1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37  *                 mapping->tree_lock (widely used, in set_page_dirty,
38  *                           in arch-dependent flush_dcache_mmap_lock,
39  *                           within inode_wb_list_lock in __sync_single_inode)
40  *
41  * (code doesn't rely on that order so it could be switched around)
42  * ->tasklist_lock
43  *   anon_vma->lock      (memory_failure, collect_procs_anon)
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 
62 #include <asm/tlbflush.h>
63 
64 #include "internal.h"
65 
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68 
anon_vma_alloc(void)69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 	struct anon_vma *anon_vma;
72 
73 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 	if (anon_vma) {
75 		atomic_set(&anon_vma->refcount, 1);
76 		/*
77 		 * Initialise the anon_vma root to point to itself. If called
78 		 * from fork, the root will be reset to the parents anon_vma.
79 		 */
80 		anon_vma->root = anon_vma;
81 	}
82 
83 	return anon_vma;
84 }
85 
anon_vma_free(struct anon_vma * anon_vma)86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 	kmem_cache_free(anon_vma_cachep, anon_vma);
90 }
91 
anon_vma_chain_alloc(void)92 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93 {
94 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95 }
96 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)97 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
98 {
99 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100 }
101 
102 /**
103  * anon_vma_prepare - attach an anon_vma to a memory region
104  * @vma: the memory region in question
105  *
106  * This makes sure the memory mapping described by 'vma' has
107  * an 'anon_vma' attached to it, so that we can associate the
108  * anonymous pages mapped into it with that anon_vma.
109  *
110  * The common case will be that we already have one, but if
111  * not we either need to find an adjacent mapping that we
112  * can re-use the anon_vma from (very common when the only
113  * reason for splitting a vma has been mprotect()), or we
114  * allocate a new one.
115  *
116  * Anon-vma allocations are very subtle, because we may have
117  * optimistically looked up an anon_vma in page_lock_anon_vma()
118  * and that may actually touch the spinlock even in the newly
119  * allocated vma (it depends on RCU to make sure that the
120  * anon_vma isn't actually destroyed).
121  *
122  * As a result, we need to do proper anon_vma locking even
123  * for the new allocation. At the same time, we do not want
124  * to do any locking for the common case of already having
125  * an anon_vma.
126  *
127  * This must be called with the mmap_sem held for reading.
128  */
anon_vma_prepare(struct vm_area_struct * vma)129 int anon_vma_prepare(struct vm_area_struct *vma)
130 {
131 	struct anon_vma *anon_vma = vma->anon_vma;
132 	struct anon_vma_chain *avc;
133 
134 	might_sleep();
135 	if (unlikely(!anon_vma)) {
136 		struct mm_struct *mm = vma->vm_mm;
137 		struct anon_vma *allocated;
138 
139 		avc = anon_vma_chain_alloc();
140 		if (!avc)
141 			goto out_enomem;
142 
143 		anon_vma = find_mergeable_anon_vma(vma);
144 		allocated = NULL;
145 		if (!anon_vma) {
146 			anon_vma = anon_vma_alloc();
147 			if (unlikely(!anon_vma))
148 				goto out_enomem_free_avc;
149 			allocated = anon_vma;
150 		}
151 
152 		anon_vma_lock(anon_vma);
153 		/* page_table_lock to protect against threads */
154 		spin_lock(&mm->page_table_lock);
155 		if (likely(!vma->anon_vma)) {
156 			vma->anon_vma = anon_vma;
157 			avc->anon_vma = anon_vma;
158 			avc->vma = vma;
159 			list_add(&avc->same_vma, &vma->anon_vma_chain);
160 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161 			allocated = NULL;
162 			avc = NULL;
163 		}
164 		spin_unlock(&mm->page_table_lock);
165 		anon_vma_unlock(anon_vma);
166 
167 		if (unlikely(allocated))
168 			put_anon_vma(allocated);
169 		if (unlikely(avc))
170 			anon_vma_chain_free(avc);
171 	}
172 	return 0;
173 
174  out_enomem_free_avc:
175 	anon_vma_chain_free(avc);
176  out_enomem:
177 	return -ENOMEM;
178 }
179 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)180 static void anon_vma_chain_link(struct vm_area_struct *vma,
181 				struct anon_vma_chain *avc,
182 				struct anon_vma *anon_vma)
183 {
184 	avc->vma = vma;
185 	avc->anon_vma = anon_vma;
186 	list_add(&avc->same_vma, &vma->anon_vma_chain);
187 
188 	anon_vma_lock(anon_vma);
189 	/*
190 	 * It's critical to add new vmas to the tail of the anon_vma,
191 	 * see comment in huge_memory.c:__split_huge_page().
192 	 */
193 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194 	anon_vma_unlock(anon_vma);
195 }
196 
197 /*
198  * Attach the anon_vmas from src to dst.
199  * Returns 0 on success, -ENOMEM on failure.
200  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)201 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
202 {
203 	struct anon_vma_chain *avc, *pavc;
204 
205 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206 		avc = anon_vma_chain_alloc();
207 		if (!avc)
208 			goto enomem_failure;
209 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
210 	}
211 	return 0;
212 
213  enomem_failure:
214 	unlink_anon_vmas(dst);
215 	return -ENOMEM;
216 }
217 
218 /*
219  * Attach vma to its own anon_vma, as well as to the anon_vmas that
220  * the corresponding VMA in the parent process is attached to.
221  * Returns 0 on success, non-zero on failure.
222  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)223 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
224 {
225 	struct anon_vma_chain *avc;
226 	struct anon_vma *anon_vma;
227 
228 	/* Don't bother if the parent process has no anon_vma here. */
229 	if (!pvma->anon_vma)
230 		return 0;
231 
232 	/*
233 	 * First, attach the new VMA to the parent VMA's anon_vmas,
234 	 * so rmap can find non-COWed pages in child processes.
235 	 */
236 	if (anon_vma_clone(vma, pvma))
237 		return -ENOMEM;
238 
239 	/* Then add our own anon_vma. */
240 	anon_vma = anon_vma_alloc();
241 	if (!anon_vma)
242 		goto out_error;
243 	avc = anon_vma_chain_alloc();
244 	if (!avc)
245 		goto out_error_free_anon_vma;
246 
247 	/*
248 	 * The root anon_vma's spinlock is the lock actually used when we
249 	 * lock any of the anon_vmas in this anon_vma tree.
250 	 */
251 	anon_vma->root = pvma->anon_vma->root;
252 	/*
253 	 * With refcounts, an anon_vma can stay around longer than the
254 	 * process it belongs to. The root anon_vma needs to be pinned until
255 	 * this anon_vma is freed, because the lock lives in the root.
256 	 */
257 	get_anon_vma(anon_vma->root);
258 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
259 	vma->anon_vma = anon_vma;
260 	anon_vma_chain_link(vma, avc, anon_vma);
261 
262 	return 0;
263 
264  out_error_free_anon_vma:
265 	put_anon_vma(anon_vma);
266  out_error:
267 	unlink_anon_vmas(vma);
268 	return -ENOMEM;
269 }
270 
anon_vma_unlink(struct anon_vma_chain * anon_vma_chain)271 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
272 {
273 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274 	int empty;
275 
276 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277 	if (!anon_vma)
278 		return;
279 
280 	anon_vma_lock(anon_vma);
281 	list_del(&anon_vma_chain->same_anon_vma);
282 
283 	/* We must garbage collect the anon_vma if it's empty */
284 	empty = list_empty(&anon_vma->head);
285 	anon_vma_unlock(anon_vma);
286 
287 	if (empty)
288 		put_anon_vma(anon_vma);
289 }
290 
unlink_anon_vmas(struct vm_area_struct * vma)291 void unlink_anon_vmas(struct vm_area_struct *vma)
292 {
293 	struct anon_vma_chain *avc, *next;
294 
295 	/*
296 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
297 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
298 	 */
299 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 		anon_vma_unlink(avc);
301 		list_del(&avc->same_vma);
302 		anon_vma_chain_free(avc);
303 	}
304 }
305 
anon_vma_ctor(void * data)306 static void anon_vma_ctor(void *data)
307 {
308 	struct anon_vma *anon_vma = data;
309 
310 	spin_lock_init(&anon_vma->lock);
311 	atomic_set(&anon_vma->refcount, 0);
312 	INIT_LIST_HEAD(&anon_vma->head);
313 }
314 
anon_vma_init(void)315 void __init anon_vma_init(void)
316 {
317 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
320 }
321 
322 /*
323  * Getting a lock on a stable anon_vma from a page off the LRU is
324  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325  */
__page_lock_anon_vma(struct page * page)326 struct anon_vma *__page_lock_anon_vma(struct page *page)
327 {
328 	struct anon_vma *anon_vma, *root_anon_vma;
329 	unsigned long anon_mapping;
330 
331 	rcu_read_lock();
332 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
333 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
334 		goto out;
335 	if (!page_mapped(page))
336 		goto out;
337 
338 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
339 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
340 	spin_lock(&root_anon_vma->lock);
341 
342 	/*
343 	 * If this page is still mapped, then its anon_vma cannot have been
344 	 * freed.  But if it has been unmapped, we have no security against
345 	 * the anon_vma structure being freed and reused (for another anon_vma:
346 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349 	 */
350 	if (page_mapped(page))
351 		return anon_vma;
352 
353 	spin_unlock(&root_anon_vma->lock);
354 out:
355 	rcu_read_unlock();
356 	return NULL;
357 }
358 
page_unlock_anon_vma(struct anon_vma * anon_vma)359 void page_unlock_anon_vma(struct anon_vma *anon_vma)
360 	__releases(&anon_vma->root->lock)
361 	__releases(RCU)
362 {
363 	anon_vma_unlock(anon_vma);
364 	rcu_read_unlock();
365 }
366 
367 /*
368  * At what user virtual address is page expected in @vma?
369  * Returns virtual address or -EFAULT if page's index/offset is not
370  * within the range mapped the @vma.
371  */
372 inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)373 vma_address(struct page *page, struct vm_area_struct *vma)
374 {
375 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
376 	unsigned long address;
377 
378 	if (unlikely(is_vm_hugetlb_page(vma)))
379 		pgoff = page->index << huge_page_order(page_hstate(page));
380 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
381 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
382 		/* page should be within @vma mapping range */
383 		return -EFAULT;
384 	}
385 	return address;
386 }
387 
388 /*
389  * At what user virtual address is page expected in vma?
390  * Caller should check the page is actually part of the vma.
391  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)392 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
393 {
394 	if (PageAnon(page)) {
395 		struct anon_vma *page__anon_vma = page_anon_vma(page);
396 		/*
397 		 * Note: swapoff's unuse_vma() is more efficient with this
398 		 * check, and needs it to match anon_vma when KSM is active.
399 		 */
400 		if (!vma->anon_vma || !page__anon_vma ||
401 		    vma->anon_vma->root != page__anon_vma->root)
402 			return -EFAULT;
403 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
404 		if (!vma->vm_file ||
405 		    vma->vm_file->f_mapping != page->mapping)
406 			return -EFAULT;
407 	} else
408 		return -EFAULT;
409 	return vma_address(page, vma);
410 }
411 
412 /*
413  * Check that @page is mapped at @address into @mm.
414  *
415  * If @sync is false, page_check_address may perform a racy check to avoid
416  * the page table lock when the pte is not present (helpful when reclaiming
417  * highly shared pages).
418  *
419  * On success returns with pte mapped and locked.
420  */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)421 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
422 			  unsigned long address, spinlock_t **ptlp, int sync)
423 {
424 	pgd_t *pgd;
425 	pud_t *pud;
426 	pmd_t *pmd;
427 	pte_t *pte;
428 	spinlock_t *ptl;
429 
430 	if (unlikely(PageHuge(page))) {
431 		pte = huge_pte_offset(mm, address);
432 		ptl = &mm->page_table_lock;
433 		goto check;
434 	}
435 
436 	pgd = pgd_offset(mm, address);
437 	if (!pgd_present(*pgd))
438 		return NULL;
439 
440 	pud = pud_offset(pgd, address);
441 	if (!pud_present(*pud))
442 		return NULL;
443 
444 	pmd = pmd_offset(pud, address);
445 	if (!pmd_present(*pmd))
446 		return NULL;
447 	if (pmd_trans_huge(*pmd))
448 		return NULL;
449 
450 	pte = pte_offset_map(pmd, address);
451 	/* Make a quick check before getting the lock */
452 	if (!sync && !pte_present(*pte)) {
453 		pte_unmap(pte);
454 		return NULL;
455 	}
456 
457 	ptl = pte_lockptr(mm, pmd);
458 check:
459 	spin_lock(ptl);
460 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
461 		*ptlp = ptl;
462 		return pte;
463 	}
464 	pte_unmap_unlock(pte, ptl);
465 	return NULL;
466 }
467 
468 /**
469  * page_mapped_in_vma - check whether a page is really mapped in a VMA
470  * @page: the page to test
471  * @vma: the VMA to test
472  *
473  * Returns 1 if the page is mapped into the page tables of the VMA, 0
474  * if the page is not mapped into the page tables of this VMA.  Only
475  * valid for normal file or anonymous VMAs.
476  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)477 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
478 {
479 	unsigned long address;
480 	pte_t *pte;
481 	spinlock_t *ptl;
482 
483 	address = vma_address(page, vma);
484 	if (address == -EFAULT)		/* out of vma range */
485 		return 0;
486 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
487 	if (!pte)			/* the page is not in this mm */
488 		return 0;
489 	pte_unmap_unlock(pte, ptl);
490 
491 	return 1;
492 }
493 
494 /*
495  * Subfunctions of page_referenced: page_referenced_one called
496  * repeatedly from either page_referenced_anon or page_referenced_file.
497  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,unsigned int * mapcount,unsigned long * vm_flags)498 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
499 			unsigned long address, unsigned int *mapcount,
500 			unsigned long *vm_flags)
501 {
502 	struct mm_struct *mm = vma->vm_mm;
503 	int referenced = 0;
504 
505 	if (unlikely(PageTransHuge(page))) {
506 		pmd_t *pmd;
507 
508 		spin_lock(&mm->page_table_lock);
509 		/*
510 		 * rmap might return false positives; we must filter
511 		 * these out using page_check_address_pmd().
512 		 */
513 		pmd = page_check_address_pmd(page, mm, address,
514 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
515 		if (!pmd) {
516 			spin_unlock(&mm->page_table_lock);
517 			goto out;
518 		}
519 
520 		if (vma->vm_flags & VM_LOCKED) {
521 			spin_unlock(&mm->page_table_lock);
522 			*mapcount = 0;	/* break early from loop */
523 			*vm_flags |= VM_LOCKED;
524 			goto out;
525 		}
526 
527 		/* go ahead even if the pmd is pmd_trans_splitting() */
528 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
529 			referenced++;
530 		spin_unlock(&mm->page_table_lock);
531 	} else {
532 		pte_t *pte;
533 		spinlock_t *ptl;
534 
535 		/*
536 		 * rmap might return false positives; we must filter
537 		 * these out using page_check_address().
538 		 */
539 		pte = page_check_address(page, mm, address, &ptl, 0);
540 		if (!pte)
541 			goto out;
542 
543 		if (vma->vm_flags & VM_LOCKED) {
544 			pte_unmap_unlock(pte, ptl);
545 			*mapcount = 0;	/* break early from loop */
546 			*vm_flags |= VM_LOCKED;
547 			goto out;
548 		}
549 
550 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
551 			/*
552 			 * Don't treat a reference through a sequentially read
553 			 * mapping as such.  If the page has been used in
554 			 * another mapping, we will catch it; if this other
555 			 * mapping is already gone, the unmap path will have
556 			 * set PG_referenced or activated the page.
557 			 */
558 			if (likely(!VM_SequentialReadHint(vma)))
559 				referenced++;
560 		}
561 		pte_unmap_unlock(pte, ptl);
562 	}
563 
564 	/* Pretend the page is referenced if the task has the
565 	   swap token and is in the middle of a page fault. */
566 	if (mm != current->mm && has_swap_token(mm) &&
567 			rwsem_is_locked(&mm->mmap_sem))
568 		referenced++;
569 
570 	(*mapcount)--;
571 
572 	if (referenced)
573 		*vm_flags |= vma->vm_flags;
574 out:
575 	return referenced;
576 }
577 
page_referenced_anon(struct page * page,struct mem_cgroup * mem_cont,unsigned long * vm_flags)578 static int page_referenced_anon(struct page *page,
579 				struct mem_cgroup *mem_cont,
580 				unsigned long *vm_flags)
581 {
582 	unsigned int mapcount;
583 	struct anon_vma *anon_vma;
584 	struct anon_vma_chain *avc;
585 	int referenced = 0;
586 
587 	anon_vma = page_lock_anon_vma(page);
588 	if (!anon_vma)
589 		return referenced;
590 
591 	mapcount = page_mapcount(page);
592 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
593 		struct vm_area_struct *vma = avc->vma;
594 		unsigned long address = vma_address(page, vma);
595 		if (address == -EFAULT)
596 			continue;
597 		/*
598 		 * If we are reclaiming on behalf of a cgroup, skip
599 		 * counting on behalf of references from different
600 		 * cgroups
601 		 */
602 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
603 			continue;
604 		referenced += page_referenced_one(page, vma, address,
605 						  &mapcount, vm_flags);
606 		if (!mapcount)
607 			break;
608 	}
609 
610 	page_unlock_anon_vma(anon_vma);
611 	return referenced;
612 }
613 
614 /**
615  * page_referenced_file - referenced check for object-based rmap
616  * @page: the page we're checking references on.
617  * @mem_cont: target memory controller
618  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619  *
620  * For an object-based mapped page, find all the places it is mapped and
621  * check/clear the referenced flag.  This is done by following the page->mapping
622  * pointer, then walking the chain of vmas it holds.  It returns the number
623  * of references it found.
624  *
625  * This function is only called from page_referenced for object-based pages.
626  */
page_referenced_file(struct page * page,struct mem_cgroup * mem_cont,unsigned long * vm_flags)627 static int page_referenced_file(struct page *page,
628 				struct mem_cgroup *mem_cont,
629 				unsigned long *vm_flags)
630 {
631 	unsigned int mapcount;
632 	struct address_space *mapping = page->mapping;
633 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
634 	struct vm_area_struct *vma;
635 	struct prio_tree_iter iter;
636 	int referenced = 0;
637 
638 	/*
639 	 * The caller's checks on page->mapping and !PageAnon have made
640 	 * sure that this is a file page: the check for page->mapping
641 	 * excludes the case just before it gets set on an anon page.
642 	 */
643 	BUG_ON(PageAnon(page));
644 
645 	/*
646 	 * The page lock not only makes sure that page->mapping cannot
647 	 * suddenly be NULLified by truncation, it makes sure that the
648 	 * structure at mapping cannot be freed and reused yet,
649 	 * so we can safely take mapping->i_mmap_lock.
650 	 */
651 	BUG_ON(!PageLocked(page));
652 
653 	spin_lock(&mapping->i_mmap_lock);
654 
655 	/*
656 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
657 	 * is more likely to be accurate if we note it after spinning.
658 	 */
659 	mapcount = page_mapcount(page);
660 
661 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
662 		unsigned long address = vma_address(page, vma);
663 		if (address == -EFAULT)
664 			continue;
665 		/*
666 		 * If we are reclaiming on behalf of a cgroup, skip
667 		 * counting on behalf of references from different
668 		 * cgroups
669 		 */
670 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
671 			continue;
672 		referenced += page_referenced_one(page, vma, address,
673 						  &mapcount, vm_flags);
674 		if (!mapcount)
675 			break;
676 	}
677 
678 	spin_unlock(&mapping->i_mmap_lock);
679 	return referenced;
680 }
681 
682 /**
683  * page_referenced - test if the page was referenced
684  * @page: the page to test
685  * @is_locked: caller holds lock on the page
686  * @mem_cont: target memory controller
687  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
688  *
689  * Quick test_and_clear_referenced for all mappings to a page,
690  * returns the number of ptes which referenced the page.
691  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * mem_cont,unsigned long * vm_flags)692 int page_referenced(struct page *page,
693 		    int is_locked,
694 		    struct mem_cgroup *mem_cont,
695 		    unsigned long *vm_flags)
696 {
697 	int referenced = 0;
698 	int we_locked = 0;
699 
700 	*vm_flags = 0;
701 	if (page_mapped(page) && page_rmapping(page)) {
702 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
703 			we_locked = trylock_page(page);
704 			if (!we_locked) {
705 				referenced++;
706 				goto out;
707 			}
708 		}
709 		if (unlikely(PageKsm(page)))
710 			referenced += page_referenced_ksm(page, mem_cont,
711 								vm_flags);
712 		else if (PageAnon(page))
713 			referenced += page_referenced_anon(page, mem_cont,
714 								vm_flags);
715 		else if (page->mapping)
716 			referenced += page_referenced_file(page, mem_cont,
717 								vm_flags);
718 		if (we_locked)
719 			unlock_page(page);
720 	}
721 out:
722 	if (page_test_and_clear_young(page))
723 		referenced++;
724 
725 	return referenced;
726 }
727 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address)728 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
729 			    unsigned long address)
730 {
731 	struct mm_struct *mm = vma->vm_mm;
732 	pte_t *pte;
733 	spinlock_t *ptl;
734 	int ret = 0;
735 
736 	pte = page_check_address(page, mm, address, &ptl, 1);
737 	if (!pte)
738 		goto out;
739 
740 	if (pte_dirty(*pte) || pte_write(*pte)) {
741 		pte_t entry;
742 
743 		flush_cache_page(vma, address, pte_pfn(*pte));
744 		entry = ptep_clear_flush_notify(vma, address, pte);
745 		entry = pte_wrprotect(entry);
746 		entry = pte_mkclean(entry);
747 		set_pte_at(mm, address, pte, entry);
748 		ret = 1;
749 	}
750 
751 	pte_unmap_unlock(pte, ptl);
752 out:
753 	return ret;
754 }
755 
page_mkclean_file(struct address_space * mapping,struct page * page)756 static int page_mkclean_file(struct address_space *mapping, struct page *page)
757 {
758 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759 	struct vm_area_struct *vma;
760 	struct prio_tree_iter iter;
761 	int ret = 0;
762 
763 	BUG_ON(PageAnon(page));
764 
765 	spin_lock(&mapping->i_mmap_lock);
766 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 		if (vma->vm_flags & VM_SHARED) {
768 			unsigned long address = vma_address(page, vma);
769 			if (address == -EFAULT)
770 				continue;
771 			ret += page_mkclean_one(page, vma, address);
772 		}
773 	}
774 	spin_unlock(&mapping->i_mmap_lock);
775 	return ret;
776 }
777 
page_mkclean(struct page * page)778 int page_mkclean(struct page *page)
779 {
780 	int ret = 0;
781 
782 	BUG_ON(!PageLocked(page));
783 
784 	if (page_mapped(page)) {
785 		struct address_space *mapping = page_mapping(page);
786 		if (mapping) {
787 			ret = page_mkclean_file(mapping, page);
788 			if (page_test_dirty(page)) {
789 				page_clear_dirty(page, 1);
790 				ret = 1;
791 			}
792 		}
793 	}
794 
795 	return ret;
796 }
797 EXPORT_SYMBOL_GPL(page_mkclean);
798 
799 /**
800  * page_move_anon_rmap - move a page to our anon_vma
801  * @page:	the page to move to our anon_vma
802  * @vma:	the vma the page belongs to
803  * @address:	the user virtual address mapped
804  *
805  * When a page belongs exclusively to one process after a COW event,
806  * that page can be moved into the anon_vma that belongs to just that
807  * process, so the rmap code will not search the parent or sibling
808  * processes.
809  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)810 void page_move_anon_rmap(struct page *page,
811 	struct vm_area_struct *vma, unsigned long address)
812 {
813 	struct anon_vma *anon_vma = vma->anon_vma;
814 
815 	VM_BUG_ON(!PageLocked(page));
816 	VM_BUG_ON(!anon_vma);
817 	VM_BUG_ON(page->index != linear_page_index(vma, address));
818 
819 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
820 	page->mapping = (struct address_space *) anon_vma;
821 }
822 
823 /**
824  * __page_set_anon_rmap - set up new anonymous rmap
825  * @page:	Page to add to rmap
826  * @vma:	VM area to add page to.
827  * @address:	User virtual address of the mapping
828  * @exclusive:	the page is exclusively owned by the current process
829  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)830 static void __page_set_anon_rmap(struct page *page,
831 	struct vm_area_struct *vma, unsigned long address, int exclusive)
832 {
833 	struct anon_vma *anon_vma = vma->anon_vma;
834 
835 	BUG_ON(!anon_vma);
836 
837 	if (PageAnon(page))
838 		return;
839 
840 	/*
841 	 * If the page isn't exclusively mapped into this vma,
842 	 * we must use the _oldest_ possible anon_vma for the
843 	 * page mapping!
844 	 */
845 	if (!exclusive)
846 		anon_vma = anon_vma->root;
847 
848 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
849 	page->mapping = (struct address_space *) anon_vma;
850 	page->index = linear_page_index(vma, address);
851 }
852 
853 /**
854  * __page_check_anon_rmap - sanity check anonymous rmap addition
855  * @page:	the page to add the mapping to
856  * @vma:	the vm area in which the mapping is added
857  * @address:	the user virtual address mapped
858  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)859 static void __page_check_anon_rmap(struct page *page,
860 	struct vm_area_struct *vma, unsigned long address)
861 {
862 #ifdef CONFIG_DEBUG_VM
863 	/*
864 	 * The page's anon-rmap details (mapping and index) are guaranteed to
865 	 * be set up correctly at this point.
866 	 *
867 	 * We have exclusion against page_add_anon_rmap because the caller
868 	 * always holds the page locked, except if called from page_dup_rmap,
869 	 * in which case the page is already known to be setup.
870 	 *
871 	 * We have exclusion against page_add_new_anon_rmap because those pages
872 	 * are initially only visible via the pagetables, and the pte is locked
873 	 * over the call to page_add_new_anon_rmap.
874 	 */
875 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
876 	BUG_ON(page->index != linear_page_index(vma, address));
877 #endif
878 }
879 
880 /**
881  * page_add_anon_rmap - add pte mapping to an anonymous page
882  * @page:	the page to add the mapping to
883  * @vma:	the vm area in which the mapping is added
884  * @address:	the user virtual address mapped
885  *
886  * The caller needs to hold the pte lock, and the page must be locked in
887  * the anon_vma case: to serialize mapping,index checking after setting,
888  * and to ensure that PageAnon is not being upgraded racily to PageKsm
889  * (but PageKsm is never downgraded to PageAnon).
890  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)891 void page_add_anon_rmap(struct page *page,
892 	struct vm_area_struct *vma, unsigned long address)
893 {
894 	do_page_add_anon_rmap(page, vma, address, 0);
895 }
896 
897 /*
898  * Special version of the above for do_swap_page, which often runs
899  * into pages that are exclusively owned by the current process.
900  * Everybody else should continue to use page_add_anon_rmap above.
901  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)902 void do_page_add_anon_rmap(struct page *page,
903 	struct vm_area_struct *vma, unsigned long address, int exclusive)
904 {
905 	int first = atomic_inc_and_test(&page->_mapcount);
906 	if (first) {
907 		if (!PageTransHuge(page))
908 			__inc_zone_page_state(page, NR_ANON_PAGES);
909 		else
910 			__inc_zone_page_state(page,
911 					      NR_ANON_TRANSPARENT_HUGEPAGES);
912 	}
913 	if (unlikely(PageKsm(page)))
914 		return;
915 
916 	VM_BUG_ON(!PageLocked(page));
917 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
918 	if (first)
919 		__page_set_anon_rmap(page, vma, address, exclusive);
920 	else
921 		__page_check_anon_rmap(page, vma, address);
922 }
923 
924 /**
925  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
926  * @page:	the page to add the mapping to
927  * @vma:	the vm area in which the mapping is added
928  * @address:	the user virtual address mapped
929  *
930  * Same as page_add_anon_rmap but must only be called on *new* pages.
931  * This means the inc-and-test can be bypassed.
932  * Page does not have to be locked.
933  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)934 void page_add_new_anon_rmap(struct page *page,
935 	struct vm_area_struct *vma, unsigned long address)
936 {
937 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
938 	SetPageSwapBacked(page);
939 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
940 	if (!PageTransHuge(page))
941 		__inc_zone_page_state(page, NR_ANON_PAGES);
942 	else
943 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
944 	__page_set_anon_rmap(page, vma, address, 1);
945 	if (page_evictable(page, vma))
946 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
947 	else
948 		add_page_to_unevictable_list(page);
949 }
950 
951 /**
952  * page_add_file_rmap - add pte mapping to a file page
953  * @page: the page to add the mapping to
954  *
955  * The caller needs to hold the pte lock.
956  */
page_add_file_rmap(struct page * page)957 void page_add_file_rmap(struct page *page)
958 {
959 	if (atomic_inc_and_test(&page->_mapcount)) {
960 		__inc_zone_page_state(page, NR_FILE_MAPPED);
961 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
962 	}
963 }
964 
965 /**
966  * page_remove_rmap - take down pte mapping from a page
967  * @page: page to remove mapping from
968  *
969  * The caller needs to hold the pte lock.
970  */
page_remove_rmap(struct page * page)971 void page_remove_rmap(struct page *page)
972 {
973 	/* page still mapped by someone else? */
974 	if (!atomic_add_negative(-1, &page->_mapcount))
975 		return;
976 
977 	/*
978 	 * Now that the last pte has gone, s390 must transfer dirty
979 	 * flag from storage key to struct page.  We can usually skip
980 	 * this if the page is anon, so about to be freed; but perhaps
981 	 * not if it's in swapcache - there might be another pte slot
982 	 * containing the swap entry, but page not yet written to swap.
983 	 */
984 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
985 		page_clear_dirty(page, 1);
986 		set_page_dirty(page);
987 	}
988 	/*
989 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
990 	 * and not charged by memcg for now.
991 	 */
992 	if (unlikely(PageHuge(page)))
993 		return;
994 	if (PageAnon(page)) {
995 		mem_cgroup_uncharge_page(page);
996 		if (!PageTransHuge(page))
997 			__dec_zone_page_state(page, NR_ANON_PAGES);
998 		else
999 			__dec_zone_page_state(page,
1000 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1001 	} else {
1002 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1003 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1004 	}
1005 	/*
1006 	 * It would be tidy to reset the PageAnon mapping here,
1007 	 * but that might overwrite a racing page_add_anon_rmap
1008 	 * which increments mapcount after us but sets mapping
1009 	 * before us: so leave the reset to free_hot_cold_page,
1010 	 * and remember that it's only reliable while mapped.
1011 	 * Leaving it set also helps swapoff to reinstate ptes
1012 	 * faster for those pages still in swapcache.
1013 	 */
1014 }
1015 
1016 /*
1017  * Subfunctions of try_to_unmap: try_to_unmap_one called
1018  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1019  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,enum ttu_flags flags)1020 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1021 		     unsigned long address, enum ttu_flags flags)
1022 {
1023 	struct mm_struct *mm = vma->vm_mm;
1024 	pte_t *pte;
1025 	pte_t pteval;
1026 	spinlock_t *ptl;
1027 	int ret = SWAP_AGAIN;
1028 
1029 	pte = page_check_address(page, mm, address, &ptl, 0);
1030 	if (!pte)
1031 		goto out;
1032 
1033 	/*
1034 	 * If the page is mlock()d, we cannot swap it out.
1035 	 * If it's recently referenced (perhaps page_referenced
1036 	 * skipped over this mm) then we should reactivate it.
1037 	 */
1038 	if (!(flags & TTU_IGNORE_MLOCK)) {
1039 		if (vma->vm_flags & VM_LOCKED)
1040 			goto out_mlock;
1041 
1042 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1043 			goto out_unmap;
1044 	}
1045 	if (!(flags & TTU_IGNORE_ACCESS)) {
1046 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1047 			ret = SWAP_FAIL;
1048 			goto out_unmap;
1049 		}
1050   	}
1051 
1052 	/* Nuke the page table entry. */
1053 	flush_cache_page(vma, address, page_to_pfn(page));
1054 	pteval = ptep_clear_flush_notify(vma, address, pte);
1055 
1056 	/* Move the dirty bit to the physical page now the pte is gone. */
1057 	if (pte_dirty(pteval))
1058 		set_page_dirty(page);
1059 
1060 	/* Update high watermark before we lower rss */
1061 	update_hiwater_rss(mm);
1062 
1063 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1064 		if (PageAnon(page))
1065 			dec_mm_counter(mm, MM_ANONPAGES);
1066 		else
1067 			dec_mm_counter(mm, MM_FILEPAGES);
1068 		set_pte_at(mm, address, pte,
1069 				swp_entry_to_pte(make_hwpoison_entry(page)));
1070 	} else if (PageAnon(page)) {
1071 		swp_entry_t entry = { .val = page_private(page) };
1072 
1073 		if (PageSwapCache(page)) {
1074 			/*
1075 			 * Store the swap location in the pte.
1076 			 * See handle_pte_fault() ...
1077 			 */
1078 			if (swap_duplicate(entry) < 0) {
1079 				set_pte_at(mm, address, pte, pteval);
1080 				ret = SWAP_FAIL;
1081 				goto out_unmap;
1082 			}
1083 			if (list_empty(&mm->mmlist)) {
1084 				spin_lock(&mmlist_lock);
1085 				if (list_empty(&mm->mmlist))
1086 					list_add(&mm->mmlist, &init_mm.mmlist);
1087 				spin_unlock(&mmlist_lock);
1088 			}
1089 			dec_mm_counter(mm, MM_ANONPAGES);
1090 			inc_mm_counter(mm, MM_SWAPENTS);
1091 		} else if (PAGE_MIGRATION) {
1092 			/*
1093 			 * Store the pfn of the page in a special migration
1094 			 * pte. do_swap_page() will wait until the migration
1095 			 * pte is removed and then restart fault handling.
1096 			 */
1097 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1098 			entry = make_migration_entry(page, pte_write(pteval));
1099 		}
1100 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1101 		BUG_ON(pte_file(*pte));
1102 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1103 		/* Establish migration entry for a file page */
1104 		swp_entry_t entry;
1105 		entry = make_migration_entry(page, pte_write(pteval));
1106 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1107 	} else
1108 		dec_mm_counter(mm, MM_FILEPAGES);
1109 
1110 	page_remove_rmap(page);
1111 	page_cache_release(page);
1112 
1113 out_unmap:
1114 	pte_unmap_unlock(pte, ptl);
1115 out:
1116 	return ret;
1117 
1118 out_mlock:
1119 	pte_unmap_unlock(pte, ptl);
1120 
1121 
1122 	/*
1123 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1124 	 * unstable result and race. Plus, We can't wait here because
1125 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1126 	 * if trylock failed, the page remain in evictable lru and later
1127 	 * vmscan could retry to move the page to unevictable lru if the
1128 	 * page is actually mlocked.
1129 	 */
1130 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1131 		if (vma->vm_flags & VM_LOCKED) {
1132 			mlock_vma_page(page);
1133 			ret = SWAP_MLOCK;
1134 		}
1135 		up_read(&vma->vm_mm->mmap_sem);
1136 	}
1137 	return ret;
1138 }
1139 
1140 /*
1141  * objrmap doesn't work for nonlinear VMAs because the assumption that
1142  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1143  * Consequently, given a particular page and its ->index, we cannot locate the
1144  * ptes which are mapping that page without an exhaustive linear search.
1145  *
1146  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1147  * maps the file to which the target page belongs.  The ->vm_private_data field
1148  * holds the current cursor into that scan.  Successive searches will circulate
1149  * around the vma's virtual address space.
1150  *
1151  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1152  * more scanning pressure is placed against them as well.   Eventually pages
1153  * will become fully unmapped and are eligible for eviction.
1154  *
1155  * For very sparsely populated VMAs this is a little inefficient - chances are
1156  * there there won't be many ptes located within the scan cluster.  In this case
1157  * maybe we could scan further - to the end of the pte page, perhaps.
1158  *
1159  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1160  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1161  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1162  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1163  */
1164 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1165 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1166 
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)1167 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1168 		struct vm_area_struct *vma, struct page *check_page)
1169 {
1170 	struct mm_struct *mm = vma->vm_mm;
1171 	pgd_t *pgd;
1172 	pud_t *pud;
1173 	pmd_t *pmd;
1174 	pte_t *pte;
1175 	pte_t pteval;
1176 	spinlock_t *ptl;
1177 	struct page *page;
1178 	unsigned long address;
1179 	unsigned long end;
1180 	int ret = SWAP_AGAIN;
1181 	int locked_vma = 0;
1182 
1183 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1184 	end = address + CLUSTER_SIZE;
1185 	if (address < vma->vm_start)
1186 		address = vma->vm_start;
1187 	if (end > vma->vm_end)
1188 		end = vma->vm_end;
1189 
1190 	pgd = pgd_offset(mm, address);
1191 	if (!pgd_present(*pgd))
1192 		return ret;
1193 
1194 	pud = pud_offset(pgd, address);
1195 	if (!pud_present(*pud))
1196 		return ret;
1197 
1198 	pmd = pmd_offset(pud, address);
1199 	if (!pmd_present(*pmd))
1200 		return ret;
1201 
1202 	/*
1203 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1204 	 * keep the sem while scanning the cluster for mlocking pages.
1205 	 */
1206 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1207 		locked_vma = (vma->vm_flags & VM_LOCKED);
1208 		if (!locked_vma)
1209 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1210 	}
1211 
1212 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1213 
1214 	/* Update high watermark before we lower rss */
1215 	update_hiwater_rss(mm);
1216 
1217 	for (; address < end; pte++, address += PAGE_SIZE) {
1218 		if (!pte_present(*pte))
1219 			continue;
1220 		page = vm_normal_page(vma, address, *pte);
1221 		BUG_ON(!page || PageAnon(page));
1222 
1223 		if (locked_vma) {
1224 			mlock_vma_page(page);   /* no-op if already mlocked */
1225 			if (page == check_page)
1226 				ret = SWAP_MLOCK;
1227 			continue;	/* don't unmap */
1228 		}
1229 
1230 		if (ptep_clear_flush_young_notify(vma, address, pte))
1231 			continue;
1232 
1233 		/* Nuke the page table entry. */
1234 		flush_cache_page(vma, address, pte_pfn(*pte));
1235 		pteval = ptep_clear_flush_notify(vma, address, pte);
1236 
1237 		/* If nonlinear, store the file page offset in the pte. */
1238 		if (page->index != linear_page_index(vma, address))
1239 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1240 
1241 		/* Move the dirty bit to the physical page now the pte is gone. */
1242 		if (pte_dirty(pteval))
1243 			set_page_dirty(page);
1244 
1245 		page_remove_rmap(page);
1246 		page_cache_release(page);
1247 		dec_mm_counter(mm, MM_FILEPAGES);
1248 		(*mapcount)--;
1249 	}
1250 	pte_unmap_unlock(pte - 1, ptl);
1251 	if (locked_vma)
1252 		up_read(&vma->vm_mm->mmap_sem);
1253 	return ret;
1254 }
1255 
is_vma_temporary_stack(struct vm_area_struct * vma)1256 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1257 {
1258 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1259 
1260 	if (!maybe_stack)
1261 		return false;
1262 
1263 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1264 						VM_STACK_INCOMPLETE_SETUP)
1265 		return true;
1266 
1267 	return false;
1268 }
1269 
1270 /**
1271  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1272  * rmap method
1273  * @page: the page to unmap/unlock
1274  * @flags: action and flags
1275  *
1276  * Find all the mappings of a page using the mapping pointer and the vma chains
1277  * contained in the anon_vma struct it points to.
1278  *
1279  * This function is only called from try_to_unmap/try_to_munlock for
1280  * anonymous pages.
1281  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1282  * where the page was found will be held for write.  So, we won't recheck
1283  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1284  * 'LOCKED.
1285  */
try_to_unmap_anon(struct page * page,enum ttu_flags flags)1286 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1287 {
1288 	struct anon_vma *anon_vma;
1289 	struct anon_vma_chain *avc;
1290 	int ret = SWAP_AGAIN;
1291 
1292 	anon_vma = page_lock_anon_vma(page);
1293 	if (!anon_vma)
1294 		return ret;
1295 
1296 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1297 		struct vm_area_struct *vma = avc->vma;
1298 		unsigned long address;
1299 
1300 		/*
1301 		 * During exec, a temporary VMA is setup and later moved.
1302 		 * The VMA is moved under the anon_vma lock but not the
1303 		 * page tables leading to a race where migration cannot
1304 		 * find the migration ptes. Rather than increasing the
1305 		 * locking requirements of exec(), migration skips
1306 		 * temporary VMAs until after exec() completes.
1307 		 */
1308 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1309 				is_vma_temporary_stack(vma))
1310 			continue;
1311 
1312 		address = vma_address(page, vma);
1313 		if (address == -EFAULT)
1314 			continue;
1315 		ret = try_to_unmap_one(page, vma, address, flags);
1316 		if (ret != SWAP_AGAIN || !page_mapped(page))
1317 			break;
1318 	}
1319 
1320 	page_unlock_anon_vma(anon_vma);
1321 	return ret;
1322 }
1323 
1324 /**
1325  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1326  * @page: the page to unmap/unlock
1327  * @flags: action and flags
1328  *
1329  * Find all the mappings of a page using the mapping pointer and the vma chains
1330  * contained in the address_space struct it points to.
1331  *
1332  * This function is only called from try_to_unmap/try_to_munlock for
1333  * object-based pages.
1334  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1335  * where the page was found will be held for write.  So, we won't recheck
1336  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1337  * 'LOCKED.
1338  */
try_to_unmap_file(struct page * page,enum ttu_flags flags)1339 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1340 {
1341 	struct address_space *mapping = page->mapping;
1342 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1343 	struct vm_area_struct *vma;
1344 	struct prio_tree_iter iter;
1345 	int ret = SWAP_AGAIN;
1346 	unsigned long cursor;
1347 	unsigned long max_nl_cursor = 0;
1348 	unsigned long max_nl_size = 0;
1349 	unsigned int mapcount;
1350 
1351 	spin_lock(&mapping->i_mmap_lock);
1352 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1353 		unsigned long address = vma_address(page, vma);
1354 		if (address == -EFAULT)
1355 			continue;
1356 		ret = try_to_unmap_one(page, vma, address, flags);
1357 		if (ret != SWAP_AGAIN || !page_mapped(page))
1358 			goto out;
1359 	}
1360 
1361 	if (list_empty(&mapping->i_mmap_nonlinear))
1362 		goto out;
1363 
1364 	/*
1365 	 * We don't bother to try to find the munlocked page in nonlinears.
1366 	 * It's costly. Instead, later, page reclaim logic may call
1367 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1368 	 */
1369 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1370 		goto out;
1371 
1372 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1373 						shared.vm_set.list) {
1374 		cursor = (unsigned long) vma->vm_private_data;
1375 		if (cursor > max_nl_cursor)
1376 			max_nl_cursor = cursor;
1377 		cursor = vma->vm_end - vma->vm_start;
1378 		if (cursor > max_nl_size)
1379 			max_nl_size = cursor;
1380 	}
1381 
1382 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1383 		ret = SWAP_FAIL;
1384 		goto out;
1385 	}
1386 
1387 	/*
1388 	 * We don't try to search for this page in the nonlinear vmas,
1389 	 * and page_referenced wouldn't have found it anyway.  Instead
1390 	 * just walk the nonlinear vmas trying to age and unmap some.
1391 	 * The mapcount of the page we came in with is irrelevant,
1392 	 * but even so use it as a guide to how hard we should try?
1393 	 */
1394 	mapcount = page_mapcount(page);
1395 	if (!mapcount)
1396 		goto out;
1397 	cond_resched_lock(&mapping->i_mmap_lock);
1398 
1399 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1400 	if (max_nl_cursor == 0)
1401 		max_nl_cursor = CLUSTER_SIZE;
1402 
1403 	do {
1404 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1405 						shared.vm_set.list) {
1406 			cursor = (unsigned long) vma->vm_private_data;
1407 			while ( cursor < max_nl_cursor &&
1408 				cursor < vma->vm_end - vma->vm_start) {
1409 				if (try_to_unmap_cluster(cursor, &mapcount,
1410 						vma, page) == SWAP_MLOCK)
1411 					ret = SWAP_MLOCK;
1412 				cursor += CLUSTER_SIZE;
1413 				vma->vm_private_data = (void *) cursor;
1414 				if ((int)mapcount <= 0)
1415 					goto out;
1416 			}
1417 			vma->vm_private_data = (void *) max_nl_cursor;
1418 		}
1419 		cond_resched_lock(&mapping->i_mmap_lock);
1420 		max_nl_cursor += CLUSTER_SIZE;
1421 	} while (max_nl_cursor <= max_nl_size);
1422 
1423 	/*
1424 	 * Don't loop forever (perhaps all the remaining pages are
1425 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1426 	 * vmas, now forgetting on which ones it had fallen behind.
1427 	 */
1428 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1429 		vma->vm_private_data = NULL;
1430 out:
1431 	spin_unlock(&mapping->i_mmap_lock);
1432 	return ret;
1433 }
1434 
1435 /**
1436  * try_to_unmap - try to remove all page table mappings to a page
1437  * @page: the page to get unmapped
1438  * @flags: action and flags
1439  *
1440  * Tries to remove all the page table entries which are mapping this
1441  * page, used in the pageout path.  Caller must hold the page lock.
1442  * Return values are:
1443  *
1444  * SWAP_SUCCESS	- we succeeded in removing all mappings
1445  * SWAP_AGAIN	- we missed a mapping, try again later
1446  * SWAP_FAIL	- the page is unswappable
1447  * SWAP_MLOCK	- page is mlocked.
1448  */
try_to_unmap(struct page * page,enum ttu_flags flags)1449 int try_to_unmap(struct page *page, enum ttu_flags flags)
1450 {
1451 	int ret;
1452 
1453 	BUG_ON(!PageLocked(page));
1454 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1455 
1456 	if (unlikely(PageKsm(page)))
1457 		ret = try_to_unmap_ksm(page, flags);
1458 	else if (PageAnon(page))
1459 		ret = try_to_unmap_anon(page, flags);
1460 	else
1461 		ret = try_to_unmap_file(page, flags);
1462 	if (ret != SWAP_MLOCK && !page_mapped(page))
1463 		ret = SWAP_SUCCESS;
1464 	return ret;
1465 }
1466 
1467 /**
1468  * try_to_munlock - try to munlock a page
1469  * @page: the page to be munlocked
1470  *
1471  * Called from munlock code.  Checks all of the VMAs mapping the page
1472  * to make sure nobody else has this page mlocked. The page will be
1473  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1474  *
1475  * Return values are:
1476  *
1477  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1478  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1479  * SWAP_FAIL	- page cannot be located at present
1480  * SWAP_MLOCK	- page is now mlocked.
1481  */
try_to_munlock(struct page * page)1482 int try_to_munlock(struct page *page)
1483 {
1484 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1485 
1486 	if (unlikely(PageKsm(page)))
1487 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1488 	else if (PageAnon(page))
1489 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1490 	else
1491 		return try_to_unmap_file(page, TTU_MUNLOCK);
1492 }
1493 
__put_anon_vma(struct anon_vma * anon_vma)1494 void __put_anon_vma(struct anon_vma *anon_vma)
1495 {
1496 	struct anon_vma *root = anon_vma->root;
1497 
1498 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1499 		anon_vma_free(root);
1500 
1501 	anon_vma_free(anon_vma);
1502 }
1503 
1504 #ifdef CONFIG_MIGRATION
1505 /*
1506  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1507  * Called by migrate.c to remove migration ptes, but might be used more later.
1508  */
rmap_walk_anon(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1509 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1510 		struct vm_area_struct *, unsigned long, void *), void *arg)
1511 {
1512 	struct anon_vma *anon_vma;
1513 	struct anon_vma_chain *avc;
1514 	int ret = SWAP_AGAIN;
1515 
1516 	/*
1517 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1518 	 * because that depends on page_mapped(); but not all its usages
1519 	 * are holding mmap_sem. Users without mmap_sem are required to
1520 	 * take a reference count to prevent the anon_vma disappearing
1521 	 */
1522 	anon_vma = page_anon_vma(page);
1523 	if (!anon_vma)
1524 		return ret;
1525 	anon_vma_lock(anon_vma);
1526 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1527 		struct vm_area_struct *vma = avc->vma;
1528 		unsigned long address = vma_address(page, vma);
1529 		if (address == -EFAULT)
1530 			continue;
1531 		ret = rmap_one(page, vma, address, arg);
1532 		if (ret != SWAP_AGAIN)
1533 			break;
1534 	}
1535 	anon_vma_unlock(anon_vma);
1536 	return ret;
1537 }
1538 
rmap_walk_file(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1539 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1540 		struct vm_area_struct *, unsigned long, void *), void *arg)
1541 {
1542 	struct address_space *mapping = page->mapping;
1543 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1544 	struct vm_area_struct *vma;
1545 	struct prio_tree_iter iter;
1546 	int ret = SWAP_AGAIN;
1547 
1548 	if (!mapping)
1549 		return ret;
1550 	spin_lock(&mapping->i_mmap_lock);
1551 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1552 		unsigned long address = vma_address(page, vma);
1553 		if (address == -EFAULT)
1554 			continue;
1555 		ret = rmap_one(page, vma, address, arg);
1556 		if (ret != SWAP_AGAIN)
1557 			break;
1558 	}
1559 	/*
1560 	 * No nonlinear handling: being always shared, nonlinear vmas
1561 	 * never contain migration ptes.  Decide what to do about this
1562 	 * limitation to linear when we need rmap_walk() on nonlinear.
1563 	 */
1564 	spin_unlock(&mapping->i_mmap_lock);
1565 	return ret;
1566 }
1567 
rmap_walk(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1568 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1569 		struct vm_area_struct *, unsigned long, void *), void *arg)
1570 {
1571 	VM_BUG_ON(!PageLocked(page));
1572 
1573 	if (unlikely(PageKsm(page)))
1574 		return rmap_walk_ksm(page, rmap_one, arg);
1575 	else if (PageAnon(page))
1576 		return rmap_walk_anon(page, rmap_one, arg);
1577 	else
1578 		return rmap_walk_file(page, rmap_one, arg);
1579 }
1580 #endif /* CONFIG_MIGRATION */
1581 
1582 #ifdef CONFIG_HUGETLB_PAGE
1583 /*
1584  * The following three functions are for anonymous (private mapped) hugepages.
1585  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1586  * and no lru code, because we handle hugepages differently from common pages.
1587  */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1588 static void __hugepage_set_anon_rmap(struct page *page,
1589 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1590 {
1591 	struct anon_vma *anon_vma = vma->anon_vma;
1592 
1593 	BUG_ON(!anon_vma);
1594 
1595 	if (PageAnon(page))
1596 		return;
1597 	if (!exclusive)
1598 		anon_vma = anon_vma->root;
1599 
1600 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1601 	page->mapping = (struct address_space *) anon_vma;
1602 	page->index = linear_page_index(vma, address);
1603 }
1604 
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1605 void hugepage_add_anon_rmap(struct page *page,
1606 			    struct vm_area_struct *vma, unsigned long address)
1607 {
1608 	struct anon_vma *anon_vma = vma->anon_vma;
1609 	int first;
1610 
1611 	BUG_ON(!PageLocked(page));
1612 	BUG_ON(!anon_vma);
1613 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1614 	first = atomic_inc_and_test(&page->_mapcount);
1615 	if (first)
1616 		__hugepage_set_anon_rmap(page, vma, address, 0);
1617 }
1618 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1619 void hugepage_add_new_anon_rmap(struct page *page,
1620 			struct vm_area_struct *vma, unsigned long address)
1621 {
1622 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1623 	atomic_set(&page->_mapcount, 0);
1624 	__hugepage_set_anon_rmap(page, vma, address, 1);
1625 }
1626 #endif /* CONFIG_HUGETLB_PAGE */
1627