1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Firmware uploader
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38  *  - Initial implementation
39  *
40  *
41  * THE PROCEDURE
42  *
43  * The 2400m and derived devices work in two modes: boot-mode or
44  * normal mode. In boot mode we can execute only a handful of commands
45  * targeted at uploading the firmware and launching it.
46  *
47  * The 2400m enters boot mode when it is first connected to the
48  * system, when it crashes and when you ask it to reboot. There are
49  * two submodes of the boot mode: signed and non-signed. Signed takes
50  * firmwares signed with a certain private key, non-signed takes any
51  * firmware. Normal hardware takes only signed firmware.
52  *
53  * On boot mode, in USB, we write to the device using the bulk out
54  * endpoint and read from it in the notification endpoint. In SDIO we
55  * talk to it via the write address and read from the read address.
56  *
57  * Upon entrance to boot mode, the device sends (preceded with a few
58  * zero length packets (ZLPs) on the notification endpoint in USB) a
59  * reboot barker (4 le32 words with the same value). We ack it by
60  * sending the same barker to the device. The device acks with a
61  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62  * then is fully booted. At this point we can upload the firmware.
63  *
64  * Note that different iterations of the device and EEPROM
65  * configurations will send different [re]boot barkers; these are
66  * collected in i2400m_barker_db along with the firmware
67  * characteristics they require.
68  *
69  * This process is accomplished by the i2400m_bootrom_init()
70  * function. All the device interaction happens through the
71  * i2400m_bm_cmd() [boot mode command]. Special return values will
72  * indicate if the device did reset during the process.
73  *
74  * After this, we read the MAC address and then (if needed)
75  * reinitialize the device. We need to read it ahead of time because
76  * in the future, we might not upload the firmware until userspace
77  * 'ifconfig up's the device.
78  *
79  * We can then upload the firmware file. The file is composed of a BCF
80  * header (basic data, keys and signatures) and a list of write
81  * commands and payloads. Optionally more BCF headers might follow the
82  * main payload. We first upload the header [i2400m_dnload_init()] and
83  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85  * the new firmware [i2400m_dnload_finalize()].
86  *
87  * Once firmware is uploaded, we are good to go :)
88  *
89  * When we don't know in which mode we are, we first try by sending a
90  * warm reset request that will take us to boot-mode. If we time out
91  * waiting for a reboot barker, that means maybe we are already in
92  * boot mode, so we send a reboot barker.
93  *
94  * COMMAND EXECUTION
95  *
96  * This code (and process) is single threaded; for executing commands,
97  * we post a URB to the notification endpoint, post the command, wait
98  * for data on the notification buffer. We don't need to worry about
99  * others as we know we are the only ones in there.
100  *
101  * BACKEND IMPLEMENTATION
102  *
103  * This code is bus-generic; the bus-specific driver provides back end
104  * implementations to send a boot mode command to the device and to
105  * read an acknolwedgement from it (or an asynchronous notification)
106  * from it.
107  *
108  * FIRMWARE LOADING
109  *
110  * Note that in some cases, we can't just load a firmware file (for
111  * example, when resuming). For that, we might cache the firmware
112  * file. Thus, when doing the bootstrap, if there is a cache firmware
113  * file, it is used; if not, loading from disk is attempted.
114  *
115  * ROADMAP
116  *
117  * i2400m_barker_db_init              Called by i2400m_driver_init()
118  *   i2400m_barker_db_add
119  *
120  * i2400m_barker_db_exit              Called by i2400m_driver_exit()
121  *
122  * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
123  *   request_firmware
124  *   i2400m_fw_bootstrap
125  *     i2400m_fw_check
126  *       i2400m_fw_hdr_check
127  *     i2400m_fw_dnload
128  *   release_firmware
129  *
130  * i2400m_fw_dnload
131  *   i2400m_bootrom_init
132  *     i2400m_bm_cmd
133  *     i2400m_reset
134  *   i2400m_dnload_init
135  *     i2400m_dnload_init_signed
136  *     i2400m_dnload_init_nonsigned
137  *       i2400m_download_chunk
138  *         i2400m_bm_cmd
139  *   i2400m_dnload_bcf
140  *     i2400m_bm_cmd
141  *   i2400m_dnload_finalize
142  *     i2400m_bm_cmd
143  *
144  * i2400m_bm_cmd
145  *   i2400m->bus_bm_cmd_send()
146  *   i2400m->bus_bm_wait_for_ack
147  *   __i2400m_bm_ack_verify
148  *     i2400m_is_boot_barker
149  *
150  * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
151  *                                    commands before sending
152  *
153  * i2400m_pm_notifier                 Called on Power Management events
154  *   i2400m_fw_cache
155  *   i2400m_fw_uncache
156  */
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
161 #include "i2400m.h"
162 
163 
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
166 
167 
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 	cpu_to_le32(I2400M_ACK_BARKER),
170 	cpu_to_le32(I2400M_ACK_BARKER),
171 	cpu_to_le32(I2400M_ACK_BARKER),
172 	cpu_to_le32(I2400M_ACK_BARKER)
173 };
174 
175 
176 /**
177  * Prepare a boot-mode command for delivery
178  *
179  * @cmd: pointer to bootrom header to prepare
180  *
181  * Computes checksum if so needed. After calling this function, DO NOT
182  * modify the command or header as the checksum won't work anymore.
183  *
184  * We do it from here because some times we cannot do it in the
185  * original context the command was sent (it is a const), so when we
186  * copy it to our staging buffer, we add the checksum there.
187  */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189 {
190 	if (i2400m_brh_get_use_checksum(cmd)) {
191 		int i;
192 		u32 checksum = 0;
193 		const u32 *checksum_ptr = (void *) cmd->payload;
194 		for (i = 0; i < cmd->data_size / 4; i++)
195 			checksum += cpu_to_le32(*checksum_ptr++);
196 		checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 		cmd->block_checksum = cpu_to_le32(checksum);
198 	}
199 }
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201 
202 
203 /*
204  * Database of known barkers.
205  *
206  * A barker is what the device sends indicating he is ready to be
207  * bootloaded. Different versions of the device will send different
208  * barkers. Depending on the barker, it might mean the device wants
209  * some kind of firmware or the other.
210  */
211 static struct i2400m_barker_db {
212 	__le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215 
216 
217 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 		       gfp_t gfp_flags)
220 {
221 	size_t old_count = *_count,
222 		new_count = old_count ? 2 * old_count : 2,
223 		old_size = el_size * old_count,
224 		new_size = el_size * new_count;
225 	void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 	if (nptr) {
227 		/* zero the other half or the whole thing if old_count
228 		 * was zero */
229 		if (old_size == 0)
230 			memset(nptr, 0, new_size);
231 		else
232 			memset(nptr + old_size, 0, old_size);
233 		*_count = new_count;
234 		*ptr = nptr;
235 		return 0;
236 	} else
237 		return -ENOMEM;
238 }
239 
240 
241 /*
242  * Add a barker to the database
243  *
244  * This cannot used outside of this module and only at at module_init
245  * time. This is to avoid the need to do locking.
246  */
247 static
i2400m_barker_db_add(u32 barker_id)248 int i2400m_barker_db_add(u32 barker_id)
249 {
250 	int result;
251 
252 	struct i2400m_barker_db *barker;
253 	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 		result = i2400m_zrealloc_2x(
255 			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 		if (result < 0)
258 			return result;
259 	}
260 	barker = i2400m_barker_db + i2400m_barker_db_used++;
261 	barker->data[0] = le32_to_cpu(barker_id);
262 	barker->data[1] = le32_to_cpu(barker_id);
263 	barker->data[2] = le32_to_cpu(barker_id);
264 	barker->data[3] = le32_to_cpu(barker_id);
265 	return 0;
266 }
267 
268 
i2400m_barker_db_exit(void)269 void i2400m_barker_db_exit(void)
270 {
271 	kfree(i2400m_barker_db);
272 	i2400m_barker_db = NULL;
273 	i2400m_barker_db_size = 0;
274 	i2400m_barker_db_used = 0;
275 }
276 
277 
278 /*
279  * Helper function to add all the known stable barkers to the barker
280  * database.
281  */
282 static
i2400m_barker_db_known_barkers(void)283 int i2400m_barker_db_known_barkers(void)
284 {
285 	int result;
286 
287 	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 	if (result < 0)
289 		goto error_add;
290 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 	if (result < 0)
292 		goto error_add;
293 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 	if (result < 0)
295 		goto error_add;
296 error_add:
297        return result;
298 }
299 
300 
301 /*
302  * Initialize the barker database
303  *
304  * This can only be used from the module_init function for this
305  * module; this is to avoid the need to do locking.
306  *
307  * @options: command line argument with extra barkers to
308  *     recognize. This is a comma-separated list of 32-bit hex
309  *     numbers. They are appended to the existing list. Setting 0
310  *     cleans the existing list and starts a new one.
311  */
i2400m_barker_db_init(const char * _options)312 int i2400m_barker_db_init(const char *_options)
313 {
314 	int result;
315 	char *options = NULL, *options_orig, *token;
316 
317 	i2400m_barker_db = NULL;
318 	i2400m_barker_db_size = 0;
319 	i2400m_barker_db_used = 0;
320 
321 	result = i2400m_barker_db_known_barkers();
322 	if (result < 0)
323 		goto error_add;
324 	/* parse command line options from i2400m.barkers */
325 	if (_options != NULL) {
326 		unsigned barker;
327 
328 		options_orig = kstrdup(_options, GFP_KERNEL);
329 		if (options_orig == NULL)
330 			goto error_parse;
331 		options = options_orig;
332 
333 		while ((token = strsep(&options, ",")) != NULL) {
334 			if (*token == '\0')	/* eat joint commas */
335 				continue;
336 			if (sscanf(token, "%x", &barker) != 1
337 			    || barker > 0xffffffff) {
338 				printk(KERN_ERR "%s: can't recognize "
339 				       "i2400m.barkers value '%s' as "
340 				       "a 32-bit number\n",
341 				       __func__, token);
342 				result = -EINVAL;
343 				goto error_parse;
344 			}
345 			if (barker == 0) {
346 				/* clean list and start new */
347 				i2400m_barker_db_exit();
348 				continue;
349 			}
350 			result = i2400m_barker_db_add(barker);
351 			if (result < 0)
352 				goto error_add;
353 		}
354 		kfree(options_orig);
355 	}
356 	return 0;
357 
358 error_parse:
359 error_add:
360 	kfree(i2400m_barker_db);
361 	return result;
362 }
363 
364 
365 /*
366  * Recognize a boot barker
367  *
368  * @buf: buffer where the boot barker.
369  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
370  *     here so the function can check it for the caller.
371  *
372  * Note that as a side effect, upon identifying the obtained boot
373  * barker, this function will set i2400m->barker to point to the right
374  * barker database entry. Subsequent calls to the function will result
375  * in verifying that the same type of boot barker is returned when the
376  * device [re]boots (as long as the same device instance is used).
377  *
378  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
379  *     buffer in @buf doesn't match any boot barker in the database or
380  *     -EILSEQ if the buffer doesn't have the right size.
381  */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)382 int i2400m_is_boot_barker(struct i2400m *i2400m,
383 			  const void *buf, size_t buf_size)
384 {
385 	int result;
386 	struct device *dev = i2400m_dev(i2400m);
387 	struct i2400m_barker_db *barker;
388 	int i;
389 
390 	result = -ENOENT;
391 	if (buf_size != sizeof(i2400m_barker_db[i].data))
392 		return result;
393 
394 	/* Short circuit if we have already discovered the barker
395 	 * associated with the device. */
396 	if (i2400m->barker
397 	    && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
398 		unsigned index = (i2400m->barker - i2400m_barker_db)
399 			/ sizeof(*i2400m->barker);
400 		d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
401 			 index, le32_to_cpu(i2400m->barker->data[0]));
402 		return 0;
403 	}
404 
405 	for (i = 0; i < i2400m_barker_db_used; i++) {
406 		barker = &i2400m_barker_db[i];
407 		BUILD_BUG_ON(sizeof(barker->data) != 16);
408 		if (memcmp(buf, barker->data, sizeof(barker->data)))
409 			continue;
410 
411 		if (i2400m->barker == NULL) {
412 			i2400m->barker = barker;
413 			d_printf(1, dev, "boot barker set to #%u/%08x\n",
414 				 i, le32_to_cpu(barker->data[0]));
415 			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
416 				i2400m->sboot = 0;
417 			else
418 				i2400m->sboot = 1;
419 		} else if (i2400m->barker != barker) {
420 			dev_err(dev, "HW inconsistency: device "
421 				"reports a different boot barker "
422 				"than set (from %08x to %08x)\n",
423 				le32_to_cpu(i2400m->barker->data[0]),
424 				le32_to_cpu(barker->data[0]));
425 			result = -EIO;
426 		} else
427 			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
428 				 i, le32_to_cpu(barker->data[0]));
429 		result = 0;
430 		break;
431 	}
432 	return result;
433 }
434 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
435 
436 
437 /*
438  * Verify the ack data received
439  *
440  * Given a reply to a boot mode command, chew it and verify everything
441  * is ok.
442  *
443  * @opcode: opcode which generated this ack. For error messages.
444  * @ack: pointer to ack data we received
445  * @ack_size: size of that data buffer
446  * @flags: I2400M_BM_CMD_* flags we called the command with.
447  *
448  * Way too long function -- maybe it should be further split
449  */
450 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)451 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
452 			       struct i2400m_bootrom_header *ack,
453 			       size_t ack_size, int flags)
454 {
455 	ssize_t result = -ENOMEM;
456 	struct device *dev = i2400m_dev(i2400m);
457 
458 	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
459 		  i2400m, opcode, ack, ack_size);
460 	if (ack_size < sizeof(*ack)) {
461 		result = -EIO;
462 		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
463 			"return enough data (%zu bytes vs %zu expected)\n",
464 			opcode, ack_size, sizeof(*ack));
465 		goto error_ack_short;
466 	}
467 	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
468 	if (result >= 0) {
469 		result = -ERESTARTSYS;
470 		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
471 		goto error_reboot;
472 	}
473 	if (ack_size == sizeof(i2400m_ACK_BARKER)
474 		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
475 		result = -EISCONN;
476 		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
477 			 opcode);
478 		goto error_reboot_ack;
479 	}
480 	result = 0;
481 	if (flags & I2400M_BM_CMD_RAW)
482 		goto out_raw;
483 	ack->data_size = le32_to_cpu(ack->data_size);
484 	ack->target_addr = le32_to_cpu(ack->target_addr);
485 	ack->block_checksum = le32_to_cpu(ack->block_checksum);
486 	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
487 		 "response %u csum %u rr %u da %u\n",
488 		 opcode, i2400m_brh_get_opcode(ack),
489 		 i2400m_brh_get_response(ack),
490 		 i2400m_brh_get_use_checksum(ack),
491 		 i2400m_brh_get_response_required(ack),
492 		 i2400m_brh_get_direct_access(ack));
493 	result = -EIO;
494 	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
495 		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
496 			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
497 		goto error_ack_signature;
498 	}
499 	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
500 		dev_err(dev, "boot-mode cmd %d: HW BUG? "
501 			"received response for opcode %u, expected %u\n",
502 			opcode, i2400m_brh_get_opcode(ack), opcode);
503 		goto error_ack_opcode;
504 	}
505 	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
506 		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
507 			opcode, i2400m_brh_get_response(ack));
508 		goto error_ack_failed;
509 	}
510 	if (ack_size < ack->data_size + sizeof(*ack)) {
511 		dev_err(dev, "boot-mode cmd %d: SW BUG "
512 			"driver provided only %zu bytes for %zu bytes "
513 			"of data\n", opcode, ack_size,
514 			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
515 		goto error_ack_short_buffer;
516 	}
517 	result = ack_size;
518 	/* Don't you love this stack of empty targets? Well, I don't
519 	 * either, but it helps track exactly who comes in here and
520 	 * why :) */
521 error_ack_short_buffer:
522 error_ack_failed:
523 error_ack_opcode:
524 error_ack_signature:
525 out_raw:
526 error_reboot_ack:
527 error_reboot:
528 error_ack_short:
529 	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
530 		i2400m, opcode, ack, ack_size, (int) result);
531 	return result;
532 }
533 
534 
535 /**
536  * i2400m_bm_cmd - Execute a boot mode command
537  *
538  * @cmd: buffer containing the command data (pointing at the header).
539  *     This data can be ANYWHERE (for USB, we will copy it to an
540  *     specific buffer). Make sure everything is in proper little
541  *     endian.
542  *
543  *     A raw buffer can be also sent, just cast it and set flags to
544  *     I2400M_BM_CMD_RAW.
545  *
546  *     This function will generate a checksum for you if the
547  *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
548  *     is set).
549  *
550  *     You can use the i2400m->bm_cmd_buf to stage your commands and
551  *     send them.
552  *
553  *     If NULL, no command is sent (we just wait for an ack).
554  *
555  * @cmd_size: size of the command. Will be auto padded to the
556  *     bus-specific drivers padding requirements.
557  *
558  * @ack: buffer where to place the acknowledgement. If it is a regular
559  *     command response, all fields will be returned with the right,
560  *     native endianess.
561  *
562  *     You *cannot* use i2400m->bm_ack_buf for this buffer.
563  *
564  * @ack_size: size of @ack, 16 aligned; you need to provide at least
565  *     sizeof(*ack) bytes and then enough to contain the return data
566  *     from the command
567  *
568  * @flags: see I2400M_BM_CMD_* above.
569  *
570  * @returns: bytes received by the notification; if < 0, an errno code
571  *     denoting an error or:
572  *
573  *     -ERESTARTSYS  The device has rebooted
574  *
575  * Executes a boot-mode command and waits for a response, doing basic
576  * validation on it; if a zero length response is received, it retries
577  * waiting for a response until a non-zero one is received (timing out
578  * after %I2400M_BOOT_RETRIES retries).
579  */
580 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)581 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
582 		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
583 		      struct i2400m_bootrom_header *ack, size_t ack_size,
584 		      int flags)
585 {
586 	ssize_t result = -ENOMEM, rx_bytes;
587 	struct device *dev = i2400m_dev(i2400m);
588 	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
589 
590 	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
591 		  i2400m, cmd, cmd_size, ack, ack_size);
592 	BUG_ON(ack_size < sizeof(*ack));
593 	BUG_ON(i2400m->boot_mode == 0);
594 
595 	if (cmd != NULL) {		/* send the command */
596 		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
597 		if (result < 0)
598 			goto error_cmd_send;
599 		if ((flags & I2400M_BM_CMD_RAW) == 0)
600 			d_printf(5, dev,
601 				 "boot-mode cmd %d csum %u rr %u da %u: "
602 				 "addr 0x%04x size %u block csum 0x%04x\n",
603 				 opcode, i2400m_brh_get_use_checksum(cmd),
604 				 i2400m_brh_get_response_required(cmd),
605 				 i2400m_brh_get_direct_access(cmd),
606 				 cmd->target_addr, cmd->data_size,
607 				 cmd->block_checksum);
608 	}
609 	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
610 	if (result < 0) {
611 		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
612 			opcode, (int) result);	/* bah, %zd doesn't work */
613 		goto error_wait_for_ack;
614 	}
615 	rx_bytes = result;
616 	/* verify the ack and read more if necessary [result is the
617 	 * final amount of bytes we get in the ack]  */
618 	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
619 	if (result < 0)
620 		goto error_bad_ack;
621 	/* Don't you love this stack of empty targets? Well, I don't
622 	 * either, but it helps track exactly who comes in here and
623 	 * why :) */
624 	result = rx_bytes;
625 error_bad_ack:
626 error_wait_for_ack:
627 error_cmd_send:
628 	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
629 		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
630 	return result;
631 }
632 
633 
634 /**
635  * i2400m_download_chunk - write a single chunk of data to the device's memory
636  *
637  * @i2400m: device descriptor
638  * @buf: the buffer to write
639  * @buf_len: length of the buffer to write
640  * @addr: address in the device memory space
641  * @direct: bootrom write mode
642  * @do_csum: should a checksum validation be performed
643  */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)644 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
645 				 size_t __chunk_len, unsigned long addr,
646 				 unsigned int direct, unsigned int do_csum)
647 {
648 	int ret;
649 	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
650 	struct device *dev = i2400m_dev(i2400m);
651 	struct {
652 		struct i2400m_bootrom_header cmd;
653 		u8 cmd_payload[chunk_len];
654 	} __packed *buf;
655 	struct i2400m_bootrom_header ack;
656 
657 	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
658 		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
659 		  addr, direct, do_csum);
660 	buf = i2400m->bm_cmd_buf;
661 	memcpy(buf->cmd_payload, chunk, __chunk_len);
662 	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
663 
664 	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
665 					      __chunk_len & 0x3 ? 0 : do_csum,
666 					      __chunk_len & 0xf ? 0 : direct);
667 	buf->cmd.target_addr = cpu_to_le32(addr);
668 	buf->cmd.data_size = cpu_to_le32(__chunk_len);
669 	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
670 			    &ack, sizeof(ack), 0);
671 	if (ret >= 0)
672 		ret = 0;
673 	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
674 		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
675 		addr, direct, do_csum, ret);
676 	return ret;
677 }
678 
679 
680 /*
681  * Download a BCF file's sections to the device
682  *
683  * @i2400m: device descriptor
684  * @bcf: pointer to firmware data (first header followed by the
685  *     payloads). Assumed verified and consistent.
686  * @bcf_len: length (in bytes) of the @bcf buffer.
687  *
688  * Returns: < 0 errno code on error or the offset to the jump instruction.
689  *
690  * Given a BCF file, downloads each section (a command and a payload)
691  * to the device's address space. Actually, it just executes each
692  * command i the BCF file.
693  *
694  * The section size has to be aligned to 4 bytes AND the padding has
695  * to be taken from the firmware file, as the signature takes it into
696  * account.
697  */
698 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)699 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
700 			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
701 {
702 	ssize_t ret;
703 	struct device *dev = i2400m_dev(i2400m);
704 	size_t offset,		/* iterator offset */
705 		data_size,	/* Size of the data payload */
706 		section_size,	/* Size of the whole section (cmd + payload) */
707 		section = 1;
708 	const struct i2400m_bootrom_header *bh;
709 	struct i2400m_bootrom_header ack;
710 
711 	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
712 		  i2400m, bcf, bcf_len);
713 	/* Iterate over the command blocks in the BCF file that start
714 	 * after the header */
715 	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
716 	while (1) {	/* start sending the file */
717 		bh = (void *) bcf + offset;
718 		data_size = le32_to_cpu(bh->data_size);
719 		section_size = ALIGN(sizeof(*bh) + data_size, 4);
720 		d_printf(7, dev,
721 			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
722 			 section, offset, sizeof(*bh) + data_size,
723 			 le32_to_cpu(bh->target_addr));
724 		/*
725 		 * We look for JUMP cmd from the bootmode header,
726 		 * either I2400M_BRH_SIGNED_JUMP for secure boot
727 		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
728 		 * should be the bootmode header with JUMP cmd.
729 		 */
730 		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
731 			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
732 			d_printf(5, dev,  "jump found @%zu\n", offset);
733 			break;
734 		}
735 		if (offset + section_size > bcf_len) {
736 			dev_err(dev, "fw %s: bad section #%zu, "
737 				"end (@%zu) beyond EOF (@%zu)\n",
738 				i2400m->fw_name, section,
739 				offset + section_size,  bcf_len);
740 			ret = -EINVAL;
741 			goto error_section_beyond_eof;
742 		}
743 		__i2400m_msleep(20);
744 		ret = i2400m_bm_cmd(i2400m, bh, section_size,
745 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
746 		if (ret < 0) {
747 			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
748 				"failed %d\n", i2400m->fw_name, section,
749 				offset, sizeof(*bh) + data_size, (int) ret);
750 			goto error_send;
751 		}
752 		offset += section_size;
753 		section++;
754 	}
755 	ret = offset;
756 error_section_beyond_eof:
757 error_send:
758 	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
759 		i2400m, bcf, bcf_len, (int) ret);
760 	return ret;
761 }
762 
763 
764 /*
765  * Indicate if the device emitted a reboot barker that indicates
766  * "signed boot"
767  */
768 static
i2400m_boot_is_signed(struct i2400m * i2400m)769 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
770 {
771 	return likely(i2400m->sboot);
772 }
773 
774 
775 /*
776  * Do the final steps of uploading firmware
777  *
778  * @bcf_hdr: BCF header we are actually using
779  * @bcf: pointer to the firmware image (which matches the first header
780  *     that is followed by the actual payloads).
781  * @offset: [byte] offset into @bcf for the command we need to send.
782  *
783  * Depending on the boot mode (signed vs non-signed), different
784  * actions need to be taken.
785  */
786 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)787 int i2400m_dnload_finalize(struct i2400m *i2400m,
788 			   const struct i2400m_bcf_hdr *bcf_hdr,
789 			   const struct i2400m_bcf_hdr *bcf, size_t offset)
790 {
791 	int ret = 0;
792 	struct device *dev = i2400m_dev(i2400m);
793 	struct i2400m_bootrom_header *cmd, ack;
794 	struct {
795 		struct i2400m_bootrom_header cmd;
796 		u8 cmd_pl[0];
797 	} __packed *cmd_buf;
798 	size_t signature_block_offset, signature_block_size;
799 
800 	d_fnstart(3, dev, "offset %zu\n", offset);
801 	cmd = (void *) bcf + offset;
802 	if (i2400m_boot_is_signed(i2400m) == 0) {
803 		struct i2400m_bootrom_header jump_ack;
804 		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
805 			le32_to_cpu(cmd->target_addr));
806 		cmd_buf = i2400m->bm_cmd_buf;
807 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
808 		cmd = &cmd_buf->cmd;
809 		/* now cmd points to the actual bootrom_header in cmd_buf */
810 		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
811 		cmd->data_size = 0;
812 		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
813 				    &jump_ack, sizeof(jump_ack), 0);
814 	} else {
815 		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
816 			 le32_to_cpu(cmd->target_addr));
817 		cmd_buf = i2400m->bm_cmd_buf;
818 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
819 		signature_block_offset =
820 			sizeof(*bcf_hdr)
821 			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
822 			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
823 		signature_block_size =
824 			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
825 		memcpy(cmd_buf->cmd_pl,
826 		       (void *) bcf_hdr + signature_block_offset,
827 		       signature_block_size);
828 		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
829 				    sizeof(cmd_buf->cmd) + signature_block_size,
830 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
831 	}
832 	d_fnend(3, dev, "returning %d\n", ret);
833 	return ret;
834 }
835 
836 
837 /**
838  * i2400m_bootrom_init - Reboots a powered device into boot mode
839  *
840  * @i2400m: device descriptor
841  * @flags:
842  *      I2400M_BRI_SOFT: a reboot barker has been seen
843  *          already, so don't wait for it.
844  *
845  *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
846  *          for a reboot barker notification. This is a one shot; if
847  *          the state machine needs to send a reboot command it will.
848  *
849  * Returns:
850  *
851  *     < 0 errno code on error, 0 if ok.
852  *
853  * Description:
854  *
855  * Tries hard enough to put the device in boot-mode. There are two
856  * main phases to this:
857  *
858  * a. (1) send a reboot command and (2) get a reboot barker
859  *
860  * b. (1) echo/ack the reboot sending the reboot barker back and (2)
861  *        getting an ack barker in return
862  *
863  * We want to skip (a) in some cases [soft]. The state machine is
864  * horrible, but it is basically: on each phase, send what has to be
865  * sent (if any), wait for the answer and act on the answer. We might
866  * have to backtrack and retry, so we keep a max tries counter for
867  * that.
868  *
869  * It sucks because we don't know ahead of time which is going to be
870  * the reboot barker (the device might send different ones depending
871  * on its EEPROM config) and once the device reboots and waits for the
872  * echo/ack reboot barker being sent back, it doesn't understand
873  * anything else. So we can be left at the point where we don't know
874  * what to send to it -- cold reset and bus reset seem to have little
875  * effect. So the function iterates (in this case) through all the
876  * known barkers and tries them all until an ACK is
877  * received. Otherwise, it gives up.
878  *
879  * If we get a timeout after sending a warm reset, we do it again.
880  */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)881 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
882 {
883 	int result;
884 	struct device *dev = i2400m_dev(i2400m);
885 	struct i2400m_bootrom_header *cmd;
886 	struct i2400m_bootrom_header ack;
887 	int count = i2400m->bus_bm_retries;
888 	int ack_timeout_cnt = 1;
889 	unsigned i;
890 
891 	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
892 	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
893 
894 	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
895 	result = -ENOMEM;
896 	cmd = i2400m->bm_cmd_buf;
897 	if (flags & I2400M_BRI_SOFT)
898 		goto do_reboot_ack;
899 do_reboot:
900 	ack_timeout_cnt = 1;
901 	if (--count < 0)
902 		goto error_timeout;
903 	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
904 		 count);
905 	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
906 		i2400m_reset(i2400m, I2400M_RT_WARM);
907 	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
908 			       I2400M_BM_CMD_RAW);
909 	flags &= ~I2400M_BRI_NO_REBOOT;
910 	switch (result) {
911 	case -ERESTARTSYS:
912 		/*
913 		 * at this point, i2400m_bm_cmd(), through
914 		 * __i2400m_bm_ack_process(), has updated
915 		 * i2400m->barker and we are good to go.
916 		 */
917 		d_printf(4, dev, "device reboot: got reboot barker\n");
918 		break;
919 	case -EISCONN:	/* we don't know how it got here...but we follow it */
920 		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
921 		goto do_reboot;
922 	case -ETIMEDOUT:
923 		/*
924 		 * Device has timed out, we might be in boot mode
925 		 * already and expecting an ack; if we don't know what
926 		 * the barker is, we just send them all. Cold reset
927 		 * and bus reset don't work. Beats me.
928 		 */
929 		if (i2400m->barker != NULL) {
930 			dev_err(dev, "device boot: reboot barker timed out, "
931 				"trying (set) %08x echo/ack\n",
932 				le32_to_cpu(i2400m->barker->data[0]));
933 			goto do_reboot_ack;
934 		}
935 		for (i = 0; i < i2400m_barker_db_used; i++) {
936 			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
937 			memcpy(cmd, barker->data, sizeof(barker->data));
938 			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
939 					       &ack, sizeof(ack),
940 					       I2400M_BM_CMD_RAW);
941 			if (result == -EISCONN) {
942 				dev_warn(dev, "device boot: got ack barker "
943 					 "after sending echo/ack barker "
944 					 "#%d/%08x; rebooting j.i.c.\n",
945 					 i, le32_to_cpu(barker->data[0]));
946 				flags &= ~I2400M_BRI_NO_REBOOT;
947 				goto do_reboot;
948 			}
949 		}
950 		dev_err(dev, "device boot: tried all the echo/acks, could "
951 			"not get device to respond; giving up");
952 		result = -ESHUTDOWN;
953 	case -EPROTO:
954 	case -ESHUTDOWN:	/* dev is gone */
955 	case -EINTR:		/* user cancelled */
956 		goto error_dev_gone;
957 	default:
958 		dev_err(dev, "device reboot: error %d while waiting "
959 			"for reboot barker - rebooting\n", result);
960 		d_dump(1, dev, &ack, result);
961 		goto do_reboot;
962 	}
963 	/* At this point we ack back with 4 REBOOT barkers and expect
964 	 * 4 ACK barkers. This is ugly, as we send a raw command --
965 	 * hence the cast. _bm_cmd() will catch the reboot ack
966 	 * notification and report it as -EISCONN. */
967 do_reboot_ack:
968 	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
969 	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
970 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
971 			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
972 	switch (result) {
973 	case -ERESTARTSYS:
974 		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
975 		if (--count < 0)
976 			goto error_timeout;
977 		goto do_reboot_ack;
978 	case -EISCONN:
979 		d_printf(4, dev, "reboot ack: got ack barker - good\n");
980 		break;
981 	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
982 		if (ack_timeout_cnt-- < 0) {
983 			d_printf(4, dev, "reboot ack timedout: retrying\n");
984 			goto do_reboot_ack;
985 		} else {
986 			dev_err(dev, "reboot ack timedout too long: "
987 				"trying reboot\n");
988 			goto do_reboot;
989 		}
990 		break;
991 	case -EPROTO:
992 	case -ESHUTDOWN:	/* dev is gone */
993 		goto error_dev_gone;
994 	default:
995 		dev_err(dev, "device reboot ack: error %d while waiting for "
996 			"reboot ack barker - rebooting\n", result);
997 		goto do_reboot;
998 	}
999 	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1000 	result = 0;
1001 exit_timeout:
1002 error_dev_gone:
1003 	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1004 		i2400m, flags, result);
1005 	return result;
1006 
1007 error_timeout:
1008 	dev_err(dev, "Timed out waiting for reboot ack\n");
1009 	result = -ETIMEDOUT;
1010 	goto exit_timeout;
1011 }
1012 
1013 
1014 /*
1015  * Read the MAC addr
1016  *
1017  * The position this function reads is fixed in device memory and
1018  * always available, even without firmware.
1019  *
1020  * Note we specify we want to read only six bytes, but provide space
1021  * for 16, as we always get it rounded up.
1022  */
i2400m_read_mac_addr(struct i2400m * i2400m)1023 int i2400m_read_mac_addr(struct i2400m *i2400m)
1024 {
1025 	int result;
1026 	struct device *dev = i2400m_dev(i2400m);
1027 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1028 	struct i2400m_bootrom_header *cmd;
1029 	struct {
1030 		struct i2400m_bootrom_header ack;
1031 		u8 ack_pl[16];
1032 	} __packed ack_buf;
1033 
1034 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1035 	cmd = i2400m->bm_cmd_buf;
1036 	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1037 	cmd->target_addr = cpu_to_le32(0x00203fe8);
1038 	cmd->data_size = cpu_to_le32(6);
1039 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1040 			       &ack_buf.ack, sizeof(ack_buf), 0);
1041 	if (result < 0) {
1042 		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1043 		goto error_read_mac;
1044 	}
1045 	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1046 	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1047 		ack_buf.ack_pl[0] = 0x00;
1048 		ack_buf.ack_pl[1] = 0x16;
1049 		ack_buf.ack_pl[2] = 0xd3;
1050 		get_random_bytes(&ack_buf.ack_pl[3], 3);
1051 		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1052 			"mac addr is %pM\n", ack_buf.ack_pl);
1053 		result = 0;
1054 	}
1055 	net_dev->addr_len = ETH_ALEN;
1056 	memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1057 	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1058 error_read_mac:
1059 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1060 	return result;
1061 }
1062 
1063 
1064 /*
1065  * Initialize a non signed boot
1066  *
1067  * This implies sending some magic values to the device's memory. Note
1068  * we convert the values to little endian in the same array
1069  * declaration.
1070  */
1071 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1072 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1073 {
1074 	unsigned i = 0;
1075 	int ret = 0;
1076 	struct device *dev = i2400m_dev(i2400m);
1077 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1078 	if (i2400m->bus_bm_pokes_table) {
1079 		while (i2400m->bus_bm_pokes_table[i].address) {
1080 			ret = i2400m_download_chunk(
1081 				i2400m,
1082 				&i2400m->bus_bm_pokes_table[i].data,
1083 				sizeof(i2400m->bus_bm_pokes_table[i].data),
1084 				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1085 			if (ret < 0)
1086 				break;
1087 			i++;
1088 		}
1089 	}
1090 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1091 	return ret;
1092 }
1093 
1094 
1095 /*
1096  * Initialize the signed boot process
1097  *
1098  * @i2400m: device descriptor
1099  *
1100  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1101  *     memory (it has gone through basic validation).
1102  *
1103  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1104  *     rebooted.
1105  *
1106  * This writes the firmware BCF header to the device using the
1107  * HASH_PAYLOAD_ONLY command.
1108  */
1109 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1110 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1111 			      const struct i2400m_bcf_hdr *bcf_hdr)
1112 {
1113 	int ret;
1114 	struct device *dev = i2400m_dev(i2400m);
1115 	struct {
1116 		struct i2400m_bootrom_header cmd;
1117 		struct i2400m_bcf_hdr cmd_pl;
1118 	} __packed *cmd_buf;
1119 	struct i2400m_bootrom_header ack;
1120 
1121 	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1122 	cmd_buf = i2400m->bm_cmd_buf;
1123 	cmd_buf->cmd.command =
1124 		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1125 	cmd_buf->cmd.target_addr = 0;
1126 	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1127 	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1128 	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1129 			    &ack, sizeof(ack), 0);
1130 	if (ret >= 0)
1131 		ret = 0;
1132 	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1133 	return ret;
1134 }
1135 
1136 
1137 /*
1138  * Initialize the firmware download at the device size
1139  *
1140  * Multiplex to the one that matters based on the device's mode
1141  * (signed or non-signed).
1142  */
1143 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1144 int i2400m_dnload_init(struct i2400m *i2400m,
1145 		       const struct i2400m_bcf_hdr *bcf_hdr)
1146 {
1147 	int result;
1148 	struct device *dev = i2400m_dev(i2400m);
1149 
1150 	if (i2400m_boot_is_signed(i2400m)) {
1151 		d_printf(1, dev, "signed boot\n");
1152 		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1153 		if (result == -ERESTARTSYS)
1154 			return result;
1155 		if (result < 0)
1156 			dev_err(dev, "firmware %s: signed boot download "
1157 				"initialization failed: %d\n",
1158 				i2400m->fw_name, result);
1159 	} else {
1160 		/* non-signed boot process without pokes */
1161 		d_printf(1, dev, "non-signed boot\n");
1162 		result = i2400m_dnload_init_nonsigned(i2400m);
1163 		if (result == -ERESTARTSYS)
1164 			return result;
1165 		if (result < 0)
1166 			dev_err(dev, "firmware %s: non-signed download "
1167 				"initialization failed: %d\n",
1168 				i2400m->fw_name, result);
1169 	}
1170 	return result;
1171 }
1172 
1173 
1174 /*
1175  * Run consistency tests on the firmware file and load up headers
1176  *
1177  * Check for the firmware being made for the i2400m device,
1178  * etc...These checks are mostly informative, as the device will make
1179  * them too; but the driver's response is more informative on what
1180  * went wrong.
1181  *
1182  * This will also look at all the headers present on the firmware
1183  * file, and update i2400m->fw_bcf_hdr to point to them.
1184  */
1185 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1186 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1187 			const struct i2400m_bcf_hdr *bcf_hdr,
1188 			size_t index, size_t offset)
1189 {
1190 	struct device *dev = i2400m_dev(i2400m);
1191 
1192 	unsigned module_type, header_len, major_version, minor_version,
1193 		module_id, module_vendor, date, size;
1194 
1195 	module_type = le32_to_cpu(bcf_hdr->module_type);
1196 	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1197 	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1198 		>> 16;
1199 	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1200 	module_id = le32_to_cpu(bcf_hdr->module_id);
1201 	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1202 	date = le32_to_cpu(bcf_hdr->date);
1203 	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1204 
1205 	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1206 		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1207 		 i2400m->fw_name, index, offset,
1208 		 module_type, module_vendor, module_id,
1209 		 major_version, minor_version, header_len, size, date);
1210 
1211 	/* Hard errors */
1212 	if (major_version != 1) {
1213 		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1214 			"v%u.%u not supported\n",
1215 			i2400m->fw_name, index, offset,
1216 			major_version, minor_version);
1217 		return -EBADF;
1218 	}
1219 
1220 	if (module_type != 6) {		/* built for the right hardware? */
1221 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1222 			"type 0x%x; aborting\n",
1223 			i2400m->fw_name, index, offset,
1224 			module_type);
1225 		return -EBADF;
1226 	}
1227 
1228 	if (module_vendor != 0x8086) {
1229 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1230 			"vendor 0x%x; aborting\n",
1231 			i2400m->fw_name, index, offset, module_vendor);
1232 		return -EBADF;
1233 	}
1234 
1235 	if (date < 0x20080300)
1236 		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1237 			 "too old; unsupported\n",
1238 			 i2400m->fw_name, index, offset, date);
1239 	return 0;
1240 }
1241 
1242 
1243 /*
1244  * Run consistency tests on the firmware file and load up headers
1245  *
1246  * Check for the firmware being made for the i2400m device,
1247  * etc...These checks are mostly informative, as the device will make
1248  * them too; but the driver's response is more informative on what
1249  * went wrong.
1250  *
1251  * This will also look at all the headers present on the firmware
1252  * file, and update i2400m->fw_hdrs to point to them.
1253  */
1254 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1255 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1256 {
1257 	int result;
1258 	struct device *dev = i2400m_dev(i2400m);
1259 	size_t headers = 0;
1260 	const struct i2400m_bcf_hdr *bcf_hdr;
1261 	const void *itr, *next, *top;
1262 	size_t slots = 0, used_slots = 0;
1263 
1264 	for (itr = bcf, top = itr + bcf_size;
1265 	     itr < top;
1266 	     headers++, itr = next) {
1267 		size_t leftover, offset, header_len, size;
1268 
1269 		leftover = top - itr;
1270 		offset = itr - (const void *) bcf;
1271 		if (leftover <= sizeof(*bcf_hdr)) {
1272 			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1273 				"not enough for BCF header\n",
1274 				i2400m->fw_name, leftover, offset);
1275 			break;
1276 		}
1277 		bcf_hdr = itr;
1278 		/* Only the first header is supposed to be followed by
1279 		 * payload */
1280 		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1281 		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1282 		if (headers == 0)
1283 			next = itr + size;
1284 		else
1285 			next = itr + header_len;
1286 
1287 		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1288 		if (result < 0)
1289 			continue;
1290 		if (used_slots + 1 >= slots) {
1291 			/* +1 -> we need to account for the one we'll
1292 			 * occupy and at least an extra one for
1293 			 * always being NULL */
1294 			result = i2400m_zrealloc_2x(
1295 				(void **) &i2400m->fw_hdrs, &slots,
1296 				sizeof(i2400m->fw_hdrs[0]),
1297 				GFP_KERNEL);
1298 			if (result < 0)
1299 				goto error_zrealloc;
1300 		}
1301 		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1302 		used_slots++;
1303 	}
1304 	if (headers == 0) {
1305 		dev_err(dev, "firmware %s: no usable headers found\n",
1306 			i2400m->fw_name);
1307 		result = -EBADF;
1308 	} else
1309 		result = 0;
1310 error_zrealloc:
1311 	return result;
1312 }
1313 
1314 
1315 /*
1316  * Match a barker to a BCF header module ID
1317  *
1318  * The device sends a barker which tells the firmware loader which
1319  * header in the BCF file has to be used. This does the matching.
1320  */
1321 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1322 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1323 			      const struct i2400m_bcf_hdr *bcf_hdr)
1324 {
1325 	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1326 		& 0x7fffffff;
1327 	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1328 		& 0x7fffffff;	/* high bit used for something else */
1329 
1330 	/* special case for 5x50 */
1331 	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1332 		return 1;
1333 	if (module_id == barker)
1334 		return 1;
1335 	return 0;
1336 }
1337 
1338 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1339 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1340 {
1341 	struct device *dev = i2400m_dev(i2400m);
1342 	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1343 	unsigned i = 0;
1344 	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1345 
1346 	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1347 	if (barker == I2400M_NBOOT_BARKER) {
1348 		bcf_hdr = i2400m->fw_hdrs[0];
1349 		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1350 			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1351 		return bcf_hdr;
1352 	}
1353 	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1354 		bcf_hdr = *bcf_itr;
1355 		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1356 			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1357 				 i, le32_to_cpu(bcf_hdr->module_id));
1358 			return bcf_hdr;
1359 		} else
1360 			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1361 				 i, le32_to_cpu(bcf_hdr->module_id));
1362 	}
1363 	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1364 		barker);
1365 	return NULL;
1366 }
1367 
1368 
1369 /*
1370  * Download the firmware to the device
1371  *
1372  * @i2400m: device descriptor
1373  * @bcf: pointer to loaded (and minimally verified for consistency)
1374  *    firmware
1375  * @bcf_size: size of the @bcf buffer (header plus payloads)
1376  *
1377  * The process for doing this is described in this file's header.
1378  *
1379  * Note we only reinitialize boot-mode if the flags say so. Some hw
1380  * iterations need it, some don't. In any case, if we loop, we always
1381  * need to reinitialize the boot room, hence the flags modification.
1382  */
1383 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1384 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1385 		     size_t fw_size, enum i2400m_bri flags)
1386 {
1387 	int ret = 0;
1388 	struct device *dev = i2400m_dev(i2400m);
1389 	int count = i2400m->bus_bm_retries;
1390 	const struct i2400m_bcf_hdr *bcf_hdr;
1391 	size_t bcf_size;
1392 
1393 	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1394 		  i2400m, bcf, fw_size);
1395 	i2400m->boot_mode = 1;
1396 	wmb();		/* Make sure other readers see it */
1397 hw_reboot:
1398 	if (count-- == 0) {
1399 		ret = -ERESTARTSYS;
1400 		dev_err(dev, "device rebooted too many times, aborting\n");
1401 		goto error_too_many_reboots;
1402 	}
1403 	if (flags & I2400M_BRI_MAC_REINIT) {
1404 		ret = i2400m_bootrom_init(i2400m, flags);
1405 		if (ret < 0) {
1406 			dev_err(dev, "bootrom init failed: %d\n", ret);
1407 			goto error_bootrom_init;
1408 		}
1409 	}
1410 	flags |= I2400M_BRI_MAC_REINIT;
1411 
1412 	/*
1413 	 * Initialize the download, push the bytes to the device and
1414 	 * then jump to the new firmware. Note @ret is passed with the
1415 	 * offset of the jump instruction to _dnload_finalize()
1416 	 *
1417 	 * Note we need to use the BCF header in the firmware image
1418 	 * that matches the barker that the device sent when it
1419 	 * rebooted, so it has to be passed along.
1420 	 */
1421 	ret = -EBADF;
1422 	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1423 	if (bcf_hdr == NULL)
1424 		goto error_bcf_hdr_find;
1425 
1426 	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1427 	if (ret == -ERESTARTSYS)
1428 		goto error_dev_rebooted;
1429 	if (ret < 0)
1430 		goto error_dnload_init;
1431 
1432 	/*
1433 	 * bcf_size refers to one header size plus the fw sections size
1434 	 * indicated by the header,ie. if there are other extended headers
1435 	 * at the tail, they are not counted
1436 	 */
1437 	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1438 	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1439 	if (ret == -ERESTARTSYS)
1440 		goto error_dev_rebooted;
1441 	if (ret < 0) {
1442 		dev_err(dev, "fw %s: download failed: %d\n",
1443 			i2400m->fw_name, ret);
1444 		goto error_dnload_bcf;
1445 	}
1446 
1447 	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1448 	if (ret == -ERESTARTSYS)
1449 		goto error_dev_rebooted;
1450 	if (ret < 0) {
1451 		dev_err(dev, "fw %s: "
1452 			"download finalization failed: %d\n",
1453 			i2400m->fw_name, ret);
1454 		goto error_dnload_finalize;
1455 	}
1456 
1457 	d_printf(2, dev, "fw %s successfully uploaded\n",
1458 		 i2400m->fw_name);
1459 	i2400m->boot_mode = 0;
1460 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1461 error_dnload_finalize:
1462 error_dnload_bcf:
1463 error_dnload_init:
1464 error_bcf_hdr_find:
1465 error_bootrom_init:
1466 error_too_many_reboots:
1467 	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1468 		i2400m, bcf, fw_size, ret);
1469 	return ret;
1470 
1471 error_dev_rebooted:
1472 	dev_err(dev, "device rebooted, %d tries left\n", count);
1473 	/* we got the notification already, no need to wait for it again */
1474 	flags |= I2400M_BRI_SOFT;
1475 	goto hw_reboot;
1476 }
1477 
1478 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1479 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1480 			enum i2400m_bri flags)
1481 {
1482 	int ret;
1483 	struct device *dev = i2400m_dev(i2400m);
1484 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1485 
1486 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1487 	bcf = (void *) fw->data;
1488 	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1489 	if (ret >= 0)
1490 		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1491 	if (ret < 0)
1492 		dev_err(dev, "%s: cannot use: %d, skipping\n",
1493 			i2400m->fw_name, ret);
1494 	kfree(i2400m->fw_hdrs);
1495 	i2400m->fw_hdrs = NULL;
1496 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1497 	return ret;
1498 }
1499 
1500 
1501 /* Refcounted container for firmware data */
1502 struct i2400m_fw {
1503 	struct kref kref;
1504 	const struct firmware *fw;
1505 };
1506 
1507 
1508 static
i2400m_fw_destroy(struct kref * kref)1509 void i2400m_fw_destroy(struct kref *kref)
1510 {
1511 	struct i2400m_fw *i2400m_fw =
1512 		container_of(kref, struct i2400m_fw, kref);
1513 	release_firmware(i2400m_fw->fw);
1514 	kfree(i2400m_fw);
1515 }
1516 
1517 
1518 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1519 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1520 {
1521 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1522 		kref_get(&i2400m_fw->kref);
1523 	return i2400m_fw;
1524 }
1525 
1526 
1527 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1528 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1529 {
1530 	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1531 }
1532 
1533 
1534 /**
1535  * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1536  *
1537  * @i2400m: device descriptor
1538  *
1539  * Returns: >= 0 if ok, < 0 errno code on error.
1540  *
1541  * This sets up the firmware upload environment, loads the firmware
1542  * file from disk, verifies and then calls the firmware upload process
1543  * per se.
1544  *
1545  * Can be called either from probe, or after a warm reset.  Can not be
1546  * called from within an interrupt.  All the flow in this code is
1547  * single-threade; all I/Os are synchronous.
1548  */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1549 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1550 {
1551 	int ret, itr;
1552 	struct device *dev = i2400m_dev(i2400m);
1553 	struct i2400m_fw *i2400m_fw;
1554 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1555 	const struct firmware *fw;
1556 	const char *fw_name;
1557 
1558 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1559 
1560 	ret = -ENODEV;
1561 	spin_lock(&i2400m->rx_lock);
1562 	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1563 	spin_unlock(&i2400m->rx_lock);
1564 	if (i2400m_fw == (void *) ~0) {
1565 		dev_err(dev, "can't load firmware now!");
1566 		goto out;
1567 	} else if (i2400m_fw != NULL) {
1568 		dev_info(dev, "firmware %s: loading from cache\n",
1569 			 i2400m->fw_name);
1570 		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1571 		i2400m_fw_put(i2400m_fw);
1572 		goto out;
1573 	}
1574 
1575 	/* Load firmware files to memory. */
1576 	for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1577 		fw_name = i2400m->bus_fw_names[itr];
1578 		if (fw_name == NULL) {
1579 			dev_err(dev, "Could not find a usable firmware image\n");
1580 			break;
1581 		}
1582 		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1583 		ret = request_firmware(&fw, fw_name, dev);
1584 		if (ret < 0) {
1585 			dev_err(dev, "fw %s: cannot load file: %d\n",
1586 				fw_name, ret);
1587 			continue;
1588 		}
1589 		i2400m->fw_name = fw_name;
1590 		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1591 		release_firmware(fw);
1592 		if (ret >= 0)	/* firmware loaded successfully */
1593 			break;
1594 		i2400m->fw_name = NULL;
1595 	}
1596 out:
1597 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1601 
1602 
i2400m_fw_cache(struct i2400m * i2400m)1603 void i2400m_fw_cache(struct i2400m *i2400m)
1604 {
1605 	int result;
1606 	struct i2400m_fw *i2400m_fw;
1607 	struct device *dev = i2400m_dev(i2400m);
1608 
1609 	/* if there is anything there, free it -- now, this'd be weird */
1610 	spin_lock(&i2400m->rx_lock);
1611 	i2400m_fw = i2400m->fw_cached;
1612 	spin_unlock(&i2400m->rx_lock);
1613 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1614 		i2400m_fw_put(i2400m_fw);
1615 		WARN(1, "%s:%u: still cached fw still present?\n",
1616 		     __func__, __LINE__);
1617 	}
1618 
1619 	if (i2400m->fw_name == NULL) {
1620 		dev_err(dev, "firmware n/a: can't cache\n");
1621 		i2400m_fw = (void *) ~0;
1622 		goto out;
1623 	}
1624 
1625 	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1626 	if (i2400m_fw == NULL)
1627 		goto out;
1628 	kref_init(&i2400m_fw->kref);
1629 	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1630 	if (result < 0) {
1631 		dev_err(dev, "firmware %s: failed to cache: %d\n",
1632 			i2400m->fw_name, result);
1633 		kfree(i2400m_fw);
1634 		i2400m_fw = (void *) ~0;
1635 	} else
1636 		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1637 out:
1638 	spin_lock(&i2400m->rx_lock);
1639 	i2400m->fw_cached = i2400m_fw;
1640 	spin_unlock(&i2400m->rx_lock);
1641 }
1642 
1643 
i2400m_fw_uncache(struct i2400m * i2400m)1644 void i2400m_fw_uncache(struct i2400m *i2400m)
1645 {
1646 	struct i2400m_fw *i2400m_fw;
1647 
1648 	spin_lock(&i2400m->rx_lock);
1649 	i2400m_fw = i2400m->fw_cached;
1650 	i2400m->fw_cached = NULL;
1651 	spin_unlock(&i2400m->rx_lock);
1652 
1653 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1654 		i2400m_fw_put(i2400m_fw);
1655 }
1656 
1657