1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
43 *
44 * This handles the RX path.
45 *
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
49 *
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
54 *
55 * PROTOCOL FORMAT
56 *
57 * The format of the buffer is:
58 *
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
68 *
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
71 *
72 * DATA PACKETS
73 *
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
76 *
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
81 *
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
84 *
85 * DATA RX REORDERING
86 *
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
91 *
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
96 *
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
100 *
101 * - reset queue: send all queued packets to the OS
102 *
103 * - queue: queue a packet
104 *
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
107 *
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
110 *
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
113 *
114 * See the i2400m_roq_*() functions for details.
115 *
116 * ROADMAP
117 *
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
146 */
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
152 #include "i2400m.h"
153
154
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
157
158 static int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
159 module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
160 MODULE_PARM_DESC(rx_reorder_disabled,
161 "If true, RX reordering will be disabled.");
162
163 struct i2400m_report_hook_args {
164 struct sk_buff *skb_rx;
165 const struct i2400m_l3l4_hdr *l3l4_hdr;
166 size_t size;
167 struct list_head list_node;
168 };
169
170
171 /*
172 * Execute i2400m_report_hook in a workqueue
173 *
174 * Goes over the list of queued reports in i2400m->rx_reports and
175 * processes them.
176 *
177 * NOTE: refcounts on i2400m are not needed because we flush the
178 * workqueue this runs on (i2400m->work_queue) before destroying
179 * i2400m.
180 */
i2400m_report_hook_work(struct work_struct * ws)181 void i2400m_report_hook_work(struct work_struct *ws)
182 {
183 struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
184 struct device *dev = i2400m_dev(i2400m);
185 struct i2400m_report_hook_args *args, *args_next;
186 LIST_HEAD(list);
187 unsigned long flags;
188
189 while (1) {
190 spin_lock_irqsave(&i2400m->rx_lock, flags);
191 list_splice_init(&i2400m->rx_reports, &list);
192 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
193 if (list_empty(&list))
194 break;
195 else
196 d_printf(1, dev, "processing queued reports\n");
197 list_for_each_entry_safe(args, args_next, &list, list_node) {
198 d_printf(2, dev, "processing queued report %p\n", args);
199 i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
200 kfree_skb(args->skb_rx);
201 list_del(&args->list_node);
202 kfree(args);
203 }
204 }
205 }
206
207
208 /*
209 * Flush the list of queued reports
210 */
211 static
i2400m_report_hook_flush(struct i2400m * i2400m)212 void i2400m_report_hook_flush(struct i2400m *i2400m)
213 {
214 struct device *dev = i2400m_dev(i2400m);
215 struct i2400m_report_hook_args *args, *args_next;
216 LIST_HEAD(list);
217 unsigned long flags;
218
219 d_printf(1, dev, "flushing queued reports\n");
220 spin_lock_irqsave(&i2400m->rx_lock, flags);
221 list_splice_init(&i2400m->rx_reports, &list);
222 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
223 list_for_each_entry_safe(args, args_next, &list, list_node) {
224 d_printf(2, dev, "flushing queued report %p\n", args);
225 kfree_skb(args->skb_rx);
226 list_del(&args->list_node);
227 kfree(args);
228 }
229 }
230
231
232 /*
233 * Queue a report for later processing
234 *
235 * @i2400m: device descriptor
236 * @skb_rx: skb that contains the payload (for reference counting)
237 * @l3l4_hdr: pointer to the control
238 * @size: size of the message
239 */
240 static
i2400m_report_hook_queue(struct i2400m * i2400m,struct sk_buff * skb_rx,const void * l3l4_hdr,size_t size)241 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
242 const void *l3l4_hdr, size_t size)
243 {
244 struct device *dev = i2400m_dev(i2400m);
245 unsigned long flags;
246 struct i2400m_report_hook_args *args;
247
248 args = kzalloc(sizeof(*args), GFP_NOIO);
249 if (args) {
250 args->skb_rx = skb_get(skb_rx);
251 args->l3l4_hdr = l3l4_hdr;
252 args->size = size;
253 spin_lock_irqsave(&i2400m->rx_lock, flags);
254 list_add_tail(&args->list_node, &i2400m->rx_reports);
255 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
256 d_printf(2, dev, "queued report %p\n", args);
257 rmb(); /* see i2400m->ready's documentation */
258 if (likely(i2400m->ready)) /* only send if up */
259 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
260 } else {
261 if (printk_ratelimit())
262 dev_err(dev, "%s:%u: Can't allocate %zu B\n",
263 __func__, __LINE__, sizeof(*args));
264 }
265 }
266
267
268 /*
269 * Process an ack to a command
270 *
271 * @i2400m: device descriptor
272 * @payload: pointer to message
273 * @size: size of the message
274 *
275 * Pass the acknodledgment (in an skb) to the thread that is waiting
276 * for it in i2400m->msg_completion.
277 *
278 * We need to coordinate properly with the thread waiting for the
279 * ack. Check if it is waiting or if it is gone. We loose the spinlock
280 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
281 * but this is not so speed critical).
282 */
283 static
i2400m_rx_ctl_ack(struct i2400m * i2400m,const void * payload,size_t size)284 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
285 const void *payload, size_t size)
286 {
287 struct device *dev = i2400m_dev(i2400m);
288 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289 unsigned long flags;
290 struct sk_buff *ack_skb;
291
292 /* Anyone waiting for an answer? */
293 spin_lock_irqsave(&i2400m->rx_lock, flags);
294 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
295 dev_err(dev, "Huh? reply to command with no waiters\n");
296 goto error_no_waiter;
297 }
298 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
299
300 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
301
302 /* Check waiter didn't time out waiting for the answer... */
303 spin_lock_irqsave(&i2400m->rx_lock, flags);
304 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
305 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
306 goto error_waiter_cancelled;
307 }
308 if (IS_ERR(ack_skb))
309 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
310 i2400m->ack_skb = ack_skb;
311 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
312 complete(&i2400m->msg_completion);
313 return;
314
315 error_waiter_cancelled:
316 if (!IS_ERR(ack_skb))
317 kfree_skb(ack_skb);
318 error_no_waiter:
319 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
320 }
321
322
323 /*
324 * Receive and process a control payload
325 *
326 * @i2400m: device descriptor
327 * @skb_rx: skb that contains the payload (for reference counting)
328 * @payload: pointer to message
329 * @size: size of the message
330 *
331 * There are two types of control RX messages: reports (asynchronous,
332 * like your every day interrupts) and 'acks' (reponses to a command,
333 * get or set request).
334 *
335 * If it is a report, we run hooks on it (to extract information for
336 * things we need to do in the driver) and then pass it over to the
337 * WiMAX stack to send it to user space.
338 *
339 * NOTE: report processing is done in a workqueue specific to the
340 * generic driver, to avoid deadlocks in the system.
341 *
342 * If it is not a report, it is an ack to a previously executed
343 * command, set or get, so wake up whoever is waiting for it from
344 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
345 *
346 * Note that the sizes we pass to other functions from here are the
347 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
348 * verified in _msg_size_check() that they are congruent.
349 *
350 * For reports: We can't clone the original skb where the data is
351 * because we need to send this up via netlink; netlink has to add
352 * headers and we can't overwrite what's preceding the payload...as
353 * it is another message. So we just dup them.
354 */
355 static
i2400m_rx_ctl(struct i2400m * i2400m,struct sk_buff * skb_rx,const void * payload,size_t size)356 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
357 const void *payload, size_t size)
358 {
359 int result;
360 struct device *dev = i2400m_dev(i2400m);
361 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
362 unsigned msg_type;
363
364 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
365 if (result < 0) {
366 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
367 result);
368 goto error_check;
369 }
370 msg_type = le16_to_cpu(l3l4_hdr->type);
371 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
372 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
373 msg_type, size);
374 d_dump(2, dev, l3l4_hdr, size);
375 if (msg_type & I2400M_MT_REPORT_MASK) {
376 /*
377 * Process each report
378 *
379 * - has to be ran serialized as well
380 *
381 * - the handling might force the execution of
382 * commands. That might cause reentrancy issues with
383 * bus-specific subdrivers and workqueues, so the we
384 * run it in a separate workqueue.
385 *
386 * - when the driver is not yet ready to handle them,
387 * they are queued and at some point the queue is
388 * restarted [NOTE: we can't queue SKBs directly, as
389 * this might be a piece of a SKB, not the whole
390 * thing, and this is cheaper than cloning the
391 * SKB].
392 *
393 * Note we don't do refcounting for the device
394 * structure; this is because before destroying
395 * 'i2400m', we make sure to flush the
396 * i2400m->work_queue, so there are no issues.
397 */
398 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
399 if (unlikely(i2400m->trace_msg_from_user))
400 wimax_msg(&i2400m->wimax_dev, "echo",
401 l3l4_hdr, size, GFP_KERNEL);
402 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
403 GFP_KERNEL);
404 if (result < 0)
405 dev_err(dev, "error sending report to userspace: %d\n",
406 result);
407 } else /* an ack to a CMD, GET or SET */
408 i2400m_rx_ctl_ack(i2400m, payload, size);
409 error_check:
410 return;
411 }
412
413
414 /*
415 * Receive and send up a trace
416 *
417 * @i2400m: device descriptor
418 * @skb_rx: skb that contains the trace (for reference counting)
419 * @payload: pointer to trace message inside the skb
420 * @size: size of the message
421 *
422 * THe i2400m might produce trace information (diagnostics) and we
423 * send them through a different kernel-to-user pipe (to avoid
424 * clogging it).
425 *
426 * As in i2400m_rx_ctl(), we can't clone the original skb where the
427 * data is because we need to send this up via netlink; netlink has to
428 * add headers and we can't overwrite what's preceding the
429 * payload...as it is another message. So we just dup them.
430 */
431 static
i2400m_rx_trace(struct i2400m * i2400m,const void * payload,size_t size)432 void i2400m_rx_trace(struct i2400m *i2400m,
433 const void *payload, size_t size)
434 {
435 int result;
436 struct device *dev = i2400m_dev(i2400m);
437 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
438 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
439 unsigned msg_type;
440
441 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
442 if (result < 0) {
443 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
444 result);
445 goto error_check;
446 }
447 msg_type = le16_to_cpu(l3l4_hdr->type);
448 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
449 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
450 msg_type, size);
451 d_dump(2, dev, l3l4_hdr, size);
452 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
453 if (result < 0)
454 dev_err(dev, "error sending trace to userspace: %d\n",
455 result);
456 error_check:
457 return;
458 }
459
460
461 /*
462 * Reorder queue data stored on skb->cb while the skb is queued in the
463 * reorder queues.
464 */
465 struct i2400m_roq_data {
466 unsigned sn; /* Serial number for the skb */
467 enum i2400m_cs cs; /* packet type for the skb */
468 };
469
470
471 /*
472 * ReOrder Queue
473 *
474 * @ws: Window Start; sequence number where the current window start
475 * is for this queue
476 * @queue: the skb queue itself
477 * @log: circular ring buffer used to log information about the
478 * reorder process in this queue that can be displayed in case of
479 * error to help diagnose it.
480 *
481 * This is the head for a list of skbs. In the skb->cb member of the
482 * skb when queued here contains a 'struct i2400m_roq_data' were we
483 * store the sequence number (sn) and the cs (packet type) coming from
484 * the RX payload header from the device.
485 */
486 struct i2400m_roq
487 {
488 unsigned ws;
489 struct sk_buff_head queue;
490 struct i2400m_roq_log *log;
491 };
492
493
494 static
__i2400m_roq_init(struct i2400m_roq * roq)495 void __i2400m_roq_init(struct i2400m_roq *roq)
496 {
497 roq->ws = 0;
498 skb_queue_head_init(&roq->queue);
499 }
500
501
502 static
__i2400m_roq_index(struct i2400m * i2400m,struct i2400m_roq * roq)503 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
504 {
505 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
506 / sizeof(*roq);
507 }
508
509
510 /*
511 * Normalize a sequence number based on the queue's window start
512 *
513 * nsn = (sn - ws) % 2048
514 *
515 * Note that if @sn < @roq->ws, we still need a positive number; %'s
516 * sign is implementation specific, so we normalize it by adding 2048
517 * to bring it to be positive.
518 */
519 static
__i2400m_roq_nsn(struct i2400m_roq * roq,unsigned sn)520 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
521 {
522 int r;
523 r = ((int) sn - (int) roq->ws) % 2048;
524 if (r < 0)
525 r += 2048;
526 return r;
527 }
528
529
530 /*
531 * Circular buffer to keep the last N reorder operations
532 *
533 * In case something fails, dumb then to try to come up with what
534 * happened.
535 */
536 enum {
537 I2400M_ROQ_LOG_LENGTH = 32,
538 };
539
540 struct i2400m_roq_log {
541 struct i2400m_roq_log_entry {
542 enum i2400m_ro_type type;
543 unsigned ws, count, sn, nsn, new_ws;
544 } entry[I2400M_ROQ_LOG_LENGTH];
545 unsigned in, out;
546 };
547
548
549 /* Print a log entry */
550 static
i2400m_roq_log_entry_print(struct i2400m * i2400m,unsigned index,unsigned e_index,struct i2400m_roq_log_entry * e)551 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
552 unsigned e_index,
553 struct i2400m_roq_log_entry *e)
554 {
555 struct device *dev = i2400m_dev(i2400m);
556
557 switch(e->type) {
558 case I2400M_RO_TYPE_RESET:
559 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
560 " - new nws %u\n",
561 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
562 break;
563 case I2400M_RO_TYPE_PACKET:
564 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
565 index, e->ws, e->count, e->sn, e->nsn);
566 break;
567 case I2400M_RO_TYPE_WS:
568 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
569 " - new nws %u\n",
570 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
571 break;
572 case I2400M_RO_TYPE_PACKET_WS:
573 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
574 " - new nws %u\n",
575 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
576 break;
577 default:
578 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
579 index, e_index, e->type);
580 break;
581 }
582 }
583
584
585 static
i2400m_roq_log_add(struct i2400m * i2400m,struct i2400m_roq * roq,enum i2400m_ro_type type,unsigned ws,unsigned count,unsigned sn,unsigned nsn,unsigned new_ws)586 void i2400m_roq_log_add(struct i2400m *i2400m,
587 struct i2400m_roq *roq, enum i2400m_ro_type type,
588 unsigned ws, unsigned count, unsigned sn,
589 unsigned nsn, unsigned new_ws)
590 {
591 struct i2400m_roq_log_entry *e;
592 unsigned cnt_idx;
593 int index = __i2400m_roq_index(i2400m, roq);
594
595 /* if we run out of space, we eat from the end */
596 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
597 roq->log->out++;
598 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
599 e = &roq->log->entry[cnt_idx];
600
601 e->type = type;
602 e->ws = ws;
603 e->count = count;
604 e->sn = sn;
605 e->nsn = nsn;
606 e->new_ws = new_ws;
607
608 if (d_test(1))
609 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
610 }
611
612
613 /* Dump all the entries in the FIFO and reinitialize it */
614 static
i2400m_roq_log_dump(struct i2400m * i2400m,struct i2400m_roq * roq)615 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
616 {
617 unsigned cnt, cnt_idx;
618 struct i2400m_roq_log_entry *e;
619 int index = __i2400m_roq_index(i2400m, roq);
620
621 BUG_ON(roq->log->out > roq->log->in);
622 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
623 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
624 e = &roq->log->entry[cnt_idx];
625 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
626 memset(e, 0, sizeof(*e));
627 }
628 roq->log->in = roq->log->out = 0;
629 }
630
631
632 /*
633 * Backbone for the queuing of an skb (by normalized sequence number)
634 *
635 * @i2400m: device descriptor
636 * @roq: reorder queue where to add
637 * @skb: the skb to add
638 * @sn: the sequence number of the skb
639 * @nsn: the normalized sequence number of the skb (pre-computed by the
640 * caller from the @sn and @roq->ws).
641 *
642 * We try first a couple of quick cases:
643 *
644 * - the queue is empty
645 * - the skb would be appended to the queue
646 *
647 * These will be the most common operations.
648 *
649 * If these fail, then we have to do a sorted insertion in the queue,
650 * which is the slowest path.
651 *
652 * We don't have to acquire a reference count as we are going to own it.
653 */
654 static
__i2400m_roq_queue(struct i2400m * i2400m,struct i2400m_roq * roq,struct sk_buff * skb,unsigned sn,unsigned nsn)655 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
656 struct sk_buff *skb, unsigned sn, unsigned nsn)
657 {
658 struct device *dev = i2400m_dev(i2400m);
659 struct sk_buff *skb_itr;
660 struct i2400m_roq_data *roq_data_itr, *roq_data;
661 unsigned nsn_itr;
662
663 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
664 i2400m, roq, skb, sn, nsn);
665
666 roq_data = (struct i2400m_roq_data *) &skb->cb;
667 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
668 roq_data->sn = sn;
669 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
670 roq, roq->ws, nsn, roq_data->sn);
671
672 /* Queues will be empty on not-so-bad environments, so try
673 * that first */
674 if (skb_queue_empty(&roq->queue)) {
675 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
676 __skb_queue_head(&roq->queue, skb);
677 goto out;
678 }
679 /* Now try append, as most of the operations will be that */
680 skb_itr = skb_peek_tail(&roq->queue);
681 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
682 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
683 /* NSN bounds assumed correct (checked when it was queued) */
684 if (nsn >= nsn_itr) {
685 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
686 roq, skb_itr, nsn_itr, roq_data_itr->sn);
687 __skb_queue_tail(&roq->queue, skb);
688 goto out;
689 }
690 /* None of the fast paths option worked. Iterate to find the
691 * right spot where to insert the packet; we know the queue is
692 * not empty, so we are not the first ones; we also know we
693 * are not going to be the last ones. The list is sorted, so
694 * we have to insert before the the first guy with an nsn_itr
695 * greater that our nsn. */
696 skb_queue_walk(&roq->queue, skb_itr) {
697 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
698 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
699 /* NSN bounds assumed correct (checked when it was queued) */
700 if (nsn_itr > nsn) {
701 d_printf(2, dev, "ERX: roq %p - queued before %p "
702 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
703 roq_data_itr->sn);
704 __skb_queue_before(&roq->queue, skb_itr, skb);
705 goto out;
706 }
707 }
708 /* If we get here, that is VERY bad -- print info to help
709 * diagnose and crash it */
710 dev_err(dev, "SW BUG? failed to insert packet\n");
711 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
712 roq, roq->ws, skb, nsn, roq_data->sn);
713 skb_queue_walk(&roq->queue, skb_itr) {
714 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
715 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
716 /* NSN bounds assumed correct (checked when it was queued) */
717 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
718 roq, skb_itr, nsn_itr, roq_data_itr->sn);
719 }
720 BUG();
721 out:
722 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
723 i2400m, roq, skb, sn, nsn);
724 }
725
726
727 /*
728 * Backbone for the update window start operation
729 *
730 * @i2400m: device descriptor
731 * @roq: Reorder queue
732 * @sn: New sequence number
733 *
734 * Updates the window start of a queue; when doing so, it must deliver
735 * to the networking stack all the queued skb's whose normalized
736 * sequence number is lower than the new normalized window start.
737 */
738 static
__i2400m_roq_update_ws(struct i2400m * i2400m,struct i2400m_roq * roq,unsigned sn)739 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
740 unsigned sn)
741 {
742 struct device *dev = i2400m_dev(i2400m);
743 struct sk_buff *skb_itr, *tmp_itr;
744 struct i2400m_roq_data *roq_data_itr;
745 unsigned new_nws, nsn_itr;
746
747 new_nws = __i2400m_roq_nsn(roq, sn);
748 /*
749 * For type 2(update_window_start) rx messages, there is no
750 * need to check if the normalized sequence number is greater 1023.
751 * Simply insert and deliver all packets to the host up to the
752 * window start.
753 */
754 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
755 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
756 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
757 /* NSN bounds assumed correct (checked when it was queued) */
758 if (nsn_itr < new_nws) {
759 d_printf(2, dev, "ERX: roq %p - release skb %p "
760 "(nsn %u/%u new nws %u)\n",
761 roq, skb_itr, nsn_itr, roq_data_itr->sn,
762 new_nws);
763 __skb_unlink(skb_itr, &roq->queue);
764 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
765 }
766 else
767 break; /* rest of packets all nsn_itr > nws */
768 }
769 roq->ws = sn;
770 return new_nws;
771 }
772
773
774 /*
775 * Reset a queue
776 *
777 * @i2400m: device descriptor
778 * @cin: Queue Index
779 *
780 * Deliver all the packets and reset the window-start to zero. Name is
781 * kind of misleading.
782 */
783 static
i2400m_roq_reset(struct i2400m * i2400m,struct i2400m_roq * roq)784 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
785 {
786 struct device *dev = i2400m_dev(i2400m);
787 struct sk_buff *skb_itr, *tmp_itr;
788 struct i2400m_roq_data *roq_data_itr;
789
790 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
791 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
792 roq->ws, skb_queue_len(&roq->queue),
793 ~0, ~0, 0);
794 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
795 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
796 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
797 roq, skb_itr, roq_data_itr->sn);
798 __skb_unlink(skb_itr, &roq->queue);
799 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
800 }
801 roq->ws = 0;
802 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
803 }
804
805
806 /*
807 * Queue a packet
808 *
809 * @i2400m: device descriptor
810 * @cin: Queue Index
811 * @skb: containing the packet data
812 * @fbn: First block number of the packet in @skb
813 * @lbn: Last block number of the packet in @skb
814 *
815 * The hardware is asking the driver to queue a packet for later
816 * delivery to the networking stack.
817 */
818 static
i2400m_roq_queue(struct i2400m * i2400m,struct i2400m_roq * roq,struct sk_buff * skb,unsigned lbn)819 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
820 struct sk_buff * skb, unsigned lbn)
821 {
822 struct device *dev = i2400m_dev(i2400m);
823 unsigned nsn, len;
824
825 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
826 i2400m, roq, skb, lbn);
827 len = skb_queue_len(&roq->queue);
828 nsn = __i2400m_roq_nsn(roq, lbn);
829 if (unlikely(nsn >= 1024)) {
830 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
831 nsn, lbn, roq->ws);
832 i2400m_roq_log_dump(i2400m, roq);
833 i2400m_reset(i2400m, I2400M_RT_WARM);
834 } else {
835 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
836 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
837 roq->ws, len, lbn, nsn, ~0);
838 }
839 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
840 i2400m, roq, skb, lbn);
841 }
842
843
844 /*
845 * Update the window start in a reorder queue and deliver all skbs
846 * with a lower window start
847 *
848 * @i2400m: device descriptor
849 * @roq: Reorder queue
850 * @sn: New sequence number
851 */
852 static
i2400m_roq_update_ws(struct i2400m * i2400m,struct i2400m_roq * roq,unsigned sn)853 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
854 unsigned sn)
855 {
856 struct device *dev = i2400m_dev(i2400m);
857 unsigned old_ws, nsn, len;
858
859 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
860 old_ws = roq->ws;
861 len = skb_queue_len(&roq->queue);
862 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
863 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
864 old_ws, len, sn, nsn, roq->ws);
865 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
866 }
867
868
869 /*
870 * Queue a packet and update the window start
871 *
872 * @i2400m: device descriptor
873 * @cin: Queue Index
874 * @skb: containing the packet data
875 * @fbn: First block number of the packet in @skb
876 * @sn: Last block number of the packet in @skb
877 *
878 * Note that unlike i2400m_roq_update_ws(), which sets the new window
879 * start to @sn, in here we'll set it to @sn + 1.
880 */
881 static
i2400m_roq_queue_update_ws(struct i2400m * i2400m,struct i2400m_roq * roq,struct sk_buff * skb,unsigned sn)882 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
883 struct sk_buff * skb, unsigned sn)
884 {
885 struct device *dev = i2400m_dev(i2400m);
886 unsigned nsn, old_ws, len;
887
888 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
889 i2400m, roq, skb, sn);
890 len = skb_queue_len(&roq->queue);
891 nsn = __i2400m_roq_nsn(roq, sn);
892 /*
893 * For type 3(queue_update_window_start) rx messages, there is no
894 * need to check if the normalized sequence number is greater 1023.
895 * Simply insert and deliver all packets to the host up to the
896 * window start.
897 */
898 old_ws = roq->ws;
899 /* If the queue is empty, don't bother as we'd queue
900 * it and immediately unqueue it -- just deliver it.
901 */
902 if (len == 0) {
903 struct i2400m_roq_data *roq_data;
904 roq_data = (struct i2400m_roq_data *) &skb->cb;
905 i2400m_net_erx(i2400m, skb, roq_data->cs);
906 } else
907 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
908
909 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
910 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
911 old_ws, len, sn, nsn, roq->ws);
912
913 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
914 i2400m, roq, skb, sn);
915 }
916
917
918 /*
919 * This routine destroys the memory allocated for rx_roq, when no
920 * other thread is accessing it. Access to rx_roq is refcounted by
921 * rx_roq_refcount, hence memory allocated must be destroyed when
922 * rx_roq_refcount becomes zero. This routine gets executed when
923 * rx_roq_refcount becomes zero.
924 */
i2400m_rx_roq_destroy(struct kref * ref)925 static void i2400m_rx_roq_destroy(struct kref *ref)
926 {
927 unsigned itr;
928 struct i2400m *i2400m
929 = container_of(ref, struct i2400m, rx_roq_refcount);
930 for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
931 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
932 kfree(i2400m->rx_roq[0].log);
933 kfree(i2400m->rx_roq);
934 i2400m->rx_roq = NULL;
935 }
936
937 /*
938 * Receive and send up an extended data packet
939 *
940 * @i2400m: device descriptor
941 * @skb_rx: skb that contains the extended data packet
942 * @single_last: 1 if the payload is the only one or the last one of
943 * the skb.
944 * @payload: pointer to the packet's data inside the skb
945 * @size: size of the payload
946 *
947 * Starting in v1.4 of the i2400m's firmware, the device can send data
948 * packets to the host in an extended format that; this incudes a 16
949 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
950 * we can fake ethernet headers for ethernet device emulation without
951 * having to copy packets around.
952 *
953 * This function handles said path.
954 *
955 *
956 * Receive and send up an extended data packet that requires no reordering
957 *
958 * @i2400m: device descriptor
959 * @skb_rx: skb that contains the extended data packet
960 * @single_last: 1 if the payload is the only one or the last one of
961 * the skb.
962 * @payload: pointer to the packet's data (past the actual extended
963 * data payload header).
964 * @size: size of the payload
965 *
966 * Pass over to the networking stack a data packet that might have
967 * reordering requirements.
968 *
969 * This needs to the decide if the skb in which the packet is
970 * contained can be reused or if it needs to be cloned. Then it has to
971 * be trimmed in the edges so that the beginning is the space for eth
972 * header and then pass it to i2400m_net_erx() for the stack
973 *
974 * Assumes the caller has verified the sanity of the payload (size,
975 * etc) already.
976 */
977 static
i2400m_rx_edata(struct i2400m * i2400m,struct sk_buff * skb_rx,unsigned single_last,const void * payload,size_t size)978 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
979 unsigned single_last, const void *payload, size_t size)
980 {
981 struct device *dev = i2400m_dev(i2400m);
982 const struct i2400m_pl_edata_hdr *hdr = payload;
983 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
984 struct sk_buff *skb;
985 enum i2400m_cs cs;
986 u32 reorder;
987 unsigned ro_needed, ro_type, ro_cin, ro_sn;
988 struct i2400m_roq *roq;
989 struct i2400m_roq_data *roq_data;
990 unsigned long flags;
991
992 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
993
994 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
995 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
996 if (size < sizeof(*hdr)) {
997 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
998 "vs %zu bytes expected)\n", size, sizeof(*hdr));
999 goto error;
1000 }
1001
1002 if (single_last) {
1003 skb = skb_get(skb_rx);
1004 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1005 } else {
1006 skb = skb_clone(skb_rx, GFP_KERNEL);
1007 if (skb == NULL) {
1008 dev_err(dev, "ERX: no memory to clone skb\n");
1009 net_dev->stats.rx_dropped++;
1010 goto error_skb_clone;
1011 }
1012 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1013 }
1014 /* now we have to pull and trim so that the skb points to the
1015 * beginning of the IP packet; the netdev part will add the
1016 * ethernet header as needed - we know there is enough space
1017 * because we checked in i2400m_rx_edata(). */
1018 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1019 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1020
1021 reorder = le32_to_cpu(hdr->reorder);
1022 ro_needed = reorder & I2400M_RO_NEEDED;
1023 cs = hdr->cs;
1024 if (ro_needed) {
1025 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1026 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1027 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1028
1029 spin_lock_irqsave(&i2400m->rx_lock, flags);
1030 if (i2400m->rx_roq == NULL) {
1031 kfree_skb(skb); /* rx_roq is already destroyed */
1032 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1033 goto error;
1034 }
1035 roq = &i2400m->rx_roq[ro_cin];
1036 kref_get(&i2400m->rx_roq_refcount);
1037 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1038
1039 roq_data = (struct i2400m_roq_data *) &skb->cb;
1040 roq_data->sn = ro_sn;
1041 roq_data->cs = cs;
1042 d_printf(2, dev, "ERX: reorder needed: "
1043 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1044 ro_type, ro_cin, roq->ws, ro_sn,
1045 __i2400m_roq_nsn(roq, ro_sn), size);
1046 d_dump(2, dev, payload, size);
1047 switch(ro_type) {
1048 case I2400M_RO_TYPE_RESET:
1049 i2400m_roq_reset(i2400m, roq);
1050 kfree_skb(skb); /* no data here */
1051 break;
1052 case I2400M_RO_TYPE_PACKET:
1053 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1054 break;
1055 case I2400M_RO_TYPE_WS:
1056 i2400m_roq_update_ws(i2400m, roq, ro_sn);
1057 kfree_skb(skb); /* no data here */
1058 break;
1059 case I2400M_RO_TYPE_PACKET_WS:
1060 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1061 break;
1062 default:
1063 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1064 }
1065
1066 spin_lock_irqsave(&i2400m->rx_lock, flags);
1067 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1068 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1069 }
1070 else
1071 i2400m_net_erx(i2400m, skb, cs);
1072 error_skb_clone:
1073 error:
1074 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1075 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1076 }
1077
1078
1079 /*
1080 * Act on a received payload
1081 *
1082 * @i2400m: device instance
1083 * @skb_rx: skb where the transaction was received
1084 * @single_last: 1 this is the only payload or the last one (so the
1085 * skb can be reused instead of cloned).
1086 * @pld: payload descriptor
1087 * @payload: payload data
1088 *
1089 * Upon reception of a payload, look at its guts in the payload
1090 * descriptor and decide what to do with it. If it is a single payload
1091 * skb or if the last skb is a data packet, the skb will be referenced
1092 * and modified (so it doesn't have to be cloned).
1093 */
1094 static
i2400m_rx_payload(struct i2400m * i2400m,struct sk_buff * skb_rx,unsigned single_last,const struct i2400m_pld * pld,const void * payload)1095 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1096 unsigned single_last, const struct i2400m_pld *pld,
1097 const void *payload)
1098 {
1099 struct device *dev = i2400m_dev(i2400m);
1100 size_t pl_size = i2400m_pld_size(pld);
1101 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1102
1103 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1104 pl_type, pl_size);
1105 d_dump(8, dev, payload, pl_size);
1106
1107 switch (pl_type) {
1108 case I2400M_PT_DATA:
1109 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1110 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1111 break;
1112 case I2400M_PT_CTRL:
1113 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1114 break;
1115 case I2400M_PT_TRACE:
1116 i2400m_rx_trace(i2400m, payload, pl_size);
1117 break;
1118 case I2400M_PT_EDATA:
1119 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1120 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1121 break;
1122 default: /* Anything else shouldn't come to the host */
1123 if (printk_ratelimit())
1124 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1125 pl_type);
1126 }
1127 }
1128
1129
1130 /*
1131 * Check a received transaction's message header
1132 *
1133 * @i2400m: device descriptor
1134 * @msg_hdr: message header
1135 * @buf_size: size of the received buffer
1136 *
1137 * Check that the declarations done by a RX buffer message header are
1138 * sane and consistent with the amount of data that was received.
1139 */
1140 static
i2400m_rx_msg_hdr_check(struct i2400m * i2400m,const struct i2400m_msg_hdr * msg_hdr,size_t buf_size)1141 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1142 const struct i2400m_msg_hdr *msg_hdr,
1143 size_t buf_size)
1144 {
1145 int result = -EIO;
1146 struct device *dev = i2400m_dev(i2400m);
1147 if (buf_size < sizeof(*msg_hdr)) {
1148 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1149 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1150 goto error;
1151 }
1152 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1153 dev_err(dev, "RX: HW BUG? message received with unknown "
1154 "barker 0x%08x (buf_size %zu bytes)\n",
1155 le32_to_cpu(msg_hdr->barker), buf_size);
1156 goto error;
1157 }
1158 if (msg_hdr->num_pls == 0) {
1159 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1160 goto error;
1161 }
1162 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1163 dev_err(dev, "RX: HW BUG? message contains more payload "
1164 "than maximum; ignoring.\n");
1165 goto error;
1166 }
1167 result = 0;
1168 error:
1169 return result;
1170 }
1171
1172
1173 /*
1174 * Check a payload descriptor against the received data
1175 *
1176 * @i2400m: device descriptor
1177 * @pld: payload descriptor
1178 * @pl_itr: offset (in bytes) in the received buffer the payload is
1179 * located
1180 * @buf_size: size of the received buffer
1181 *
1182 * Given a payload descriptor (part of a RX buffer), check it is sane
1183 * and that the data it declares fits in the buffer.
1184 */
1185 static
i2400m_rx_pl_descr_check(struct i2400m * i2400m,const struct i2400m_pld * pld,size_t pl_itr,size_t buf_size)1186 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1187 const struct i2400m_pld *pld,
1188 size_t pl_itr, size_t buf_size)
1189 {
1190 int result = -EIO;
1191 struct device *dev = i2400m_dev(i2400m);
1192 size_t pl_size = i2400m_pld_size(pld);
1193 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1194
1195 if (pl_size > i2400m->bus_pl_size_max) {
1196 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1197 "bigger than maximum %zu; ignoring message\n",
1198 pl_itr, pl_size, i2400m->bus_pl_size_max);
1199 goto error;
1200 }
1201 if (pl_itr + pl_size > buf_size) { /* enough? */
1202 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1203 "goes beyond the received buffer "
1204 "size (%zu bytes); ignoring message\n",
1205 pl_itr, pl_size, buf_size);
1206 goto error;
1207 }
1208 if (pl_type >= I2400M_PT_ILLEGAL) {
1209 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1210 "ignoring message\n", pl_type);
1211 goto error;
1212 }
1213 result = 0;
1214 error:
1215 return result;
1216 }
1217
1218
1219 /**
1220 * i2400m_rx - Receive a buffer of data from the device
1221 *
1222 * @i2400m: device descriptor
1223 * @skb: skbuff where the data has been received
1224 *
1225 * Parse in a buffer of data that contains an RX message sent from the
1226 * device. See the file header for the format. Run all checks on the
1227 * buffer header, then run over each payload's descriptors, verify
1228 * their consistency and act on each payload's contents. If
1229 * everything is successful, update the device's statistics.
1230 *
1231 * Note: You need to set the skb to contain only the length of the
1232 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1233 *
1234 * Returns:
1235 *
1236 * 0 if ok, < 0 errno on error
1237 *
1238 * If ok, this function owns now the skb and the caller DOESN'T have
1239 * to run kfree_skb() on it. However, on error, the caller still owns
1240 * the skb and it is responsible for releasing it.
1241 */
i2400m_rx(struct i2400m * i2400m,struct sk_buff * skb)1242 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1243 {
1244 int i, result;
1245 struct device *dev = i2400m_dev(i2400m);
1246 const struct i2400m_msg_hdr *msg_hdr;
1247 size_t pl_itr, pl_size;
1248 unsigned long flags;
1249 unsigned num_pls, single_last, skb_len;
1250
1251 skb_len = skb->len;
1252 d_fnstart(4, dev, "(i2400m %p skb %p [size %u])\n",
1253 i2400m, skb, skb_len);
1254 result = -EIO;
1255 msg_hdr = (void *) skb->data;
1256 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb_len);
1257 if (result < 0)
1258 goto error_msg_hdr_check;
1259 result = -EIO;
1260 num_pls = le16_to_cpu(msg_hdr->num_pls);
1261 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1262 num_pls * sizeof(msg_hdr->pld[0]);
1263 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1264 if (pl_itr > skb_len) { /* got all the payload descriptors? */
1265 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1266 "%u payload descriptors (%zu each, total %zu)\n",
1267 skb_len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1268 goto error_pl_descr_short;
1269 }
1270 /* Walk each payload payload--check we really got it */
1271 for (i = 0; i < num_pls; i++) {
1272 /* work around old gcc warnings */
1273 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1274 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1275 pl_itr, skb_len);
1276 if (result < 0)
1277 goto error_pl_descr_check;
1278 single_last = num_pls == 1 || i == num_pls - 1;
1279 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1280 skb->data + pl_itr);
1281 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1282 cond_resched(); /* Don't monopolize */
1283 }
1284 kfree_skb(skb);
1285 /* Update device statistics */
1286 spin_lock_irqsave(&i2400m->rx_lock, flags);
1287 i2400m->rx_pl_num += i;
1288 if (i > i2400m->rx_pl_max)
1289 i2400m->rx_pl_max = i;
1290 if (i < i2400m->rx_pl_min)
1291 i2400m->rx_pl_min = i;
1292 i2400m->rx_num++;
1293 i2400m->rx_size_acc += skb_len;
1294 if (skb_len < i2400m->rx_size_min)
1295 i2400m->rx_size_min = skb_len;
1296 if (skb_len > i2400m->rx_size_max)
1297 i2400m->rx_size_max = skb_len;
1298 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1299 error_pl_descr_check:
1300 error_pl_descr_short:
1301 error_msg_hdr_check:
1302 d_fnend(4, dev, "(i2400m %p skb %p [size %u]) = %d\n",
1303 i2400m, skb, skb_len, result);
1304 return result;
1305 }
1306 EXPORT_SYMBOL_GPL(i2400m_rx);
1307
1308
i2400m_unknown_barker(struct i2400m * i2400m,const void * buf,size_t size)1309 void i2400m_unknown_barker(struct i2400m *i2400m,
1310 const void *buf, size_t size)
1311 {
1312 struct device *dev = i2400m_dev(i2400m);
1313 char prefix[64];
1314 const __le32 *barker = buf;
1315 dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1316 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1317 snprintf(prefix, sizeof(prefix), "%s %s: ",
1318 dev_driver_string(dev), dev_name(dev));
1319 if (size > 64) {
1320 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1321 8, 4, buf, 64, 0);
1322 printk(KERN_ERR "%s... (only first 64 bytes "
1323 "dumped)\n", prefix);
1324 } else
1325 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1326 8, 4, buf, size, 0);
1327 }
1328 EXPORT_SYMBOL(i2400m_unknown_barker);
1329
1330
1331 /*
1332 * Initialize the RX queue and infrastructure
1333 *
1334 * This sets up all the RX reordering infrastructures, which will not
1335 * be used if reordering is not enabled or if the firmware does not
1336 * support it. The device is told to do reordering in
1337 * i2400m_dev_initialize(), where it also looks at the value of the
1338 * i2400m->rx_reorder switch before taking a decission.
1339 *
1340 * Note we allocate the roq queues in one chunk and the actual logging
1341 * support for it (logging) in another one and then we setup the
1342 * pointers from the first to the last.
1343 */
i2400m_rx_setup(struct i2400m * i2400m)1344 int i2400m_rx_setup(struct i2400m *i2400m)
1345 {
1346 int result = 0;
1347 struct device *dev = i2400m_dev(i2400m);
1348
1349 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1350 if (i2400m->rx_reorder) {
1351 unsigned itr;
1352 size_t size;
1353 struct i2400m_roq_log *rd;
1354
1355 result = -ENOMEM;
1356
1357 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1358 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1359 if (i2400m->rx_roq == NULL) {
1360 dev_err(dev, "RX: cannot allocate %zu bytes for "
1361 "reorder queues\n", size);
1362 goto error_roq_alloc;
1363 }
1364
1365 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1366 rd = kzalloc(size, GFP_KERNEL);
1367 if (rd == NULL) {
1368 dev_err(dev, "RX: cannot allocate %zu bytes for "
1369 "reorder queues log areas\n", size);
1370 result = -ENOMEM;
1371 goto error_roq_log_alloc;
1372 }
1373
1374 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1375 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1376 i2400m->rx_roq[itr].log = &rd[itr];
1377 }
1378 kref_init(&i2400m->rx_roq_refcount);
1379 }
1380 return 0;
1381
1382 error_roq_log_alloc:
1383 kfree(i2400m->rx_roq);
1384 error_roq_alloc:
1385 return result;
1386 }
1387
1388
1389 /* Tear down the RX queue and infrastructure */
i2400m_rx_release(struct i2400m * i2400m)1390 void i2400m_rx_release(struct i2400m *i2400m)
1391 {
1392 unsigned long flags;
1393
1394 if (i2400m->rx_reorder) {
1395 spin_lock_irqsave(&i2400m->rx_lock, flags);
1396 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1397 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1398 }
1399 /* at this point, nothing can be received... */
1400 i2400m_report_hook_flush(i2400m);
1401 }
1402