1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24 {
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53 dtype_cmd |= add ?
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 }
71
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
88 bool add)
89 {
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
93 struct i40e_vsi *vsi;
94 struct device *dev;
95 dma_addr_t dma;
96 u32 td_cmd = 0;
97 u16 i;
98
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 if (!vsi)
102 return -ENOENT;
103
104 tx_ring = vsi->tx_rings[0];
105 dev = tx_ring->dev;
106
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 if (!i)
110 return -EAGAIN;
111 msleep_interruptible(1);
112 }
113
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
117 goto dma_fail;
118
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
123
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
128
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
136
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
148 */
149 wmb();
150
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
153
154 writel(tx_ring->next_to_use, tx_ring->tail);
155 return 0;
156
157 dma_fail:
158 return -1;
159 }
160
161 /**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
172 {
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan;
175 struct ipv6hdr ipv6;
176 struct ethhdr eth;
177 struct iphdr ip;
178 u8 *tmp;
179
180 if (ipv4) {
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
183 ip.version = 0x4;
184 ip.ihl = 0x5;
185
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
188 } else {
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
191 ipv6.version = 0x6;
192
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 sizeof(__be32) * 4);
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 sizeof(__be32) * 4);
197 }
198
199 if (is_vlan) {
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
203 }
204
205 tmp = dummy_packet;
206 memcpy(tmp, ð, sizeof(eth));
207 tmp += sizeof(eth);
208
209 if (is_vlan) {
210 memcpy(tmp, &vlan, sizeof(vlan));
211 tmp += sizeof(vlan);
212 }
213
214 if (ipv4) {
215 memcpy(tmp, &ip, sizeof(ip));
216 tmp += sizeof(ip);
217 } else {
218 memcpy(tmp, &ipv6, sizeof(ipv6));
219 tmp += sizeof(ipv6);
220 }
221
222 return tmp;
223 }
224
225 /**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
236 {
237 struct udphdr *udp;
238 u8 *tmp;
239
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
244 }
245
246 /**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
257 {
258 struct tcphdr *tcp;
259 u8 *tmp;
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
270 }
271
272 /**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 u8 l4proto,
283 struct i40e_fdir_filter *data)
284 {
285 struct sctphdr *sctp;
286 u8 *tmp;
287
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
293 }
294
295 /**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
311 {
312 int ret;
313
314 if (fd_data->flex_filter) {
315 u8 *payload;
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
318
319 payload = packet_addr + payload_offset;
320
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
324
325 *((__force __be16 *)(payload + off)) = pattern;
326 }
327
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 if (ret) {
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
335 return -EOPNOTSUPP;
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 if (add)
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 else
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
345 }
346
347 return ret;
348 }
349
350 /**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
361 {
362 if (add) {
363 if (ipv4)
364 (*ipv4_filter_num)++;
365 else
366 (*ipv6_filter_num)++;
367 } else {
368 if (ipv4)
369 (*ipv4_filter_num)--;
370 else
371 (*ipv6_filter_num)--;
372 }
373 }
374
375 #define IP_HEADER_OFFSET 14
376 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
377 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
378 /**
379 * i40e_add_del_fdir_udp - Add/Remove UDP filters
380 * @vsi: pointer to the targeted VSI
381 * @fd_data: the flow director data required for the FDir descriptor
382 * @add: true adds a filter, false removes it
383 * @ipv4: true is v4, false is v6
384 *
385 * Returns 0 if the filters were successfully added or removed
386 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)387 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
388 struct i40e_fdir_filter *fd_data,
389 bool add,
390 bool ipv4)
391 {
392 struct i40e_pf *pf = vsi->back;
393 u8 *raw_packet;
394 int ret;
395
396 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
397 if (!raw_packet)
398 return -ENOMEM;
399
400 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
401
402 if (ipv4)
403 ret = i40e_prepare_fdir_filter
404 (pf, fd_data, add, raw_packet,
405 I40E_UDPIP_DUMMY_PACKET_LEN,
406 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
407 else
408 ret = i40e_prepare_fdir_filter
409 (pf, fd_data, add, raw_packet,
410 I40E_UDPIP6_DUMMY_PACKET_LEN,
411 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
412
413 if (ret) {
414 kfree(raw_packet);
415 return ret;
416 }
417
418 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
419 &pf->fd_udp6_filter_cnt);
420
421 return 0;
422 }
423
424 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
425 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
426 /**
427 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
428 * @vsi: pointer to the targeted VSI
429 * @fd_data: the flow director data required for the FDir descriptor
430 * @add: true adds a filter, false removes it
431 * @ipv4: true is v4, false is v6
432 *
433 * Returns 0 if the filters were successfully added or removed
434 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)435 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
436 struct i40e_fdir_filter *fd_data,
437 bool add,
438 bool ipv4)
439 {
440 struct i40e_pf *pf = vsi->back;
441 u8 *raw_packet;
442 int ret;
443
444 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 if (!raw_packet)
446 return -ENOMEM;
447
448 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
449 if (ipv4)
450 ret = i40e_prepare_fdir_filter
451 (pf, fd_data, add, raw_packet,
452 I40E_TCPIP_DUMMY_PACKET_LEN,
453 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
454 else
455 ret = i40e_prepare_fdir_filter
456 (pf, fd_data, add, raw_packet,
457 I40E_TCPIP6_DUMMY_PACKET_LEN,
458 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
459
460 if (ret) {
461 kfree(raw_packet);
462 return ret;
463 }
464
465 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
466 &pf->fd_tcp6_filter_cnt);
467
468 if (add) {
469 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
470 I40E_DEBUG_FD & pf->hw.debug_mask)
471 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
472 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
473 }
474 return 0;
475 }
476
477 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
478 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
479 /**
480 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
481 * a specific flow spec
482 * @vsi: pointer to the targeted VSI
483 * @fd_data: the flow director data required for the FDir descriptor
484 * @add: true adds a filter, false removes it
485 * @ipv4: true is v4, false is v6
486 *
487 * Returns 0 if the filters were successfully added or removed
488 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)489 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
490 struct i40e_fdir_filter *fd_data,
491 bool add,
492 bool ipv4)
493 {
494 struct i40e_pf *pf = vsi->back;
495 u8 *raw_packet;
496 int ret;
497
498 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
499 if (!raw_packet)
500 return -ENOMEM;
501
502 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
503
504 if (ipv4)
505 ret = i40e_prepare_fdir_filter
506 (pf, fd_data, add, raw_packet,
507 I40E_SCTPIP_DUMMY_PACKET_LEN,
508 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
509 else
510 ret = i40e_prepare_fdir_filter
511 (pf, fd_data, add, raw_packet,
512 I40E_SCTPIP6_DUMMY_PACKET_LEN,
513 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
514
515 if (ret) {
516 kfree(raw_packet);
517 return ret;
518 }
519
520 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
521 &pf->fd_sctp6_filter_cnt);
522
523 return 0;
524 }
525
526 #define I40E_IP_DUMMY_PACKET_LEN 34
527 #define I40E_IP6_DUMMY_PACKET_LEN 54
528 /**
529 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
530 * a specific flow spec
531 * @vsi: pointer to the targeted VSI
532 * @fd_data: the flow director data required for the FDir descriptor
533 * @add: true adds a filter, false removes it
534 * @ipv4: true is v4, false is v6
535 *
536 * Returns 0 if the filters were successfully added or removed
537 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)538 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
539 struct i40e_fdir_filter *fd_data,
540 bool add,
541 bool ipv4)
542 {
543 struct i40e_pf *pf = vsi->back;
544 int payload_offset;
545 u8 *raw_packet;
546 int iter_start;
547 int iter_end;
548 int ret;
549 int i;
550
551 if (ipv4) {
552 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
553 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
554 } else {
555 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
556 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
557 }
558
559 for (i = iter_start; i <= iter_end; i++) {
560 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
561 if (!raw_packet)
562 return -ENOMEM;
563
564 /* IPv6 no header option differs from IPv4 */
565 (void)i40e_create_dummy_packet
566 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
567 fd_data);
568
569 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
570 I40E_IP6_DUMMY_PACKET_LEN;
571 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
572 payload_offset, i);
573 if (ret)
574 goto err;
575 }
576
577 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
578 &pf->fd_ip6_filter_cnt);
579
580 return 0;
581 err:
582 kfree(raw_packet);
583 return ret;
584 }
585
586 /**
587 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
588 * @vsi: pointer to the targeted VSI
589 * @input: filter to add or delete
590 * @add: true adds a filter, false removes it
591 *
592 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)593 int i40e_add_del_fdir(struct i40e_vsi *vsi,
594 struct i40e_fdir_filter *input, bool add)
595 {
596 enum ip_ver { ipv6 = 0, ipv4 = 1 };
597 struct i40e_pf *pf = vsi->back;
598 int ret;
599
600 switch (input->flow_type & ~FLOW_EXT) {
601 case TCP_V4_FLOW:
602 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
603 break;
604 case UDP_V4_FLOW:
605 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
606 break;
607 case SCTP_V4_FLOW:
608 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
609 break;
610 case TCP_V6_FLOW:
611 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
612 break;
613 case UDP_V6_FLOW:
614 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
615 break;
616 case SCTP_V6_FLOW:
617 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
618 break;
619 case IP_USER_FLOW:
620 switch (input->ipl4_proto) {
621 case IPPROTO_TCP:
622 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
623 break;
624 case IPPROTO_UDP:
625 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
626 break;
627 case IPPROTO_SCTP:
628 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
629 break;
630 case IPPROTO_IP:
631 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
632 break;
633 default:
634 /* We cannot support masking based on protocol */
635 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
636 input->ipl4_proto);
637 return -EINVAL;
638 }
639 break;
640 case IPV6_USER_FLOW:
641 switch (input->ipl4_proto) {
642 case IPPROTO_TCP:
643 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
644 break;
645 case IPPROTO_UDP:
646 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
647 break;
648 case IPPROTO_SCTP:
649 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
650 break;
651 case IPPROTO_IP:
652 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
653 break;
654 default:
655 /* We cannot support masking based on protocol */
656 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
657 input->ipl4_proto);
658 return -EINVAL;
659 }
660 break;
661 default:
662 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
663 input->flow_type);
664 return -EINVAL;
665 }
666
667 /* The buffer allocated here will be normally be freed by
668 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
669 * completion. In the event of an error adding the buffer to the FDIR
670 * ring, it will immediately be freed. It may also be freed by
671 * i40e_clean_tx_ring() when closing the VSI.
672 */
673 return ret;
674 }
675
676 /**
677 * i40e_fd_handle_status - check the Programming Status for FD
678 * @rx_ring: the Rx ring for this descriptor
679 * @qword0_raw: qword0
680 * @qword1: qword1 after le_to_cpu
681 * @prog_id: the id originally used for programming
682 *
683 * This is used to verify if the FD programming or invalidation
684 * requested by SW to the HW is successful or not and take actions accordingly.
685 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)686 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
687 u64 qword1, u8 prog_id)
688 {
689 struct i40e_pf *pf = rx_ring->vsi->back;
690 struct pci_dev *pdev = pf->pdev;
691 struct i40e_16b_rx_wb_qw0 *qw0;
692 u32 fcnt_prog, fcnt_avail;
693 u32 error;
694
695 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
696 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
697 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
698
699 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
700 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
701 if (qw0->hi_dword.fd_id != 0 ||
702 (I40E_DEBUG_FD & pf->hw.debug_mask))
703 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
704 pf->fd_inv);
705
706 /* Check if the programming error is for ATR.
707 * If so, auto disable ATR and set a state for
708 * flush in progress. Next time we come here if flush is in
709 * progress do nothing, once flush is complete the state will
710 * be cleared.
711 */
712 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
713 return;
714
715 pf->fd_add_err++;
716 /* store the current atr filter count */
717 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
718
719 if (qw0->hi_dword.fd_id == 0 &&
720 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
721 /* These set_bit() calls aren't atomic with the
722 * test_bit() here, but worse case we potentially
723 * disable ATR and queue a flush right after SB
724 * support is re-enabled. That shouldn't cause an
725 * issue in practice
726 */
727 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
728 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
729 }
730
731 /* filter programming failed most likely due to table full */
732 fcnt_prog = i40e_get_global_fd_count(pf);
733 fcnt_avail = pf->fdir_pf_filter_count;
734 /* If ATR is running fcnt_prog can quickly change,
735 * if we are very close to full, it makes sense to disable
736 * FD ATR/SB and then re-enable it when there is room.
737 */
738 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
739 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
740 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
741 pf->state))
742 if (I40E_DEBUG_FD & pf->hw.debug_mask)
743 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
744 }
745 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
746 if (I40E_DEBUG_FD & pf->hw.debug_mask)
747 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
748 qw0->hi_dword.fd_id);
749 }
750 }
751
752 /**
753 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
754 * @ring: the ring that owns the buffer
755 * @tx_buffer: the buffer to free
756 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)757 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
758 struct i40e_tx_buffer *tx_buffer)
759 {
760 if (tx_buffer->skb) {
761 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
762 kfree(tx_buffer->raw_buf);
763 else if (ring_is_xdp(ring))
764 xdp_return_frame(tx_buffer->xdpf);
765 else
766 dev_kfree_skb_any(tx_buffer->skb);
767 if (dma_unmap_len(tx_buffer, len))
768 dma_unmap_single(ring->dev,
769 dma_unmap_addr(tx_buffer, dma),
770 dma_unmap_len(tx_buffer, len),
771 DMA_TO_DEVICE);
772 } else if (dma_unmap_len(tx_buffer, len)) {
773 dma_unmap_page(ring->dev,
774 dma_unmap_addr(tx_buffer, dma),
775 dma_unmap_len(tx_buffer, len),
776 DMA_TO_DEVICE);
777 }
778
779 tx_buffer->next_to_watch = NULL;
780 tx_buffer->skb = NULL;
781 dma_unmap_len_set(tx_buffer, len, 0);
782 /* tx_buffer must be completely set up in the transmit path */
783 }
784
785 /**
786 * i40e_clean_tx_ring - Free any empty Tx buffers
787 * @tx_ring: ring to be cleaned
788 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)789 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
790 {
791 unsigned long bi_size;
792 u16 i;
793
794 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
795 i40e_xsk_clean_tx_ring(tx_ring);
796 } else {
797 /* ring already cleared, nothing to do */
798 if (!tx_ring->tx_bi)
799 return;
800
801 /* Free all the Tx ring sk_buffs */
802 for (i = 0; i < tx_ring->count; i++)
803 i40e_unmap_and_free_tx_resource(tx_ring,
804 &tx_ring->tx_bi[i]);
805 }
806
807 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
808 memset(tx_ring->tx_bi, 0, bi_size);
809
810 /* Zero out the descriptor ring */
811 memset(tx_ring->desc, 0, tx_ring->size);
812
813 tx_ring->next_to_use = 0;
814 tx_ring->next_to_clean = 0;
815
816 if (!tx_ring->netdev)
817 return;
818
819 /* cleanup Tx queue statistics */
820 netdev_tx_reset_queue(txring_txq(tx_ring));
821 }
822
823 /**
824 * i40e_free_tx_resources - Free Tx resources per queue
825 * @tx_ring: Tx descriptor ring for a specific queue
826 *
827 * Free all transmit software resources
828 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)829 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
830 {
831 i40e_clean_tx_ring(tx_ring);
832 kfree(tx_ring->tx_bi);
833 tx_ring->tx_bi = NULL;
834
835 if (tx_ring->desc) {
836 dma_free_coherent(tx_ring->dev, tx_ring->size,
837 tx_ring->desc, tx_ring->dma);
838 tx_ring->desc = NULL;
839 }
840 }
841
842 /**
843 * i40e_get_tx_pending - how many tx descriptors not processed
844 * @ring: the ring of descriptors
845 * @in_sw: use SW variables
846 *
847 * Since there is no access to the ring head register
848 * in XL710, we need to use our local copies
849 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)850 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
851 {
852 u32 head, tail;
853
854 if (!in_sw) {
855 head = i40e_get_head(ring);
856 tail = readl(ring->tail);
857 } else {
858 head = ring->next_to_clean;
859 tail = ring->next_to_use;
860 }
861
862 if (head != tail)
863 return (head < tail) ?
864 tail - head : (tail + ring->count - head);
865
866 return 0;
867 }
868
869 /**
870 * i40e_detect_recover_hung - Function to detect and recover hung_queues
871 * @vsi: pointer to vsi struct with tx queues
872 *
873 * VSI has netdev and netdev has TX queues. This function is to check each of
874 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
875 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)876 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
877 {
878 struct i40e_ring *tx_ring = NULL;
879 struct net_device *netdev;
880 unsigned int i;
881 int packets;
882
883 if (!vsi)
884 return;
885
886 if (test_bit(__I40E_VSI_DOWN, vsi->state))
887 return;
888
889 netdev = vsi->netdev;
890 if (!netdev)
891 return;
892
893 if (!netif_carrier_ok(netdev))
894 return;
895
896 for (i = 0; i < vsi->num_queue_pairs; i++) {
897 tx_ring = vsi->tx_rings[i];
898 if (tx_ring && tx_ring->desc) {
899 /* If packet counter has not changed the queue is
900 * likely stalled, so force an interrupt for this
901 * queue.
902 *
903 * prev_pkt_ctr would be negative if there was no
904 * pending work.
905 */
906 packets = tx_ring->stats.packets & INT_MAX;
907 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
908 i40e_force_wb(vsi, tx_ring->q_vector);
909 continue;
910 }
911
912 /* Memory barrier between read of packet count and call
913 * to i40e_get_tx_pending()
914 */
915 smp_rmb();
916 tx_ring->tx_stats.prev_pkt_ctr =
917 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
918 }
919 }
920 }
921
922 /**
923 * i40e_clean_tx_irq - Reclaim resources after transmit completes
924 * @vsi: the VSI we care about
925 * @tx_ring: Tx ring to clean
926 * @napi_budget: Used to determine if we are in netpoll
927 *
928 * Returns true if there's any budget left (e.g. the clean is finished)
929 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 struct i40e_ring *tx_ring, int napi_budget)
932 {
933 int i = tx_ring->next_to_clean;
934 struct i40e_tx_buffer *tx_buf;
935 struct i40e_tx_desc *tx_head;
936 struct i40e_tx_desc *tx_desc;
937 unsigned int total_bytes = 0, total_packets = 0;
938 unsigned int budget = vsi->work_limit;
939
940 tx_buf = &tx_ring->tx_bi[i];
941 tx_desc = I40E_TX_DESC(tx_ring, i);
942 i -= tx_ring->count;
943
944 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
945
946 do {
947 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
948
949 /* if next_to_watch is not set then there is no work pending */
950 if (!eop_desc)
951 break;
952
953 /* prevent any other reads prior to eop_desc */
954 smp_rmb();
955
956 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
957 /* we have caught up to head, no work left to do */
958 if (tx_head == tx_desc)
959 break;
960
961 /* clear next_to_watch to prevent false hangs */
962 tx_buf->next_to_watch = NULL;
963
964 /* update the statistics for this packet */
965 total_bytes += tx_buf->bytecount;
966 total_packets += tx_buf->gso_segs;
967
968 /* free the skb/XDP data */
969 if (ring_is_xdp(tx_ring))
970 xdp_return_frame(tx_buf->xdpf);
971 else
972 napi_consume_skb(tx_buf->skb, napi_budget);
973
974 /* unmap skb header data */
975 dma_unmap_single(tx_ring->dev,
976 dma_unmap_addr(tx_buf, dma),
977 dma_unmap_len(tx_buf, len),
978 DMA_TO_DEVICE);
979
980 /* clear tx_buffer data */
981 tx_buf->skb = NULL;
982 dma_unmap_len_set(tx_buf, len, 0);
983
984 /* unmap remaining buffers */
985 while (tx_desc != eop_desc) {
986 i40e_trace(clean_tx_irq_unmap,
987 tx_ring, tx_desc, tx_buf);
988
989 tx_buf++;
990 tx_desc++;
991 i++;
992 if (unlikely(!i)) {
993 i -= tx_ring->count;
994 tx_buf = tx_ring->tx_bi;
995 tx_desc = I40E_TX_DESC(tx_ring, 0);
996 }
997
998 /* unmap any remaining paged data */
999 if (dma_unmap_len(tx_buf, len)) {
1000 dma_unmap_page(tx_ring->dev,
1001 dma_unmap_addr(tx_buf, dma),
1002 dma_unmap_len(tx_buf, len),
1003 DMA_TO_DEVICE);
1004 dma_unmap_len_set(tx_buf, len, 0);
1005 }
1006 }
1007
1008 /* move us one more past the eop_desc for start of next pkt */
1009 tx_buf++;
1010 tx_desc++;
1011 i++;
1012 if (unlikely(!i)) {
1013 i -= tx_ring->count;
1014 tx_buf = tx_ring->tx_bi;
1015 tx_desc = I40E_TX_DESC(tx_ring, 0);
1016 }
1017
1018 prefetch(tx_desc);
1019
1020 /* update budget accounting */
1021 budget--;
1022 } while (likely(budget));
1023
1024 i += tx_ring->count;
1025 tx_ring->next_to_clean = i;
1026 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1027 i40e_arm_wb(tx_ring, vsi, budget);
1028
1029 if (ring_is_xdp(tx_ring))
1030 return !!budget;
1031
1032 /* notify netdev of completed buffers */
1033 netdev_tx_completed_queue(txring_txq(tx_ring),
1034 total_packets, total_bytes);
1035
1036 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1037 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1038 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1039 /* Make sure that anybody stopping the queue after this
1040 * sees the new next_to_clean.
1041 */
1042 smp_mb();
1043 if (__netif_subqueue_stopped(tx_ring->netdev,
1044 tx_ring->queue_index) &&
1045 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1046 netif_wake_subqueue(tx_ring->netdev,
1047 tx_ring->queue_index);
1048 ++tx_ring->tx_stats.restart_queue;
1049 }
1050 }
1051
1052 return !!budget;
1053 }
1054
1055 /**
1056 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1057 * @vsi: the VSI we care about
1058 * @q_vector: the vector on which to enable writeback
1059 *
1060 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1061 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1062 struct i40e_q_vector *q_vector)
1063 {
1064 u16 flags = q_vector->tx.ring[0].flags;
1065 u32 val;
1066
1067 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1068 return;
1069
1070 if (q_vector->arm_wb_state)
1071 return;
1072
1073 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1074 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1075 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1076
1077 wr32(&vsi->back->hw,
1078 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1079 val);
1080 } else {
1081 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1082 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1083
1084 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1085 }
1086 q_vector->arm_wb_state = true;
1087 }
1088
1089 /**
1090 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1091 * @vsi: the VSI we care about
1092 * @q_vector: the vector on which to force writeback
1093 *
1094 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1095 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1096 {
1097 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1098 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1099 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1100 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1101 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1102 /* allow 00 to be written to the index */
1103
1104 wr32(&vsi->back->hw,
1105 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1106 } else {
1107 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1108 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1109 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1110 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1111 /* allow 00 to be written to the index */
1112
1113 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1114 }
1115 }
1116
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1117 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1118 struct i40e_ring_container *rc)
1119 {
1120 return &q_vector->rx == rc;
1121 }
1122
i40e_itr_divisor(struct i40e_q_vector * q_vector)1123 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1124 {
1125 unsigned int divisor;
1126
1127 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1128 case I40E_LINK_SPEED_40GB:
1129 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1130 break;
1131 case I40E_LINK_SPEED_25GB:
1132 case I40E_LINK_SPEED_20GB:
1133 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1134 break;
1135 default:
1136 case I40E_LINK_SPEED_10GB:
1137 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1138 break;
1139 case I40E_LINK_SPEED_1GB:
1140 case I40E_LINK_SPEED_100MB:
1141 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1142 break;
1143 }
1144
1145 return divisor;
1146 }
1147
1148 /**
1149 * i40e_update_itr - update the dynamic ITR value based on statistics
1150 * @q_vector: structure containing interrupt and ring information
1151 * @rc: structure containing ring performance data
1152 *
1153 * Stores a new ITR value based on packets and byte
1154 * counts during the last interrupt. The advantage of per interrupt
1155 * computation is faster updates and more accurate ITR for the current
1156 * traffic pattern. Constants in this function were computed
1157 * based on theoretical maximum wire speed and thresholds were set based
1158 * on testing data as well as attempting to minimize response time
1159 * while increasing bulk throughput.
1160 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1161 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1162 struct i40e_ring_container *rc)
1163 {
1164 unsigned int avg_wire_size, packets, bytes, itr;
1165 unsigned long next_update = jiffies;
1166
1167 /* If we don't have any rings just leave ourselves set for maximum
1168 * possible latency so we take ourselves out of the equation.
1169 */
1170 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1171 return;
1172
1173 /* For Rx we want to push the delay up and default to low latency.
1174 * for Tx we want to pull the delay down and default to high latency.
1175 */
1176 itr = i40e_container_is_rx(q_vector, rc) ?
1177 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1178 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1179
1180 /* If we didn't update within up to 1 - 2 jiffies we can assume
1181 * that either packets are coming in so slow there hasn't been
1182 * any work, or that there is so much work that NAPI is dealing
1183 * with interrupt moderation and we don't need to do anything.
1184 */
1185 if (time_after(next_update, rc->next_update))
1186 goto clear_counts;
1187
1188 /* If itr_countdown is set it means we programmed an ITR within
1189 * the last 4 interrupt cycles. This has a side effect of us
1190 * potentially firing an early interrupt. In order to work around
1191 * this we need to throw out any data received for a few
1192 * interrupts following the update.
1193 */
1194 if (q_vector->itr_countdown) {
1195 itr = rc->target_itr;
1196 goto clear_counts;
1197 }
1198
1199 packets = rc->total_packets;
1200 bytes = rc->total_bytes;
1201
1202 if (i40e_container_is_rx(q_vector, rc)) {
1203 /* If Rx there are 1 to 4 packets and bytes are less than
1204 * 9000 assume insufficient data to use bulk rate limiting
1205 * approach unless Tx is already in bulk rate limiting. We
1206 * are likely latency driven.
1207 */
1208 if (packets && packets < 4 && bytes < 9000 &&
1209 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1210 itr = I40E_ITR_ADAPTIVE_LATENCY;
1211 goto adjust_by_size;
1212 }
1213 } else if (packets < 4) {
1214 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1215 * bulk mode and we are receiving 4 or fewer packets just
1216 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1217 * that the Rx can relax.
1218 */
1219 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1220 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1221 I40E_ITR_ADAPTIVE_MAX_USECS)
1222 goto clear_counts;
1223 } else if (packets > 32) {
1224 /* If we have processed over 32 packets in a single interrupt
1225 * for Tx assume we need to switch over to "bulk" mode.
1226 */
1227 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1228 }
1229
1230 /* We have no packets to actually measure against. This means
1231 * either one of the other queues on this vector is active or
1232 * we are a Tx queue doing TSO with too high of an interrupt rate.
1233 *
1234 * Between 4 and 56 we can assume that our current interrupt delay
1235 * is only slightly too low. As such we should increase it by a small
1236 * fixed amount.
1237 */
1238 if (packets < 56) {
1239 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1240 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1241 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1242 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1243 }
1244 goto clear_counts;
1245 }
1246
1247 if (packets <= 256) {
1248 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1249 itr &= I40E_ITR_MASK;
1250
1251 /* Between 56 and 112 is our "goldilocks" zone where we are
1252 * working out "just right". Just report that our current
1253 * ITR is good for us.
1254 */
1255 if (packets <= 112)
1256 goto clear_counts;
1257
1258 /* If packet count is 128 or greater we are likely looking
1259 * at a slight overrun of the delay we want. Try halving
1260 * our delay to see if that will cut the number of packets
1261 * in half per interrupt.
1262 */
1263 itr /= 2;
1264 itr &= I40E_ITR_MASK;
1265 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1266 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1267
1268 goto clear_counts;
1269 }
1270
1271 /* The paths below assume we are dealing with a bulk ITR since
1272 * number of packets is greater than 256. We are just going to have
1273 * to compute a value and try to bring the count under control,
1274 * though for smaller packet sizes there isn't much we can do as
1275 * NAPI polling will likely be kicking in sooner rather than later.
1276 */
1277 itr = I40E_ITR_ADAPTIVE_BULK;
1278
1279 adjust_by_size:
1280 /* If packet counts are 256 or greater we can assume we have a gross
1281 * overestimation of what the rate should be. Instead of trying to fine
1282 * tune it just use the formula below to try and dial in an exact value
1283 * give the current packet size of the frame.
1284 */
1285 avg_wire_size = bytes / packets;
1286
1287 /* The following is a crude approximation of:
1288 * wmem_default / (size + overhead) = desired_pkts_per_int
1289 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1290 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1291 *
1292 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1293 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1294 * formula down to
1295 *
1296 * (170 * (size + 24)) / (size + 640) = ITR
1297 *
1298 * We first do some math on the packet size and then finally bitshift
1299 * by 8 after rounding up. We also have to account for PCIe link speed
1300 * difference as ITR scales based on this.
1301 */
1302 if (avg_wire_size <= 60) {
1303 /* Start at 250k ints/sec */
1304 avg_wire_size = 4096;
1305 } else if (avg_wire_size <= 380) {
1306 /* 250K ints/sec to 60K ints/sec */
1307 avg_wire_size *= 40;
1308 avg_wire_size += 1696;
1309 } else if (avg_wire_size <= 1084) {
1310 /* 60K ints/sec to 36K ints/sec */
1311 avg_wire_size *= 15;
1312 avg_wire_size += 11452;
1313 } else if (avg_wire_size <= 1980) {
1314 /* 36K ints/sec to 30K ints/sec */
1315 avg_wire_size *= 5;
1316 avg_wire_size += 22420;
1317 } else {
1318 /* plateau at a limit of 30K ints/sec */
1319 avg_wire_size = 32256;
1320 }
1321
1322 /* If we are in low latency mode halve our delay which doubles the
1323 * rate to somewhere between 100K to 16K ints/sec
1324 */
1325 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1326 avg_wire_size /= 2;
1327
1328 /* Resultant value is 256 times larger than it needs to be. This
1329 * gives us room to adjust the value as needed to either increase
1330 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1331 *
1332 * Use addition as we have already recorded the new latency flag
1333 * for the ITR value.
1334 */
1335 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1336 I40E_ITR_ADAPTIVE_MIN_INC;
1337
1338 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1339 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1340 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1341 }
1342
1343 clear_counts:
1344 /* write back value */
1345 rc->target_itr = itr;
1346
1347 /* next update should occur within next jiffy */
1348 rc->next_update = next_update + 1;
1349
1350 rc->total_bytes = 0;
1351 rc->total_packets = 0;
1352 }
1353
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1354 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1355 {
1356 return &rx_ring->rx_bi[idx];
1357 }
1358
1359 /**
1360 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1361 * @rx_ring: rx descriptor ring to store buffers on
1362 * @old_buff: donor buffer to have page reused
1363 *
1364 * Synchronizes page for reuse by the adapter
1365 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1366 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1367 struct i40e_rx_buffer *old_buff)
1368 {
1369 struct i40e_rx_buffer *new_buff;
1370 u16 nta = rx_ring->next_to_alloc;
1371
1372 new_buff = i40e_rx_bi(rx_ring, nta);
1373
1374 /* update, and store next to alloc */
1375 nta++;
1376 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1377
1378 /* transfer page from old buffer to new buffer */
1379 new_buff->dma = old_buff->dma;
1380 new_buff->page = old_buff->page;
1381 new_buff->page_offset = old_buff->page_offset;
1382 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1383
1384 /* clear contents of buffer_info */
1385 old_buff->page = NULL;
1386 }
1387
1388 /**
1389 * i40e_clean_programming_status - clean the programming status descriptor
1390 * @rx_ring: the rx ring that has this descriptor
1391 * @qword0_raw: qword0
1392 * @qword1: qword1 representing status_error_len in CPU ordering
1393 *
1394 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1395 * status being successful or not and take actions accordingly. FCoE should
1396 * handle its context/filter programming/invalidation status and take actions.
1397 *
1398 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1399 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1400 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1401 u64 qword1)
1402 {
1403 u8 id;
1404
1405 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1406 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1407
1408 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1409 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1410 }
1411
1412 /**
1413 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1414 * @tx_ring: the tx ring to set up
1415 *
1416 * Return 0 on success, negative on error
1417 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1418 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1419 {
1420 struct device *dev = tx_ring->dev;
1421 int bi_size;
1422
1423 if (!dev)
1424 return -ENOMEM;
1425
1426 /* warn if we are about to overwrite the pointer */
1427 WARN_ON(tx_ring->tx_bi);
1428 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1429 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1430 if (!tx_ring->tx_bi)
1431 goto err;
1432
1433 u64_stats_init(&tx_ring->syncp);
1434
1435 /* round up to nearest 4K */
1436 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1437 /* add u32 for head writeback, align after this takes care of
1438 * guaranteeing this is at least one cache line in size
1439 */
1440 tx_ring->size += sizeof(u32);
1441 tx_ring->size = ALIGN(tx_ring->size, 4096);
1442 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1443 &tx_ring->dma, GFP_KERNEL);
1444 if (!tx_ring->desc) {
1445 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1446 tx_ring->size);
1447 goto err;
1448 }
1449
1450 tx_ring->next_to_use = 0;
1451 tx_ring->next_to_clean = 0;
1452 tx_ring->tx_stats.prev_pkt_ctr = -1;
1453 return 0;
1454
1455 err:
1456 kfree(tx_ring->tx_bi);
1457 tx_ring->tx_bi = NULL;
1458 return -ENOMEM;
1459 }
1460
i40e_alloc_rx_bi(struct i40e_ring * rx_ring)1461 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1462 {
1463 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1464
1465 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1466 return rx_ring->rx_bi ? 0 : -ENOMEM;
1467 }
1468
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1469 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1470 {
1471 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1472 }
1473
1474 /**
1475 * i40e_clean_rx_ring - Free Rx buffers
1476 * @rx_ring: ring to be cleaned
1477 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1478 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1479 {
1480 u16 i;
1481
1482 /* ring already cleared, nothing to do */
1483 if (!rx_ring->rx_bi)
1484 return;
1485
1486 if (rx_ring->skb) {
1487 dev_kfree_skb(rx_ring->skb);
1488 rx_ring->skb = NULL;
1489 }
1490
1491 if (rx_ring->xsk_pool) {
1492 i40e_xsk_clean_rx_ring(rx_ring);
1493 goto skip_free;
1494 }
1495
1496 /* Free all the Rx ring sk_buffs */
1497 for (i = 0; i < rx_ring->count; i++) {
1498 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1499
1500 if (!rx_bi->page)
1501 continue;
1502
1503 /* Invalidate cache lines that may have been written to by
1504 * device so that we avoid corrupting memory.
1505 */
1506 dma_sync_single_range_for_cpu(rx_ring->dev,
1507 rx_bi->dma,
1508 rx_bi->page_offset,
1509 rx_ring->rx_buf_len,
1510 DMA_FROM_DEVICE);
1511
1512 /* free resources associated with mapping */
1513 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1514 i40e_rx_pg_size(rx_ring),
1515 DMA_FROM_DEVICE,
1516 I40E_RX_DMA_ATTR);
1517
1518 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1519
1520 rx_bi->page = NULL;
1521 rx_bi->page_offset = 0;
1522 }
1523
1524 skip_free:
1525 if (rx_ring->xsk_pool)
1526 i40e_clear_rx_bi_zc(rx_ring);
1527 else
1528 i40e_clear_rx_bi(rx_ring);
1529
1530 /* Zero out the descriptor ring */
1531 memset(rx_ring->desc, 0, rx_ring->size);
1532
1533 rx_ring->next_to_alloc = 0;
1534 rx_ring->next_to_clean = 0;
1535 rx_ring->next_to_use = 0;
1536 }
1537
1538 /**
1539 * i40e_free_rx_resources - Free Rx resources
1540 * @rx_ring: ring to clean the resources from
1541 *
1542 * Free all receive software resources
1543 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1544 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1545 {
1546 i40e_clean_rx_ring(rx_ring);
1547 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1548 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1549 rx_ring->xdp_prog = NULL;
1550 kfree(rx_ring->rx_bi);
1551 rx_ring->rx_bi = NULL;
1552
1553 if (rx_ring->desc) {
1554 dma_free_coherent(rx_ring->dev, rx_ring->size,
1555 rx_ring->desc, rx_ring->dma);
1556 rx_ring->desc = NULL;
1557 }
1558 }
1559
1560 /**
1561 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1562 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1563 *
1564 * Returns 0 on success, negative on failure
1565 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1566 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1567 {
1568 struct device *dev = rx_ring->dev;
1569 int err;
1570
1571 u64_stats_init(&rx_ring->syncp);
1572
1573 /* Round up to nearest 4K */
1574 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1575 rx_ring->size = ALIGN(rx_ring->size, 4096);
1576 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1577 &rx_ring->dma, GFP_KERNEL);
1578
1579 if (!rx_ring->desc) {
1580 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1581 rx_ring->size);
1582 return -ENOMEM;
1583 }
1584
1585 rx_ring->next_to_alloc = 0;
1586 rx_ring->next_to_clean = 0;
1587 rx_ring->next_to_use = 0;
1588
1589 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1590 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1591 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1592 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1593 if (err < 0)
1594 return err;
1595 }
1596
1597 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1598
1599 return 0;
1600 }
1601
1602 /**
1603 * i40e_release_rx_desc - Store the new tail and head values
1604 * @rx_ring: ring to bump
1605 * @val: new head index
1606 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1607 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1608 {
1609 rx_ring->next_to_use = val;
1610
1611 /* update next to alloc since we have filled the ring */
1612 rx_ring->next_to_alloc = val;
1613
1614 /* Force memory writes to complete before letting h/w
1615 * know there are new descriptors to fetch. (Only
1616 * applicable for weak-ordered memory model archs,
1617 * such as IA-64).
1618 */
1619 wmb();
1620 writel(val, rx_ring->tail);
1621 }
1622
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1623 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1624 unsigned int size)
1625 {
1626 unsigned int truesize;
1627
1628 #if (PAGE_SIZE < 8192)
1629 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1630 #else
1631 truesize = rx_ring->rx_offset ?
1632 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1633 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1634 SKB_DATA_ALIGN(size);
1635 #endif
1636 return truesize;
1637 }
1638
1639 /**
1640 * i40e_alloc_mapped_page - recycle or make a new page
1641 * @rx_ring: ring to use
1642 * @bi: rx_buffer struct to modify
1643 *
1644 * Returns true if the page was successfully allocated or
1645 * reused.
1646 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1647 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1648 struct i40e_rx_buffer *bi)
1649 {
1650 struct page *page = bi->page;
1651 dma_addr_t dma;
1652
1653 /* since we are recycling buffers we should seldom need to alloc */
1654 if (likely(page)) {
1655 rx_ring->rx_stats.page_reuse_count++;
1656 return true;
1657 }
1658
1659 /* alloc new page for storage */
1660 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1661 if (unlikely(!page)) {
1662 rx_ring->rx_stats.alloc_page_failed++;
1663 return false;
1664 }
1665
1666 rx_ring->rx_stats.page_alloc_count++;
1667
1668 /* map page for use */
1669 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1670 i40e_rx_pg_size(rx_ring),
1671 DMA_FROM_DEVICE,
1672 I40E_RX_DMA_ATTR);
1673
1674 /* if mapping failed free memory back to system since
1675 * there isn't much point in holding memory we can't use
1676 */
1677 if (dma_mapping_error(rx_ring->dev, dma)) {
1678 __free_pages(page, i40e_rx_pg_order(rx_ring));
1679 rx_ring->rx_stats.alloc_page_failed++;
1680 return false;
1681 }
1682
1683 bi->dma = dma;
1684 bi->page = page;
1685 bi->page_offset = rx_ring->rx_offset;
1686 page_ref_add(page, USHRT_MAX - 1);
1687 bi->pagecnt_bias = USHRT_MAX;
1688
1689 return true;
1690 }
1691
1692 /**
1693 * i40e_alloc_rx_buffers - Replace used receive buffers
1694 * @rx_ring: ring to place buffers on
1695 * @cleaned_count: number of buffers to replace
1696 *
1697 * Returns false if all allocations were successful, true if any fail
1698 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1699 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1700 {
1701 u16 ntu = rx_ring->next_to_use;
1702 union i40e_rx_desc *rx_desc;
1703 struct i40e_rx_buffer *bi;
1704
1705 /* do nothing if no valid netdev defined */
1706 if (!rx_ring->netdev || !cleaned_count)
1707 return false;
1708
1709 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1710 bi = i40e_rx_bi(rx_ring, ntu);
1711
1712 do {
1713 if (!i40e_alloc_mapped_page(rx_ring, bi))
1714 goto no_buffers;
1715
1716 /* sync the buffer for use by the device */
1717 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1718 bi->page_offset,
1719 rx_ring->rx_buf_len,
1720 DMA_FROM_DEVICE);
1721
1722 /* Refresh the desc even if buffer_addrs didn't change
1723 * because each write-back erases this info.
1724 */
1725 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1726
1727 rx_desc++;
1728 bi++;
1729 ntu++;
1730 if (unlikely(ntu == rx_ring->count)) {
1731 rx_desc = I40E_RX_DESC(rx_ring, 0);
1732 bi = i40e_rx_bi(rx_ring, 0);
1733 ntu = 0;
1734 }
1735
1736 /* clear the status bits for the next_to_use descriptor */
1737 rx_desc->wb.qword1.status_error_len = 0;
1738
1739 cleaned_count--;
1740 } while (cleaned_count);
1741
1742 if (rx_ring->next_to_use != ntu)
1743 i40e_release_rx_desc(rx_ring, ntu);
1744
1745 return false;
1746
1747 no_buffers:
1748 if (rx_ring->next_to_use != ntu)
1749 i40e_release_rx_desc(rx_ring, ntu);
1750
1751 /* make sure to come back via polling to try again after
1752 * allocation failure
1753 */
1754 return true;
1755 }
1756
1757 /**
1758 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1759 * @vsi: the VSI we care about
1760 * @skb: skb currently being received and modified
1761 * @rx_desc: the receive descriptor
1762 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1763 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1764 struct sk_buff *skb,
1765 union i40e_rx_desc *rx_desc)
1766 {
1767 struct i40e_rx_ptype_decoded decoded;
1768 u32 rx_error, rx_status;
1769 bool ipv4, ipv6;
1770 u8 ptype;
1771 u64 qword;
1772
1773 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1774 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1775 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1776 I40E_RXD_QW1_ERROR_SHIFT;
1777 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1778 I40E_RXD_QW1_STATUS_SHIFT;
1779 decoded = decode_rx_desc_ptype(ptype);
1780
1781 skb->ip_summed = CHECKSUM_NONE;
1782
1783 skb_checksum_none_assert(skb);
1784
1785 /* Rx csum enabled and ip headers found? */
1786 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1787 return;
1788
1789 /* did the hardware decode the packet and checksum? */
1790 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1791 return;
1792
1793 /* both known and outer_ip must be set for the below code to work */
1794 if (!(decoded.known && decoded.outer_ip))
1795 return;
1796
1797 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1798 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1799 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1800 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1801
1802 if (ipv4 &&
1803 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1804 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1805 goto checksum_fail;
1806
1807 /* likely incorrect csum if alternate IP extension headers found */
1808 if (ipv6 &&
1809 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1810 /* don't increment checksum err here, non-fatal err */
1811 return;
1812
1813 /* there was some L4 error, count error and punt packet to the stack */
1814 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1815 goto checksum_fail;
1816
1817 /* handle packets that were not able to be checksummed due
1818 * to arrival speed, in this case the stack can compute
1819 * the csum.
1820 */
1821 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1822 return;
1823
1824 /* If there is an outer header present that might contain a checksum
1825 * we need to bump the checksum level by 1 to reflect the fact that
1826 * we are indicating we validated the inner checksum.
1827 */
1828 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1829 skb->csum_level = 1;
1830
1831 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1832 switch (decoded.inner_prot) {
1833 case I40E_RX_PTYPE_INNER_PROT_TCP:
1834 case I40E_RX_PTYPE_INNER_PROT_UDP:
1835 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1836 skb->ip_summed = CHECKSUM_UNNECESSARY;
1837 fallthrough;
1838 default:
1839 break;
1840 }
1841
1842 return;
1843
1844 checksum_fail:
1845 vsi->back->hw_csum_rx_error++;
1846 }
1847
1848 /**
1849 * i40e_ptype_to_htype - get a hash type
1850 * @ptype: the ptype value from the descriptor
1851 *
1852 * Returns a hash type to be used by skb_set_hash
1853 **/
i40e_ptype_to_htype(u8 ptype)1854 static inline int i40e_ptype_to_htype(u8 ptype)
1855 {
1856 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1857
1858 if (!decoded.known)
1859 return PKT_HASH_TYPE_NONE;
1860
1861 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1862 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1863 return PKT_HASH_TYPE_L4;
1864 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1865 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1866 return PKT_HASH_TYPE_L3;
1867 else
1868 return PKT_HASH_TYPE_L2;
1869 }
1870
1871 /**
1872 * i40e_rx_hash - set the hash value in the skb
1873 * @ring: descriptor ring
1874 * @rx_desc: specific descriptor
1875 * @skb: skb currently being received and modified
1876 * @rx_ptype: Rx packet type
1877 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1878 static inline void i40e_rx_hash(struct i40e_ring *ring,
1879 union i40e_rx_desc *rx_desc,
1880 struct sk_buff *skb,
1881 u8 rx_ptype)
1882 {
1883 u32 hash;
1884 const __le64 rss_mask =
1885 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1886 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1887
1888 if (!(ring->netdev->features & NETIF_F_RXHASH))
1889 return;
1890
1891 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1892 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1893 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1894 }
1895 }
1896
1897 /**
1898 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1899 * @rx_ring: rx descriptor ring packet is being transacted on
1900 * @rx_desc: pointer to the EOP Rx descriptor
1901 * @skb: pointer to current skb being populated
1902 *
1903 * This function checks the ring, descriptor, and packet information in
1904 * order to populate the hash, checksum, VLAN, protocol, and
1905 * other fields within the skb.
1906 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1907 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1908 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1909 {
1910 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1911 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1912 I40E_RXD_QW1_STATUS_SHIFT;
1913 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1914 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1915 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1916 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1917 I40E_RXD_QW1_PTYPE_SHIFT;
1918
1919 if (unlikely(tsynvalid))
1920 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1921
1922 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1923
1924 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1925
1926 skb_record_rx_queue(skb, rx_ring->queue_index);
1927
1928 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1929 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1930
1931 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1932 le16_to_cpu(vlan_tag));
1933 }
1934
1935 /* modifies the skb - consumes the enet header */
1936 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1937 }
1938
1939 /**
1940 * i40e_cleanup_headers - Correct empty headers
1941 * @rx_ring: rx descriptor ring packet is being transacted on
1942 * @skb: pointer to current skb being fixed
1943 * @rx_desc: pointer to the EOP Rx descriptor
1944 *
1945 * In addition if skb is not at least 60 bytes we need to pad it so that
1946 * it is large enough to qualify as a valid Ethernet frame.
1947 *
1948 * Returns true if an error was encountered and skb was freed.
1949 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1950 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1951 union i40e_rx_desc *rx_desc)
1952
1953 {
1954 /* ERR_MASK will only have valid bits if EOP set, and
1955 * what we are doing here is actually checking
1956 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1957 * the error field
1958 */
1959 if (unlikely(i40e_test_staterr(rx_desc,
1960 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1961 dev_kfree_skb_any(skb);
1962 return true;
1963 }
1964
1965 /* if eth_skb_pad returns an error the skb was freed */
1966 if (eth_skb_pad(skb))
1967 return true;
1968
1969 return false;
1970 }
1971
1972 /**
1973 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1974 * @rx_buffer: buffer containing the page
1975 * @rx_stats: rx stats structure for the rx ring
1976 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1977 *
1978 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1979 * which will assign the current buffer to the buffer that next_to_alloc is
1980 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1981 * page freed.
1982 *
1983 * rx_stats will be updated to indicate whether the page was waived
1984 * or busy if it could not be reused.
1985 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats,int rx_buffer_pgcnt)1986 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1987 struct i40e_rx_queue_stats *rx_stats,
1988 int rx_buffer_pgcnt)
1989 {
1990 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1991 struct page *page = rx_buffer->page;
1992
1993 /* Is any reuse possible? */
1994 if (!dev_page_is_reusable(page)) {
1995 rx_stats->page_waive_count++;
1996 return false;
1997 }
1998
1999 #if (PAGE_SIZE < 8192)
2000 /* if we are only owner of page we can reuse it */
2001 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
2002 rx_stats->page_busy_count++;
2003 return false;
2004 }
2005 #else
2006 #define I40E_LAST_OFFSET \
2007 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2008 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2009 rx_stats->page_busy_count++;
2010 return false;
2011 }
2012 #endif
2013
2014 /* If we have drained the page fragment pool we need to update
2015 * the pagecnt_bias and page count so that we fully restock the
2016 * number of references the driver holds.
2017 */
2018 if (unlikely(pagecnt_bias == 1)) {
2019 page_ref_add(page, USHRT_MAX - 1);
2020 rx_buffer->pagecnt_bias = USHRT_MAX;
2021 }
2022
2023 return true;
2024 }
2025
2026 /**
2027 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2028 * @rx_ring: rx descriptor ring to transact packets on
2029 * @rx_buffer: buffer containing page to add
2030 * @skb: sk_buff to place the data into
2031 * @size: packet length from rx_desc
2032 *
2033 * This function will add the data contained in rx_buffer->page to the skb.
2034 * It will just attach the page as a frag to the skb.
2035 *
2036 * The function will then update the page offset.
2037 **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)2038 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2039 struct i40e_rx_buffer *rx_buffer,
2040 struct sk_buff *skb,
2041 unsigned int size)
2042 {
2043 #if (PAGE_SIZE < 8192)
2044 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2045 #else
2046 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2047 #endif
2048
2049 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2050 rx_buffer->page_offset, size, truesize);
2051
2052 /* page is being used so we must update the page offset */
2053 #if (PAGE_SIZE < 8192)
2054 rx_buffer->page_offset ^= truesize;
2055 #else
2056 rx_buffer->page_offset += truesize;
2057 #endif
2058 }
2059
2060 /**
2061 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2062 * @rx_ring: rx descriptor ring to transact packets on
2063 * @size: size of buffer to add to skb
2064 * @rx_buffer_pgcnt: buffer page refcount
2065 *
2066 * This function will pull an Rx buffer from the ring and synchronize it
2067 * for use by the CPU.
2068 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)2069 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2070 const unsigned int size,
2071 int *rx_buffer_pgcnt)
2072 {
2073 struct i40e_rx_buffer *rx_buffer;
2074
2075 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2076 *rx_buffer_pgcnt =
2077 #if (PAGE_SIZE < 8192)
2078 page_count(rx_buffer->page);
2079 #else
2080 0;
2081 #endif
2082 prefetch_page_address(rx_buffer->page);
2083
2084 /* we are reusing so sync this buffer for CPU use */
2085 dma_sync_single_range_for_cpu(rx_ring->dev,
2086 rx_buffer->dma,
2087 rx_buffer->page_offset,
2088 size,
2089 DMA_FROM_DEVICE);
2090
2091 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2092 rx_buffer->pagecnt_bias--;
2093
2094 return rx_buffer;
2095 }
2096
2097 /**
2098 * i40e_construct_skb - Allocate skb and populate it
2099 * @rx_ring: rx descriptor ring to transact packets on
2100 * @rx_buffer: rx buffer to pull data from
2101 * @xdp: xdp_buff pointing to the data
2102 *
2103 * This function allocates an skb. It then populates it with the page
2104 * data from the current receive descriptor, taking care to set up the
2105 * skb correctly.
2106 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2107 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2108 struct i40e_rx_buffer *rx_buffer,
2109 struct xdp_buff *xdp)
2110 {
2111 unsigned int size = xdp->data_end - xdp->data;
2112 #if (PAGE_SIZE < 8192)
2113 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2114 #else
2115 unsigned int truesize = SKB_DATA_ALIGN(size);
2116 #endif
2117 unsigned int headlen;
2118 struct sk_buff *skb;
2119
2120 /* prefetch first cache line of first page */
2121 net_prefetch(xdp->data);
2122
2123 /* Note, we get here by enabling legacy-rx via:
2124 *
2125 * ethtool --set-priv-flags <dev> legacy-rx on
2126 *
2127 * In this mode, we currently get 0 extra XDP headroom as
2128 * opposed to having legacy-rx off, where we process XDP
2129 * packets going to stack via i40e_build_skb(). The latter
2130 * provides us currently with 192 bytes of headroom.
2131 *
2132 * For i40e_construct_skb() mode it means that the
2133 * xdp->data_meta will always point to xdp->data, since
2134 * the helper cannot expand the head. Should this ever
2135 * change in future for legacy-rx mode on, then lets also
2136 * add xdp->data_meta handling here.
2137 */
2138
2139 /* allocate a skb to store the frags */
2140 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2141 I40E_RX_HDR_SIZE,
2142 GFP_ATOMIC | __GFP_NOWARN);
2143 if (unlikely(!skb))
2144 return NULL;
2145
2146 /* Determine available headroom for copy */
2147 headlen = size;
2148 if (headlen > I40E_RX_HDR_SIZE)
2149 headlen = eth_get_headlen(skb->dev, xdp->data,
2150 I40E_RX_HDR_SIZE);
2151
2152 /* align pull length to size of long to optimize memcpy performance */
2153 memcpy(__skb_put(skb, headlen), xdp->data,
2154 ALIGN(headlen, sizeof(long)));
2155
2156 /* update all of the pointers */
2157 size -= headlen;
2158 if (size) {
2159 skb_add_rx_frag(skb, 0, rx_buffer->page,
2160 rx_buffer->page_offset + headlen,
2161 size, truesize);
2162
2163 /* buffer is used by skb, update page_offset */
2164 #if (PAGE_SIZE < 8192)
2165 rx_buffer->page_offset ^= truesize;
2166 #else
2167 rx_buffer->page_offset += truesize;
2168 #endif
2169 } else {
2170 /* buffer is unused, reset bias back to rx_buffer */
2171 rx_buffer->pagecnt_bias++;
2172 }
2173
2174 return skb;
2175 }
2176
2177 /**
2178 * i40e_build_skb - Build skb around an existing buffer
2179 * @rx_ring: Rx descriptor ring to transact packets on
2180 * @rx_buffer: Rx buffer to pull data from
2181 * @xdp: xdp_buff pointing to the data
2182 *
2183 * This function builds an skb around an existing Rx buffer, taking care
2184 * to set up the skb correctly and avoid any memcpy overhead.
2185 */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2186 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2187 struct i40e_rx_buffer *rx_buffer,
2188 struct xdp_buff *xdp)
2189 {
2190 unsigned int metasize = xdp->data - xdp->data_meta;
2191 #if (PAGE_SIZE < 8192)
2192 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2193 #else
2194 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2195 SKB_DATA_ALIGN(xdp->data_end -
2196 xdp->data_hard_start);
2197 #endif
2198 struct sk_buff *skb;
2199
2200 /* Prefetch first cache line of first page. If xdp->data_meta
2201 * is unused, this points exactly as xdp->data, otherwise we
2202 * likely have a consumer accessing first few bytes of meta
2203 * data, and then actual data.
2204 */
2205 net_prefetch(xdp->data_meta);
2206
2207 /* build an skb around the page buffer */
2208 skb = napi_build_skb(xdp->data_hard_start, truesize);
2209 if (unlikely(!skb))
2210 return NULL;
2211
2212 /* update pointers within the skb to store the data */
2213 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2214 __skb_put(skb, xdp->data_end - xdp->data);
2215 if (metasize)
2216 skb_metadata_set(skb, metasize);
2217
2218 /* buffer is used by skb, update page_offset */
2219 #if (PAGE_SIZE < 8192)
2220 rx_buffer->page_offset ^= truesize;
2221 #else
2222 rx_buffer->page_offset += truesize;
2223 #endif
2224
2225 return skb;
2226 }
2227
2228 /**
2229 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2230 * @rx_ring: rx descriptor ring to transact packets on
2231 * @rx_buffer: rx buffer to pull data from
2232 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2233 *
2234 * This function will clean up the contents of the rx_buffer. It will
2235 * either recycle the buffer or unmap it and free the associated resources.
2236 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2237 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2238 struct i40e_rx_buffer *rx_buffer,
2239 int rx_buffer_pgcnt)
2240 {
2241 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2242 /* hand second half of page back to the ring */
2243 i40e_reuse_rx_page(rx_ring, rx_buffer);
2244 } else {
2245 /* we are not reusing the buffer so unmap it */
2246 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2247 i40e_rx_pg_size(rx_ring),
2248 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2249 __page_frag_cache_drain(rx_buffer->page,
2250 rx_buffer->pagecnt_bias);
2251 /* clear contents of buffer_info */
2252 rx_buffer->page = NULL;
2253 }
2254 }
2255
2256 /**
2257 * i40e_is_non_eop - process handling of non-EOP buffers
2258 * @rx_ring: Rx ring being processed
2259 * @rx_desc: Rx descriptor for current buffer
2260 *
2261 * If the buffer is an EOP buffer, this function exits returning false,
2262 * otherwise return true indicating that this is in fact a non-EOP buffer.
2263 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2264 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2265 union i40e_rx_desc *rx_desc)
2266 {
2267 /* if we are the last buffer then there is nothing else to do */
2268 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2269 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2270 return false;
2271
2272 rx_ring->rx_stats.non_eop_descs++;
2273
2274 return true;
2275 }
2276
2277 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2278 struct i40e_ring *xdp_ring);
2279
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2280 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2281 {
2282 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2283
2284 if (unlikely(!xdpf))
2285 return I40E_XDP_CONSUMED;
2286
2287 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2288 }
2289
2290 /**
2291 * i40e_run_xdp - run an XDP program
2292 * @rx_ring: Rx ring being processed
2293 * @xdp: XDP buffer containing the frame
2294 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2295 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2296 {
2297 int err, result = I40E_XDP_PASS;
2298 struct i40e_ring *xdp_ring;
2299 struct bpf_prog *xdp_prog;
2300 u32 act;
2301
2302 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2303
2304 if (!xdp_prog)
2305 goto xdp_out;
2306
2307 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2308
2309 act = bpf_prog_run_xdp(xdp_prog, xdp);
2310 switch (act) {
2311 case XDP_PASS:
2312 break;
2313 case XDP_TX:
2314 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2315 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2316 if (result == I40E_XDP_CONSUMED)
2317 goto out_failure;
2318 break;
2319 case XDP_REDIRECT:
2320 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2321 if (err)
2322 goto out_failure;
2323 result = I40E_XDP_REDIR;
2324 break;
2325 default:
2326 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2327 fallthrough;
2328 case XDP_ABORTED:
2329 out_failure:
2330 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2331 fallthrough; /* handle aborts by dropping packet */
2332 case XDP_DROP:
2333 result = I40E_XDP_CONSUMED;
2334 break;
2335 }
2336 xdp_out:
2337 return result;
2338 }
2339
2340 /**
2341 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2342 * @rx_ring: Rx ring
2343 * @rx_buffer: Rx buffer to adjust
2344 * @size: Size of adjustment
2345 **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2346 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2347 struct i40e_rx_buffer *rx_buffer,
2348 unsigned int size)
2349 {
2350 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2351
2352 #if (PAGE_SIZE < 8192)
2353 rx_buffer->page_offset ^= truesize;
2354 #else
2355 rx_buffer->page_offset += truesize;
2356 #endif
2357 }
2358
2359 /**
2360 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2361 * @xdp_ring: XDP Tx ring
2362 *
2363 * This function updates the XDP Tx ring tail register.
2364 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2365 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2366 {
2367 /* Force memory writes to complete before letting h/w
2368 * know there are new descriptors to fetch.
2369 */
2370 wmb();
2371 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2372 }
2373
2374 /**
2375 * i40e_update_rx_stats - Update Rx ring statistics
2376 * @rx_ring: rx descriptor ring
2377 * @total_rx_bytes: number of bytes received
2378 * @total_rx_packets: number of packets received
2379 *
2380 * This function updates the Rx ring statistics.
2381 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2382 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2383 unsigned int total_rx_bytes,
2384 unsigned int total_rx_packets)
2385 {
2386 u64_stats_update_begin(&rx_ring->syncp);
2387 rx_ring->stats.packets += total_rx_packets;
2388 rx_ring->stats.bytes += total_rx_bytes;
2389 u64_stats_update_end(&rx_ring->syncp);
2390 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2391 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2392 }
2393
2394 /**
2395 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2396 * @rx_ring: Rx ring
2397 * @xdp_res: Result of the receive batch
2398 *
2399 * This function bumps XDP Tx tail and/or flush redirect map, and
2400 * should be called when a batch of packets has been processed in the
2401 * napi loop.
2402 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2403 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2404 {
2405 if (xdp_res & I40E_XDP_REDIR)
2406 xdp_do_flush_map();
2407
2408 if (xdp_res & I40E_XDP_TX) {
2409 struct i40e_ring *xdp_ring =
2410 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2411
2412 i40e_xdp_ring_update_tail(xdp_ring);
2413 }
2414 }
2415
2416 /**
2417 * i40e_inc_ntc: Advance the next_to_clean index
2418 * @rx_ring: Rx ring
2419 **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2420 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2421 {
2422 u32 ntc = rx_ring->next_to_clean + 1;
2423
2424 ntc = (ntc < rx_ring->count) ? ntc : 0;
2425 rx_ring->next_to_clean = ntc;
2426 prefetch(I40E_RX_DESC(rx_ring, ntc));
2427 }
2428
2429 /**
2430 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2431 * @rx_ring: rx descriptor ring to transact packets on
2432 * @budget: Total limit on number of packets to process
2433 *
2434 * This function provides a "bounce buffer" approach to Rx interrupt
2435 * processing. The advantage to this is that on systems that have
2436 * expensive overhead for IOMMU access this provides a means of avoiding
2437 * it by maintaining the mapping of the page to the system.
2438 *
2439 * Returns amount of work completed
2440 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2441 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2442 {
2443 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2444 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2445 unsigned int offset = rx_ring->rx_offset;
2446 struct sk_buff *skb = rx_ring->skb;
2447 unsigned int xdp_xmit = 0;
2448 bool failure = false;
2449 struct xdp_buff xdp;
2450 int xdp_res = 0;
2451
2452 #if (PAGE_SIZE < 8192)
2453 frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2454 #endif
2455 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2456
2457 while (likely(total_rx_packets < (unsigned int)budget)) {
2458 struct i40e_rx_buffer *rx_buffer;
2459 union i40e_rx_desc *rx_desc;
2460 int rx_buffer_pgcnt;
2461 unsigned int size;
2462 u64 qword;
2463
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2466 failure = failure ||
2467 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 cleaned_count = 0;
2469 }
2470
2471 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2472
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2477 */
2478 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2483 */
2484 dma_rmb();
2485
2486 if (i40e_rx_is_programming_status(qword)) {
2487 i40e_clean_programming_status(rx_ring,
2488 rx_desc->raw.qword[0],
2489 qword);
2490 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2491 i40e_inc_ntc(rx_ring);
2492 i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 cleaned_count++;
2494 continue;
2495 }
2496
2497 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2498 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2499 if (!size)
2500 break;
2501
2502 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2503 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2504
2505 /* retrieve a buffer from the ring */
2506 if (!skb) {
2507 unsigned char *hard_start;
2508
2509 hard_start = page_address(rx_buffer->page) +
2510 rx_buffer->page_offset - offset;
2511 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2512 #if (PAGE_SIZE > 4096)
2513 /* At larger PAGE_SIZE, frame_sz depend on len size */
2514 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2515 #endif
2516 xdp_res = i40e_run_xdp(rx_ring, &xdp);
2517 }
2518
2519 if (xdp_res) {
2520 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2521 xdp_xmit |= xdp_res;
2522 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2523 } else {
2524 rx_buffer->pagecnt_bias++;
2525 }
2526 total_rx_bytes += size;
2527 total_rx_packets++;
2528 } else if (skb) {
2529 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2530 } else if (ring_uses_build_skb(rx_ring)) {
2531 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2532 } else {
2533 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2534 }
2535
2536 /* exit if we failed to retrieve a buffer */
2537 if (!xdp_res && !skb) {
2538 rx_ring->rx_stats.alloc_buff_failed++;
2539 rx_buffer->pagecnt_bias++;
2540 break;
2541 }
2542
2543 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2544 cleaned_count++;
2545
2546 i40e_inc_ntc(rx_ring);
2547 if (i40e_is_non_eop(rx_ring, rx_desc))
2548 continue;
2549
2550 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2551 skb = NULL;
2552 continue;
2553 }
2554
2555 /* probably a little skewed due to removing CRC */
2556 total_rx_bytes += skb->len;
2557
2558 /* populate checksum, VLAN, and protocol */
2559 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2560
2561 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2562 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2563 skb = NULL;
2564
2565 /* update budget accounting */
2566 total_rx_packets++;
2567 }
2568
2569 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2570 rx_ring->skb = skb;
2571
2572 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2573
2574 /* guarantee a trip back through this routine if there was a failure */
2575 return failure ? budget : (int)total_rx_packets;
2576 }
2577
i40e_buildreg_itr(const int type,u16 itr)2578 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2579 {
2580 u32 val;
2581
2582 /* We don't bother with setting the CLEARPBA bit as the data sheet
2583 * points out doing so is "meaningless since it was already
2584 * auto-cleared". The auto-clearing happens when the interrupt is
2585 * asserted.
2586 *
2587 * Hardware errata 28 for also indicates that writing to a
2588 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2589 * an event in the PBA anyway so we need to rely on the automask
2590 * to hold pending events for us until the interrupt is re-enabled
2591 *
2592 * The itr value is reported in microseconds, and the register
2593 * value is recorded in 2 microsecond units. For this reason we
2594 * only need to shift by the interval shift - 1 instead of the
2595 * full value.
2596 */
2597 itr &= I40E_ITR_MASK;
2598
2599 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2600 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2601 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2602
2603 return val;
2604 }
2605
2606 /* a small macro to shorten up some long lines */
2607 #define INTREG I40E_PFINT_DYN_CTLN
2608
2609 /* The act of updating the ITR will cause it to immediately trigger. In order
2610 * to prevent this from throwing off adaptive update statistics we defer the
2611 * update so that it can only happen so often. So after either Tx or Rx are
2612 * updated we make the adaptive scheme wait until either the ITR completely
2613 * expires via the next_update expiration or we have been through at least
2614 * 3 interrupts.
2615 */
2616 #define ITR_COUNTDOWN_START 3
2617
2618 /**
2619 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2620 * @vsi: the VSI we care about
2621 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2622 *
2623 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2624 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2625 struct i40e_q_vector *q_vector)
2626 {
2627 struct i40e_hw *hw = &vsi->back->hw;
2628 u32 intval;
2629
2630 /* If we don't have MSIX, then we only need to re-enable icr0 */
2631 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2632 i40e_irq_dynamic_enable_icr0(vsi->back);
2633 return;
2634 }
2635
2636 /* These will do nothing if dynamic updates are not enabled */
2637 i40e_update_itr(q_vector, &q_vector->tx);
2638 i40e_update_itr(q_vector, &q_vector->rx);
2639
2640 /* This block of logic allows us to get away with only updating
2641 * one ITR value with each interrupt. The idea is to perform a
2642 * pseudo-lazy update with the following criteria.
2643 *
2644 * 1. Rx is given higher priority than Tx if both are in same state
2645 * 2. If we must reduce an ITR that is given highest priority.
2646 * 3. We then give priority to increasing ITR based on amount.
2647 */
2648 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2649 /* Rx ITR needs to be reduced, this is highest priority */
2650 intval = i40e_buildreg_itr(I40E_RX_ITR,
2651 q_vector->rx.target_itr);
2652 q_vector->rx.current_itr = q_vector->rx.target_itr;
2653 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2654 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2655 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2656 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2657 /* Tx ITR needs to be reduced, this is second priority
2658 * Tx ITR needs to be increased more than Rx, fourth priority
2659 */
2660 intval = i40e_buildreg_itr(I40E_TX_ITR,
2661 q_vector->tx.target_itr);
2662 q_vector->tx.current_itr = q_vector->tx.target_itr;
2663 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2664 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2665 /* Rx ITR needs to be increased, third priority */
2666 intval = i40e_buildreg_itr(I40E_RX_ITR,
2667 q_vector->rx.target_itr);
2668 q_vector->rx.current_itr = q_vector->rx.target_itr;
2669 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2670 } else {
2671 /* No ITR update, lowest priority */
2672 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2673 if (q_vector->itr_countdown)
2674 q_vector->itr_countdown--;
2675 }
2676
2677 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2678 wr32(hw, INTREG(q_vector->reg_idx), intval);
2679 }
2680
2681 /**
2682 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2683 * @napi: napi struct with our devices info in it
2684 * @budget: amount of work driver is allowed to do this pass, in packets
2685 *
2686 * This function will clean all queues associated with a q_vector.
2687 *
2688 * Returns the amount of work done
2689 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2690 int i40e_napi_poll(struct napi_struct *napi, int budget)
2691 {
2692 struct i40e_q_vector *q_vector =
2693 container_of(napi, struct i40e_q_vector, napi);
2694 struct i40e_vsi *vsi = q_vector->vsi;
2695 struct i40e_ring *ring;
2696 bool clean_complete = true;
2697 bool arm_wb = false;
2698 int budget_per_ring;
2699 int work_done = 0;
2700
2701 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2702 napi_complete(napi);
2703 return 0;
2704 }
2705
2706 /* Since the actual Tx work is minimal, we can give the Tx a larger
2707 * budget and be more aggressive about cleaning up the Tx descriptors.
2708 */
2709 i40e_for_each_ring(ring, q_vector->tx) {
2710 bool wd = ring->xsk_pool ?
2711 i40e_clean_xdp_tx_irq(vsi, ring) :
2712 i40e_clean_tx_irq(vsi, ring, budget);
2713
2714 if (!wd) {
2715 clean_complete = false;
2716 continue;
2717 }
2718 arm_wb |= ring->arm_wb;
2719 ring->arm_wb = false;
2720 }
2721
2722 /* Handle case where we are called by netpoll with a budget of 0 */
2723 if (budget <= 0)
2724 goto tx_only;
2725
2726 /* normally we have 1 Rx ring per q_vector */
2727 if (unlikely(q_vector->num_ringpairs > 1))
2728 /* We attempt to distribute budget to each Rx queue fairly, but
2729 * don't allow the budget to go below 1 because that would exit
2730 * polling early.
2731 */
2732 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2733 else
2734 /* Max of 1 Rx ring in this q_vector so give it the budget */
2735 budget_per_ring = budget;
2736
2737 i40e_for_each_ring(ring, q_vector->rx) {
2738 int cleaned = ring->xsk_pool ?
2739 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2740 i40e_clean_rx_irq(ring, budget_per_ring);
2741
2742 work_done += cleaned;
2743 /* if we clean as many as budgeted, we must not be done */
2744 if (cleaned >= budget_per_ring)
2745 clean_complete = false;
2746 }
2747
2748 /* If work not completed, return budget and polling will return */
2749 if (!clean_complete) {
2750 int cpu_id = smp_processor_id();
2751
2752 /* It is possible that the interrupt affinity has changed but,
2753 * if the cpu is pegged at 100%, polling will never exit while
2754 * traffic continues and the interrupt will be stuck on this
2755 * cpu. We check to make sure affinity is correct before we
2756 * continue to poll, otherwise we must stop polling so the
2757 * interrupt can move to the correct cpu.
2758 */
2759 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2760 /* Tell napi that we are done polling */
2761 napi_complete_done(napi, work_done);
2762
2763 /* Force an interrupt */
2764 i40e_force_wb(vsi, q_vector);
2765
2766 /* Return budget-1 so that polling stops */
2767 return budget - 1;
2768 }
2769 tx_only:
2770 if (arm_wb) {
2771 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2772 i40e_enable_wb_on_itr(vsi, q_vector);
2773 }
2774 return budget;
2775 }
2776
2777 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2778 q_vector->arm_wb_state = false;
2779
2780 /* Exit the polling mode, but don't re-enable interrupts if stack might
2781 * poll us due to busy-polling
2782 */
2783 if (likely(napi_complete_done(napi, work_done)))
2784 i40e_update_enable_itr(vsi, q_vector);
2785
2786 return min(work_done, budget - 1);
2787 }
2788
2789 /**
2790 * i40e_atr - Add a Flow Director ATR filter
2791 * @tx_ring: ring to add programming descriptor to
2792 * @skb: send buffer
2793 * @tx_flags: send tx flags
2794 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2795 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2796 u32 tx_flags)
2797 {
2798 struct i40e_filter_program_desc *fdir_desc;
2799 struct i40e_pf *pf = tx_ring->vsi->back;
2800 union {
2801 unsigned char *network;
2802 struct iphdr *ipv4;
2803 struct ipv6hdr *ipv6;
2804 } hdr;
2805 struct tcphdr *th;
2806 unsigned int hlen;
2807 u32 flex_ptype, dtype_cmd;
2808 int l4_proto;
2809 u16 i;
2810
2811 /* make sure ATR is enabled */
2812 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2813 return;
2814
2815 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2816 return;
2817
2818 /* if sampling is disabled do nothing */
2819 if (!tx_ring->atr_sample_rate)
2820 return;
2821
2822 /* Currently only IPv4/IPv6 with TCP is supported */
2823 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2824 return;
2825
2826 /* snag network header to get L4 type and address */
2827 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2828 skb_inner_network_header(skb) : skb_network_header(skb);
2829
2830 /* Note: tx_flags gets modified to reflect inner protocols in
2831 * tx_enable_csum function if encap is enabled.
2832 */
2833 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2834 /* access ihl as u8 to avoid unaligned access on ia64 */
2835 hlen = (hdr.network[0] & 0x0F) << 2;
2836 l4_proto = hdr.ipv4->protocol;
2837 } else {
2838 /* find the start of the innermost ipv6 header */
2839 unsigned int inner_hlen = hdr.network - skb->data;
2840 unsigned int h_offset = inner_hlen;
2841
2842 /* this function updates h_offset to the end of the header */
2843 l4_proto =
2844 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2845 /* hlen will contain our best estimate of the tcp header */
2846 hlen = h_offset - inner_hlen;
2847 }
2848
2849 if (l4_proto != IPPROTO_TCP)
2850 return;
2851
2852 th = (struct tcphdr *)(hdr.network + hlen);
2853
2854 /* Due to lack of space, no more new filters can be programmed */
2855 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2856 return;
2857 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2858 /* HW ATR eviction will take care of removing filters on FIN
2859 * and RST packets.
2860 */
2861 if (th->fin || th->rst)
2862 return;
2863 }
2864
2865 tx_ring->atr_count++;
2866
2867 /* sample on all syn/fin/rst packets or once every atr sample rate */
2868 if (!th->fin &&
2869 !th->syn &&
2870 !th->rst &&
2871 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2872 return;
2873
2874 tx_ring->atr_count = 0;
2875
2876 /* grab the next descriptor */
2877 i = tx_ring->next_to_use;
2878 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2879
2880 i++;
2881 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2882
2883 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2884 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2885 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2886 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2887 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2888 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2889 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2890
2891 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2892
2893 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2894
2895 dtype_cmd |= (th->fin || th->rst) ?
2896 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2897 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2898 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2899 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2900
2901 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2902 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2903
2904 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2905 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2906
2907 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2908 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2909 dtype_cmd |=
2910 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2911 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2912 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2913 else
2914 dtype_cmd |=
2915 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2916 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2917 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2918
2919 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2920 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2921
2922 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2923 fdir_desc->rsvd = cpu_to_le32(0);
2924 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2925 fdir_desc->fd_id = cpu_to_le32(0);
2926 }
2927
2928 /**
2929 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2930 * @skb: send buffer
2931 * @tx_ring: ring to send buffer on
2932 * @flags: the tx flags to be set
2933 *
2934 * Checks the skb and set up correspondingly several generic transmit flags
2935 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2936 *
2937 * Returns error code indicate the frame should be dropped upon error and the
2938 * otherwise returns 0 to indicate the flags has been set properly.
2939 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2940 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2941 struct i40e_ring *tx_ring,
2942 u32 *flags)
2943 {
2944 __be16 protocol = skb->protocol;
2945 u32 tx_flags = 0;
2946
2947 if (protocol == htons(ETH_P_8021Q) &&
2948 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2949 /* When HW VLAN acceleration is turned off by the user the
2950 * stack sets the protocol to 8021q so that the driver
2951 * can take any steps required to support the SW only
2952 * VLAN handling. In our case the driver doesn't need
2953 * to take any further steps so just set the protocol
2954 * to the encapsulated ethertype.
2955 */
2956 skb->protocol = vlan_get_protocol(skb);
2957 goto out;
2958 }
2959
2960 /* if we have a HW VLAN tag being added, default to the HW one */
2961 if (skb_vlan_tag_present(skb)) {
2962 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2963 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2964 /* else if it is a SW VLAN, check the next protocol and store the tag */
2965 } else if (protocol == htons(ETH_P_8021Q)) {
2966 struct vlan_hdr *vhdr, _vhdr;
2967
2968 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2969 if (!vhdr)
2970 return -EINVAL;
2971
2972 protocol = vhdr->h_vlan_encapsulated_proto;
2973 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2974 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2975 }
2976
2977 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2978 goto out;
2979
2980 /* Insert 802.1p priority into VLAN header */
2981 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2982 (skb->priority != TC_PRIO_CONTROL)) {
2983 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2984 tx_flags |= (skb->priority & 0x7) <<
2985 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2986 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2987 struct vlan_ethhdr *vhdr;
2988 int rc;
2989
2990 rc = skb_cow_head(skb, 0);
2991 if (rc < 0)
2992 return rc;
2993 vhdr = (struct vlan_ethhdr *)skb->data;
2994 vhdr->h_vlan_TCI = htons(tx_flags >>
2995 I40E_TX_FLAGS_VLAN_SHIFT);
2996 } else {
2997 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2998 }
2999 }
3000
3001 out:
3002 *flags = tx_flags;
3003 return 0;
3004 }
3005
3006 /**
3007 * i40e_tso - set up the tso context descriptor
3008 * @first: pointer to first Tx buffer for xmit
3009 * @hdr_len: ptr to the size of the packet header
3010 * @cd_type_cmd_tso_mss: Quad Word 1
3011 *
3012 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3013 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3014 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3015 u64 *cd_type_cmd_tso_mss)
3016 {
3017 struct sk_buff *skb = first->skb;
3018 u64 cd_cmd, cd_tso_len, cd_mss;
3019 __be16 protocol;
3020 union {
3021 struct iphdr *v4;
3022 struct ipv6hdr *v6;
3023 unsigned char *hdr;
3024 } ip;
3025 union {
3026 struct tcphdr *tcp;
3027 struct udphdr *udp;
3028 unsigned char *hdr;
3029 } l4;
3030 u32 paylen, l4_offset;
3031 u16 gso_size;
3032 int err;
3033
3034 if (skb->ip_summed != CHECKSUM_PARTIAL)
3035 return 0;
3036
3037 if (!skb_is_gso(skb))
3038 return 0;
3039
3040 err = skb_cow_head(skb, 0);
3041 if (err < 0)
3042 return err;
3043
3044 protocol = vlan_get_protocol(skb);
3045
3046 if (eth_p_mpls(protocol))
3047 ip.hdr = skb_inner_network_header(skb);
3048 else
3049 ip.hdr = skb_network_header(skb);
3050 l4.hdr = skb_checksum_start(skb);
3051
3052 /* initialize outer IP header fields */
3053 if (ip.v4->version == 4) {
3054 ip.v4->tot_len = 0;
3055 ip.v4->check = 0;
3056
3057 first->tx_flags |= I40E_TX_FLAGS_TSO;
3058 } else {
3059 ip.v6->payload_len = 0;
3060 first->tx_flags |= I40E_TX_FLAGS_TSO;
3061 }
3062
3063 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3064 SKB_GSO_GRE_CSUM |
3065 SKB_GSO_IPXIP4 |
3066 SKB_GSO_IPXIP6 |
3067 SKB_GSO_UDP_TUNNEL |
3068 SKB_GSO_UDP_TUNNEL_CSUM)) {
3069 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3070 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3071 l4.udp->len = 0;
3072
3073 /* determine offset of outer transport header */
3074 l4_offset = l4.hdr - skb->data;
3075
3076 /* remove payload length from outer checksum */
3077 paylen = skb->len - l4_offset;
3078 csum_replace_by_diff(&l4.udp->check,
3079 (__force __wsum)htonl(paylen));
3080 }
3081
3082 /* reset pointers to inner headers */
3083 ip.hdr = skb_inner_network_header(skb);
3084 l4.hdr = skb_inner_transport_header(skb);
3085
3086 /* initialize inner IP header fields */
3087 if (ip.v4->version == 4) {
3088 ip.v4->tot_len = 0;
3089 ip.v4->check = 0;
3090 } else {
3091 ip.v6->payload_len = 0;
3092 }
3093 }
3094
3095 /* determine offset of inner transport header */
3096 l4_offset = l4.hdr - skb->data;
3097
3098 /* remove payload length from inner checksum */
3099 paylen = skb->len - l4_offset;
3100
3101 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3102 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3103 /* compute length of segmentation header */
3104 *hdr_len = sizeof(*l4.udp) + l4_offset;
3105 } else {
3106 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3107 /* compute length of segmentation header */
3108 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3109 }
3110
3111 /* pull values out of skb_shinfo */
3112 gso_size = skb_shinfo(skb)->gso_size;
3113
3114 /* update GSO size and bytecount with header size */
3115 first->gso_segs = skb_shinfo(skb)->gso_segs;
3116 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3117
3118 /* find the field values */
3119 cd_cmd = I40E_TX_CTX_DESC_TSO;
3120 cd_tso_len = skb->len - *hdr_len;
3121 cd_mss = gso_size;
3122 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3123 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3124 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3125 return 1;
3126 }
3127
3128 /**
3129 * i40e_tsyn - set up the tsyn context descriptor
3130 * @tx_ring: ptr to the ring to send
3131 * @skb: ptr to the skb we're sending
3132 * @tx_flags: the collected send information
3133 * @cd_type_cmd_tso_mss: Quad Word 1
3134 *
3135 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3136 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3137 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3138 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3139 {
3140 struct i40e_pf *pf;
3141
3142 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3143 return 0;
3144
3145 /* Tx timestamps cannot be sampled when doing TSO */
3146 if (tx_flags & I40E_TX_FLAGS_TSO)
3147 return 0;
3148
3149 /* only timestamp the outbound packet if the user has requested it and
3150 * we are not already transmitting a packet to be timestamped
3151 */
3152 pf = i40e_netdev_to_pf(tx_ring->netdev);
3153 if (!(pf->flags & I40E_FLAG_PTP))
3154 return 0;
3155
3156 if (pf->ptp_tx &&
3157 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3158 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3159 pf->ptp_tx_start = jiffies;
3160 pf->ptp_tx_skb = skb_get(skb);
3161 } else {
3162 pf->tx_hwtstamp_skipped++;
3163 return 0;
3164 }
3165
3166 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3167 I40E_TXD_CTX_QW1_CMD_SHIFT;
3168
3169 return 1;
3170 }
3171
3172 /**
3173 * i40e_tx_enable_csum - Enable Tx checksum offloads
3174 * @skb: send buffer
3175 * @tx_flags: pointer to Tx flags currently set
3176 * @td_cmd: Tx descriptor command bits to set
3177 * @td_offset: Tx descriptor header offsets to set
3178 * @tx_ring: Tx descriptor ring
3179 * @cd_tunneling: ptr to context desc bits
3180 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3181 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3182 u32 *td_cmd, u32 *td_offset,
3183 struct i40e_ring *tx_ring,
3184 u32 *cd_tunneling)
3185 {
3186 union {
3187 struct iphdr *v4;
3188 struct ipv6hdr *v6;
3189 unsigned char *hdr;
3190 } ip;
3191 union {
3192 struct tcphdr *tcp;
3193 struct udphdr *udp;
3194 unsigned char *hdr;
3195 } l4;
3196 unsigned char *exthdr;
3197 u32 offset, cmd = 0;
3198 __be16 frag_off;
3199 __be16 protocol;
3200 u8 l4_proto = 0;
3201
3202 if (skb->ip_summed != CHECKSUM_PARTIAL)
3203 return 0;
3204
3205 protocol = vlan_get_protocol(skb);
3206
3207 if (eth_p_mpls(protocol)) {
3208 ip.hdr = skb_inner_network_header(skb);
3209 l4.hdr = skb_checksum_start(skb);
3210 } else {
3211 ip.hdr = skb_network_header(skb);
3212 l4.hdr = skb_transport_header(skb);
3213 }
3214
3215 /* set the tx_flags to indicate the IP protocol type. this is
3216 * required so that checksum header computation below is accurate.
3217 */
3218 if (ip.v4->version == 4)
3219 *tx_flags |= I40E_TX_FLAGS_IPV4;
3220 else
3221 *tx_flags |= I40E_TX_FLAGS_IPV6;
3222
3223 /* compute outer L2 header size */
3224 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3225
3226 if (skb->encapsulation) {
3227 u32 tunnel = 0;
3228 /* define outer network header type */
3229 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3230 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3231 I40E_TX_CTX_EXT_IP_IPV4 :
3232 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3233
3234 l4_proto = ip.v4->protocol;
3235 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3236 int ret;
3237
3238 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3239
3240 exthdr = ip.hdr + sizeof(*ip.v6);
3241 l4_proto = ip.v6->nexthdr;
3242 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3243 &l4_proto, &frag_off);
3244 if (ret < 0)
3245 return -1;
3246 }
3247
3248 /* define outer transport */
3249 switch (l4_proto) {
3250 case IPPROTO_UDP:
3251 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3252 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3253 break;
3254 case IPPROTO_GRE:
3255 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3256 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3257 break;
3258 case IPPROTO_IPIP:
3259 case IPPROTO_IPV6:
3260 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3261 l4.hdr = skb_inner_network_header(skb);
3262 break;
3263 default:
3264 if (*tx_flags & I40E_TX_FLAGS_TSO)
3265 return -1;
3266
3267 skb_checksum_help(skb);
3268 return 0;
3269 }
3270
3271 /* compute outer L3 header size */
3272 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3273 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3274
3275 /* switch IP header pointer from outer to inner header */
3276 ip.hdr = skb_inner_network_header(skb);
3277
3278 /* compute tunnel header size */
3279 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3280 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3281
3282 /* indicate if we need to offload outer UDP header */
3283 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3284 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3285 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3286 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3287
3288 /* record tunnel offload values */
3289 *cd_tunneling |= tunnel;
3290
3291 /* switch L4 header pointer from outer to inner */
3292 l4.hdr = skb_inner_transport_header(skb);
3293 l4_proto = 0;
3294
3295 /* reset type as we transition from outer to inner headers */
3296 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3297 if (ip.v4->version == 4)
3298 *tx_flags |= I40E_TX_FLAGS_IPV4;
3299 if (ip.v6->version == 6)
3300 *tx_flags |= I40E_TX_FLAGS_IPV6;
3301 }
3302
3303 /* Enable IP checksum offloads */
3304 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3305 l4_proto = ip.v4->protocol;
3306 /* the stack computes the IP header already, the only time we
3307 * need the hardware to recompute it is in the case of TSO.
3308 */
3309 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3310 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3311 I40E_TX_DESC_CMD_IIPT_IPV4;
3312 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3313 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3314
3315 exthdr = ip.hdr + sizeof(*ip.v6);
3316 l4_proto = ip.v6->nexthdr;
3317 if (l4.hdr != exthdr)
3318 ipv6_skip_exthdr(skb, exthdr - skb->data,
3319 &l4_proto, &frag_off);
3320 }
3321
3322 /* compute inner L3 header size */
3323 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3324
3325 /* Enable L4 checksum offloads */
3326 switch (l4_proto) {
3327 case IPPROTO_TCP:
3328 /* enable checksum offloads */
3329 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3330 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3331 break;
3332 case IPPROTO_SCTP:
3333 /* enable SCTP checksum offload */
3334 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3335 offset |= (sizeof(struct sctphdr) >> 2) <<
3336 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3337 break;
3338 case IPPROTO_UDP:
3339 /* enable UDP checksum offload */
3340 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3341 offset |= (sizeof(struct udphdr) >> 2) <<
3342 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3343 break;
3344 default:
3345 if (*tx_flags & I40E_TX_FLAGS_TSO)
3346 return -1;
3347 skb_checksum_help(skb);
3348 return 0;
3349 }
3350
3351 *td_cmd |= cmd;
3352 *td_offset |= offset;
3353
3354 return 1;
3355 }
3356
3357 /**
3358 * i40e_create_tx_ctx - Build the Tx context descriptor
3359 * @tx_ring: ring to create the descriptor on
3360 * @cd_type_cmd_tso_mss: Quad Word 1
3361 * @cd_tunneling: Quad Word 0 - bits 0-31
3362 * @cd_l2tag2: Quad Word 0 - bits 32-63
3363 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3364 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3365 const u64 cd_type_cmd_tso_mss,
3366 const u32 cd_tunneling, const u32 cd_l2tag2)
3367 {
3368 struct i40e_tx_context_desc *context_desc;
3369 int i = tx_ring->next_to_use;
3370
3371 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3372 !cd_tunneling && !cd_l2tag2)
3373 return;
3374
3375 /* grab the next descriptor */
3376 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3377
3378 i++;
3379 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3380
3381 /* cpu_to_le32 and assign to struct fields */
3382 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3383 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3384 context_desc->rsvd = cpu_to_le16(0);
3385 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3386 }
3387
3388 /**
3389 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3390 * @tx_ring: the ring to be checked
3391 * @size: the size buffer we want to assure is available
3392 *
3393 * Returns -EBUSY if a stop is needed, else 0
3394 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3395 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3396 {
3397 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3398 /* Memory barrier before checking head and tail */
3399 smp_mb();
3400
3401 ++tx_ring->tx_stats.tx_stopped;
3402
3403 /* Check again in a case another CPU has just made room available. */
3404 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3405 return -EBUSY;
3406
3407 /* A reprieve! - use start_queue because it doesn't call schedule */
3408 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3409 ++tx_ring->tx_stats.restart_queue;
3410 return 0;
3411 }
3412
3413 /**
3414 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3415 * @skb: send buffer
3416 *
3417 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3418 * and so we need to figure out the cases where we need to linearize the skb.
3419 *
3420 * For TSO we need to count the TSO header and segment payload separately.
3421 * As such we need to check cases where we have 7 fragments or more as we
3422 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3423 * the segment payload in the first descriptor, and another 7 for the
3424 * fragments.
3425 **/
__i40e_chk_linearize(struct sk_buff * skb)3426 bool __i40e_chk_linearize(struct sk_buff *skb)
3427 {
3428 const skb_frag_t *frag, *stale;
3429 int nr_frags, sum;
3430
3431 /* no need to check if number of frags is less than 7 */
3432 nr_frags = skb_shinfo(skb)->nr_frags;
3433 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3434 return false;
3435
3436 /* We need to walk through the list and validate that each group
3437 * of 6 fragments totals at least gso_size.
3438 */
3439 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3440 frag = &skb_shinfo(skb)->frags[0];
3441
3442 /* Initialize size to the negative value of gso_size minus 1. We
3443 * use this as the worst case scenerio in which the frag ahead
3444 * of us only provides one byte which is why we are limited to 6
3445 * descriptors for a single transmit as the header and previous
3446 * fragment are already consuming 2 descriptors.
3447 */
3448 sum = 1 - skb_shinfo(skb)->gso_size;
3449
3450 /* Add size of frags 0 through 4 to create our initial sum */
3451 sum += skb_frag_size(frag++);
3452 sum += skb_frag_size(frag++);
3453 sum += skb_frag_size(frag++);
3454 sum += skb_frag_size(frag++);
3455 sum += skb_frag_size(frag++);
3456
3457 /* Walk through fragments adding latest fragment, testing it, and
3458 * then removing stale fragments from the sum.
3459 */
3460 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3461 int stale_size = skb_frag_size(stale);
3462
3463 sum += skb_frag_size(frag++);
3464
3465 /* The stale fragment may present us with a smaller
3466 * descriptor than the actual fragment size. To account
3467 * for that we need to remove all the data on the front and
3468 * figure out what the remainder would be in the last
3469 * descriptor associated with the fragment.
3470 */
3471 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3472 int align_pad = -(skb_frag_off(stale)) &
3473 (I40E_MAX_READ_REQ_SIZE - 1);
3474
3475 sum -= align_pad;
3476 stale_size -= align_pad;
3477
3478 do {
3479 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3480 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3481 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3482 }
3483
3484 /* if sum is negative we failed to make sufficient progress */
3485 if (sum < 0)
3486 return true;
3487
3488 if (!nr_frags--)
3489 break;
3490
3491 sum -= stale_size;
3492 }
3493
3494 return false;
3495 }
3496
3497 /**
3498 * i40e_tx_map - Build the Tx descriptor
3499 * @tx_ring: ring to send buffer on
3500 * @skb: send buffer
3501 * @first: first buffer info buffer to use
3502 * @tx_flags: collected send information
3503 * @hdr_len: size of the packet header
3504 * @td_cmd: the command field in the descriptor
3505 * @td_offset: offset for checksum or crc
3506 *
3507 * Returns 0 on success, -1 on failure to DMA
3508 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3509 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3510 struct i40e_tx_buffer *first, u32 tx_flags,
3511 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3512 {
3513 unsigned int data_len = skb->data_len;
3514 unsigned int size = skb_headlen(skb);
3515 skb_frag_t *frag;
3516 struct i40e_tx_buffer *tx_bi;
3517 struct i40e_tx_desc *tx_desc;
3518 u16 i = tx_ring->next_to_use;
3519 u32 td_tag = 0;
3520 dma_addr_t dma;
3521 u16 desc_count = 1;
3522
3523 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3524 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3525 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3526 I40E_TX_FLAGS_VLAN_SHIFT;
3527 }
3528
3529 first->tx_flags = tx_flags;
3530
3531 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3532
3533 tx_desc = I40E_TX_DESC(tx_ring, i);
3534 tx_bi = first;
3535
3536 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3537 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3538
3539 if (dma_mapping_error(tx_ring->dev, dma))
3540 goto dma_error;
3541
3542 /* record length, and DMA address */
3543 dma_unmap_len_set(tx_bi, len, size);
3544 dma_unmap_addr_set(tx_bi, dma, dma);
3545
3546 /* align size to end of page */
3547 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3548 tx_desc->buffer_addr = cpu_to_le64(dma);
3549
3550 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3551 tx_desc->cmd_type_offset_bsz =
3552 build_ctob(td_cmd, td_offset,
3553 max_data, td_tag);
3554
3555 tx_desc++;
3556 i++;
3557 desc_count++;
3558
3559 if (i == tx_ring->count) {
3560 tx_desc = I40E_TX_DESC(tx_ring, 0);
3561 i = 0;
3562 }
3563
3564 dma += max_data;
3565 size -= max_data;
3566
3567 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3568 tx_desc->buffer_addr = cpu_to_le64(dma);
3569 }
3570
3571 if (likely(!data_len))
3572 break;
3573
3574 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3575 size, td_tag);
3576
3577 tx_desc++;
3578 i++;
3579 desc_count++;
3580
3581 if (i == tx_ring->count) {
3582 tx_desc = I40E_TX_DESC(tx_ring, 0);
3583 i = 0;
3584 }
3585
3586 size = skb_frag_size(frag);
3587 data_len -= size;
3588
3589 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3590 DMA_TO_DEVICE);
3591
3592 tx_bi = &tx_ring->tx_bi[i];
3593 }
3594
3595 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3596
3597 i++;
3598 if (i == tx_ring->count)
3599 i = 0;
3600
3601 tx_ring->next_to_use = i;
3602
3603 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3604
3605 /* write last descriptor with EOP bit */
3606 td_cmd |= I40E_TX_DESC_CMD_EOP;
3607
3608 /* We OR these values together to check both against 4 (WB_STRIDE)
3609 * below. This is safe since we don't re-use desc_count afterwards.
3610 */
3611 desc_count |= ++tx_ring->packet_stride;
3612
3613 if (desc_count >= WB_STRIDE) {
3614 /* write last descriptor with RS bit set */
3615 td_cmd |= I40E_TX_DESC_CMD_RS;
3616 tx_ring->packet_stride = 0;
3617 }
3618
3619 tx_desc->cmd_type_offset_bsz =
3620 build_ctob(td_cmd, td_offset, size, td_tag);
3621
3622 skb_tx_timestamp(skb);
3623
3624 /* Force memory writes to complete before letting h/w know there
3625 * are new descriptors to fetch.
3626 *
3627 * We also use this memory barrier to make certain all of the
3628 * status bits have been updated before next_to_watch is written.
3629 */
3630 wmb();
3631
3632 /* set next_to_watch value indicating a packet is present */
3633 first->next_to_watch = tx_desc;
3634
3635 /* notify HW of packet */
3636 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3637 writel(i, tx_ring->tail);
3638 }
3639
3640 return 0;
3641
3642 dma_error:
3643 dev_info(tx_ring->dev, "TX DMA map failed\n");
3644
3645 /* clear dma mappings for failed tx_bi map */
3646 for (;;) {
3647 tx_bi = &tx_ring->tx_bi[i];
3648 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3649 if (tx_bi == first)
3650 break;
3651 if (i == 0)
3652 i = tx_ring->count;
3653 i--;
3654 }
3655
3656 tx_ring->next_to_use = i;
3657
3658 return -1;
3659 }
3660
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3661 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3662 const struct sk_buff *skb,
3663 u16 num_tx_queues)
3664 {
3665 u32 jhash_initval_salt = 0xd631614b;
3666 u32 hash;
3667
3668 if (skb->sk && skb->sk->sk_hash)
3669 hash = skb->sk->sk_hash;
3670 else
3671 hash = (__force u16)skb->protocol ^ skb->hash;
3672
3673 hash = jhash_1word(hash, jhash_initval_salt);
3674
3675 return (u16)(((u64)hash * num_tx_queues) >> 32);
3676 }
3677
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3678 u16 i40e_lan_select_queue(struct net_device *netdev,
3679 struct sk_buff *skb,
3680 struct net_device __always_unused *sb_dev)
3681 {
3682 struct i40e_netdev_priv *np = netdev_priv(netdev);
3683 struct i40e_vsi *vsi = np->vsi;
3684 struct i40e_hw *hw;
3685 u16 qoffset;
3686 u16 qcount;
3687 u8 tclass;
3688 u16 hash;
3689 u8 prio;
3690
3691 /* is DCB enabled at all? */
3692 if (vsi->tc_config.numtc == 1 ||
3693 i40e_is_tc_mqprio_enabled(vsi->back))
3694 return netdev_pick_tx(netdev, skb, sb_dev);
3695
3696 prio = skb->priority;
3697 hw = &vsi->back->hw;
3698 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3699 /* sanity check */
3700 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3701 tclass = 0;
3702
3703 /* select a queue assigned for the given TC */
3704 qcount = vsi->tc_config.tc_info[tclass].qcount;
3705 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3706
3707 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3708 return qoffset + hash;
3709 }
3710
3711 /**
3712 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3713 * @xdpf: data to transmit
3714 * @xdp_ring: XDP Tx ring
3715 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3716 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3717 struct i40e_ring *xdp_ring)
3718 {
3719 u16 i = xdp_ring->next_to_use;
3720 struct i40e_tx_buffer *tx_bi;
3721 struct i40e_tx_desc *tx_desc;
3722 void *data = xdpf->data;
3723 u32 size = xdpf->len;
3724 dma_addr_t dma;
3725
3726 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3727 xdp_ring->tx_stats.tx_busy++;
3728 return I40E_XDP_CONSUMED;
3729 }
3730 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3731 if (dma_mapping_error(xdp_ring->dev, dma))
3732 return I40E_XDP_CONSUMED;
3733
3734 tx_bi = &xdp_ring->tx_bi[i];
3735 tx_bi->bytecount = size;
3736 tx_bi->gso_segs = 1;
3737 tx_bi->xdpf = xdpf;
3738
3739 /* record length, and DMA address */
3740 dma_unmap_len_set(tx_bi, len, size);
3741 dma_unmap_addr_set(tx_bi, dma, dma);
3742
3743 tx_desc = I40E_TX_DESC(xdp_ring, i);
3744 tx_desc->buffer_addr = cpu_to_le64(dma);
3745 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3746 | I40E_TXD_CMD,
3747 0, size, 0);
3748
3749 /* Make certain all of the status bits have been updated
3750 * before next_to_watch is written.
3751 */
3752 smp_wmb();
3753
3754 xdp_ring->xdp_tx_active++;
3755 i++;
3756 if (i == xdp_ring->count)
3757 i = 0;
3758
3759 tx_bi->next_to_watch = tx_desc;
3760 xdp_ring->next_to_use = i;
3761
3762 return I40E_XDP_TX;
3763 }
3764
3765 /**
3766 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3767 * @skb: send buffer
3768 * @tx_ring: ring to send buffer on
3769 *
3770 * Returns NETDEV_TX_OK if sent, else an error code
3771 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3772 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3773 struct i40e_ring *tx_ring)
3774 {
3775 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3776 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3777 struct i40e_tx_buffer *first;
3778 u32 td_offset = 0;
3779 u32 tx_flags = 0;
3780 u32 td_cmd = 0;
3781 u8 hdr_len = 0;
3782 int tso, count;
3783 int tsyn;
3784
3785 /* prefetch the data, we'll need it later */
3786 prefetch(skb->data);
3787
3788 i40e_trace(xmit_frame_ring, skb, tx_ring);
3789
3790 count = i40e_xmit_descriptor_count(skb);
3791 if (i40e_chk_linearize(skb, count)) {
3792 if (__skb_linearize(skb)) {
3793 dev_kfree_skb_any(skb);
3794 return NETDEV_TX_OK;
3795 }
3796 count = i40e_txd_use_count(skb->len);
3797 tx_ring->tx_stats.tx_linearize++;
3798 }
3799
3800 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3801 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3802 * + 4 desc gap to avoid the cache line where head is,
3803 * + 1 desc for context descriptor,
3804 * otherwise try next time
3805 */
3806 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3807 tx_ring->tx_stats.tx_busy++;
3808 return NETDEV_TX_BUSY;
3809 }
3810
3811 /* record the location of the first descriptor for this packet */
3812 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3813 first->skb = skb;
3814 first->bytecount = skb->len;
3815 first->gso_segs = 1;
3816
3817 /* prepare the xmit flags */
3818 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3819 goto out_drop;
3820
3821 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3822
3823 if (tso < 0)
3824 goto out_drop;
3825 else if (tso)
3826 tx_flags |= I40E_TX_FLAGS_TSO;
3827
3828 /* Always offload the checksum, since it's in the data descriptor */
3829 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3830 tx_ring, &cd_tunneling);
3831 if (tso < 0)
3832 goto out_drop;
3833
3834 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3835
3836 if (tsyn)
3837 tx_flags |= I40E_TX_FLAGS_TSYN;
3838
3839 /* always enable CRC insertion offload */
3840 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3841
3842 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3843 cd_tunneling, cd_l2tag2);
3844
3845 /* Add Flow Director ATR if it's enabled.
3846 *
3847 * NOTE: this must always be directly before the data descriptor.
3848 */
3849 i40e_atr(tx_ring, skb, tx_flags);
3850
3851 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3852 td_cmd, td_offset))
3853 goto cleanup_tx_tstamp;
3854
3855 return NETDEV_TX_OK;
3856
3857 out_drop:
3858 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3859 dev_kfree_skb_any(first->skb);
3860 first->skb = NULL;
3861 cleanup_tx_tstamp:
3862 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3863 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3864
3865 dev_kfree_skb_any(pf->ptp_tx_skb);
3866 pf->ptp_tx_skb = NULL;
3867 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3868 }
3869
3870 return NETDEV_TX_OK;
3871 }
3872
3873 /**
3874 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3875 * @skb: send buffer
3876 * @netdev: network interface device structure
3877 *
3878 * Returns NETDEV_TX_OK if sent, else an error code
3879 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3880 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3881 {
3882 struct i40e_netdev_priv *np = netdev_priv(netdev);
3883 struct i40e_vsi *vsi = np->vsi;
3884 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3885
3886 /* hardware can't handle really short frames, hardware padding works
3887 * beyond this point
3888 */
3889 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3890 return NETDEV_TX_OK;
3891
3892 return i40e_xmit_frame_ring(skb, tx_ring);
3893 }
3894
3895 /**
3896 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3897 * @dev: netdev
3898 * @n: number of frames
3899 * @frames: array of XDP buffer pointers
3900 * @flags: XDP extra info
3901 *
3902 * Returns number of frames successfully sent. Failed frames
3903 * will be free'ed by XDP core.
3904 *
3905 * For error cases, a negative errno code is returned and no-frames
3906 * are transmitted (caller must handle freeing frames).
3907 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3908 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3909 u32 flags)
3910 {
3911 struct i40e_netdev_priv *np = netdev_priv(dev);
3912 unsigned int queue_index = smp_processor_id();
3913 struct i40e_vsi *vsi = np->vsi;
3914 struct i40e_pf *pf = vsi->back;
3915 struct i40e_ring *xdp_ring;
3916 int nxmit = 0;
3917 int i;
3918
3919 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3920 return -ENETDOWN;
3921
3922 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3923 test_bit(__I40E_CONFIG_BUSY, pf->state))
3924 return -ENXIO;
3925
3926 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3927 return -EINVAL;
3928
3929 xdp_ring = vsi->xdp_rings[queue_index];
3930
3931 for (i = 0; i < n; i++) {
3932 struct xdp_frame *xdpf = frames[i];
3933 int err;
3934
3935 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3936 if (err != I40E_XDP_TX)
3937 break;
3938 nxmit++;
3939 }
3940
3941 if (unlikely(flags & XDP_XMIT_FLUSH))
3942 i40e_xdp_ring_update_tail(xdp_ring);
3943
3944 return nxmit;
3945 }
3946