1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
28 *
29 * ROADMAP:
30 *
31 * i2400m_op_msg_from_user()
32 * i2400m_msg_to_dev()
33 * wimax_msg_to_user_send()
34 *
35 * i2400m_op_reset()
36 * i240m->bus_reset()
37 *
38 * i2400m_dev_reset_handle()
39 * __i2400m_dev_reset_handle()
40 * __i2400m_dev_stop()
41 * __i2400m_dev_start()
42 *
43 * i2400m_setup()
44 * i2400m->bus_setup()
45 * i2400m_bootrom_init()
46 * register_netdev()
47 * wimax_dev_add()
48 * i2400m_dev_start()
49 * __i2400m_dev_start()
50 * i2400m_dev_bootstrap()
51 * i2400m_tx_setup()
52 * i2400m->bus_dev_start()
53 * i2400m_firmware_check()
54 * i2400m_check_mac_addr()
55 *
56 * i2400m_release()
57 * i2400m_dev_stop()
58 * __i2400m_dev_stop()
59 * i2400m_dev_shutdown()
60 * i2400m->bus_dev_stop()
61 * i2400m_tx_release()
62 * i2400m->bus_release()
63 * wimax_dev_rm()
64 * unregister_netdev()
65 */
66 #include "i2400m.h"
67 #include <linux/etherdevice.h>
68 #include <linux/wimax/i2400m.h>
69 #include <linux/module.h>
70 #include <linux/moduleparam.h>
71 #include <linux/suspend.h>
72 #include <linux/slab.h>
73
74 #define D_SUBMODULE driver
75 #include "debug-levels.h"
76
77
78 static char i2400m_debug_params[128];
79 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
80 0644);
81 MODULE_PARM_DESC(debug,
82 "String of space-separated NAME:VALUE pairs, where NAMEs "
83 "are the different debug submodules and VALUE are the "
84 "initial debug value to set.");
85
86 static char i2400m_barkers_params[128];
87 module_param_string(barkers, i2400m_barkers_params,
88 sizeof(i2400m_barkers_params), 0644);
89 MODULE_PARM_DESC(barkers,
90 "String of comma-separated 32-bit values; each is "
91 "recognized as the value the device sends as a reboot "
92 "signal; values are appended to a list--setting one value "
93 "as zero cleans the existing list and starts a new one.");
94
95 /*
96 * WiMAX stack operation: relay a message from user space
97 *
98 * @wimax_dev: device descriptor
99 * @pipe_name: named pipe the message is for
100 * @msg_buf: pointer to the message bytes
101 * @msg_len: length of the buffer
102 * @genl_info: passed by the generic netlink layer
103 *
104 * The WiMAX stack will call this function when a message was received
105 * from user space.
106 *
107 * For the i2400m, this is an L3L4 message, as specified in
108 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
109 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
110 * coded in Little Endian.
111 *
112 * This function just verifies that the header declaration and the
113 * payload are consistent and then deals with it, either forwarding it
114 * to the device or procesing it locally.
115 *
116 * In the i2400m, messages are basically commands that will carry an
117 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
118 * user space. The rx.c code might intercept the response and use it
119 * to update the driver's state, but then it will pass it on so it can
120 * be relayed back to user space.
121 *
122 * Note that asynchronous events from the device are processed and
123 * sent to user space in rx.c.
124 */
125 static
i2400m_op_msg_from_user(struct wimax_dev * wimax_dev,const char * pipe_name,const void * msg_buf,size_t msg_len,const struct genl_info * genl_info)126 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
127 const char *pipe_name,
128 const void *msg_buf, size_t msg_len,
129 const struct genl_info *genl_info)
130 {
131 int result;
132 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
133 struct device *dev = i2400m_dev(i2400m);
134 struct sk_buff *ack_skb;
135
136 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
137 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
138 msg_buf, msg_len, genl_info);
139 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
140 result = PTR_ERR(ack_skb);
141 if (IS_ERR(ack_skb))
142 goto error_msg_to_dev;
143 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
144 error_msg_to_dev:
145 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
146 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
147 genl_info, result);
148 return result;
149 }
150
151
152 /*
153 * Context to wait for a reset to finalize
154 */
155 struct i2400m_reset_ctx {
156 struct completion completion;
157 int result;
158 };
159
160
161 /*
162 * WiMAX stack operation: reset a device
163 *
164 * @wimax_dev: device descriptor
165 *
166 * See the documentation for wimax_reset() and wimax_dev->op_reset for
167 * the requirements of this function. The WiMAX stack guarantees
168 * serialization on calls to this function.
169 *
170 * Do a warm reset on the device; if it fails, resort to a cold reset
171 * and return -ENODEV. On successful warm reset, we need to block
172 * until it is complete.
173 *
174 * The bus-driver implementation of reset takes care of falling back
175 * to cold reset if warm fails.
176 */
177 static
i2400m_op_reset(struct wimax_dev * wimax_dev)178 int i2400m_op_reset(struct wimax_dev *wimax_dev)
179 {
180 int result;
181 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
182 struct device *dev = i2400m_dev(i2400m);
183 struct i2400m_reset_ctx ctx = {
184 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
185 .result = 0,
186 };
187
188 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
189 mutex_lock(&i2400m->init_mutex);
190 i2400m->reset_ctx = &ctx;
191 mutex_unlock(&i2400m->init_mutex);
192 result = i2400m_reset(i2400m, I2400M_RT_WARM);
193 if (result < 0)
194 goto out;
195 result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
196 if (result == 0)
197 result = -ETIMEDOUT;
198 else if (result > 0)
199 result = ctx.result;
200 /* if result < 0, pass it on */
201 mutex_lock(&i2400m->init_mutex);
202 i2400m->reset_ctx = NULL;
203 mutex_unlock(&i2400m->init_mutex);
204 out:
205 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
206 return result;
207 }
208
209
210 /*
211 * Check the MAC address we got from boot mode is ok
212 *
213 * @i2400m: device descriptor
214 *
215 * Returns: 0 if ok, < 0 errno code on error.
216 */
217 static
i2400m_check_mac_addr(struct i2400m * i2400m)218 int i2400m_check_mac_addr(struct i2400m *i2400m)
219 {
220 int result;
221 struct device *dev = i2400m_dev(i2400m);
222 struct sk_buff *skb;
223 const struct i2400m_tlv_detailed_device_info *ddi;
224 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
225 const unsigned char zeromac[ETH_ALEN] = { 0 };
226
227 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
228 skb = i2400m_get_device_info(i2400m);
229 if (IS_ERR(skb)) {
230 result = PTR_ERR(skb);
231 dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
232 result);
233 goto error;
234 }
235 /* Extract MAC address */
236 ddi = (void *) skb->data;
237 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
238 d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
239 ddi->mac_address);
240 if (!memcmp(net_dev->perm_addr, ddi->mac_address,
241 sizeof(ddi->mac_address)))
242 goto ok;
243 dev_warn(dev, "warning: device reports a different MAC address "
244 "to that of boot mode's\n");
245 dev_warn(dev, "device reports %pM\n", ddi->mac_address);
246 dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
247 if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
248 dev_err(dev, "device reports an invalid MAC address, "
249 "not updating\n");
250 else {
251 dev_warn(dev, "updating MAC address\n");
252 net_dev->addr_len = ETH_ALEN;
253 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
254 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
255 }
256 ok:
257 result = 0;
258 kfree_skb(skb);
259 error:
260 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
261 return result;
262 }
263
264
265 /**
266 * __i2400m_dev_start - Bring up driver communication with the device
267 *
268 * @i2400m: device descriptor
269 * @flags: boot mode flags
270 *
271 * Returns: 0 if ok, < 0 errno code on error.
272 *
273 * Uploads firmware and brings up all the resources needed to be able
274 * to communicate with the device.
275 *
276 * The workqueue has to be setup early, at least before RX handling
277 * (it's only real user for now) so it can process reports as they
278 * arrive. We also want to destroy it if we retry, to make sure it is
279 * flushed...easier like this.
280 *
281 * TX needs to be setup before the bus-specific code (otherwise on
282 * shutdown, the bus-tx code could try to access it).
283 */
284 static
__i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri flags)285 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
286 {
287 int result;
288 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289 struct net_device *net_dev = wimax_dev->net_dev;
290 struct device *dev = i2400m_dev(i2400m);
291 int times = i2400m->bus_bm_retries;
292
293 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
294 retry:
295 result = i2400m_dev_bootstrap(i2400m, flags);
296 if (result < 0) {
297 dev_err(dev, "cannot bootstrap device: %d\n", result);
298 goto error_bootstrap;
299 }
300 result = i2400m_tx_setup(i2400m);
301 if (result < 0)
302 goto error_tx_setup;
303 result = i2400m_rx_setup(i2400m);
304 if (result < 0)
305 goto error_rx_setup;
306 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
307 if (i2400m->work_queue == NULL) {
308 result = -ENOMEM;
309 dev_err(dev, "cannot create workqueue\n");
310 goto error_create_workqueue;
311 }
312 if (i2400m->bus_dev_start) {
313 result = i2400m->bus_dev_start(i2400m);
314 if (result < 0)
315 goto error_bus_dev_start;
316 }
317 i2400m->ready = 1;
318 wmb(); /* see i2400m->ready's documentation */
319 /* process pending reports from the device */
320 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
321 result = i2400m_firmware_check(i2400m); /* fw versions ok? */
322 if (result < 0)
323 goto error_fw_check;
324 /* At this point is ok to send commands to the device */
325 result = i2400m_check_mac_addr(i2400m);
326 if (result < 0)
327 goto error_check_mac_addr;
328 result = i2400m_dev_initialize(i2400m);
329 if (result < 0)
330 goto error_dev_initialize;
331
332 /* We don't want any additional unwanted error recovery triggered
333 * from any other context so if anything went wrong before we come
334 * here, let's keep i2400m->error_recovery untouched and leave it to
335 * dev_reset_handle(). See dev_reset_handle(). */
336
337 atomic_dec(&i2400m->error_recovery);
338 /* Every thing works so far, ok, now we are ready to
339 * take error recovery if it's required. */
340
341 /* At this point, reports will come for the device and set it
342 * to the right state if it is different than UNINITIALIZED */
343 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
344 net_dev, i2400m, result);
345 return result;
346
347 error_dev_initialize:
348 error_check_mac_addr:
349 error_fw_check:
350 i2400m->ready = 0;
351 wmb(); /* see i2400m->ready's documentation */
352 flush_workqueue(i2400m->work_queue);
353 if (i2400m->bus_dev_stop)
354 i2400m->bus_dev_stop(i2400m);
355 error_bus_dev_start:
356 destroy_workqueue(i2400m->work_queue);
357 error_create_workqueue:
358 i2400m_rx_release(i2400m);
359 error_rx_setup:
360 i2400m_tx_release(i2400m);
361 error_tx_setup:
362 error_bootstrap:
363 if (result == -EL3RST && times-- > 0) {
364 flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
365 goto retry;
366 }
367 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
368 net_dev, i2400m, result);
369 return result;
370 }
371
372
373 static
i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri bm_flags)374 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
375 {
376 int result = 0;
377 mutex_lock(&i2400m->init_mutex); /* Well, start the device */
378 if (i2400m->updown == 0) {
379 result = __i2400m_dev_start(i2400m, bm_flags);
380 if (result >= 0) {
381 i2400m->updown = 1;
382 i2400m->alive = 1;
383 wmb();/* see i2400m->updown and i2400m->alive's doc */
384 }
385 }
386 mutex_unlock(&i2400m->init_mutex);
387 return result;
388 }
389
390
391 /**
392 * i2400m_dev_stop - Tear down driver communication with the device
393 *
394 * @i2400m: device descriptor
395 *
396 * Returns: 0 if ok, < 0 errno code on error.
397 *
398 * Releases all the resources allocated to communicate with the
399 * device. Note we cannot destroy the workqueue earlier as until RX is
400 * fully destroyed, it could still try to schedule jobs.
401 */
402 static
__i2400m_dev_stop(struct i2400m * i2400m)403 void __i2400m_dev_stop(struct i2400m *i2400m)
404 {
405 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
406 struct device *dev = i2400m_dev(i2400m);
407
408 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
409 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
410 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
411 complete(&i2400m->msg_completion);
412 i2400m_net_wake_stop(i2400m);
413 i2400m_dev_shutdown(i2400m);
414 /*
415 * Make sure no report hooks are running *before* we stop the
416 * communication infrastructure with the device.
417 */
418 i2400m->ready = 0; /* nobody can queue work anymore */
419 wmb(); /* see i2400m->ready's documentation */
420 flush_workqueue(i2400m->work_queue);
421
422 if (i2400m->bus_dev_stop)
423 i2400m->bus_dev_stop(i2400m);
424 destroy_workqueue(i2400m->work_queue);
425 i2400m_rx_release(i2400m);
426 i2400m_tx_release(i2400m);
427 wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
428 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
429 }
430
431
432 /*
433 * Watch out -- we only need to stop if there is a need for it. The
434 * device could have reset itself and failed to come up again (see
435 * _i2400m_dev_reset_handle()).
436 */
437 static
i2400m_dev_stop(struct i2400m * i2400m)438 void i2400m_dev_stop(struct i2400m *i2400m)
439 {
440 mutex_lock(&i2400m->init_mutex);
441 if (i2400m->updown) {
442 __i2400m_dev_stop(i2400m);
443 i2400m->updown = 0;
444 i2400m->alive = 0;
445 wmb(); /* see i2400m->updown and i2400m->alive's doc */
446 }
447 mutex_unlock(&i2400m->init_mutex);
448 }
449
450
451 /*
452 * Listen to PM events to cache the firmware before suspend/hibernation
453 *
454 * When the device comes out of suspend, it might go into reset and
455 * firmware has to be uploaded again. At resume, most of the times, we
456 * can't load firmware images from disk, so we need to cache it.
457 *
458 * i2400m_fw_cache() will allocate a kobject and attach the firmware
459 * to it; that way we don't have to worry too much about the fw loader
460 * hitting a race condition.
461 *
462 * Note: modus operandi stolen from the Orinoco driver; thx.
463 */
464 static
i2400m_pm_notifier(struct notifier_block * notifier,unsigned long pm_event,void * unused)465 int i2400m_pm_notifier(struct notifier_block *notifier,
466 unsigned long pm_event,
467 void *unused)
468 {
469 struct i2400m *i2400m =
470 container_of(notifier, struct i2400m, pm_notifier);
471 struct device *dev = i2400m_dev(i2400m);
472
473 d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
474 switch (pm_event) {
475 case PM_HIBERNATION_PREPARE:
476 case PM_SUSPEND_PREPARE:
477 i2400m_fw_cache(i2400m);
478 break;
479 case PM_POST_RESTORE:
480 /* Restore from hibernation failed. We need to clean
481 * up in exactly the same way, so fall through. */
482 case PM_POST_HIBERNATION:
483 case PM_POST_SUSPEND:
484 i2400m_fw_uncache(i2400m);
485 break;
486
487 case PM_RESTORE_PREPARE:
488 default:
489 break;
490 }
491 d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
492 return NOTIFY_DONE;
493 }
494
495
496 /*
497 * pre-reset is called before a device is going on reset
498 *
499 * This has to be followed by a call to i2400m_post_reset(), otherwise
500 * bad things might happen.
501 */
i2400m_pre_reset(struct i2400m * i2400m)502 int i2400m_pre_reset(struct i2400m *i2400m)
503 {
504 int result;
505 struct device *dev = i2400m_dev(i2400m);
506
507 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
508 d_printf(1, dev, "pre-reset shut down\n");
509
510 result = 0;
511 mutex_lock(&i2400m->init_mutex);
512 if (i2400m->updown) {
513 netif_tx_disable(i2400m->wimax_dev.net_dev);
514 __i2400m_dev_stop(i2400m);
515 result = 0;
516 /* down't set updown to zero -- this way
517 * post_reset can restore properly */
518 }
519 mutex_unlock(&i2400m->init_mutex);
520 if (i2400m->bus_release)
521 i2400m->bus_release(i2400m);
522 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
523 return result;
524 }
525 EXPORT_SYMBOL_GPL(i2400m_pre_reset);
526
527
528 /*
529 * Restore device state after a reset
530 *
531 * Do the work needed after a device reset to bring it up to the same
532 * state as it was before the reset.
533 *
534 * NOTE: this requires i2400m->init_mutex taken
535 */
i2400m_post_reset(struct i2400m * i2400m)536 int i2400m_post_reset(struct i2400m *i2400m)
537 {
538 int result = 0;
539 struct device *dev = i2400m_dev(i2400m);
540
541 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
542 d_printf(1, dev, "post-reset start\n");
543 if (i2400m->bus_setup) {
544 result = i2400m->bus_setup(i2400m);
545 if (result < 0) {
546 dev_err(dev, "bus-specific setup failed: %d\n",
547 result);
548 goto error_bus_setup;
549 }
550 }
551 mutex_lock(&i2400m->init_mutex);
552 if (i2400m->updown) {
553 result = __i2400m_dev_start(
554 i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
555 if (result < 0)
556 goto error_dev_start;
557 }
558 mutex_unlock(&i2400m->init_mutex);
559 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
560 return result;
561
562 error_dev_start:
563 if (i2400m->bus_release)
564 i2400m->bus_release(i2400m);
565 /* even if the device was up, it could not be recovered, so we
566 * mark it as down. */
567 i2400m->updown = 0;
568 wmb(); /* see i2400m->updown's documentation */
569 mutex_unlock(&i2400m->init_mutex);
570 error_bus_setup:
571 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
572 return result;
573 }
574 EXPORT_SYMBOL_GPL(i2400m_post_reset);
575
576
577 /*
578 * The device has rebooted; fix up the device and the driver
579 *
580 * Tear down the driver communication with the device, reload the
581 * firmware and reinitialize the communication with the device.
582 *
583 * If someone calls a reset when the device's firmware is down, in
584 * theory we won't see it because we are not listening. However, just
585 * in case, leave the code to handle it.
586 *
587 * If there is a reset context, use it; this means someone is waiting
588 * for us to tell him when the reset operation is complete and the
589 * device is ready to rock again.
590 *
591 * NOTE: if we are in the process of bringing up or down the
592 * communication with the device [running i2400m_dev_start() or
593 * _stop()], don't do anything, let it fail and handle it.
594 *
595 * This function is ran always in a thread context
596 *
597 * This function gets passed, as payload to i2400m_work() a 'const
598 * char *' ptr with a "reason" why the reset happened (for messages).
599 */
600 static
__i2400m_dev_reset_handle(struct work_struct * ws)601 void __i2400m_dev_reset_handle(struct work_struct *ws)
602 {
603 struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
604 const char *reason = i2400m->reset_reason;
605 struct device *dev = i2400m_dev(i2400m);
606 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
607 int result;
608
609 d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
610
611 i2400m->boot_mode = 1;
612 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
613
614 result = 0;
615 if (mutex_trylock(&i2400m->init_mutex) == 0) {
616 /* We are still in i2400m_dev_start() [let it fail] or
617 * i2400m_dev_stop() [we are shutting down anyway, so
618 * ignore it] or we are resetting somewhere else. */
619 dev_err(dev, "device rebooted somewhere else?\n");
620 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
621 complete(&i2400m->msg_completion);
622 goto out;
623 }
624
625 dev_err(dev, "%s: reinitializing driver\n", reason);
626 rmb();
627 if (i2400m->updown) {
628 __i2400m_dev_stop(i2400m);
629 i2400m->updown = 0;
630 wmb(); /* see i2400m->updown's documentation */
631 }
632
633 if (i2400m->alive) {
634 result = __i2400m_dev_start(i2400m,
635 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
636 if (result < 0) {
637 dev_err(dev, "%s: cannot start the device: %d\n",
638 reason, result);
639 result = -EUCLEAN;
640 if (atomic_read(&i2400m->bus_reset_retries)
641 >= I2400M_BUS_RESET_RETRIES) {
642 result = -ENODEV;
643 dev_err(dev, "tried too many times to "
644 "reset the device, giving up\n");
645 }
646 }
647 }
648
649 if (i2400m->reset_ctx) {
650 ctx->result = result;
651 complete(&ctx->completion);
652 }
653 mutex_unlock(&i2400m->init_mutex);
654 if (result == -EUCLEAN) {
655 /*
656 * We come here because the reset during operational mode
657 * wasn't successfully done and need to proceed to a bus
658 * reset. For the dev_reset_handle() to be able to handle
659 * the reset event later properly, we restore boot_mode back
660 * to the state before previous reset. ie: just like we are
661 * issuing the bus reset for the first time
662 */
663 i2400m->boot_mode = 0;
664 wmb();
665
666 atomic_inc(&i2400m->bus_reset_retries);
667 /* ops, need to clean up [w/ init_mutex not held] */
668 result = i2400m_reset(i2400m, I2400M_RT_BUS);
669 if (result >= 0)
670 result = -ENODEV;
671 } else {
672 rmb();
673 if (i2400m->alive) {
674 /* great, we expect the device state up and
675 * dev_start() actually brings the device state up */
676 i2400m->updown = 1;
677 wmb();
678 atomic_set(&i2400m->bus_reset_retries, 0);
679 }
680 }
681 out:
682 d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
683 ws, i2400m, reason);
684 }
685
686
687 /**
688 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
689 *
690 * Schedule a device reset handling out on a thread context, so it
691 * is safe to call from atomic context. We can't use the i2400m's
692 * queue as we are going to destroy it and reinitialize it as part of
693 * the driver bringup/bringup process.
694 *
695 * See __i2400m_dev_reset_handle() for details; that takes care of
696 * reinitializing the driver to handle the reset, calling into the
697 * bus-specific functions ops as needed.
698 */
i2400m_dev_reset_handle(struct i2400m * i2400m,const char * reason)699 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
700 {
701 i2400m->reset_reason = reason;
702 return schedule_work(&i2400m->reset_ws);
703 }
704 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
705
706
707 /*
708 * The actual work of error recovery.
709 *
710 * The current implementation of error recovery is to trigger a bus reset.
711 */
712 static
__i2400m_error_recovery(struct work_struct * ws)713 void __i2400m_error_recovery(struct work_struct *ws)
714 {
715 struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
716
717 i2400m_reset(i2400m, I2400M_RT_BUS);
718 }
719
720 /*
721 * Schedule a work struct for error recovery.
722 *
723 * The intention of error recovery is to bring back the device to some
724 * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
725 * the device. The TX failure could mean a device bus stuck, so the current
726 * error recovery implementation is to trigger a bus reset to the device
727 * and hopefully it can bring back the device.
728 *
729 * The actual work of error recovery has to be in a thread context because
730 * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
731 * destroyed by the error recovery mechanism (currently a bus reset).
732 *
733 * Also, there may be already a queue of TX works that all hit
734 * the -ETIMEOUT error condition because the device is stuck already.
735 * Since bus reset is used as the error recovery mechanism and we don't
736 * want consecutive bus resets simply because the multiple TX works
737 * in the queue all hit the same device erratum, the flag "error_recovery"
738 * is introduced for preventing unwanted consecutive bus resets.
739 *
740 * Error recovery shall only be invoked again if previous one was completed.
741 * The flag error_recovery is set when error recovery mechanism is scheduled,
742 * and is checked when we need to schedule another error recovery. If it is
743 * in place already, then we shouldn't schedule another one.
744 */
i2400m_error_recovery(struct i2400m * i2400m)745 void i2400m_error_recovery(struct i2400m *i2400m)
746 {
747 if (atomic_add_return(1, &i2400m->error_recovery) == 1)
748 schedule_work(&i2400m->recovery_ws);
749 else
750 atomic_dec(&i2400m->error_recovery);
751 }
752 EXPORT_SYMBOL_GPL(i2400m_error_recovery);
753
754 /*
755 * Alloc the command and ack buffers for boot mode
756 *
757 * Get the buffers needed to deal with boot mode messages. These
758 * buffers need to be allocated before the sdio receive irq is setup.
759 */
760 static
i2400m_bm_buf_alloc(struct i2400m * i2400m)761 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
762 {
763 int result;
764
765 result = -ENOMEM;
766 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
767 if (i2400m->bm_cmd_buf == NULL)
768 goto error_bm_cmd_kzalloc;
769 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
770 if (i2400m->bm_ack_buf == NULL)
771 goto error_bm_ack_buf_kzalloc;
772 return 0;
773
774 error_bm_ack_buf_kzalloc:
775 kfree(i2400m->bm_cmd_buf);
776 error_bm_cmd_kzalloc:
777 return result;
778 }
779
780
781 /*
782 * Free boot mode command and ack buffers.
783 */
784 static
i2400m_bm_buf_free(struct i2400m * i2400m)785 void i2400m_bm_buf_free(struct i2400m *i2400m)
786 {
787 kfree(i2400m->bm_ack_buf);
788 kfree(i2400m->bm_cmd_buf);
789 }
790
791
792 /**
793 * i2400m_init - Initialize a 'struct i2400m' from all zeroes
794 *
795 * This is a bus-generic API call.
796 */
i2400m_init(struct i2400m * i2400m)797 void i2400m_init(struct i2400m *i2400m)
798 {
799 wimax_dev_init(&i2400m->wimax_dev);
800
801 i2400m->boot_mode = 1;
802 i2400m->rx_reorder = 1;
803 init_waitqueue_head(&i2400m->state_wq);
804
805 spin_lock_init(&i2400m->tx_lock);
806 i2400m->tx_pl_min = UINT_MAX;
807 i2400m->tx_size_min = UINT_MAX;
808
809 spin_lock_init(&i2400m->rx_lock);
810 i2400m->rx_pl_min = UINT_MAX;
811 i2400m->rx_size_min = UINT_MAX;
812 INIT_LIST_HEAD(&i2400m->rx_reports);
813 INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
814
815 mutex_init(&i2400m->msg_mutex);
816 init_completion(&i2400m->msg_completion);
817
818 mutex_init(&i2400m->init_mutex);
819 /* wake_tx_ws is initialized in i2400m_tx_setup() */
820
821 INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
822 INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
823
824 atomic_set(&i2400m->bus_reset_retries, 0);
825
826 i2400m->alive = 0;
827
828 /* initialize error_recovery to 1 for denoting we
829 * are not yet ready to take any error recovery */
830 atomic_set(&i2400m->error_recovery, 1);
831 }
832 EXPORT_SYMBOL_GPL(i2400m_init);
833
834
i2400m_reset(struct i2400m * i2400m,enum i2400m_reset_type rt)835 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
836 {
837 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
838
839 /*
840 * Make sure we stop TXs and down the carrier before
841 * resetting; this is needed to avoid things like
842 * i2400m_wake_tx() scheduling stuff in parallel.
843 */
844 if (net_dev->reg_state == NETREG_REGISTERED) {
845 netif_tx_disable(net_dev);
846 netif_carrier_off(net_dev);
847 }
848 return i2400m->bus_reset(i2400m, rt);
849 }
850 EXPORT_SYMBOL_GPL(i2400m_reset);
851
852
853 /**
854 * i2400m_setup - bus-generic setup function for the i2400m device
855 *
856 * @i2400m: device descriptor (bus-specific parts have been initialized)
857 *
858 * Returns: 0 if ok, < 0 errno code on error.
859 *
860 * Sets up basic device comunication infrastructure, boots the ROM to
861 * read the MAC address, registers with the WiMAX and network stacks
862 * and then brings up the device.
863 */
i2400m_setup(struct i2400m * i2400m,enum i2400m_bri bm_flags)864 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
865 {
866 int result = -ENODEV;
867 struct device *dev = i2400m_dev(i2400m);
868 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
869 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
870
871 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
872
873 snprintf(wimax_dev->name, sizeof(wimax_dev->name),
874 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
875
876 result = i2400m_bm_buf_alloc(i2400m);
877 if (result < 0) {
878 dev_err(dev, "cannot allocate bootmode scratch buffers\n");
879 goto error_bm_buf_alloc;
880 }
881
882 if (i2400m->bus_setup) {
883 result = i2400m->bus_setup(i2400m);
884 if (result < 0) {
885 dev_err(dev, "bus-specific setup failed: %d\n",
886 result);
887 goto error_bus_setup;
888 }
889 }
890
891 result = i2400m_bootrom_init(i2400m, bm_flags);
892 if (result < 0) {
893 dev_err(dev, "read mac addr: bootrom init "
894 "failed: %d\n", result);
895 goto error_bootrom_init;
896 }
897 result = i2400m_read_mac_addr(i2400m);
898 if (result < 0)
899 goto error_read_mac_addr;
900 random_ether_addr(i2400m->src_mac_addr);
901
902 i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
903 register_pm_notifier(&i2400m->pm_notifier);
904
905 result = register_netdev(net_dev); /* Okey dokey, bring it up */
906 if (result < 0) {
907 dev_err(dev, "cannot register i2400m network device: %d\n",
908 result);
909 goto error_register_netdev;
910 }
911 netif_carrier_off(net_dev);
912
913 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
914 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
915 i2400m->wimax_dev.op_reset = i2400m_op_reset;
916
917 result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
918 if (result < 0)
919 goto error_wimax_dev_add;
920
921 /* Now setup all that requires a registered net and wimax device. */
922 result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
923 if (result < 0) {
924 dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
925 goto error_sysfs_setup;
926 }
927
928 result = i2400m_debugfs_add(i2400m);
929 if (result < 0) {
930 dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
931 goto error_debugfs_setup;
932 }
933
934 result = i2400m_dev_start(i2400m, bm_flags);
935 if (result < 0)
936 goto error_dev_start;
937 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
938 return result;
939
940 error_dev_start:
941 i2400m_debugfs_rm(i2400m);
942 error_debugfs_setup:
943 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
944 &i2400m_dev_attr_group);
945 error_sysfs_setup:
946 wimax_dev_rm(&i2400m->wimax_dev);
947 error_wimax_dev_add:
948 unregister_netdev(net_dev);
949 error_register_netdev:
950 unregister_pm_notifier(&i2400m->pm_notifier);
951 error_read_mac_addr:
952 error_bootrom_init:
953 if (i2400m->bus_release)
954 i2400m->bus_release(i2400m);
955 error_bus_setup:
956 i2400m_bm_buf_free(i2400m);
957 error_bm_buf_alloc:
958 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
959 return result;
960 }
961 EXPORT_SYMBOL_GPL(i2400m_setup);
962
963
964 /**
965 * i2400m_release - release the bus-generic driver resources
966 *
967 * Sends a disconnect message and undoes any setup done by i2400m_setup()
968 */
i2400m_release(struct i2400m * i2400m)969 void i2400m_release(struct i2400m *i2400m)
970 {
971 struct device *dev = i2400m_dev(i2400m);
972
973 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
974 netif_stop_queue(i2400m->wimax_dev.net_dev);
975
976 i2400m_dev_stop(i2400m);
977
978 cancel_work_sync(&i2400m->reset_ws);
979 cancel_work_sync(&i2400m->recovery_ws);
980
981 i2400m_debugfs_rm(i2400m);
982 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
983 &i2400m_dev_attr_group);
984 wimax_dev_rm(&i2400m->wimax_dev);
985 unregister_netdev(i2400m->wimax_dev.net_dev);
986 unregister_pm_notifier(&i2400m->pm_notifier);
987 if (i2400m->bus_release)
988 i2400m->bus_release(i2400m);
989 i2400m_bm_buf_free(i2400m);
990 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
991 }
992 EXPORT_SYMBOL_GPL(i2400m_release);
993
994
995 /*
996 * Debug levels control; see debug.h
997 */
998 struct d_level D_LEVEL[] = {
999 D_SUBMODULE_DEFINE(control),
1000 D_SUBMODULE_DEFINE(driver),
1001 D_SUBMODULE_DEFINE(debugfs),
1002 D_SUBMODULE_DEFINE(fw),
1003 D_SUBMODULE_DEFINE(netdev),
1004 D_SUBMODULE_DEFINE(rfkill),
1005 D_SUBMODULE_DEFINE(rx),
1006 D_SUBMODULE_DEFINE(sysfs),
1007 D_SUBMODULE_DEFINE(tx),
1008 };
1009 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
1010
1011
1012 static
i2400m_driver_init(void)1013 int __init i2400m_driver_init(void)
1014 {
1015 d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
1016 "i2400m.debug");
1017 return i2400m_barker_db_init(i2400m_barkers_params);
1018 }
1019 module_init(i2400m_driver_init);
1020
1021 static
i2400m_driver_exit(void)1022 void __exit i2400m_driver_exit(void)
1023 {
1024 i2400m_barker_db_exit();
1025 }
1026 module_exit(i2400m_driver_exit);
1027
1028 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1029 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1030 MODULE_LICENSE("GPL");
1031