level = 1;
1815
1816 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1817 switch (decoded.inner_prot) {
1818 case I40E_RX_PTYPE_INNER_PROT_TCP:
1819 case I40E_RX_PTYPE_INNER_PROT_UDP:
1820 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1821 skb->ip_summed = CHECKSUM_UNNECESSARY;
1822 fallthrough;
1823 default:
1824 break;
1825 }
1826
1827 return;
1828
1829 checksum_fail:
1830 vsi->back->hw_csum_rx_error++;
1831 }
1832
1833 /**
1834 * i40e_ptype_to_htype - get a hash type
1835 * @ptype: the ptype value from the descriptor
1836 *
1837 * Returns a hash type to be used by skb_set_hash
1838 **/
i40e_ptype_to_htype(u8 ptype)1839 static inline int i40e_ptype_to_htype(u8 ptype)
1840 {
1841 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1842
1843 if (!decoded.known)
1844 return PKT_HASH_TYPE_NONE;
1845
1846 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1847 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1848 return PKT_HASH_TYPE_L4;
1849 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1850 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1851 return PKT_HASH_TYPE_L3;
1852 else
1853 return PKT_HASH_TYPE_L2;
1854 }
1855
1856 /**
1857 * i40e_rx_hash - set the hash value in the skb
1858 * @ring: descriptor ring
1859 * @rx_desc: specific descriptor
1860 * @skb: skb currently being received and modified
1861 * @rx_ptype: Rx packet type
1862 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1863 static inline void i40e_rx_hash(struct i40e_ring *ring,
1864 union i40e_rx_desc *rx_desc,
1865 struct sk_buff *skb,
1866 u8 rx_ptype)
1867 {
1868 u32 hash;
1869 const __le64 rss_mask =
1870 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1871 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1872
1873 if (!(ring->netdev->features & NETIF_F_RXHASH))
1874 return;
1875
1876 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1877 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1878 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1879 }
1880 }
1881
1882 /**
1883 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1884 * @rx_ring: rx descriptor ring packet is being transacted on
1885 * @rx_desc: pointer to the EOP Rx descriptor
1886 * @skb: pointer to current skb being populated
1887 *
1888 * This function checks the ring, descriptor, and packet information in
1889 * order to populate the hash, checksum, VLAN, protocol, and
1890 * other fields within the skb.
1891 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1892 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1893 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1894 {
1895 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1896 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1897 I40E_RXD_QW1_STATUS_SHIFT;
1898 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1899 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1900 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1901 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1902 I40E_RXD_QW1_PTYPE_SHIFT;
1903
1904 if (unlikely(tsynvalid))
1905 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1906
1907 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1908
1909 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1910
1911 skb_record_rx_queue(skb, rx_ring->queue_index);
1912
1913 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1914 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1915
1916 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1917 le16_to_cpu(vlan_tag));
1918 }
1919
1920 /* modifies the skb - consumes the enet header */
1921 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1922 }
1923
1924 /**
1925 * i40e_cleanup_headers - Correct empty headers
1926 * @rx_ring: rx descriptor ring packet is being transacted on
1927 * @skb: pointer to current skb being fixed
1928 * @rx_desc: pointer to the EOP Rx descriptor
1929 *
1930 * In addition if skb is not at least 60 bytes we need to pad it so that
1931 * it is large enough to qualify as a valid Ethernet frame.
1932 *
1933 * Returns true if an error was encountered and skb was freed.
1934 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1935 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1936 union i40e_rx_desc *rx_desc)
1937
1938 {
1939 /* ERR_MASK will only have valid bits if EOP set, and
1940 * what we are doing here is actually checking
1941 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1942 * the error field
1943 */
1944 if (unlikely(i40e_test_staterr(rx_desc,
1945 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1946 dev_kfree_skb_any(skb);
1947 return true;
1948 }
1949
1950 /* if eth_skb_pad returns an error the skb was freed */
1951 if (eth_skb_pad(skb))
1952 return true;
1953
1954 return false;
1955 }
1956
1957 /**
1958 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1959 * @rx_buffer: buffer containing the page
1960 * @rx_stats: rx stats structure for the rx ring
1961 *
1962 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1963 * which will assign the current buffer to the buffer that next_to_alloc is
1964 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1965 * page freed.
1966 *
1967 * rx_stats will be updated to indicate whether the page was waived
1968 * or busy if it could not be reused.
1969 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1970 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1971 struct i40e_rx_queue_stats *rx_stats)
1972 {
1973 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1974 struct page *page = rx_buffer->page;
1975
1976 /* Is any reuse possible? */
1977 if (!dev_page_is_reusable(page)) {
1978 rx_stats->page_waive_count++;
1979 return false;
1980 }
1981
1982 #if (PAGE_SIZE < 8192)
1983 /* if we are only owner of page we can reuse it */
1984 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1985 rx_stats->page_busy_count++;
1986 return false;
1987 }
1988 #else
1989 #define I40E_LAST_OFFSET \
1990 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1991 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1992 rx_stats->page_busy_count++;
1993 return false;
1994 }
1995 #endif
1996
1997 /* If we have drained the page fragment pool we need to update
1998 * the pagecnt_bias and page count so that we fully restock the
1999 * number of references the driver holds.
2000 */
2001 if (unlikely(pagecnt_bias == 1)) {
2002 page_ref_add(page, USHRT_MAX - 1);
2003 rx_buffer->pagecnt_bias = USHRT_MAX;
2004 }
2005
2006 return true;
2007 }
2008
2009 /**
2010 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2011 * @rx_buffer: Rx buffer to adjust
2012 * @truesize: Size of adjustment
2013 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)2014 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2015 unsigned int truesize)
2016 {
2017 #if (PAGE_SIZE < 8192)
2018 rx_buffer->page_offset ^= truesize;
2019 #else
2020 rx_buffer->page_offset += truesize;
2021 #endif
2022 }
2023
2024 /**
2025 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2026 * @rx_ring: rx descriptor ring to transact packets on
2027 * @size: size of buffer to add to skb
2028 *
2029 * This function will pull an Rx buffer from the ring and synchronize it
2030 * for use by the CPU.
2031 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)2032 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2033 const unsigned int size)
2034 {
2035 struct i40e_rx_buffer *rx_buffer;
2036
2037 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2038 rx_buffer->page_count =
2039 #if (PAGE_SIZE < 8192)
2040 page_count(rx_buffer->page);
2041 #else
2042 0;
2043 #endif
2044 prefetch_page_address(rx_buffer->page);
2045
2046 /* we are reusing so sync this buffer for CPU use */
2047 dma_sync_single_range_for_cpu(rx_ring->dev,
2048 rx_buffer->dma,
2049 rx_buffer->page_offset,
2050 size,
2051 DMA_FROM_DEVICE);
2052
2053 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2054 rx_buffer->pagecnt_bias--;
2055
2056 return rx_buffer;
2057 }
2058
2059 /**
2060 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2061 * @rx_ring: rx descriptor ring to transact packets on
2062 * @rx_buffer: rx buffer to pull data from
2063 *
2064 * This function will clean up the contents of the rx_buffer. It will
2065 * either recycle the buffer or unmap it and free the associated resources.
2066 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2067 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2068 struct i40e_rx_buffer *rx_buffer)
2069 {
2070 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2071 /* hand second half of page back to the ring */
2072 i40e_reuse_rx_page(rx_ring, rx_buffer);
2073 } else {
2074 /* we are not reusing the buffer so unmap it */
2075 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2076 i40e_rx_pg_size(rx_ring),
2077 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2078 __page_frag_cache_drain(rx_buffer->page,
2079 rx_buffer->pagecnt_bias);
2080 /* clear contents of buffer_info */
2081 rx_buffer->page = NULL;
2082 }
2083 }
2084
2085 /**
2086 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2087 * @rx_ring: Rx descriptor ring to transact packets on
2088 * @xdp_res: Result of the XDP program
2089 * @xdp: xdp_buff pointing to the data
2090 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2091 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2092 struct xdp_buff *xdp)
2093 {
2094 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2095 u32 next = rx_ring->next_to_clean, i = 0;
2096 struct i40e_rx_buffer *rx_buffer;
2097
2098 xdp->flags = 0;
2099
2100 while (1) {
2101 rx_buffer = i40e_rx_bi(rx_ring, next);
2102 if (++next == rx_ring->count)
2103 next = 0;
2104
2105 if (!rx_buffer->page)
2106 continue;
2107
2108 if (xdp_res != I40E_XDP_CONSUMED)
2109 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2110 else if (i++ <= nr_frags)
2111 rx_buffer->pagecnt_bias++;
2112
2113 /* EOP buffer will be put in i40e_clean_rx_irq() */
2114 if (next == rx_ring->next_to_process)
2115 return;
2116
2117 i40e_put_rx_buffer(rx_ring, rx_buffer);
2118 }
2119 }
2120
2121 /**
2122 * i40e_construct_skb - Allocate skb and populate it
2123 * @rx_ring: rx descriptor ring to transact packets on
2124 * @xdp: xdp_buff pointing to the data
2125 *
2126 * This function allocates an skb. It then populates it with the page
2127 * data from the current receive descriptor, taking care to set up the
2128 * skb correctly.
2129 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2130 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2131 struct xdp_buff *xdp)
2132 {
2133 unsigned int size = xdp->data_end - xdp->data;
2134 struct i40e_rx_buffer *rx_buffer;
2135 struct skb_shared_info *sinfo;
2136 unsigned int headlen;
2137 struct sk_buff *skb;
2138 u32 nr_frags = 0;
2139
2140 /* prefetch first cache line of first page */
2141 net_prefetch(xdp->data);
2142
2143 /* Note, we get here by enabling legacy-rx via:
2144 *
2145 * ethtool --set-priv-flags <dev> legacy-rx on
2146 *
2147 * In this mode, we currently get 0 extra XDP headroom as
2148 * opposed to having legacy-rx off, where we process XDP
2149 * packets going to stack via i40e_build_skb(). The latter
2150 * provides us currently with 192 bytes of headroom.
2151 *
2152 * For i40e_construct_skb() mode it means that the
2153 * xdp->data_meta will always point to xdp->data, since
2154 * the helper cannot expand the head. Should this ever
2155 * change in future for legacy-rx mode on, then lets also
2156 * add xdp->data_meta handling here.
2157 */
2158
2159 /* allocate a skb to store the frags */
2160 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2161 I40E_RX_HDR_SIZE,
2162 GFP_ATOMIC | __GFP_NOWARN);
2163 if (unlikely(!skb))
2164 return NULL;
2165
2166 /* Determine available headroom for copy */
2167 headlen = size;
2168 if (headlen > I40E_RX_HDR_SIZE)
2169 headlen = eth_get_headlen(skb->dev, xdp->data,
2170 I40E_RX_HDR_SIZE);
2171
2172 /* align pull length to size of long to optimize memcpy performance */
2173 memcpy(__skb_put(skb, headlen), xdp->data,
2174 ALIGN(headlen, sizeof(long)));
2175
2176 if (unlikely(xdp_buff_has_frags(xdp))) {
2177 sinfo = xdp_get_shared_info_from_buff(xdp);
2178 nr_frags = sinfo->nr_frags;
2179 }
2180 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2181 /* update all of the pointers */
2182 size -= headlen;
2183 if (size) {
2184 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2185 dev_kfree_skb(skb);
2186 return NULL;
2187 }
2188 skb_add_rx_frag(skb, 0, rx_buffer->page,
2189 rx_buffer->page_offset + headlen,
2190 size, xdp->frame_sz);
2191 /* buffer is used by skb, update page_offset */
2192 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2193 } else {
2194 /* buffer is unused, reset bias back to rx_buffer */
2195 rx_buffer->pagecnt_bias++;
2196 }
2197
2198 if (unlikely(xdp_buff_has_frags(xdp))) {
2199 struct skb_shared_info *skinfo = skb_shinfo(skb);
2200
2201 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2202 sizeof(skb_frag_t) * nr_frags);
2203
2204 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2205 sinfo->xdp_frags_size,
2206 nr_frags * xdp->frame_sz,
2207 xdp_buff_is_frag_pfmemalloc(xdp));
2208
2209 /* First buffer has already been processed, so bump ntc */
2210 if (++rx_ring->next_to_clean == rx_ring->count)
2211 rx_ring->next_to_clean = 0;
2212
2213 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 }
2215
2216 return skb;
2217 }
2218
2219 /**
2220 * i40e_build_skb - Build skb around an existing buffer
2221 * @rx_ring: Rx descriptor ring to transact packets on
2222 * @xdp: xdp_buff pointing to the data
2223 *
2224 * This function builds an skb around an existing Rx buffer, taking care
2225 * to set up the skb correctly and avoid any memcpy overhead.
2226 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2227 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2228 struct xdp_buff *xdp)
2229 {
2230 unsigned int metasize = xdp->data - xdp->data_meta;
2231 struct skb_shared_info *sinfo;
2232 struct sk_buff *skb;
2233 u32 nr_frags;
2234
2235 /* Prefetch first cache line of first page. If xdp->data_meta
2236 * is unused, this points exactly as xdp->data, otherwise we
2237 * likely have a consumer accessing first few bytes of meta
2238 * data, and then actual data.
2239 */
2240 net_prefetch(xdp->data_meta);
2241
2242 if (unlikely(xdp_buff_has_frags(xdp))) {
2243 sinfo = xdp_get_shared_info_from_buff(xdp);
2244 nr_frags = sinfo->nr_frags;
2245 }
2246
2247 /* build an skb around the page buffer */
2248 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2249 if (unlikely(!skb))
2250 return NULL;
2251
2252 /* update pointers within the skb to store the data */
2253 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254 __skb_put(skb, xdp->data_end - xdp->data);
2255 if (metasize)
2256 skb_metadata_set(skb, metasize);
2257
2258 if (unlikely(xdp_buff_has_frags(xdp))) {
2259 xdp_update_skb_shared_info(skb, nr_frags,
2260 sinfo->xdp_frags_size,
2261 nr_frags * xdp->frame_sz,
2262 xdp_buff_is_frag_pfmemalloc(xdp));
2263
2264 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2265 } else {
2266 struct i40e_rx_buffer *rx_buffer;
2267
2268 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2269 /* buffer is used by skb, update page_offset */
2270 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2271 }
2272
2273 return skb;
2274 }
2275
2276 /**
2277 * i40e_is_non_eop - process handling of non-EOP buffers
2278 * @rx_ring: Rx ring being processed
2279 * @rx_desc: Rx descriptor for current buffer
2280 *
2281 * If the buffer is an EOP buffer, this function exits returning false,
2282 * otherwise return true indicating that this is in fact a non-EOP buffer.
2283 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2284 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2285 union i40e_rx_desc *rx_desc)
2286 {
2287 /* if we are the last buffer then there is nothing else to do */
2288 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2289 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2290 return false;
2291
2292 rx_ring->rx_stats.non_eop_descs++;
2293
2294 return true;
2295 }
2296
2297 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2298 struct i40e_ring *xdp_ring);
2299
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2300 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2301 {
2302 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2303
2304 if (unlikely(!xdpf))
2305 return I40E_XDP_CONSUMED;
2306
2307 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2308 }
2309
2310 /**
2311 * i40e_run_xdp - run an XDP program
2312 * @rx_ring: Rx ring being processed
2313 * @xdp: XDP buffer containing the frame
2314 * @xdp_prog: XDP program to run
2315 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2316 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2317 {
2318 int err, result = I40E_XDP_PASS;
2319 struct i40e_ring *xdp_ring;
2320 u32 act;
2321
2322 if (!xdp_prog)
2323 goto xdp_out;
2324
2325 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2326
2327 act = bpf_prog_run_xdp(xdp_prog, xdp);
2328 switch (act) {
2329 case XDP_PASS:
2330 break;
2331 case XDP_TX:
2332 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2333 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2334 if (result == I40E_XDP_CONSUMED)
2335 goto out_failure;
2336 break;
2337 case XDP_REDIRECT:
2338 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2339 if (err)
2340 goto out_failure;
2341 result = I40E_XDP_REDIR;
2342 break;
2343 default:
2344 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2345 fallthrough;
2346 case XDP_ABORTED:
2347 out_failure:
2348 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2349 fallthrough; /* handle aborts by dropping packet */
2350 case XDP_DROP:
2351 result = I40E_XDP_CONSUMED;
2352 break;
2353 }
2354 xdp_out:
2355 return result;
2356 }
2357
2358 /**
2359 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360 * @xdp_ring: XDP Tx ring
2361 *
2362 * This function updates the XDP Tx ring tail register.
2363 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2364 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365 {
2366 /* Force memory writes to complete before letting h/w
2367 * know there are new descriptors to fetch.
2368 */
2369 wmb();
2370 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371 }
2372
2373 /**
2374 * i40e_update_rx_stats - Update Rx ring statistics
2375 * @rx_ring: rx descriptor ring
2376 * @total_rx_bytes: number of bytes received
2377 * @total_rx_packets: number of packets received
2378 *
2379 * This function updates the Rx ring statistics.
2380 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2381 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382 unsigned int total_rx_bytes,
2383 unsigned int total_rx_packets)
2384 {
2385 u64_stats_update_begin(&rx_ring->syncp);
2386 rx_ring->stats.packets += total_rx_packets;
2387 rx_ring->stats.bytes += total_rx_bytes;
2388 u64_stats_update_end(&rx_ring->syncp);
2389 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391 }
2392
2393 /**
2394 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395 * @rx_ring: Rx ring
2396 * @xdp_res: Result of the receive batch
2397 *
2398 * This function bumps XDP Tx tail and/or flush redirect map, and
2399 * should be called when a batch of packets has been processed in the
2400 * napi loop.
2401 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2402 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403 {
2404 if (xdp_res & I40E_XDP_REDIR)
2405 xdp_do_flush_map();
2406
2407 if (xdp_res & I40E_XDP_TX) {
2408 struct i40e_ring *xdp_ring =
2409 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410
2411 i40e_xdp_ring_update_tail(xdp_ring);
2412 }
2413 }
2414
2415 /**
2416 * i40e_inc_ntp: Advance the next_to_process index
2417 * @rx_ring: Rx ring
2418 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2419 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2420 {
2421 u32 ntp = rx_ring->next_to_process + 1;
2422
2423 ntp = (ntp < rx_ring->count) ? ntp : 0;
2424 rx_ring->next_to_process = ntp;
2425 prefetch(I40E_RX_DESC(rx_ring, ntp));
2426 }
2427
2428 /**
2429 * i40e_add_xdp_frag: Add a frag to xdp_buff
2430 * @xdp: xdp_buff pointing to the data
2431 * @nr_frags: return number of buffers for the packet
2432 * @rx_buffer: rx_buffer holding data of the current frag
2433 * @size: size of data of current frag
2434 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2435 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2436 struct i40e_rx_buffer *rx_buffer, u32 size)
2437 {
2438 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2439
2440 if (!xdp_buff_has_frags(xdp)) {
2441 sinfo->nr_frags = 0;
2442 sinfo->xdp_frags_size = 0;
2443 xdp_buff_set_frags_flag(xdp);
2444 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2445 /* Overflowing packet: All frags need to be dropped */
2446 return -ENOMEM;
2447 }
2448
2449 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2450 rx_buffer->page_offset, size);
2451
2452 sinfo->xdp_frags_size += size;
2453
2454 if (page_is_pfmemalloc(rx_buffer->page))
2455 xdp_buff_set_frag_pfmemalloc(xdp);
2456 *nr_frags = sinfo->nr_frags;
2457
2458 return 0;
2459 }
2460
2461 /**
2462 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2463 * @rx_ring: rx descriptor ring to transact packets on
2464 * @xdp: xdp_buff pointing to the data
2465 * @rx_buffer: rx_buffer of eop desc
2466 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2467 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2468 struct xdp_buff *xdp,
2469 struct i40e_rx_buffer *rx_buffer)
2470 {
2471 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2472 i40e_put_rx_buffer(rx_ring, rx_buffer);
2473 rx_ring->next_to_clean = rx_ring->next_to_process;
2474 xdp->data = NULL;
2475 }
2476
2477 /**
2478 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2479 * @rx_ring: rx descriptor ring to transact packets on
2480 * @budget: Total limit on number of packets to process
2481 * @rx_cleaned: Out parameter of the number of packets processed
2482 *
2483 * This function provides a "bounce buffer" approach to Rx interrupt
2484 * processing. The advantage to this is that on systems that have
2485 * expensive overhead for IOMMU access this provides a means of avoiding
2486 * it by maintaining the mapping of the page to the system.
2487 *
2488 * Returns amount of work completed
2489 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2490 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2491 unsigned int *rx_cleaned)
2492 {
2493 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2494 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2495 u16 clean_threshold = rx_ring->count / 2;
2496 unsigned int offset = rx_ring->rx_offset;
2497 struct xdp_buff *xdp = &rx_ring->xdp;
2498 unsigned int xdp_xmit = 0;
2499 struct bpf_prog *xdp_prog;
2500 bool failure = false;
2501 int xdp_res = 0;
2502
2503 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2504
2505 while (likely(total_rx_packets < (unsigned int)budget)) {
2506 u16 ntp = rx_ring->next_to_process;
2507 struct i40e_rx_buffer *rx_buffer;
2508 union i40e_rx_desc *rx_desc;
2509 struct sk_buff *skb;
2510 unsigned int size;
2511 u32 nfrags = 0;
2512 bool neop;
2513 u64 qword;
2514
2515 /* return some buffers to hardware, one at a time is too slow */
2516 if (cleaned_count >= clean_threshold) {
2517 failure = failure ||
2518 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2519 cleaned_count = 0;
2520 }
2521
2522 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2523
2524 /* status_error_len will always be zero for unused descriptors
2525 * because it's cleared in cleanup, and overlaps with hdr_addr
2526 * which is always zero because packet split isn't used, if the
2527 * hardware wrote DD then the length will be non-zero
2528 */
2529 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2530
2531 /* This memory barrier is needed to keep us from reading
2532 * any other fields out of the rx_desc until we have
2533 * verified the descriptor has been written back.
2534 */
2535 dma_rmb();
2536
2537 if (i40e_rx_is_programming_status(qword)) {
2538 i40e_clean_programming_status(rx_ring,
2539 rx_desc->raw.qword[0],
2540 qword);
2541 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2542 i40e_inc_ntp(rx_ring);
2543 i40e_reuse_rx_page(rx_ring, rx_buffer);
2544 /* Update ntc and bump cleaned count if not in the
2545 * middle of mb packet.
2546 */
2547 if (rx_ring->next_to_clean == ntp) {
2548 rx_ring->next_to_clean =
2549 rx_ring->next_to_process;
2550 cleaned_count++;
2551 }
2552 continue;
2553 }
2554
2555 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2556 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2557 if (!size)
2558 break;
2559
2560 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2561 /* retrieve a buffer from the ring */
2562 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2563
2564 neop = i40e_is_non_eop(rx_ring, rx_desc);
2565 i40e_inc_ntp(rx_ring);
2566
2567 if (!xdp->data) {
2568 unsigned char *hard_start;
2569
2570 hard_start = page_address(rx_buffer->page) +
2571 rx_buffer->page_offset - offset;
2572 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2573 #if (PAGE_SIZE > 4096)
2574 /* At larger PAGE_SIZE, frame_sz depend on len size */
2575 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2576 #endif
2577 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2578 !neop) {
2579 /* Overflowing packet: Drop all frags on EOP */
2580 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2581 break;
2582 }
2583
2584 if (neop)
2585 continue;
2586
2587 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2588
2589 if (xdp_res) {
2590 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2591
2592 if (unlikely(xdp_buff_has_frags(xdp))) {
2593 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2594 size = xdp_get_buff_len(xdp);
2595 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2596 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2597 } else {
2598 rx_buffer->pagecnt_bias++;
2599 }
2600 total_rx_bytes += size;
2601 } else {
2602 if (ring_uses_build_skb(rx_ring))
2603 skb = i40e_build_skb(rx_ring, xdp);
2604 else
2605 skb = i40e_construct_skb(rx_ring, xdp);
2606
2607 /* drop if we failed to retrieve a buffer */
2608 if (!skb) {
2609 rx_ring->rx_stats.alloc_buff_failed++;
2610 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2611 break;
2612 }
2613
2614 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2615 goto process_next;
2616
2617 /* probably a little skewed due to removing CRC */
2618 total_rx_bytes += skb->len;
2619
2620 /* populate checksum, VLAN, and protocol */
2621 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2622
2623 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2624 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2625 }
2626
2627 /* update budget accounting */
2628 total_rx_packets++;
2629 process_next:
2630 cleaned_count += nfrags + 1;
2631 i40e_put_rx_buffer(rx_ring, rx_buffer);
2632 rx_ring->next_to_clean = rx_ring->next_to_process;
2633
2634 xdp->data = NULL;
2635 }
2636
2637 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2638
2639 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2640
2641 *rx_cleaned = total_rx_packets;
2642
2643 /* guarantee a trip back through this routine if there was a failure */
2644 return failure ? budget : (int)total_rx_packets;
2645 }
2646
i40e_buildreg_itr(const int type,u16 itr)2647 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2648 {
2649 u32 val;
2650
2651 /* We don't bother with setting the CLEARPBA bit as the data sheet
2652 * points out doing so is "meaningless since it was already
2653 * auto-cleared". The auto-clearing happens when the interrupt is
2654 * asserted.
2655 *
2656 * Hardware errata 28 for also indicates that writing to a
2657 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2658 * an event in the PBA anyway so we need to rely on the automask
2659 * to hold pending events for us until the interrupt is re-enabled
2660 *
2661 * The itr value is reported in microseconds, and the register
2662 * value is recorded in 2 microsecond units. For this reason we
2663 * only need to shift by the interval shift - 1 instead of the
2664 * full value.
2665 */
2666 itr &= I40E_ITR_MASK;
2667
2668 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2669 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2670 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2671
2672 return val;
2673 }
2674
2675 /* a small macro to shorten up some long lines */
2676 #define INTREG I40E_PFINT_DYN_CTLN
2677
2678 /* The act of updating the ITR will cause it to immediately trigger. In order
2679 * to prevent this from throwing off adaptive update statistics we defer the
2680 * update so that it can only happen so often. So after either Tx or Rx are
2681 * updated we make the adaptive scheme wait until either the ITR completely
2682 * expires via the next_update expiration or we have been through at least
2683 * 3 interrupts.
2684 */
2685 #define ITR_COUNTDOWN_START 3
2686
2687 /**
2688 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2689 * @vsi: the VSI we care about
2690 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2691 *
2692 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2693 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2694 struct i40e_q_vector *q_vector)
2695 {
2696 struct i40e_hw *hw = &vsi->back->hw;
2697 u32 intval;
2698
2699 /* If we don't have MSIX, then we only need to re-enable icr0 */
2700 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2701 i40e_irq_dynamic_enable_icr0(vsi->back);
2702 return;
2703 }
2704
2705 /* These will do nothing if dynamic updates are not enabled */
2706 i40e_update_itr(q_vector, &q_vector->tx);
2707 i40e_update_itr(q_vector, &q_vector->rx);
2708
2709 /* This block of logic allows us to get away with only updating
2710 * one ITR value with each interrupt. The idea is to perform a
2711 * pseudo-lazy update with the following criteria.
2712 *
2713 * 1. Rx is given higher priority than Tx if both are in same state
2714 * 2. If we must reduce an ITR that is given highest priority.
2715 * 3. We then give priority to increasing ITR based on amount.
2716 */
2717 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2718 /* Rx ITR needs to be reduced, this is highest priority */
2719 intval = i40e_buildreg_itr(I40E_RX_ITR,
2720 q_vector->rx.target_itr);
2721 q_vector->rx.current_itr = q_vector->rx.target_itr;
2722 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2723 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2724 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2725 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2726 /* Tx ITR needs to be reduced, this is second priority
2727 * Tx ITR needs to be increased more than Rx, fourth priority
2728 */
2729 intval = i40e_buildreg_itr(I40E_TX_ITR,
2730 q_vector->tx.target_itr);
2731 q_vector->tx.current_itr = q_vector->tx.target_itr;
2732 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2733 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2734 /* Rx ITR needs to be increased, third priority */
2735 intval = i40e_buildreg_itr(I40E_RX_ITR,
2736 q_vector->rx.target_itr);
2737 q_vector->rx.current_itr = q_vector->rx.target_itr;
2738 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2739 } else {
2740 /* No ITR update, lowest priority */
2741 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2742 if (q_vector->itr_countdown)
2743 q_vector->itr_countdown--;
2744 }
2745
2746 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2747 wr32(hw, INTREG(q_vector->reg_idx), intval);
2748 }
2749
2750 /**
2751 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2752 * @napi: napi struct with our devices info in it
2753 * @budget: amount of work driver is allowed to do this pass, in packets
2754 *
2755 * This function will clean all queues associated with a q_vector.
2756 *
2757 * Returns the amount of work done
2758 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2759 int i40e_napi_poll(struct napi_struct *napi, int budget)
2760 {
2761 struct i40e_q_vector *q_vector =
2762 container_of(napi, struct i40e_q_vector, napi);
2763 struct i40e_vsi *vsi = q_vector->vsi;
2764 struct i40e_ring *ring;
2765 bool tx_clean_complete = true;
2766 bool rx_clean_complete = true;
2767 unsigned int tx_cleaned = 0;
2768 unsigned int rx_cleaned = 0;
2769 bool clean_complete = true;
2770 bool arm_wb = false;
2771 int budget_per_ring;
2772 int work_done = 0;
2773
2774 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2775 napi_complete(napi);
2776 return 0;
2777 }
2778
2779 /* Since the actual Tx work is minimal, we can give the Tx a larger
2780 * budget and be more aggressive about cleaning up the Tx descriptors.
2781 */
2782 i40e_for_each_ring(ring, q_vector->tx) {
2783 bool wd = ring->xsk_pool ?
2784 i40e_clean_xdp_tx_irq(vsi, ring) :
2785 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2786
2787 if (!wd) {
2788 clean_complete = tx_clean_complete = false;
2789 continue;
2790 }
2791 arm_wb |= ring->arm_wb;
2792 ring->arm_wb = false;
2793 }
2794
2795 /* Handle case where we are called by netpoll with a budget of 0 */
2796 if (budget <= 0)
2797 goto tx_only;
2798
2799 /* normally we have 1 Rx ring per q_vector */
2800 if (unlikely(q_vector->num_ringpairs > 1))
2801 /* We attempt to distribute budget to each Rx queue fairly, but
2802 * don't allow the budget to go below 1 because that would exit
2803 * polling early.
2804 */
2805 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2806 else
2807 /* Max of 1 Rx ring in this q_vector so give it the budget */
2808 budget_per_ring = budget;
2809
2810 i40e_for_each_ring(ring, q_vector->rx) {
2811 int cleaned = ring->xsk_pool ?
2812 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2813 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2814
2815 work_done += cleaned;
2816 /* if we clean as many as budgeted, we must not be done */
2817 if (cleaned >= budget_per_ring)
2818 clean_complete = rx_clean_complete = false;
2819 }
2820
2821 if (!i40e_enabled_xdp_vsi(vsi))
2822 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2823 tx_cleaned, rx_clean_complete, tx_clean_complete);
2824
2825 /* If work not completed, return budget and polling will return */
2826 if (!clean_complete) {
2827 int cpu_id = smp_processor_id();
2828
2829 /* It is possible that the interrupt affinity has changed but,
2830 * if the cpu is pegged at 100%, polling will never exit while
2831 * traffic continues and the interrupt will be stuck on this
2832 * cpu. We check to make sure affinity is correct before we
2833 * continue to poll, otherwise we must stop polling so the
2834 * interrupt can move to the correct cpu.
2835 */
2836 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2837 /* Tell napi that we are done polling */
2838 napi_complete_done(napi, work_done);
2839
2840 /* Force an interrupt */
2841 i40e_force_wb(vsi, q_vector);
2842
2843 /* Return budget-1 so that polling stops */
2844 return budget - 1;
2845 }
2846 tx_only:
2847 if (arm_wb) {
2848 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2849 i40e_enable_wb_on_itr(vsi, q_vector);
2850 }
2851 return budget;
2852 }
2853
2854 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2855 q_vector->arm_wb_state = false;
2856
2857 /* Exit the polling mode, but don't re-enable interrupts if stack might
2858 * poll us due to busy-polling
2859 */
2860 if (likely(napi_complete_done(napi, work_done)))
2861 i40e_update_enable_itr(vsi, q_vector);
2862
2863 return min(work_done, budget - 1);
2864 }
2865
2866 /**
2867 * i40e_atr - Add a Flow Director ATR filter
2868 * @tx_ring: ring to add programming descriptor to
2869 * @skb: send buffer
2870 * @tx_flags: send tx flags
2871 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2872 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2873 u32 tx_flags)
2874 {
2875 struct i40e_filter_program_desc *fdir_desc;
2876 struct i40e_pf *pf = tx_ring->vsi->back;
2877 union {
2878 unsigned char *network;
2879 struct iphdr *ipv4;
2880 struct ipv6hdr *ipv6;
2881 } hdr;
2882 struct tcphdr *th;
2883 unsigned int hlen;
2884 u32 flex_ptype, dtype_cmd;
2885 int l4_proto;
2886 u16 i;
2887
2888 /* make sure ATR is enabled */
2889 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2890 return;
2891
2892 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2893 return;
2894
2895 /* if sampling is disabled do nothing */
2896 if (!tx_ring->atr_sample_rate)
2897 return;
2898
2899 /* Currently only IPv4/IPv6 with TCP is supported */
2900 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2901 return;
2902
2903 /* snag network header to get L4 type and address */
2904 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2905 skb_inner_network_header(skb) : skb_network_header(skb);
2906
2907 /* Note: tx_flags gets modified to reflect inner protocols in
2908 * tx_enable_csum function if encap is enabled.
2909 */
2910 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2911 /* access ihl as u8 to avoid unaligned access on ia64 */
2912 hlen = (hdr.network[0] & 0x0F) << 2;
2913 l4_proto = hdr.ipv4->protocol;
2914 } else {
2915 /* find the start of the innermost ipv6 header */
2916 unsigned int inner_hlen = hdr.network - skb->data;
2917 unsigned int h_offset = inner_hlen;
2918
2919 /* this function updates h_offset to the end of the header */
2920 l4_proto =
2921 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2922 /* hlen will contain our best estimate of the tcp header */
2923 hlen = h_offset - inner_hlen;
2924 }
2925
2926 if (l4_proto != IPPROTO_TCP)
2927 return;
2928
2929 th = (struct tcphdr *)(hdr.network + hlen);
2930
2931 /* Due to lack of space, no more new filters can be programmed */
2932 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2933 return;
2934 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2935 /* HW ATR eviction will take care of removing filters on FIN
2936 * and RST packets.
2937 */
2938 if (th->fin || th->rst)
2939 return;
2940 }
2941
2942 tx_ring->atr_count++;
2943
2944 /* sample on all syn/fin/rst packets or once every atr sample rate */
2945 if (!th->fin &&
2946 !th->syn &&
2947 !th->rst &&
2948 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2949 return;
2950
2951 tx_ring->atr_count = 0;
2952
2953 /* grab the next descriptor */
2954 i = tx_ring->next_to_use;
2955 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2956
2957 i++;
2958 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2959
2960 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2961 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2962 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2963 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2964 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2965 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2966 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2967
2968 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2969
2970 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2971
2972 dtype_cmd |= (th->fin || th->rst) ?
2973 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2974 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2975 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2976 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2977
2978 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2979 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2980
2981 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2982 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2983
2984 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2985 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2986 dtype_cmd |=
2987 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2988 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2989 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2990 else
2991 dtype_cmd |=
2992 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2993 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2994 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2995
2996 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2997 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2998
2999 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3000 fdir_desc->rsvd = cpu_to_le32(0);
3001 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3002 fdir_desc->fd_id = cpu_to_le32(0);
3003 }
3004
3005 /**
3006 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3007 * @skb: send buffer
3008 * @tx_ring: ring to send buffer on
3009 * @flags: the tx flags to be set
3010 *
3011 * Checks the skb and set up correspondingly several generic transmit flags
3012 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3013 *
3014 * Returns error code indicate the frame should be dropped upon error and the
3015 * otherwise returns 0 to indicate the flags has been set properly.
3016 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3017 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3018 struct i40e_ring *tx_ring,
3019 u32 *flags)
3020 {
3021 __be16 protocol = skb->protocol;
3022 u32 tx_flags = 0;
3023
3024 if (protocol == htons(ETH_P_8021Q) &&
3025 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3026 /* When HW VLAN acceleration is turned off by the user the
3027 * stack sets the protocol to 8021q so that the driver
3028 * can take any steps required to support the SW only
3029 * VLAN handling. In our case the driver doesn't need
3030 * to take any further steps so just set the protocol
3031 * to the encapsulated ethertype.
3032 */
3033 skb->protocol = vlan_get_protocol(skb);
3034 goto out;
3035 }
3036
3037 /* if we have a HW VLAN tag being added, default to the HW one */
3038 if (skb_vlan_tag_present(skb)) {
3039 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3040 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3041 /* else if it is a SW VLAN, check the next protocol and store the tag */
3042 } else if (protocol == htons(ETH_P_8021Q)) {
3043 struct vlan_hdr *vhdr, _vhdr;
3044
3045 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3046 if (!vhdr)
3047 return -EINVAL;
3048
3049 protocol = vhdr->h_vlan_encapsulated_proto;
3050 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3051 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3052 }
3053
3054 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3055 goto out;
3056
3057 /* Insert 802.1p priority into VLAN header */
3058 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3059 (skb->priority != TC_PRIO_CONTROL)) {
3060 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3061 tx_flags |= (skb->priority & 0x7) <<
3062 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3063 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3064 struct vlan_ethhdr *vhdr;
3065 int rc;
3066
3067 rc = skb_cow_head(skb, 0);
3068 if (rc < 0)
3069 return rc;
3070 vhdr = skb_vlan_eth_hdr(skb);
3071 vhdr->h_vlan_TCI = htons(tx_flags >>
3072 I40E_TX_FLAGS_VLAN_SHIFT);
3073 } else {
3074 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3075 }
3076 }
3077
3078 out:
3079 *flags = tx_flags;
3080 return 0;
3081 }
3082
3083 /**
3084 * i40e_tso - set up the tso context descriptor
3085 * @first: pointer to first Tx buffer for xmit
3086 * @hdr_len: ptr to the size of the packet header
3087 * @cd_type_cmd_tso_mss: Quad Word 1
3088 *
3089 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3090 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3091 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3092 u64 *cd_type_cmd_tso_mss)
3093 {
3094 struct sk_buff *skb = first->skb;
3095 u64 cd_cmd, cd_tso_len, cd_mss;
3096 __be16 protocol;
3097 union {
3098 struct iphdr *v4;
3099 struct ipv6hdr *v6;
3100 unsigned char *hdr;
3101 } ip;
3102 union {
3103 struct tcphdr *tcp;
3104 struct udphdr *udp;
3105 unsigned char *hdr;
3106 } l4;
3107 u32 paylen, l4_offset;
3108 u16 gso_size;
3109 int err;
3110
3111 if (skb->ip_summed != CHECKSUM_PARTIAL)
3112 return 0;
3113
3114 if (!skb_is_gso(skb))
3115 return 0;
3116
3117 err = skb_cow_head(skb, 0);
3118 if (err < 0)
3119 return err;
3120
3121 protocol = vlan_get_protocol(skb);
3122
3123 if (eth_p_mpls(protocol))
3124 ip.hdr = skb_inner_network_header(skb);
3125 else
3126 ip.hdr = skb_network_header(skb);
3127 l4.hdr = skb_checksum_start(skb);
3128
3129 /* initialize outer IP header fields */
3130 if (ip.v4->version == 4) {
3131 ip.v4->tot_len = 0;
3132 ip.v4->check = 0;
3133
3134 first->tx_flags |= I40E_TX_FLAGS_TSO;
3135 } else {
3136 ip.v6->payload_len = 0;
3137 first->tx_flags |= I40E_TX_FLAGS_TSO;
3138 }
3139
3140 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3141 SKB_GSO_GRE_CSUM |
3142 SKB_GSO_IPXIP4 |
3143 SKB_GSO_IPXIP6 |
3144 SKB_GSO_UDP_TUNNEL |
3145 SKB_GSO_UDP_TUNNEL_CSUM)) {
3146 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3147 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3148 l4.udp->len = 0;
3149
3150 /* determine offset of outer transport header */
3151 l4_offset = l4.hdr - skb->data;
3152
3153 /* remove payload length from outer checksum */
3154 paylen = skb->len - l4_offset;
3155 csum_replace_by_diff(&l4.udp->check,
3156 (__force __wsum)htonl(paylen));
3157 }
3158
3159 /* reset pointers to inner headers */
3160 ip.hdr = skb_inner_network_header(skb);
3161 l4.hdr = skb_inner_transport_header(skb);
3162
3163 /* initialize inner IP header fields */
3164 if (ip.v4->version == 4) {
3165 ip.v4->tot_len = 0;
3166 ip.v4->check = 0;
3167 } else {
3168 ip.v6->payload_len = 0;
3169 }
3170 }
3171
3172 /* determine offset of inner transport header */
3173 l4_offset = l4.hdr - skb->data;
3174
3175 /* remove payload length from inner checksum */
3176 paylen = skb->len - l4_offset;
3177
3178 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3179 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3180 /* compute length of segmentation header */
3181 *hdr_len = sizeof(*l4.udp) + l4_offset;
3182 } else {
3183 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3184 /* compute length of segmentation header */
3185 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3186 }
3187
3188 /* pull values out of skb_shinfo */
3189 gso_size = skb_shinfo(skb)->gso_size;
3190
3191 /* update GSO size and bytecount with header size */
3192 first->gso_segs = skb_shinfo(skb)->gso_segs;
3193 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3194
3195 /* find the field values */
3196 cd_cmd = I40E_TX_CTX_DESC_TSO;
3197 cd_tso_len = skb->len - *hdr_len;
3198 cd_mss = gso_size;
3199 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3200 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3201 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3202 return 1;
3203 }
3204
3205 /**
3206 * i40e_tsyn - set up the tsyn context descriptor
3207 * @tx_ring: ptr to the ring to send
3208 * @skb: ptr to the skb we're sending
3209 * @tx_flags: the collected send information
3210 * @cd_type_cmd_tso_mss: Quad Word 1
3211 *
3212 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3213 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3214 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3215 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3216 {
3217 struct i40e_pf *pf;
3218
3219 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3220 return 0;
3221
3222 /* Tx timestamps cannot be sampled when doing TSO */
3223 if (tx_flags & I40E_TX_FLAGS_TSO)
3224 return 0;
3225
3226 /* only timestamp the outbound packet if the user has requested it and
3227 * we are not already transmitting a packet to be timestamped
3228 */
3229 pf = i40e_netdev_to_pf(tx_ring->netdev);
3230 if (!(pf->flags & I40E_FLAG_PTP))
3231 return 0;
3232
3233 if (pf->ptp_tx &&
3234 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3235 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3236 pf->ptp_tx_start = jiffies;
3237 pf->ptp_tx_skb = skb_get(skb);
3238 } else {
3239 pf->tx_hwtstamp_skipped++;
3240 return 0;
3241 }
3242
3243 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3244 I40E_TXD_CTX_QW1_CMD_SHIFT;
3245
3246 return 1;
3247 }
3248
3249 /**
3250 * i40e_tx_enable_csum - Enable Tx checksum offloads
3251 * @skb: send buffer
3252 * @tx_flags: pointer to Tx flags currently set
3253 * @td_cmd: Tx descriptor command bits to set
3254 * @td_offset: Tx descriptor header offsets to set
3255 * @tx_ring: Tx descriptor ring
3256 * @cd_tunneling: ptr to context desc bits
3257 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3258 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3259 u32 *td_cmd, u32 *td_offset,
3260 struct i40e_ring *tx_ring,
3261 u32 *cd_tunneling)
3262 {
3263 union {
3264 struct iphdr *v4;
3265 struct ipv6hdr *v6;
3266 unsigned char *hdr;
3267 } ip;
3268 union {
3269 struct tcphdr *tcp;
3270 struct udphdr *udp;
3271 unsigned char *hdr;
3272 } l4;
3273 unsigned char *exthdr;
3274 u32 offset, cmd = 0;
3275 __be16 frag_off;
3276 __be16 protocol;
3277 u8 l4_proto = 0;
3278
3279 if (skb->ip_summed != CHECKSUM_PARTIAL)
3280 return 0;
3281
3282 protocol = vlan_get_protocol(skb);
3283
3284 if (eth_p_mpls(protocol)) {
3285 ip.hdr = skb_inner_network_header(skb);
3286 l4.hdr = skb_checksum_start(skb);
3287 } else {
3288 ip.hdr = skb_network_header(skb);
3289 l4.hdr = skb_transport_header(skb);
3290 }
3291
3292 /* set the tx_flags to indicate the IP protocol type. this is
3293 * required so that checksum header computation below is accurate.
3294 */
3295 if (ip.v4->version == 4)
3296 *tx_flags |= I40E_TX_FLAGS_IPV4;
3297 else
3298 *tx_flags |= I40E_TX_FLAGS_IPV6;
3299
3300 /* compute outer L2 header size */
3301 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3302
3303 if (skb->encapsulation) {
3304 u32 tunnel = 0;
3305 /* define outer network header type */
3306 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3307 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3308 I40E_TX_CTX_EXT_IP_IPV4 :
3309 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3310
3311 l4_proto = ip.v4->protocol;
3312 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3313 int ret;
3314
3315 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3316
3317 exthdr = ip.hdr + sizeof(*ip.v6);
3318 l4_proto = ip.v6->nexthdr;
3319 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3320 &l4_proto, &frag_off);
3321 if (ret < 0)
3322 return -1;
3323 }
3324
3325 /* define outer transport */
3326 switch (l4_proto) {
3327 case IPPROTO_UDP:
3328 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3329 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3330 break;
3331 case IPPROTO_GRE:
3332 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3333 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3334 break;
3335 case IPPROTO_IPIP:
3336 case IPPROTO_IPV6:
3337 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3338 l4.hdr = skb_inner_network_header(skb);
3339 break;
3340 default:
3341 if (*tx_flags & I40E_TX_FLAGS_TSO)
3342 return -1;
3343
3344 skb_checksum_help(skb);
3345 return 0;
3346 }
3347
3348 /* compute outer L3 header size */
3349 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3350 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3351
3352 /* switch IP header pointer from outer to inner header */
3353 ip.hdr = skb_inner_network_header(skb);
3354
3355 /* compute tunnel header size */
3356 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3357 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3358
3359 /* indicate if we need to offload outer UDP header */
3360 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3361 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3362 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3363 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3364
3365 /* record tunnel offload values */
3366 *cd_tunneling |= tunnel;
3367
3368 /* switch L4 header pointer from outer to inner */
3369 l4.hdr = skb_inner_transport_header(skb);
3370 l4_proto = 0;
3371
3372 /* reset type as we transition from outer to inner headers */
3373 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3374 if (ip.v4->version == 4)
3375 *tx_flags |= I40E_TX_FLAGS_IPV4;
3376 if (ip.v6->version == 6)
3377 *tx_flags |= I40E_TX_FLAGS_IPV6;
3378 }
3379
3380 /* Enable IP checksum offloads */
3381 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3382 l4_proto = ip.v4->protocol;
3383 /* the stack computes the IP header already, the only time we
3384 * need the hardware to recompute it is in the case of TSO.
3385 */
3386 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3387 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3388 I40E_TX_DESC_CMD_IIPT_IPV4;
3389 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3390 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3391
3392 exthdr = ip.hdr + sizeof(*ip.v6);
3393 l4_proto = ip.v6->nexthdr;
3394 if (l4.hdr != exthdr)
3395 ipv6_skip_exthdr(skb, exthdr - skb->data,
3396 &l4_proto, &frag_off);
3397 }
3398
3399 /* compute inner L3 header size */
3400 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3401
3402 /* Enable L4 checksum offloads */
3403 switch (l4_proto) {
3404 case IPPROTO_TCP:
3405 /* enable checksum offloads */
3406 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3407 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3408 break;
3409 case IPPROTO_SCTP:
3410 /* enable SCTP checksum offload */
3411 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3412 offset |= (sizeof(struct sctphdr) >> 2) <<
3413 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3414 break;
3415 case IPPROTO_UDP:
3416 /* enable UDP checksum offload */
3417 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3418 offset |= (sizeof(struct udphdr) >> 2) <<
3419 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3420 break;
3421 default:
3422 if (*tx_flags & I40E_TX_FLAGS_TSO)
3423 return -1;
3424 skb_checksum_help(skb);
3425 return 0;
3426 }
3427
3428 *td_cmd |= cmd;
3429 *td_offset |= offset;
3430
3431 return 1;
3432 }
3433
3434 /**
3435 * i40e_create_tx_ctx - Build the Tx context descriptor
3436 * @tx_ring: ring to create the descriptor on
3437 * @cd_type_cmd_tso_mss: Quad Word 1
3438 * @cd_tunneling: Quad Word 0 - bits 0-31
3439 * @cd_l2tag2: Quad Word 0 - bits 32-63
3440 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3441 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3442 const u64 cd_type_cmd_tso_mss,
3443 const u32 cd_tunneling, const u32 cd_l2tag2)
3444 {
3445 struct i40e_tx_context_desc *context_desc;
3446 int i = tx_ring->next_to_use;
3447
3448 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3449 !cd_tunneling && !cd_l2tag2)
3450 return;
3451
3452 /* grab the next descriptor */
3453 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3454
3455 i++;
3456 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3457
3458 /* cpu_to_le32 and assign to struct fields */
3459 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3460 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3461 context_desc->rsvd = cpu_to_le16(0);
3462 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3463 }
3464
3465 /**
3466 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3467 * @tx_ring: the ring to be checked
3468 * @size: the size buffer we want to assure is available
3469 *
3470 * Returns -EBUSY if a stop is needed, else 0
3471 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3472 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3473 {
3474 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3475 /* Memory barrier before checking head and tail */
3476 smp_mb();
3477
3478 ++tx_ring->tx_stats.tx_stopped;
3479
3480 /* Check again in a case another CPU has just made room available. */
3481 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3482 return -EBUSY;
3483
3484 /* A reprieve! - use start_queue because it doesn't call schedule */
3485 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3486 ++tx_ring->tx_stats.restart_queue;
3487 return 0;
3488 }
3489
3490 /**
3491 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3492 * @skb: send buffer
3493 *
3494 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3495 * and so we need to figure out the cases where we need to linearize the skb.
3496 *
3497 * For TSO we need to count the TSO header and segment payload separately.
3498 * As such we need to check cases where we have 7 fragments or more as we
3499 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3500 * the segment payload in the first descriptor, and another 7 for the
3501 * fragments.
3502 **/
__i40e_chk_linearize(struct sk_buff * skb)3503 bool __i40e_chk_linearize(struct sk_buff *skb)
3504 {
3505 const skb_frag_t *frag, *stale;
3506 int nr_frags, sum;
3507
3508 /* no need to check if number of frags is less than 7 */
3509 nr_frags = skb_shinfo(skb)->nr_frags;
3510 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3511 return false;
3512
3513 /* We need to walk through the list and validate that each group
3514 * of 6 fragments totals at least gso_size.
3515 */
3516 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3517 frag = &skb_shinfo(skb)->frags[0];
3518
3519 /* Initialize size to the negative value of gso_size minus 1. We
3520 * use this as the worst case scenerio in which the frag ahead
3521 * of us only provides one byte which is why we are limited to 6
3522 * descriptors for a single transmit as the header and previous
3523 * fragment are already consuming 2 descriptors.
3524 */
3525 sum = 1 - skb_shinfo(skb)->gso_size;
3526
3527 /* Add size of frags 0 through 4 to create our initial sum */
3528 sum += skb_frag_size(frag++);
3529 sum += skb_frag_size(frag++);
3530 sum += skb_frag_size(frag++);
3531 sum += skb_frag_size(frag++);
3532 sum += skb_frag_size(frag++);
3533
3534 /* Walk through fragments adding latest fragment, testing it, and
3535 * then removing stale fragments from the sum.
3536 */
3537 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3538 int stale_size = skb_frag_size(stale);
3539
3540 sum += skb_frag_size(frag++);
3541
3542 /* The stale fragment may present us with a smaller
3543 * descriptor than the actual fragment size. To account
3544 * for that we need to remove all the data on the front and
3545 * figure out what the remainder would be in the last
3546 * descriptor associated with the fragment.
3547 */
3548 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3549 int align_pad = -(skb_frag_off(stale)) &
3550 (I40E_MAX_READ_REQ_SIZE - 1);
3551
3552 sum -= align_pad;
3553 stale_size -= align_pad;
3554
3555 do {
3556 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3557 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3558 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3559 }
3560
3561 /* if sum is negative we failed to make sufficient progress */
3562 if (sum < 0)
3563 return true;
3564
3565 if (!nr_frags--)
3566 break;
3567
3568 sum -= stale_size;
3569 }
3570
3571 return false;
3572 }
3573
3574 /**
3575 * i40e_tx_map - Build the Tx descriptor
3576 * @tx_ring: ring to send buffer on
3577 * @skb: send buffer
3578 * @first: first buffer info buffer to use
3579 * @tx_flags: collected send information
3580 * @hdr_len: size of the packet header
3581 * @td_cmd: the command field in the descriptor
3582 * @td_offset: offset for checksum or crc
3583 *
3584 * Returns 0 on success, -1 on failure to DMA
3585 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3586 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3587 struct i40e_tx_buffer *first, u32 tx_flags,
3588 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3589 {
3590 unsigned int data_len = skb->data_len;
3591 unsigned int size = skb_headlen(skb);
3592 skb_frag_t *frag;
3593 struct i40e_tx_buffer *tx_bi;
3594 struct i40e_tx_desc *tx_desc;
3595 u16 i = tx_ring->next_to_use;
3596 u32 td_tag = 0;
3597 dma_addr_t dma;
3598 u16 desc_count = 1;
3599
3600 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3601 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3602 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3603 I40E_TX_FLAGS_VLAN_SHIFT;
3604 }
3605
3606 first->tx_flags = tx_flags;
3607
3608 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3609
3610 tx_desc = I40E_TX_DESC(tx_ring, i);
3611 tx_bi = first;
3612
3613 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3614 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3615
3616 if (dma_mapping_error(tx_ring->dev, dma))
3617 goto dma_error;
3618
3619 /* record length, and DMA address */
3620 dma_unmap_len_set(tx_bi, len, size);
3621 dma_unmap_addr_set(tx_bi, dma, dma);
3622
3623 /* align size to end of page */
3624 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3625 tx_desc->buffer_addr = cpu_to_le64(dma);
3626
3627 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3628 tx_desc->cmd_type_offset_bsz =
3629 build_ctob(td_cmd, td_offset,
3630 max_data, td_tag);
3631
3632 tx_desc++;
3633 i++;
3634 desc_count++;
3635
3636 if (i == tx_ring->count) {
3637 tx_desc = I40E_TX_DESC(tx_ring, 0);
3638 i = 0;
3639 }
3640
3641 dma += max_data;
3642 size -= max_data;
3643
3644 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3645 tx_desc->buffer_addr = cpu_to_le64(dma);
3646 }
3647
3648 if (likely(!data_len))
3649 break;
3650
3651 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3652 size, td_tag);
3653
3654 tx_desc++;
3655 i++;
3656 desc_count++;
3657
3658 if (i == tx_ring->count) {
3659 tx_desc = I40E_TX_DESC(tx_ring, 0);
3660 i = 0;
3661 }
3662
3663 size = skb_frag_size(frag);
3664 data_len -= size;
3665
3666 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3667 DMA_TO_DEVICE);
3668
3669 tx_bi = &tx_ring->tx_bi[i];
3670 }
3671
3672 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3673
3674 i++;
3675 if (i == tx_ring->count)
3676 i = 0;
3677
3678 tx_ring->next_to_use = i;
3679
3680 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3681
3682 /* write last descriptor with EOP bit */
3683 td_cmd |= I40E_TX_DESC_CMD_EOP;
3684
3685 /* We OR these values together to check both against 4 (WB_STRIDE)
3686 * below. This is safe since we don't re-use desc_count afterwards.
3687 */
3688 desc_count |= ++tx_ring->packet_stride;
3689
3690 if (desc_count >= WB_STRIDE) {
3691 /* write last descriptor with RS bit set */
3692 td_cmd |= I40E_TX_DESC_CMD_RS;
3693 tx_ring->packet_stride = 0;
3694 }
3695
3696 tx_desc->cmd_type_offset_bsz =
3697 build_ctob(td_cmd, td_offset, size, td_tag);
3698
3699 skb_tx_timestamp(skb);
3700
3701 /* Force memory writes to complete before letting h/w know there
3702 * are new descriptors to fetch.
3703 *
3704 * We also use this memory barrier to make certain all of the
3705 * status bits have been updated before next_to_watch is written.
3706 */
3707 wmb();
3708
3709 /* set next_to_watch value indicating a packet is present */
3710 first->next_to_watch = tx_desc;
3711
3712 /* notify HW of packet */
3713 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3714 writel(i, tx_ring->tail);
3715 }
3716
3717 return 0;
3718
3719 dma_error:
3720 dev_info(tx_ring->dev, "TX DMA map failed\n");
3721
3722 /* clear dma mappings for failed tx_bi map */
3723 for (;;) {
3724 tx_bi = &tx_ring->tx_bi[i];
3725 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3726 if (tx_bi == first)
3727 break;
3728 if (i == 0)
3729 i = tx_ring->count;
3730 i--;
3731 }
3732
3733 tx_ring->next_to_use = i;
3734
3735 return -1;
3736 }
3737
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3738 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3739 const struct sk_buff *skb,
3740 u16 num_tx_queues)
3741 {
3742 u32 jhash_initval_salt = 0xd631614b;
3743 u32 hash;
3744
3745 if (skb->sk && skb->sk->sk_hash)
3746 hash = skb->sk->sk_hash;
3747 else
3748 hash = (__force u16)skb->protocol ^ skb->hash;
3749
3750 hash = jhash_1word(hash, jhash_initval_salt);
3751
3752 return (u16)(((u64)hash * num_tx_queues) >> 32);
3753 }
3754
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3755 u16 i40e_lan_select_queue(struct net_device *netdev,
3756 struct sk_buff *skb,
3757 struct net_device __always_unused *sb_dev)
3758 {
3759 struct i40e_netdev_priv *np = netdev_priv(netdev);
3760 struct i40e_vsi *vsi = np->vsi;
3761 struct i40e_hw *hw;
3762 u16 qoffset;
3763 u16 qcount;
3764 u8 tclass;
3765 u16 hash;
3766 u8 prio;
3767
3768 /* is DCB enabled at all? */
3769 if (vsi->tc_config.numtc == 1 ||
3770 i40e_is_tc_mqprio_enabled(vsi->back))
3771 return netdev_pick_tx(netdev, skb, sb_dev);
3772
3773 prio = skb->priority;
3774 hw = &vsi->back->hw;
3775 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3776 /* sanity check */
3777 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3778 tclass = 0;
3779
3780 /* select a queue assigned for the given TC */
3781 qcount = vsi->tc_config.tc_info[tclass].qcount;
3782 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3783
3784 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3785 return qoffset + hash;
3786 }
3787
3788 /**
3789 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3790 * @xdpf: data to transmit
3791 * @xdp_ring: XDP Tx ring
3792 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3793 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3794 struct i40e_ring *xdp_ring)
3795 {
3796 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3797 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3798 u16 i = 0, index = xdp_ring->next_to_use;
3799 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3800 struct i40e_tx_buffer *tx_bi = tx_head;
3801 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3802 void *data = xdpf->data;
3803 u32 size = xdpf->len;
3804
3805 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3806 xdp_ring->tx_stats.tx_busy++;
3807 return I40E_XDP_CONSUMED;
3808 }
3809
3810 tx_head->bytecount = xdp_get_frame_len(xdpf);
3811 tx_head->gso_segs = 1;
3812 tx_head->xdpf = xdpf;
3813
3814 for (;;) {
3815 dma_addr_t dma;
3816
3817 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3818 if (dma_mapping_error(xdp_ring->dev, dma))
3819 goto unmap;
3820
3821 /* record length, and DMA address */
3822 dma_unmap_len_set(tx_bi, len, size);
3823 dma_unmap_addr_set(tx_bi, dma, dma);
3824
3825 tx_desc->buffer_addr = cpu_to_le64(dma);
3826 tx_desc->cmd_type_offset_bsz =
3827 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3828
3829 if (++index == xdp_ring->count)
3830 index = 0;
3831
3832 if (i == nr_frags)
3833 break;
3834
3835 tx_bi = &xdp_ring->tx_bi[index];
3836 tx_desc = I40E_TX_DESC(xdp_ring, index);
3837
3838 data = skb_frag_address(&sinfo->frags[i]);
3839 size = skb_frag_size(&sinfo->frags[i]);
3840 i++;
3841 }
3842
3843 tx_desc->cmd_type_offset_bsz |=
3844 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3845
3846 /* Make certain all of the status bits have been updated
3847 * before next_to_watch is written.
3848 */
3849 smp_wmb();
3850
3851 xdp_ring->xdp_tx_active++;
3852
3853 tx_head->next_to_watch = tx_desc;
3854 xdp_ring->next_to_use = index;
3855
3856 return I40E_XDP_TX;
3857
3858 unmap:
3859 for (;;) {
3860 tx_bi = &xdp_ring->tx_bi[index];
3861 if (dma_unmap_len(tx_bi, len))
3862 dma_unmap_page(xdp_ring->dev,
3863 dma_unmap_addr(tx_bi, dma),
3864 dma_unmap_len(tx_bi, len),
3865 DMA_TO_DEVICE);
3866 dma_unmap_len_set(tx_bi, len, 0);
3867 if (tx_bi == tx_head)
3868 break;
3869
3870 if (!index)
3871 index += xdp_ring->count;
3872 index--;
3873 }
3874
3875 return I40E_XDP_CONSUMED;
3876 }
3877
3878 /**
3879 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3880 * @skb: send buffer
3881 * @tx_ring: ring to send buffer on
3882 *
3883 * Returns NETDEV_TX_OK if sent, else an error code
3884 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3885 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3886 struct i40e_ring *tx_ring)
3887 {
3888 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3889 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3890 struct i40e_tx_buffer *first;
3891 u32 td_offset = 0;
3892 u32 tx_flags = 0;
3893 u32 td_cmd = 0;
3894 u8 hdr_len = 0;
3895 int tso, count;
3896 int tsyn;
3897
3898 /* prefetch the data, we'll need it later */
3899 prefetch(skb->data);
3900
3901 i40e_trace(xmit_frame_ring, skb, tx_ring);
3902
3903 count = i40e_xmit_descriptor_count(skb);
3904 if (i40e_chk_linearize(skb, count)) {
3905 if (__skb_linearize(skb)) {
3906 dev_kfree_skb_any(skb);
3907 return NETDEV_TX_OK;
3908 }
3909 count = i40e_txd_use_count(skb->len);
3910 tx_ring->tx_stats.tx_linearize++;
3911 }
3912
3913 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3914 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3915 * + 4 desc gap to avoid the cache line where head is,
3916 * + 1 desc for context descriptor,
3917 * otherwise try next time
3918 */
3919 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3920 tx_ring->tx_stats.tx_busy++;
3921 return NETDEV_TX_BUSY;
3922 }
3923
3924 /* record the location of the first descriptor for this packet */
3925 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3926 first->skb = skb;
3927 first->bytecount = skb->len;
3928 first->gso_segs = 1;
3929
3930 /* prepare the xmit flags */
3931 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3932 goto out_drop;
3933
3934 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3935
3936 if (tso < 0)
3937 goto out_drop;
3938 else if (tso)
3939 tx_flags |= I40E_TX_FLAGS_TSO;
3940
3941 /* Always offload the checksum, since it's in the data descriptor */
3942 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3943 tx_ring, &cd_tunneling);
3944 if (tso < 0)
3945 goto out_drop;
3946
3947 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3948
3949 if (tsyn)
3950 tx_flags |= I40E_TX_FLAGS_TSYN;
3951
3952 /* always enable CRC insertion offload */
3953 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3954
3955 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3956 cd_tunneling, cd_l2tag2);
3957
3958 /* Add Flow Director ATR if it's enabled.
3959 *
3960 * NOTE: this must always be directly before the data descriptor.
3961 */
3962 i40e_atr(tx_ring, skb, tx_flags);
3963
3964 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3965 td_cmd, td_offset))
3966 goto cleanup_tx_tstamp;
3967
3968 return NETDEV_TX_OK;
3969
3970 out_drop:
3971 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3972 dev_kfree_skb_any(first->skb);
3973 first->skb = NULL;
3974 cleanup_tx_tstamp:
3975 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3976 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3977
3978 dev_kfree_skb_any(pf->ptp_tx_skb);
3979 pf->ptp_tx_skb = NULL;
3980 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3981 }
3982
3983 return NETDEV_TX_OK;
3984 }
3985
3986 /**
3987 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3988 * @skb: send buffer
3989 * @netdev: network interface device structure
3990 *
3991 * Returns NETDEV_TX_OK if sent, else an error code
3992 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3993 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3994 {
3995 struct i40e_netdev_priv *np = netdev_priv(netdev);
3996 struct i40e_vsi *vsi = np->vsi;
3997 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3998
3999 /* hardware can't handle really short frames, hardware padding works
4000 * beyond this point
4001 */
4002 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4003 return NETDEV_TX_OK;
4004
4005 return i40e_xmit_frame_ring(skb, tx_ring);
4006 }
4007
4008 /**
4009 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4010 * @dev: netdev
4011 * @n: number of frames
4012 * @frames: array of XDP buffer pointers
4013 * @flags: XDP extra info
4014 *
4015 * Returns number of frames successfully sent. Failed frames
4016 * will be free'ed by XDP core.
4017 *
4018 * For error cases, a negative errno code is returned and no-frames
4019 * are transmitted (caller must handle freeing frames).
4020 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4021 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4022 u32 flags)
4023 {
4024 struct i40e_netdev_priv *np = netdev_priv(dev);
4025 unsigned int queue_index = smp_processor_id();
4026 struct i40e_vsi *vsi = np->vsi;
4027 struct i40e_pf *pf = vsi->back;
4028 struct i40e_ring *xdp_ring;
4029 int nxmit = 0;
4030 int i;
4031
4032 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4033 return -ENETDOWN;
4034
4035 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4036 test_bit(__I40E_CONFIG_BUSY, pf->state))
4037 return -ENXIO;
4038
4039 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4040 return -EINVAL;
4041
4042 xdp_ring = vsi->xdp_rings[queue_index];
4043
4044 for (i = 0; i < n; i++) {
4045 struct xdp_frame *xdpf = frames[i];
4046 int err;
4047
4048 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4049 if (err != I40E_XDP_TX)
4050 break;
4051 nxmit++;
4052 }
4053
4054 if (unlikely(flags & XDP_XMIT_FLUSH))
4055 i40e_xdp_ring_update_tail(xdp_ring);
4056
4057 return nxmit;
4058 }
4059