1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17
18 #define HTAB_CREATE_FLAG_MASK \
19 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
20 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
21
22 #define BATCH_OPS(_name) \
23 .map_lookup_batch = \
24 _name##_map_lookup_batch, \
25 .map_lookup_and_delete_batch = \
26 _name##_map_lookup_and_delete_batch, \
27 .map_update_batch = \
28 generic_map_update_batch, \
29 .map_delete_batch = \
30 generic_map_delete_batch
31
32 /*
33 * The bucket lock has two protection scopes:
34 *
35 * 1) Serializing concurrent operations from BPF programs on different
36 * CPUs
37 *
38 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
39 *
40 * BPF programs can execute in any context including perf, kprobes and
41 * tracing. As there are almost no limits where perf, kprobes and tracing
42 * can be invoked from the lock operations need to be protected against
43 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
44 * the lock held section when functions which acquire this lock are invoked
45 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
46 * variable bpf_prog_active, which prevents BPF programs attached to perf
47 * events, kprobes and tracing to be invoked before the prior invocation
48 * from one of these contexts completed. sys_bpf() uses the same mechanism
49 * by pinning the task to the current CPU and incrementing the recursion
50 * protection across the map operation.
51 *
52 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
53 * operations like memory allocations (even with GFP_ATOMIC) from atomic
54 * contexts. This is required because even with GFP_ATOMIC the memory
55 * allocator calls into code paths which acquire locks with long held lock
56 * sections. To ensure the deterministic behaviour these locks are regular
57 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
58 * true atomic contexts on an RT kernel are the low level hardware
59 * handling, scheduling, low level interrupt handling, NMIs etc. None of
60 * these contexts should ever do memory allocations.
61 *
62 * As regular device interrupt handlers and soft interrupts are forced into
63 * thread context, the existing code which does
64 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
65 * just works.
66 *
67 * In theory the BPF locks could be converted to regular spinlocks as well,
68 * but the bucket locks and percpu_freelist locks can be taken from
69 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
70 * atomic contexts even on RT. These mechanisms require preallocated maps,
71 * so there is no need to invoke memory allocations within the lock held
72 * sections.
73 *
74 * BPF maps which need dynamic allocation are only used from (forced)
75 * thread context on RT and can therefore use regular spinlocks which in
76 * turn allows to invoke memory allocations from the lock held section.
77 *
78 * On a non RT kernel this distinction is neither possible nor required.
79 * spinlock maps to raw_spinlock and the extra code is optimized out by the
80 * compiler.
81 */
82 struct bucket {
83 struct hlist_nulls_head head;
84 union {
85 raw_spinlock_t raw_lock;
86 spinlock_t lock;
87 };
88 };
89
90 #define HASHTAB_MAP_LOCK_COUNT 8
91 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
92
93 struct bpf_htab {
94 struct bpf_map map;
95 struct bucket *buckets;
96 void *elems;
97 union {
98 struct pcpu_freelist freelist;
99 struct bpf_lru lru;
100 };
101 struct htab_elem *__percpu *extra_elems;
102 atomic_t count; /* number of elements in this hashtable */
103 u32 n_buckets; /* number of hash buckets */
104 u32 elem_size; /* size of each element in bytes */
105 u32 hashrnd;
106 struct lock_class_key lockdep_key;
107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 union {
113 struct hlist_nulls_node hash_node;
114 struct {
115 void *padding;
116 union {
117 struct bpf_htab *htab;
118 struct pcpu_freelist_node fnode;
119 struct htab_elem *batch_flink;
120 };
121 };
122 };
123 union {
124 struct rcu_head rcu;
125 struct bpf_lru_node lru_node;
126 };
127 u32 hash;
128 char key[] __aligned(8);
129 };
130
htab_is_prealloc(const struct bpf_htab * htab)131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135
htab_use_raw_lock(const struct bpf_htab * htab)136 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
137 {
138 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
139 }
140
htab_init_buckets(struct bpf_htab * htab)141 static void htab_init_buckets(struct bpf_htab *htab)
142 {
143 unsigned int i;
144
145 for (i = 0; i < htab->n_buckets; i++) {
146 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
147 if (htab_use_raw_lock(htab)) {
148 raw_spin_lock_init(&htab->buckets[i].raw_lock);
149 lockdep_set_class(&htab->buckets[i].raw_lock,
150 &htab->lockdep_key);
151 } else {
152 spin_lock_init(&htab->buckets[i].lock);
153 lockdep_set_class(&htab->buckets[i].lock,
154 &htab->lockdep_key);
155 }
156 cond_resched();
157 }
158 }
159
htab_lock_bucket(const struct bpf_htab * htab,struct bucket * b,u32 hash,unsigned long * pflags)160 static inline int htab_lock_bucket(const struct bpf_htab *htab,
161 struct bucket *b, u32 hash,
162 unsigned long *pflags)
163 {
164 unsigned long flags;
165
166 hash = hash & HASHTAB_MAP_LOCK_MASK;
167
168 migrate_disable();
169 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
170 __this_cpu_dec(*(htab->map_locked[hash]));
171 migrate_enable();
172 return -EBUSY;
173 }
174
175 if (htab_use_raw_lock(htab))
176 raw_spin_lock_irqsave(&b->raw_lock, flags);
177 else
178 spin_lock_irqsave(&b->lock, flags);
179 *pflags = flags;
180
181 return 0;
182 }
183
htab_unlock_bucket(const struct bpf_htab * htab,struct bucket * b,u32 hash,unsigned long flags)184 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
185 struct bucket *b, u32 hash,
186 unsigned long flags)
187 {
188 hash = hash & HASHTAB_MAP_LOCK_MASK;
189 if (htab_use_raw_lock(htab))
190 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
191 else
192 spin_unlock_irqrestore(&b->lock, flags);
193 __this_cpu_dec(*(htab->map_locked[hash]));
194 migrate_enable();
195 }
196
197 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
198
htab_is_lru(const struct bpf_htab * htab)199 static bool htab_is_lru(const struct bpf_htab *htab)
200 {
201 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
202 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
203 }
204
htab_is_percpu(const struct bpf_htab * htab)205 static bool htab_is_percpu(const struct bpf_htab *htab)
206 {
207 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
208 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
209 }
210
htab_elem_set_ptr(struct htab_elem * l,u32 key_size,void __percpu * pptr)211 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
212 void __percpu *pptr)
213 {
214 *(void __percpu **)(l->key + key_size) = pptr;
215 }
216
htab_elem_get_ptr(struct htab_elem * l,u32 key_size)217 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
218 {
219 return *(void __percpu **)(l->key + key_size);
220 }
221
fd_htab_map_get_ptr(const struct bpf_map * map,struct htab_elem * l)222 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
223 {
224 return *(void **)(l->key + roundup(map->key_size, 8));
225 }
226
get_htab_elem(struct bpf_htab * htab,int i)227 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
228 {
229 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
230 }
231
htab_has_extra_elems(struct bpf_htab * htab)232 static bool htab_has_extra_elems(struct bpf_htab *htab)
233 {
234 return !htab_is_percpu(htab) && !htab_is_lru(htab);
235 }
236
htab_free_prealloced_timers(struct bpf_htab * htab)237 static void htab_free_prealloced_timers(struct bpf_htab *htab)
238 {
239 u32 num_entries = htab->map.max_entries;
240 int i;
241
242 if (!map_value_has_timer(&htab->map))
243 return;
244 if (htab_has_extra_elems(htab))
245 num_entries += num_possible_cpus();
246
247 for (i = 0; i < num_entries; i++) {
248 struct htab_elem *elem;
249
250 elem = get_htab_elem(htab, i);
251 bpf_timer_cancel_and_free(elem->key +
252 round_up(htab->map.key_size, 8) +
253 htab->map.timer_off);
254 cond_resched();
255 }
256 }
257
htab_free_prealloced_kptrs(struct bpf_htab * htab)258 static void htab_free_prealloced_kptrs(struct bpf_htab *htab)
259 {
260 u32 num_entries = htab->map.max_entries;
261 int i;
262
263 if (!map_value_has_kptrs(&htab->map))
264 return;
265 if (htab_has_extra_elems(htab))
266 num_entries += num_possible_cpus();
267
268 for (i = 0; i < num_entries; i++) {
269 struct htab_elem *elem;
270
271 elem = get_htab_elem(htab, i);
272 bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8));
273 cond_resched();
274 }
275 }
276
htab_free_elems(struct bpf_htab * htab)277 static void htab_free_elems(struct bpf_htab *htab)
278 {
279 int i;
280
281 if (!htab_is_percpu(htab))
282 goto free_elems;
283
284 for (i = 0; i < htab->map.max_entries; i++) {
285 void __percpu *pptr;
286
287 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
288 htab->map.key_size);
289 free_percpu(pptr);
290 cond_resched();
291 }
292 free_elems:
293 bpf_map_area_free(htab->elems);
294 }
295
296 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
297 * (bucket_lock). If both locks need to be acquired together, the lock
298 * order is always lru_lock -> bucket_lock and this only happens in
299 * bpf_lru_list.c logic. For example, certain code path of
300 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
301 * will acquire lru_lock first followed by acquiring bucket_lock.
302 *
303 * In hashtab.c, to avoid deadlock, lock acquisition of
304 * bucket_lock followed by lru_lock is not allowed. In such cases,
305 * bucket_lock needs to be released first before acquiring lru_lock.
306 */
prealloc_lru_pop(struct bpf_htab * htab,void * key,u32 hash)307 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
308 u32 hash)
309 {
310 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
311 struct htab_elem *l;
312
313 if (node) {
314 l = container_of(node, struct htab_elem, lru_node);
315 memcpy(l->key, key, htab->map.key_size);
316 return l;
317 }
318
319 return NULL;
320 }
321
prealloc_init(struct bpf_htab * htab)322 static int prealloc_init(struct bpf_htab *htab)
323 {
324 u32 num_entries = htab->map.max_entries;
325 int err = -ENOMEM, i;
326
327 if (htab_has_extra_elems(htab))
328 num_entries += num_possible_cpus();
329
330 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
331 htab->map.numa_node);
332 if (!htab->elems)
333 return -ENOMEM;
334
335 if (!htab_is_percpu(htab))
336 goto skip_percpu_elems;
337
338 for (i = 0; i < num_entries; i++) {
339 u32 size = round_up(htab->map.value_size, 8);
340 void __percpu *pptr;
341
342 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
343 GFP_USER | __GFP_NOWARN);
344 if (!pptr)
345 goto free_elems;
346 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
347 pptr);
348 cond_resched();
349 }
350
351 skip_percpu_elems:
352 if (htab_is_lru(htab))
353 err = bpf_lru_init(&htab->lru,
354 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
355 offsetof(struct htab_elem, hash) -
356 offsetof(struct htab_elem, lru_node),
357 htab_lru_map_delete_node,
358 htab);
359 else
360 err = pcpu_freelist_init(&htab->freelist);
361
362 if (err)
363 goto free_elems;
364
365 if (htab_is_lru(htab))
366 bpf_lru_populate(&htab->lru, htab->elems,
367 offsetof(struct htab_elem, lru_node),
368 htab->elem_size, num_entries);
369 else
370 pcpu_freelist_populate(&htab->freelist,
371 htab->elems + offsetof(struct htab_elem, fnode),
372 htab->elem_size, num_entries);
373
374 return 0;
375
376 free_elems:
377 htab_free_elems(htab);
378 return err;
379 }
380
prealloc_destroy(struct bpf_htab * htab)381 static void prealloc_destroy(struct bpf_htab *htab)
382 {
383 htab_free_elems(htab);
384
385 if (htab_is_lru(htab))
386 bpf_lru_destroy(&htab->lru);
387 else
388 pcpu_freelist_destroy(&htab->freelist);
389 }
390
alloc_extra_elems(struct bpf_htab * htab)391 static int alloc_extra_elems(struct bpf_htab *htab)
392 {
393 struct htab_elem *__percpu *pptr, *l_new;
394 struct pcpu_freelist_node *l;
395 int cpu;
396
397 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
398 GFP_USER | __GFP_NOWARN);
399 if (!pptr)
400 return -ENOMEM;
401
402 for_each_possible_cpu(cpu) {
403 l = pcpu_freelist_pop(&htab->freelist);
404 /* pop will succeed, since prealloc_init()
405 * preallocated extra num_possible_cpus elements
406 */
407 l_new = container_of(l, struct htab_elem, fnode);
408 *per_cpu_ptr(pptr, cpu) = l_new;
409 }
410 htab->extra_elems = pptr;
411 return 0;
412 }
413
414 /* Called from syscall */
htab_map_alloc_check(union bpf_attr * attr)415 static int htab_map_alloc_check(union bpf_attr *attr)
416 {
417 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
418 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
419 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
420 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
421 /* percpu_lru means each cpu has its own LRU list.
422 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
423 * the map's value itself is percpu. percpu_lru has
424 * nothing to do with the map's value.
425 */
426 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
427 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
428 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
429 int numa_node = bpf_map_attr_numa_node(attr);
430
431 BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
432 offsetof(struct htab_elem, hash_node.pprev));
433 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
434 offsetof(struct htab_elem, hash_node.pprev));
435
436 if (lru && !bpf_capable())
437 /* LRU implementation is much complicated than other
438 * maps. Hence, limit to CAP_BPF.
439 */
440 return -EPERM;
441
442 if (zero_seed && !capable(CAP_SYS_ADMIN))
443 /* Guard against local DoS, and discourage production use. */
444 return -EPERM;
445
446 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
447 !bpf_map_flags_access_ok(attr->map_flags))
448 return -EINVAL;
449
450 if (!lru && percpu_lru)
451 return -EINVAL;
452
453 if (lru && !prealloc)
454 return -ENOTSUPP;
455
456 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
457 return -EINVAL;
458
459 /* check sanity of attributes.
460 * value_size == 0 may be allowed in the future to use map as a set
461 */
462 if (attr->max_entries == 0 || attr->key_size == 0 ||
463 attr->value_size == 0)
464 return -EINVAL;
465
466 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
467 sizeof(struct htab_elem))
468 /* if key_size + value_size is bigger, the user space won't be
469 * able to access the elements via bpf syscall. This check
470 * also makes sure that the elem_size doesn't overflow and it's
471 * kmalloc-able later in htab_map_update_elem()
472 */
473 return -E2BIG;
474
475 return 0;
476 }
477
htab_map_alloc(union bpf_attr * attr)478 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
479 {
480 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
481 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
482 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
483 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
484 /* percpu_lru means each cpu has its own LRU list.
485 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
486 * the map's value itself is percpu. percpu_lru has
487 * nothing to do with the map's value.
488 */
489 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
490 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
491 struct bpf_htab *htab;
492 int err, i;
493
494 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
495 if (!htab)
496 return ERR_PTR(-ENOMEM);
497
498 lockdep_register_key(&htab->lockdep_key);
499
500 bpf_map_init_from_attr(&htab->map, attr);
501
502 if (percpu_lru) {
503 /* ensure each CPU's lru list has >=1 elements.
504 * since we are at it, make each lru list has the same
505 * number of elements.
506 */
507 htab->map.max_entries = roundup(attr->max_entries,
508 num_possible_cpus());
509 if (htab->map.max_entries < attr->max_entries)
510 htab->map.max_entries = rounddown(attr->max_entries,
511 num_possible_cpus());
512 }
513
514 /* hash table size must be power of 2 */
515 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
516
517 htab->elem_size = sizeof(struct htab_elem) +
518 round_up(htab->map.key_size, 8);
519 if (percpu)
520 htab->elem_size += sizeof(void *);
521 else
522 htab->elem_size += round_up(htab->map.value_size, 8);
523
524 err = -E2BIG;
525 /* prevent zero size kmalloc and check for u32 overflow */
526 if (htab->n_buckets == 0 ||
527 htab->n_buckets > U32_MAX / sizeof(struct bucket))
528 goto free_htab;
529
530 err = -ENOMEM;
531 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
532 sizeof(struct bucket),
533 htab->map.numa_node);
534 if (!htab->buckets)
535 goto free_htab;
536
537 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
538 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
539 sizeof(int),
540 sizeof(int),
541 GFP_USER);
542 if (!htab->map_locked[i])
543 goto free_map_locked;
544 }
545
546 if (htab->map.map_flags & BPF_F_ZERO_SEED)
547 htab->hashrnd = 0;
548 else
549 htab->hashrnd = get_random_int();
550
551 htab_init_buckets(htab);
552
553 if (prealloc) {
554 err = prealloc_init(htab);
555 if (err)
556 goto free_map_locked;
557
558 if (!percpu && !lru) {
559 /* lru itself can remove the least used element, so
560 * there is no need for an extra elem during map_update.
561 */
562 err = alloc_extra_elems(htab);
563 if (err)
564 goto free_prealloc;
565 }
566 }
567
568 return &htab->map;
569
570 free_prealloc:
571 prealloc_destroy(htab);
572 free_map_locked:
573 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
574 free_percpu(htab->map_locked[i]);
575 bpf_map_area_free(htab->buckets);
576 free_htab:
577 lockdep_unregister_key(&htab->lockdep_key);
578 kfree(htab);
579 return ERR_PTR(err);
580 }
581
htab_map_hash(const void * key,u32 key_len,u32 hashrnd)582 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
583 {
584 return jhash(key, key_len, hashrnd);
585 }
586
__select_bucket(struct bpf_htab * htab,u32 hash)587 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
588 {
589 return &htab->buckets[hash & (htab->n_buckets - 1)];
590 }
591
select_bucket(struct bpf_htab * htab,u32 hash)592 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
593 {
594 return &__select_bucket(htab, hash)->head;
595 }
596
597 /* this lookup function can only be called with bucket lock taken */
lookup_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size)598 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
599 void *key, u32 key_size)
600 {
601 struct hlist_nulls_node *n;
602 struct htab_elem *l;
603
604 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
605 if (l->hash == hash && !memcmp(&l->key, key, key_size))
606 return l;
607
608 return NULL;
609 }
610
611 /* can be called without bucket lock. it will repeat the loop in
612 * the unlikely event when elements moved from one bucket into another
613 * while link list is being walked
614 */
lookup_nulls_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size,u32 n_buckets)615 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
616 u32 hash, void *key,
617 u32 key_size, u32 n_buckets)
618 {
619 struct hlist_nulls_node *n;
620 struct htab_elem *l;
621
622 again:
623 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
624 if (l->hash == hash && !memcmp(&l->key, key, key_size))
625 return l;
626
627 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
628 goto again;
629
630 return NULL;
631 }
632
633 /* Called from syscall or from eBPF program directly, so
634 * arguments have to match bpf_map_lookup_elem() exactly.
635 * The return value is adjusted by BPF instructions
636 * in htab_map_gen_lookup().
637 */
__htab_map_lookup_elem(struct bpf_map * map,void * key)638 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
639 {
640 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
641 struct hlist_nulls_head *head;
642 struct htab_elem *l;
643 u32 hash, key_size;
644
645 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
646 !rcu_read_lock_bh_held());
647
648 key_size = map->key_size;
649
650 hash = htab_map_hash(key, key_size, htab->hashrnd);
651
652 head = select_bucket(htab, hash);
653
654 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
655
656 return l;
657 }
658
htab_map_lookup_elem(struct bpf_map * map,void * key)659 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
660 {
661 struct htab_elem *l = __htab_map_lookup_elem(map, key);
662
663 if (l)
664 return l->key + round_up(map->key_size, 8);
665
666 return NULL;
667 }
668
669 /* inline bpf_map_lookup_elem() call.
670 * Instead of:
671 * bpf_prog
672 * bpf_map_lookup_elem
673 * map->ops->map_lookup_elem
674 * htab_map_lookup_elem
675 * __htab_map_lookup_elem
676 * do:
677 * bpf_prog
678 * __htab_map_lookup_elem
679 */
htab_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)680 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
681 {
682 struct bpf_insn *insn = insn_buf;
683 const int ret = BPF_REG_0;
684
685 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
686 (void *(*)(struct bpf_map *map, void *key))NULL));
687 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
688 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
689 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
690 offsetof(struct htab_elem, key) +
691 round_up(map->key_size, 8));
692 return insn - insn_buf;
693 }
694
__htab_lru_map_lookup_elem(struct bpf_map * map,void * key,const bool mark)695 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
696 void *key, const bool mark)
697 {
698 struct htab_elem *l = __htab_map_lookup_elem(map, key);
699
700 if (l) {
701 if (mark)
702 bpf_lru_node_set_ref(&l->lru_node);
703 return l->key + round_up(map->key_size, 8);
704 }
705
706 return NULL;
707 }
708
htab_lru_map_lookup_elem(struct bpf_map * map,void * key)709 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
710 {
711 return __htab_lru_map_lookup_elem(map, key, true);
712 }
713
htab_lru_map_lookup_elem_sys(struct bpf_map * map,void * key)714 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
715 {
716 return __htab_lru_map_lookup_elem(map, key, false);
717 }
718
htab_lru_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)719 static int htab_lru_map_gen_lookup(struct bpf_map *map,
720 struct bpf_insn *insn_buf)
721 {
722 struct bpf_insn *insn = insn_buf;
723 const int ret = BPF_REG_0;
724 const int ref_reg = BPF_REG_1;
725
726 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
727 (void *(*)(struct bpf_map *map, void *key))NULL));
728 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
729 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
730 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
731 offsetof(struct htab_elem, lru_node) +
732 offsetof(struct bpf_lru_node, ref));
733 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
734 *insn++ = BPF_ST_MEM(BPF_B, ret,
735 offsetof(struct htab_elem, lru_node) +
736 offsetof(struct bpf_lru_node, ref),
737 1);
738 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
739 offsetof(struct htab_elem, key) +
740 round_up(map->key_size, 8));
741 return insn - insn_buf;
742 }
743
check_and_free_fields(struct bpf_htab * htab,struct htab_elem * elem)744 static void check_and_free_fields(struct bpf_htab *htab,
745 struct htab_elem *elem)
746 {
747 void *map_value = elem->key + round_up(htab->map.key_size, 8);
748
749 if (map_value_has_timer(&htab->map))
750 bpf_timer_cancel_and_free(map_value + htab->map.timer_off);
751 if (map_value_has_kptrs(&htab->map))
752 bpf_map_free_kptrs(&htab->map, map_value);
753 }
754
755 /* It is called from the bpf_lru_list when the LRU needs to delete
756 * older elements from the htab.
757 */
htab_lru_map_delete_node(void * arg,struct bpf_lru_node * node)758 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
759 {
760 struct bpf_htab *htab = arg;
761 struct htab_elem *l = NULL, *tgt_l;
762 struct hlist_nulls_head *head;
763 struct hlist_nulls_node *n;
764 unsigned long flags;
765 struct bucket *b;
766 int ret;
767
768 tgt_l = container_of(node, struct htab_elem, lru_node);
769 b = __select_bucket(htab, tgt_l->hash);
770 head = &b->head;
771
772 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
773 if (ret)
774 return false;
775
776 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
777 if (l == tgt_l) {
778 hlist_nulls_del_rcu(&l->hash_node);
779 check_and_free_fields(htab, l);
780 break;
781 }
782
783 htab_unlock_bucket(htab, b, tgt_l->hash, flags);
784
785 return l == tgt_l;
786 }
787
788 /* Called from syscall */
htab_map_get_next_key(struct bpf_map * map,void * key,void * next_key)789 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
790 {
791 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
792 struct hlist_nulls_head *head;
793 struct htab_elem *l, *next_l;
794 u32 hash, key_size;
795 int i = 0;
796
797 WARN_ON_ONCE(!rcu_read_lock_held());
798
799 key_size = map->key_size;
800
801 if (!key)
802 goto find_first_elem;
803
804 hash = htab_map_hash(key, key_size, htab->hashrnd);
805
806 head = select_bucket(htab, hash);
807
808 /* lookup the key */
809 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
810
811 if (!l)
812 goto find_first_elem;
813
814 /* key was found, get next key in the same bucket */
815 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
816 struct htab_elem, hash_node);
817
818 if (next_l) {
819 /* if next elem in this hash list is non-zero, just return it */
820 memcpy(next_key, next_l->key, key_size);
821 return 0;
822 }
823
824 /* no more elements in this hash list, go to the next bucket */
825 i = hash & (htab->n_buckets - 1);
826 i++;
827
828 find_first_elem:
829 /* iterate over buckets */
830 for (; i < htab->n_buckets; i++) {
831 head = select_bucket(htab, i);
832
833 /* pick first element in the bucket */
834 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
835 struct htab_elem, hash_node);
836 if (next_l) {
837 /* if it's not empty, just return it */
838 memcpy(next_key, next_l->key, key_size);
839 return 0;
840 }
841 }
842
843 /* iterated over all buckets and all elements */
844 return -ENOENT;
845 }
846
htab_elem_free(struct bpf_htab * htab,struct htab_elem * l)847 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
848 {
849 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
850 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
851 check_and_free_fields(htab, l);
852 kfree(l);
853 }
854
htab_elem_free_rcu(struct rcu_head * head)855 static void htab_elem_free_rcu(struct rcu_head *head)
856 {
857 struct htab_elem *l = container_of(head, struct htab_elem, rcu);
858 struct bpf_htab *htab = l->htab;
859
860 htab_elem_free(htab, l);
861 }
862
htab_put_fd_value(struct bpf_htab * htab,struct htab_elem * l)863 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
864 {
865 struct bpf_map *map = &htab->map;
866 void *ptr;
867
868 if (map->ops->map_fd_put_ptr) {
869 ptr = fd_htab_map_get_ptr(map, l);
870 map->ops->map_fd_put_ptr(ptr);
871 }
872 }
873
free_htab_elem(struct bpf_htab * htab,struct htab_elem * l)874 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
875 {
876 htab_put_fd_value(htab, l);
877
878 if (htab_is_prealloc(htab)) {
879 check_and_free_fields(htab, l);
880 __pcpu_freelist_push(&htab->freelist, &l->fnode);
881 } else {
882 atomic_dec(&htab->count);
883 l->htab = htab;
884 call_rcu(&l->rcu, htab_elem_free_rcu);
885 }
886 }
887
pcpu_copy_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)888 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
889 void *value, bool onallcpus)
890 {
891 if (!onallcpus) {
892 /* copy true value_size bytes */
893 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
894 } else {
895 u32 size = round_up(htab->map.value_size, 8);
896 int off = 0, cpu;
897
898 for_each_possible_cpu(cpu) {
899 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
900 value + off, size);
901 off += size;
902 }
903 }
904 }
905
pcpu_init_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)906 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
907 void *value, bool onallcpus)
908 {
909 /* When using prealloc and not setting the initial value on all cpus,
910 * zero-fill element values for other cpus (just as what happens when
911 * not using prealloc). Otherwise, bpf program has no way to ensure
912 * known initial values for cpus other than current one
913 * (onallcpus=false always when coming from bpf prog).
914 */
915 if (htab_is_prealloc(htab) && !onallcpus) {
916 u32 size = round_up(htab->map.value_size, 8);
917 int current_cpu = raw_smp_processor_id();
918 int cpu;
919
920 for_each_possible_cpu(cpu) {
921 if (cpu == current_cpu)
922 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
923 size);
924 else
925 memset(per_cpu_ptr(pptr, cpu), 0, size);
926 }
927 } else {
928 pcpu_copy_value(htab, pptr, value, onallcpus);
929 }
930 }
931
fd_htab_map_needs_adjust(const struct bpf_htab * htab)932 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
933 {
934 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
935 BITS_PER_LONG == 64;
936 }
937
alloc_htab_elem(struct bpf_htab * htab,void * key,void * value,u32 key_size,u32 hash,bool percpu,bool onallcpus,struct htab_elem * old_elem)938 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
939 void *value, u32 key_size, u32 hash,
940 bool percpu, bool onallcpus,
941 struct htab_elem *old_elem)
942 {
943 u32 size = htab->map.value_size;
944 bool prealloc = htab_is_prealloc(htab);
945 struct htab_elem *l_new, **pl_new;
946 void __percpu *pptr;
947
948 if (prealloc) {
949 if (old_elem) {
950 /* if we're updating the existing element,
951 * use per-cpu extra elems to avoid freelist_pop/push
952 */
953 pl_new = this_cpu_ptr(htab->extra_elems);
954 l_new = *pl_new;
955 htab_put_fd_value(htab, old_elem);
956 *pl_new = old_elem;
957 } else {
958 struct pcpu_freelist_node *l;
959
960 l = __pcpu_freelist_pop(&htab->freelist);
961 if (!l)
962 return ERR_PTR(-E2BIG);
963 l_new = container_of(l, struct htab_elem, fnode);
964 }
965 } else {
966 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
967 if (!old_elem) {
968 /* when map is full and update() is replacing
969 * old element, it's ok to allocate, since
970 * old element will be freed immediately.
971 * Otherwise return an error
972 */
973 l_new = ERR_PTR(-E2BIG);
974 goto dec_count;
975 }
976 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
977 GFP_ATOMIC | __GFP_NOWARN,
978 htab->map.numa_node);
979 if (!l_new) {
980 l_new = ERR_PTR(-ENOMEM);
981 goto dec_count;
982 }
983 check_and_init_map_value(&htab->map,
984 l_new->key + round_up(key_size, 8));
985 }
986
987 memcpy(l_new->key, key, key_size);
988 if (percpu) {
989 size = round_up(size, 8);
990 if (prealloc) {
991 pptr = htab_elem_get_ptr(l_new, key_size);
992 } else {
993 /* alloc_percpu zero-fills */
994 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
995 GFP_ATOMIC | __GFP_NOWARN);
996 if (!pptr) {
997 kfree(l_new);
998 l_new = ERR_PTR(-ENOMEM);
999 goto dec_count;
1000 }
1001 }
1002
1003 pcpu_init_value(htab, pptr, value, onallcpus);
1004
1005 if (!prealloc)
1006 htab_elem_set_ptr(l_new, key_size, pptr);
1007 } else if (fd_htab_map_needs_adjust(htab)) {
1008 size = round_up(size, 8);
1009 memcpy(l_new->key + round_up(key_size, 8), value, size);
1010 } else {
1011 copy_map_value(&htab->map,
1012 l_new->key + round_up(key_size, 8),
1013 value);
1014 }
1015
1016 l_new->hash = hash;
1017 return l_new;
1018 dec_count:
1019 atomic_dec(&htab->count);
1020 return l_new;
1021 }
1022
check_flags(struct bpf_htab * htab,struct htab_elem * l_old,u64 map_flags)1023 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1024 u64 map_flags)
1025 {
1026 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1027 /* elem already exists */
1028 return -EEXIST;
1029
1030 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1031 /* elem doesn't exist, cannot update it */
1032 return -ENOENT;
1033
1034 return 0;
1035 }
1036
1037 /* Called from syscall or from eBPF program */
htab_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1038 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1039 u64 map_flags)
1040 {
1041 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1042 struct htab_elem *l_new = NULL, *l_old;
1043 struct hlist_nulls_head *head;
1044 unsigned long flags;
1045 struct bucket *b;
1046 u32 key_size, hash;
1047 int ret;
1048
1049 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1050 /* unknown flags */
1051 return -EINVAL;
1052
1053 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1054 !rcu_read_lock_bh_held());
1055
1056 key_size = map->key_size;
1057
1058 hash = htab_map_hash(key, key_size, htab->hashrnd);
1059
1060 b = __select_bucket(htab, hash);
1061 head = &b->head;
1062
1063 if (unlikely(map_flags & BPF_F_LOCK)) {
1064 if (unlikely(!map_value_has_spin_lock(map)))
1065 return -EINVAL;
1066 /* find an element without taking the bucket lock */
1067 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1068 htab->n_buckets);
1069 ret = check_flags(htab, l_old, map_flags);
1070 if (ret)
1071 return ret;
1072 if (l_old) {
1073 /* grab the element lock and update value in place */
1074 copy_map_value_locked(map,
1075 l_old->key + round_up(key_size, 8),
1076 value, false);
1077 return 0;
1078 }
1079 /* fall through, grab the bucket lock and lookup again.
1080 * 99.9% chance that the element won't be found,
1081 * but second lookup under lock has to be done.
1082 */
1083 }
1084
1085 ret = htab_lock_bucket(htab, b, hash, &flags);
1086 if (ret)
1087 return ret;
1088
1089 l_old = lookup_elem_raw(head, hash, key, key_size);
1090
1091 ret = check_flags(htab, l_old, map_flags);
1092 if (ret)
1093 goto err;
1094
1095 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1096 /* first lookup without the bucket lock didn't find the element,
1097 * but second lookup with the bucket lock found it.
1098 * This case is highly unlikely, but has to be dealt with:
1099 * grab the element lock in addition to the bucket lock
1100 * and update element in place
1101 */
1102 copy_map_value_locked(map,
1103 l_old->key + round_up(key_size, 8),
1104 value, false);
1105 ret = 0;
1106 goto err;
1107 }
1108
1109 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1110 l_old);
1111 if (IS_ERR(l_new)) {
1112 /* all pre-allocated elements are in use or memory exhausted */
1113 ret = PTR_ERR(l_new);
1114 goto err;
1115 }
1116
1117 /* add new element to the head of the list, so that
1118 * concurrent search will find it before old elem
1119 */
1120 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1121 if (l_old) {
1122 hlist_nulls_del_rcu(&l_old->hash_node);
1123 if (!htab_is_prealloc(htab))
1124 free_htab_elem(htab, l_old);
1125 else
1126 check_and_free_fields(htab, l_old);
1127 }
1128 ret = 0;
1129 err:
1130 htab_unlock_bucket(htab, b, hash, flags);
1131 return ret;
1132 }
1133
htab_lru_push_free(struct bpf_htab * htab,struct htab_elem * elem)1134 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1135 {
1136 check_and_free_fields(htab, elem);
1137 bpf_lru_push_free(&htab->lru, &elem->lru_node);
1138 }
1139
htab_lru_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1140 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1141 u64 map_flags)
1142 {
1143 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1144 struct htab_elem *l_new, *l_old = NULL;
1145 struct hlist_nulls_head *head;
1146 unsigned long flags;
1147 struct bucket *b;
1148 u32 key_size, hash;
1149 int ret;
1150
1151 if (unlikely(map_flags > BPF_EXIST))
1152 /* unknown flags */
1153 return -EINVAL;
1154
1155 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1156 !rcu_read_lock_bh_held());
1157
1158 key_size = map->key_size;
1159
1160 hash = htab_map_hash(key, key_size, htab->hashrnd);
1161
1162 b = __select_bucket(htab, hash);
1163 head = &b->head;
1164
1165 /* For LRU, we need to alloc before taking bucket's
1166 * spinlock because getting free nodes from LRU may need
1167 * to remove older elements from htab and this removal
1168 * operation will need a bucket lock.
1169 */
1170 l_new = prealloc_lru_pop(htab, key, hash);
1171 if (!l_new)
1172 return -ENOMEM;
1173 copy_map_value(&htab->map,
1174 l_new->key + round_up(map->key_size, 8), value);
1175
1176 ret = htab_lock_bucket(htab, b, hash, &flags);
1177 if (ret)
1178 return ret;
1179
1180 l_old = lookup_elem_raw(head, hash, key, key_size);
1181
1182 ret = check_flags(htab, l_old, map_flags);
1183 if (ret)
1184 goto err;
1185
1186 /* add new element to the head of the list, so that
1187 * concurrent search will find it before old elem
1188 */
1189 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1190 if (l_old) {
1191 bpf_lru_node_set_ref(&l_new->lru_node);
1192 hlist_nulls_del_rcu(&l_old->hash_node);
1193 }
1194 ret = 0;
1195
1196 err:
1197 htab_unlock_bucket(htab, b, hash, flags);
1198
1199 if (ret)
1200 htab_lru_push_free(htab, l_new);
1201 else if (l_old)
1202 htab_lru_push_free(htab, l_old);
1203
1204 return ret;
1205 }
1206
__htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1207 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1208 void *value, u64 map_flags,
1209 bool onallcpus)
1210 {
1211 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1212 struct htab_elem *l_new = NULL, *l_old;
1213 struct hlist_nulls_head *head;
1214 unsigned long flags;
1215 struct bucket *b;
1216 u32 key_size, hash;
1217 int ret;
1218
1219 if (unlikely(map_flags > BPF_EXIST))
1220 /* unknown flags */
1221 return -EINVAL;
1222
1223 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1224 !rcu_read_lock_bh_held());
1225
1226 key_size = map->key_size;
1227
1228 hash = htab_map_hash(key, key_size, htab->hashrnd);
1229
1230 b = __select_bucket(htab, hash);
1231 head = &b->head;
1232
1233 ret = htab_lock_bucket(htab, b, hash, &flags);
1234 if (ret)
1235 return ret;
1236
1237 l_old = lookup_elem_raw(head, hash, key, key_size);
1238
1239 ret = check_flags(htab, l_old, map_flags);
1240 if (ret)
1241 goto err;
1242
1243 if (l_old) {
1244 /* per-cpu hash map can update value in-place */
1245 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1246 value, onallcpus);
1247 } else {
1248 l_new = alloc_htab_elem(htab, key, value, key_size,
1249 hash, true, onallcpus, NULL);
1250 if (IS_ERR(l_new)) {
1251 ret = PTR_ERR(l_new);
1252 goto err;
1253 }
1254 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1255 }
1256 ret = 0;
1257 err:
1258 htab_unlock_bucket(htab, b, hash, flags);
1259 return ret;
1260 }
1261
__htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1262 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1263 void *value, u64 map_flags,
1264 bool onallcpus)
1265 {
1266 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1267 struct htab_elem *l_new = NULL, *l_old;
1268 struct hlist_nulls_head *head;
1269 unsigned long flags;
1270 struct bucket *b;
1271 u32 key_size, hash;
1272 int ret;
1273
1274 if (unlikely(map_flags > BPF_EXIST))
1275 /* unknown flags */
1276 return -EINVAL;
1277
1278 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1279 !rcu_read_lock_bh_held());
1280
1281 key_size = map->key_size;
1282
1283 hash = htab_map_hash(key, key_size, htab->hashrnd);
1284
1285 b = __select_bucket(htab, hash);
1286 head = &b->head;
1287
1288 /* For LRU, we need to alloc before taking bucket's
1289 * spinlock because LRU's elem alloc may need
1290 * to remove older elem from htab and this removal
1291 * operation will need a bucket lock.
1292 */
1293 if (map_flags != BPF_EXIST) {
1294 l_new = prealloc_lru_pop(htab, key, hash);
1295 if (!l_new)
1296 return -ENOMEM;
1297 }
1298
1299 ret = htab_lock_bucket(htab, b, hash, &flags);
1300 if (ret)
1301 return ret;
1302
1303 l_old = lookup_elem_raw(head, hash, key, key_size);
1304
1305 ret = check_flags(htab, l_old, map_flags);
1306 if (ret)
1307 goto err;
1308
1309 if (l_old) {
1310 bpf_lru_node_set_ref(&l_old->lru_node);
1311
1312 /* per-cpu hash map can update value in-place */
1313 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1314 value, onallcpus);
1315 } else {
1316 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1317 value, onallcpus);
1318 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1319 l_new = NULL;
1320 }
1321 ret = 0;
1322 err:
1323 htab_unlock_bucket(htab, b, hash, flags);
1324 if (l_new)
1325 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1326 return ret;
1327 }
1328
htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1329 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1330 void *value, u64 map_flags)
1331 {
1332 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1333 }
1334
htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1335 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1336 void *value, u64 map_flags)
1337 {
1338 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1339 false);
1340 }
1341
1342 /* Called from syscall or from eBPF program */
htab_map_delete_elem(struct bpf_map * map,void * key)1343 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1344 {
1345 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1346 struct hlist_nulls_head *head;
1347 struct bucket *b;
1348 struct htab_elem *l;
1349 unsigned long flags;
1350 u32 hash, key_size;
1351 int ret;
1352
1353 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1354 !rcu_read_lock_bh_held());
1355
1356 key_size = map->key_size;
1357
1358 hash = htab_map_hash(key, key_size, htab->hashrnd);
1359 b = __select_bucket(htab, hash);
1360 head = &b->head;
1361
1362 ret = htab_lock_bucket(htab, b, hash, &flags);
1363 if (ret)
1364 return ret;
1365
1366 l = lookup_elem_raw(head, hash, key, key_size);
1367
1368 if (l) {
1369 hlist_nulls_del_rcu(&l->hash_node);
1370 free_htab_elem(htab, l);
1371 } else {
1372 ret = -ENOENT;
1373 }
1374
1375 htab_unlock_bucket(htab, b, hash, flags);
1376 return ret;
1377 }
1378
htab_lru_map_delete_elem(struct bpf_map * map,void * key)1379 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1380 {
1381 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1382 struct hlist_nulls_head *head;
1383 struct bucket *b;
1384 struct htab_elem *l;
1385 unsigned long flags;
1386 u32 hash, key_size;
1387 int ret;
1388
1389 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1390 !rcu_read_lock_bh_held());
1391
1392 key_size = map->key_size;
1393
1394 hash = htab_map_hash(key, key_size, htab->hashrnd);
1395 b = __select_bucket(htab, hash);
1396 head = &b->head;
1397
1398 ret = htab_lock_bucket(htab, b, hash, &flags);
1399 if (ret)
1400 return ret;
1401
1402 l = lookup_elem_raw(head, hash, key, key_size);
1403
1404 if (l)
1405 hlist_nulls_del_rcu(&l->hash_node);
1406 else
1407 ret = -ENOENT;
1408
1409 htab_unlock_bucket(htab, b, hash, flags);
1410 if (l)
1411 htab_lru_push_free(htab, l);
1412 return ret;
1413 }
1414
delete_all_elements(struct bpf_htab * htab)1415 static void delete_all_elements(struct bpf_htab *htab)
1416 {
1417 int i;
1418
1419 for (i = 0; i < htab->n_buckets; i++) {
1420 struct hlist_nulls_head *head = select_bucket(htab, i);
1421 struct hlist_nulls_node *n;
1422 struct htab_elem *l;
1423
1424 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1425 hlist_nulls_del_rcu(&l->hash_node);
1426 htab_elem_free(htab, l);
1427 }
1428 }
1429 }
1430
htab_free_malloced_timers(struct bpf_htab * htab)1431 static void htab_free_malloced_timers(struct bpf_htab *htab)
1432 {
1433 int i;
1434
1435 rcu_read_lock();
1436 for (i = 0; i < htab->n_buckets; i++) {
1437 struct hlist_nulls_head *head = select_bucket(htab, i);
1438 struct hlist_nulls_node *n;
1439 struct htab_elem *l;
1440
1441 hlist_nulls_for_each_entry(l, n, head, hash_node) {
1442 /* We don't reset or free kptr on uref dropping to zero,
1443 * hence just free timer.
1444 */
1445 bpf_timer_cancel_and_free(l->key +
1446 round_up(htab->map.key_size, 8) +
1447 htab->map.timer_off);
1448 }
1449 cond_resched_rcu();
1450 }
1451 rcu_read_unlock();
1452 }
1453
htab_map_free_timers(struct bpf_map * map)1454 static void htab_map_free_timers(struct bpf_map *map)
1455 {
1456 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1457
1458 /* We don't reset or free kptr on uref dropping to zero. */
1459 if (!map_value_has_timer(&htab->map))
1460 return;
1461 if (!htab_is_prealloc(htab))
1462 htab_free_malloced_timers(htab);
1463 else
1464 htab_free_prealloced_timers(htab);
1465 }
1466
1467 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
htab_map_free(struct bpf_map * map)1468 static void htab_map_free(struct bpf_map *map)
1469 {
1470 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1471 int i;
1472
1473 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1474 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1475 * There is no need to synchronize_rcu() here to protect map elements.
1476 */
1477
1478 /* some of free_htab_elem() callbacks for elements of this map may
1479 * not have executed. Wait for them.
1480 */
1481 rcu_barrier();
1482 if (!htab_is_prealloc(htab)) {
1483 delete_all_elements(htab);
1484 } else {
1485 htab_free_prealloced_kptrs(htab);
1486 prealloc_destroy(htab);
1487 }
1488
1489 bpf_map_free_kptr_off_tab(map);
1490 free_percpu(htab->extra_elems);
1491 bpf_map_area_free(htab->buckets);
1492 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1493 free_percpu(htab->map_locked[i]);
1494 lockdep_unregister_key(&htab->lockdep_key);
1495 kfree(htab);
1496 }
1497
htab_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)1498 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1499 struct seq_file *m)
1500 {
1501 void *value;
1502
1503 rcu_read_lock();
1504
1505 value = htab_map_lookup_elem(map, key);
1506 if (!value) {
1507 rcu_read_unlock();
1508 return;
1509 }
1510
1511 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1512 seq_puts(m, ": ");
1513 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1514 seq_puts(m, "\n");
1515
1516 rcu_read_unlock();
1517 }
1518
__htab_map_lookup_and_delete_elem(struct bpf_map * map,void * key,void * value,bool is_lru_map,bool is_percpu,u64 flags)1519 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1520 void *value, bool is_lru_map,
1521 bool is_percpu, u64 flags)
1522 {
1523 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1524 struct hlist_nulls_head *head;
1525 unsigned long bflags;
1526 struct htab_elem *l;
1527 u32 hash, key_size;
1528 struct bucket *b;
1529 int ret;
1530
1531 key_size = map->key_size;
1532
1533 hash = htab_map_hash(key, key_size, htab->hashrnd);
1534 b = __select_bucket(htab, hash);
1535 head = &b->head;
1536
1537 ret = htab_lock_bucket(htab, b, hash, &bflags);
1538 if (ret)
1539 return ret;
1540
1541 l = lookup_elem_raw(head, hash, key, key_size);
1542 if (!l) {
1543 ret = -ENOENT;
1544 } else {
1545 if (is_percpu) {
1546 u32 roundup_value_size = round_up(map->value_size, 8);
1547 void __percpu *pptr;
1548 int off = 0, cpu;
1549
1550 pptr = htab_elem_get_ptr(l, key_size);
1551 for_each_possible_cpu(cpu) {
1552 bpf_long_memcpy(value + off,
1553 per_cpu_ptr(pptr, cpu),
1554 roundup_value_size);
1555 off += roundup_value_size;
1556 }
1557 } else {
1558 u32 roundup_key_size = round_up(map->key_size, 8);
1559
1560 if (flags & BPF_F_LOCK)
1561 copy_map_value_locked(map, value, l->key +
1562 roundup_key_size,
1563 true);
1564 else
1565 copy_map_value(map, value, l->key +
1566 roundup_key_size);
1567 check_and_init_map_value(map, value);
1568 }
1569
1570 hlist_nulls_del_rcu(&l->hash_node);
1571 if (!is_lru_map)
1572 free_htab_elem(htab, l);
1573 }
1574
1575 htab_unlock_bucket(htab, b, hash, bflags);
1576
1577 if (is_lru_map && l)
1578 htab_lru_push_free(htab, l);
1579
1580 return ret;
1581 }
1582
htab_map_lookup_and_delete_elem(struct bpf_map * map,void * key,void * value,u64 flags)1583 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1584 void *value, u64 flags)
1585 {
1586 return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1587 flags);
1588 }
1589
htab_percpu_map_lookup_and_delete_elem(struct bpf_map * map,void * key,void * value,u64 flags)1590 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1591 void *key, void *value,
1592 u64 flags)
1593 {
1594 return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1595 flags);
1596 }
1597
htab_lru_map_lookup_and_delete_elem(struct bpf_map * map,void * key,void * value,u64 flags)1598 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1599 void *value, u64 flags)
1600 {
1601 return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1602 flags);
1603 }
1604
htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map * map,void * key,void * value,u64 flags)1605 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1606 void *key, void *value,
1607 u64 flags)
1608 {
1609 return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1610 flags);
1611 }
1612
1613 static int
__htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr,bool do_delete,bool is_lru_map,bool is_percpu)1614 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1615 const union bpf_attr *attr,
1616 union bpf_attr __user *uattr,
1617 bool do_delete, bool is_lru_map,
1618 bool is_percpu)
1619 {
1620 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1621 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1622 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1623 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1624 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1625 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1626 u32 batch, max_count, size, bucket_size, map_id;
1627 struct htab_elem *node_to_free = NULL;
1628 u64 elem_map_flags, map_flags;
1629 struct hlist_nulls_head *head;
1630 struct hlist_nulls_node *n;
1631 unsigned long flags = 0;
1632 bool locked = false;
1633 struct htab_elem *l;
1634 struct bucket *b;
1635 int ret = 0;
1636
1637 elem_map_flags = attr->batch.elem_flags;
1638 if ((elem_map_flags & ~BPF_F_LOCK) ||
1639 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1640 return -EINVAL;
1641
1642 map_flags = attr->batch.flags;
1643 if (map_flags)
1644 return -EINVAL;
1645
1646 max_count = attr->batch.count;
1647 if (!max_count)
1648 return 0;
1649
1650 if (put_user(0, &uattr->batch.count))
1651 return -EFAULT;
1652
1653 batch = 0;
1654 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1655 return -EFAULT;
1656
1657 if (batch >= htab->n_buckets)
1658 return -ENOENT;
1659
1660 key_size = htab->map.key_size;
1661 roundup_key_size = round_up(htab->map.key_size, 8);
1662 value_size = htab->map.value_size;
1663 size = round_up(value_size, 8);
1664 if (is_percpu)
1665 value_size = size * num_possible_cpus();
1666 total = 0;
1667 /* while experimenting with hash tables with sizes ranging from 10 to
1668 * 1000, it was observed that a bucket can have up to 5 entries.
1669 */
1670 bucket_size = 5;
1671
1672 alloc:
1673 /* We cannot do copy_from_user or copy_to_user inside
1674 * the rcu_read_lock. Allocate enough space here.
1675 */
1676 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1677 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1678 if (!keys || !values) {
1679 ret = -ENOMEM;
1680 goto after_loop;
1681 }
1682
1683 again:
1684 bpf_disable_instrumentation();
1685 rcu_read_lock();
1686 again_nocopy:
1687 dst_key = keys;
1688 dst_val = values;
1689 b = &htab->buckets[batch];
1690 head = &b->head;
1691 /* do not grab the lock unless need it (bucket_cnt > 0). */
1692 if (locked) {
1693 ret = htab_lock_bucket(htab, b, batch, &flags);
1694 if (ret)
1695 goto next_batch;
1696 }
1697
1698 bucket_cnt = 0;
1699 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1700 bucket_cnt++;
1701
1702 if (bucket_cnt && !locked) {
1703 locked = true;
1704 goto again_nocopy;
1705 }
1706
1707 if (bucket_cnt > (max_count - total)) {
1708 if (total == 0)
1709 ret = -ENOSPC;
1710 /* Note that since bucket_cnt > 0 here, it is implicit
1711 * that the locked was grabbed, so release it.
1712 */
1713 htab_unlock_bucket(htab, b, batch, flags);
1714 rcu_read_unlock();
1715 bpf_enable_instrumentation();
1716 goto after_loop;
1717 }
1718
1719 if (bucket_cnt > bucket_size) {
1720 bucket_size = bucket_cnt;
1721 /* Note that since bucket_cnt > 0 here, it is implicit
1722 * that the locked was grabbed, so release it.
1723 */
1724 htab_unlock_bucket(htab, b, batch, flags);
1725 rcu_read_unlock();
1726 bpf_enable_instrumentation();
1727 kvfree(keys);
1728 kvfree(values);
1729 goto alloc;
1730 }
1731
1732 /* Next block is only safe to run if you have grabbed the lock */
1733 if (!locked)
1734 goto next_batch;
1735
1736 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1737 memcpy(dst_key, l->key, key_size);
1738
1739 if (is_percpu) {
1740 int off = 0, cpu;
1741 void __percpu *pptr;
1742
1743 pptr = htab_elem_get_ptr(l, map->key_size);
1744 for_each_possible_cpu(cpu) {
1745 bpf_long_memcpy(dst_val + off,
1746 per_cpu_ptr(pptr, cpu), size);
1747 off += size;
1748 }
1749 } else {
1750 value = l->key + roundup_key_size;
1751 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1752 struct bpf_map **inner_map = value;
1753
1754 /* Actual value is the id of the inner map */
1755 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1756 value = &map_id;
1757 }
1758
1759 if (elem_map_flags & BPF_F_LOCK)
1760 copy_map_value_locked(map, dst_val, value,
1761 true);
1762 else
1763 copy_map_value(map, dst_val, value);
1764 check_and_init_map_value(map, dst_val);
1765 }
1766 if (do_delete) {
1767 hlist_nulls_del_rcu(&l->hash_node);
1768
1769 /* bpf_lru_push_free() will acquire lru_lock, which
1770 * may cause deadlock. See comments in function
1771 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1772 * after releasing the bucket lock.
1773 */
1774 if (is_lru_map) {
1775 l->batch_flink = node_to_free;
1776 node_to_free = l;
1777 } else {
1778 free_htab_elem(htab, l);
1779 }
1780 }
1781 dst_key += key_size;
1782 dst_val += value_size;
1783 }
1784
1785 htab_unlock_bucket(htab, b, batch, flags);
1786 locked = false;
1787
1788 while (node_to_free) {
1789 l = node_to_free;
1790 node_to_free = node_to_free->batch_flink;
1791 htab_lru_push_free(htab, l);
1792 }
1793
1794 next_batch:
1795 /* If we are not copying data, we can go to next bucket and avoid
1796 * unlocking the rcu.
1797 */
1798 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1799 batch++;
1800 goto again_nocopy;
1801 }
1802
1803 rcu_read_unlock();
1804 bpf_enable_instrumentation();
1805 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1806 key_size * bucket_cnt) ||
1807 copy_to_user(uvalues + total * value_size, values,
1808 value_size * bucket_cnt))) {
1809 ret = -EFAULT;
1810 goto after_loop;
1811 }
1812
1813 total += bucket_cnt;
1814 batch++;
1815 if (batch >= htab->n_buckets) {
1816 ret = -ENOENT;
1817 goto after_loop;
1818 }
1819 goto again;
1820
1821 after_loop:
1822 if (ret == -EFAULT)
1823 goto out;
1824
1825 /* copy # of entries and next batch */
1826 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1827 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1828 put_user(total, &uattr->batch.count))
1829 ret = -EFAULT;
1830
1831 out:
1832 kvfree(keys);
1833 kvfree(values);
1834 return ret;
1835 }
1836
1837 static int
htab_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1838 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1839 union bpf_attr __user *uattr)
1840 {
1841 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1842 false, true);
1843 }
1844
1845 static int
htab_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1846 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1847 const union bpf_attr *attr,
1848 union bpf_attr __user *uattr)
1849 {
1850 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1851 false, true);
1852 }
1853
1854 static int
htab_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1855 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1856 union bpf_attr __user *uattr)
1857 {
1858 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1859 false, false);
1860 }
1861
1862 static int
htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1863 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1864 const union bpf_attr *attr,
1865 union bpf_attr __user *uattr)
1866 {
1867 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1868 false, false);
1869 }
1870
1871 static int
htab_lru_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1872 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1873 const union bpf_attr *attr,
1874 union bpf_attr __user *uattr)
1875 {
1876 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1877 true, true);
1878 }
1879
1880 static int
htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1881 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1882 const union bpf_attr *attr,
1883 union bpf_attr __user *uattr)
1884 {
1885 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1886 true, true);
1887 }
1888
1889 static int
htab_lru_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1890 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1891 union bpf_attr __user *uattr)
1892 {
1893 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1894 true, false);
1895 }
1896
1897 static int
htab_lru_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1898 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1899 const union bpf_attr *attr,
1900 union bpf_attr __user *uattr)
1901 {
1902 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1903 true, false);
1904 }
1905
1906 struct bpf_iter_seq_hash_map_info {
1907 struct bpf_map *map;
1908 struct bpf_htab *htab;
1909 void *percpu_value_buf; // non-zero means percpu hash
1910 u32 bucket_id;
1911 u32 skip_elems;
1912 };
1913
1914 static struct htab_elem *
bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info * info,struct htab_elem * prev_elem)1915 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1916 struct htab_elem *prev_elem)
1917 {
1918 const struct bpf_htab *htab = info->htab;
1919 u32 skip_elems = info->skip_elems;
1920 u32 bucket_id = info->bucket_id;
1921 struct hlist_nulls_head *head;
1922 struct hlist_nulls_node *n;
1923 struct htab_elem *elem;
1924 struct bucket *b;
1925 u32 i, count;
1926
1927 if (bucket_id >= htab->n_buckets)
1928 return NULL;
1929
1930 /* try to find next elem in the same bucket */
1931 if (prev_elem) {
1932 /* no update/deletion on this bucket, prev_elem should be still valid
1933 * and we won't skip elements.
1934 */
1935 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1936 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1937 if (elem)
1938 return elem;
1939
1940 /* not found, unlock and go to the next bucket */
1941 b = &htab->buckets[bucket_id++];
1942 rcu_read_unlock();
1943 skip_elems = 0;
1944 }
1945
1946 for (i = bucket_id; i < htab->n_buckets; i++) {
1947 b = &htab->buckets[i];
1948 rcu_read_lock();
1949
1950 count = 0;
1951 head = &b->head;
1952 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1953 if (count >= skip_elems) {
1954 info->bucket_id = i;
1955 info->skip_elems = count;
1956 return elem;
1957 }
1958 count++;
1959 }
1960
1961 rcu_read_unlock();
1962 skip_elems = 0;
1963 }
1964
1965 info->bucket_id = i;
1966 info->skip_elems = 0;
1967 return NULL;
1968 }
1969
bpf_hash_map_seq_start(struct seq_file * seq,loff_t * pos)1970 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1971 {
1972 struct bpf_iter_seq_hash_map_info *info = seq->private;
1973 struct htab_elem *elem;
1974
1975 elem = bpf_hash_map_seq_find_next(info, NULL);
1976 if (!elem)
1977 return NULL;
1978
1979 if (*pos == 0)
1980 ++*pos;
1981 return elem;
1982 }
1983
bpf_hash_map_seq_next(struct seq_file * seq,void * v,loff_t * pos)1984 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1985 {
1986 struct bpf_iter_seq_hash_map_info *info = seq->private;
1987
1988 ++*pos;
1989 ++info->skip_elems;
1990 return bpf_hash_map_seq_find_next(info, v);
1991 }
1992
__bpf_hash_map_seq_show(struct seq_file * seq,struct htab_elem * elem)1993 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1994 {
1995 struct bpf_iter_seq_hash_map_info *info = seq->private;
1996 u32 roundup_key_size, roundup_value_size;
1997 struct bpf_iter__bpf_map_elem ctx = {};
1998 struct bpf_map *map = info->map;
1999 struct bpf_iter_meta meta;
2000 int ret = 0, off = 0, cpu;
2001 struct bpf_prog *prog;
2002 void __percpu *pptr;
2003
2004 meta.seq = seq;
2005 prog = bpf_iter_get_info(&meta, elem == NULL);
2006 if (prog) {
2007 ctx.meta = &meta;
2008 ctx.map = info->map;
2009 if (elem) {
2010 roundup_key_size = round_up(map->key_size, 8);
2011 ctx.key = elem->key;
2012 if (!info->percpu_value_buf) {
2013 ctx.value = elem->key + roundup_key_size;
2014 } else {
2015 roundup_value_size = round_up(map->value_size, 8);
2016 pptr = htab_elem_get_ptr(elem, map->key_size);
2017 for_each_possible_cpu(cpu) {
2018 bpf_long_memcpy(info->percpu_value_buf + off,
2019 per_cpu_ptr(pptr, cpu),
2020 roundup_value_size);
2021 off += roundup_value_size;
2022 }
2023 ctx.value = info->percpu_value_buf;
2024 }
2025 }
2026 ret = bpf_iter_run_prog(prog, &ctx);
2027 }
2028
2029 return ret;
2030 }
2031
bpf_hash_map_seq_show(struct seq_file * seq,void * v)2032 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2033 {
2034 return __bpf_hash_map_seq_show(seq, v);
2035 }
2036
bpf_hash_map_seq_stop(struct seq_file * seq,void * v)2037 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2038 {
2039 if (!v)
2040 (void)__bpf_hash_map_seq_show(seq, NULL);
2041 else
2042 rcu_read_unlock();
2043 }
2044
bpf_iter_init_hash_map(void * priv_data,struct bpf_iter_aux_info * aux)2045 static int bpf_iter_init_hash_map(void *priv_data,
2046 struct bpf_iter_aux_info *aux)
2047 {
2048 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2049 struct bpf_map *map = aux->map;
2050 void *value_buf;
2051 u32 buf_size;
2052
2053 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2054 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2055 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2056 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2057 if (!value_buf)
2058 return -ENOMEM;
2059
2060 seq_info->percpu_value_buf = value_buf;
2061 }
2062
2063 bpf_map_inc_with_uref(map);
2064 seq_info->map = map;
2065 seq_info->htab = container_of(map, struct bpf_htab, map);
2066 return 0;
2067 }
2068
bpf_iter_fini_hash_map(void * priv_data)2069 static void bpf_iter_fini_hash_map(void *priv_data)
2070 {
2071 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2072
2073 bpf_map_put_with_uref(seq_info->map);
2074 kfree(seq_info->percpu_value_buf);
2075 }
2076
2077 static const struct seq_operations bpf_hash_map_seq_ops = {
2078 .start = bpf_hash_map_seq_start,
2079 .next = bpf_hash_map_seq_next,
2080 .stop = bpf_hash_map_seq_stop,
2081 .show = bpf_hash_map_seq_show,
2082 };
2083
2084 static const struct bpf_iter_seq_info iter_seq_info = {
2085 .seq_ops = &bpf_hash_map_seq_ops,
2086 .init_seq_private = bpf_iter_init_hash_map,
2087 .fini_seq_private = bpf_iter_fini_hash_map,
2088 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
2089 };
2090
bpf_for_each_hash_elem(struct bpf_map * map,bpf_callback_t callback_fn,void * callback_ctx,u64 flags)2091 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2092 void *callback_ctx, u64 flags)
2093 {
2094 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2095 struct hlist_nulls_head *head;
2096 struct hlist_nulls_node *n;
2097 struct htab_elem *elem;
2098 u32 roundup_key_size;
2099 int i, num_elems = 0;
2100 void __percpu *pptr;
2101 struct bucket *b;
2102 void *key, *val;
2103 bool is_percpu;
2104 u64 ret = 0;
2105
2106 if (flags != 0)
2107 return -EINVAL;
2108
2109 is_percpu = htab_is_percpu(htab);
2110
2111 roundup_key_size = round_up(map->key_size, 8);
2112 /* disable migration so percpu value prepared here will be the
2113 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2114 */
2115 if (is_percpu)
2116 migrate_disable();
2117 for (i = 0; i < htab->n_buckets; i++) {
2118 b = &htab->buckets[i];
2119 rcu_read_lock();
2120 head = &b->head;
2121 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2122 key = elem->key;
2123 if (is_percpu) {
2124 /* current cpu value for percpu map */
2125 pptr = htab_elem_get_ptr(elem, map->key_size);
2126 val = this_cpu_ptr(pptr);
2127 } else {
2128 val = elem->key + roundup_key_size;
2129 }
2130 num_elems++;
2131 ret = callback_fn((u64)(long)map, (u64)(long)key,
2132 (u64)(long)val, (u64)(long)callback_ctx, 0);
2133 /* return value: 0 - continue, 1 - stop and return */
2134 if (ret) {
2135 rcu_read_unlock();
2136 goto out;
2137 }
2138 }
2139 rcu_read_unlock();
2140 }
2141 out:
2142 if (is_percpu)
2143 migrate_enable();
2144 return num_elems;
2145 }
2146
2147 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2148 const struct bpf_map_ops htab_map_ops = {
2149 .map_meta_equal = bpf_map_meta_equal,
2150 .map_alloc_check = htab_map_alloc_check,
2151 .map_alloc = htab_map_alloc,
2152 .map_free = htab_map_free,
2153 .map_get_next_key = htab_map_get_next_key,
2154 .map_release_uref = htab_map_free_timers,
2155 .map_lookup_elem = htab_map_lookup_elem,
2156 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2157 .map_update_elem = htab_map_update_elem,
2158 .map_delete_elem = htab_map_delete_elem,
2159 .map_gen_lookup = htab_map_gen_lookup,
2160 .map_seq_show_elem = htab_map_seq_show_elem,
2161 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2162 .map_for_each_callback = bpf_for_each_hash_elem,
2163 BATCH_OPS(htab),
2164 .map_btf_id = &htab_map_btf_ids[0],
2165 .iter_seq_info = &iter_seq_info,
2166 };
2167
2168 const struct bpf_map_ops htab_lru_map_ops = {
2169 .map_meta_equal = bpf_map_meta_equal,
2170 .map_alloc_check = htab_map_alloc_check,
2171 .map_alloc = htab_map_alloc,
2172 .map_free = htab_map_free,
2173 .map_get_next_key = htab_map_get_next_key,
2174 .map_release_uref = htab_map_free_timers,
2175 .map_lookup_elem = htab_lru_map_lookup_elem,
2176 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2177 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2178 .map_update_elem = htab_lru_map_update_elem,
2179 .map_delete_elem = htab_lru_map_delete_elem,
2180 .map_gen_lookup = htab_lru_map_gen_lookup,
2181 .map_seq_show_elem = htab_map_seq_show_elem,
2182 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2183 .map_for_each_callback = bpf_for_each_hash_elem,
2184 BATCH_OPS(htab_lru),
2185 .map_btf_id = &htab_map_btf_ids[0],
2186 .iter_seq_info = &iter_seq_info,
2187 };
2188
2189 /* Called from eBPF program */
htab_percpu_map_lookup_elem(struct bpf_map * map,void * key)2190 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2191 {
2192 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2193
2194 if (l)
2195 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2196 else
2197 return NULL;
2198 }
2199
htab_percpu_map_lookup_percpu_elem(struct bpf_map * map,void * key,u32 cpu)2200 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2201 {
2202 struct htab_elem *l;
2203
2204 if (cpu >= nr_cpu_ids)
2205 return NULL;
2206
2207 l = __htab_map_lookup_elem(map, key);
2208 if (l)
2209 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2210 else
2211 return NULL;
2212 }
2213
htab_lru_percpu_map_lookup_elem(struct bpf_map * map,void * key)2214 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2215 {
2216 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2217
2218 if (l) {
2219 bpf_lru_node_set_ref(&l->lru_node);
2220 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2221 }
2222
2223 return NULL;
2224 }
2225
htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map * map,void * key,u32 cpu)2226 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2227 {
2228 struct htab_elem *l;
2229
2230 if (cpu >= nr_cpu_ids)
2231 return NULL;
2232
2233 l = __htab_map_lookup_elem(map, key);
2234 if (l) {
2235 bpf_lru_node_set_ref(&l->lru_node);
2236 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2237 }
2238
2239 return NULL;
2240 }
2241
bpf_percpu_hash_copy(struct bpf_map * map,void * key,void * value)2242 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2243 {
2244 struct htab_elem *l;
2245 void __percpu *pptr;
2246 int ret = -ENOENT;
2247 int cpu, off = 0;
2248 u32 size;
2249
2250 /* per_cpu areas are zero-filled and bpf programs can only
2251 * access 'value_size' of them, so copying rounded areas
2252 * will not leak any kernel data
2253 */
2254 size = round_up(map->value_size, 8);
2255 rcu_read_lock();
2256 l = __htab_map_lookup_elem(map, key);
2257 if (!l)
2258 goto out;
2259 /* We do not mark LRU map element here in order to not mess up
2260 * eviction heuristics when user space does a map walk.
2261 */
2262 pptr = htab_elem_get_ptr(l, map->key_size);
2263 for_each_possible_cpu(cpu) {
2264 bpf_long_memcpy(value + off,
2265 per_cpu_ptr(pptr, cpu), size);
2266 off += size;
2267 }
2268 ret = 0;
2269 out:
2270 rcu_read_unlock();
2271 return ret;
2272 }
2273
bpf_percpu_hash_update(struct bpf_map * map,void * key,void * value,u64 map_flags)2274 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2275 u64 map_flags)
2276 {
2277 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2278 int ret;
2279
2280 rcu_read_lock();
2281 if (htab_is_lru(htab))
2282 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2283 map_flags, true);
2284 else
2285 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2286 true);
2287 rcu_read_unlock();
2288
2289 return ret;
2290 }
2291
htab_percpu_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)2292 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2293 struct seq_file *m)
2294 {
2295 struct htab_elem *l;
2296 void __percpu *pptr;
2297 int cpu;
2298
2299 rcu_read_lock();
2300
2301 l = __htab_map_lookup_elem(map, key);
2302 if (!l) {
2303 rcu_read_unlock();
2304 return;
2305 }
2306
2307 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2308 seq_puts(m, ": {\n");
2309 pptr = htab_elem_get_ptr(l, map->key_size);
2310 for_each_possible_cpu(cpu) {
2311 seq_printf(m, "\tcpu%d: ", cpu);
2312 btf_type_seq_show(map->btf, map->btf_value_type_id,
2313 per_cpu_ptr(pptr, cpu), m);
2314 seq_puts(m, "\n");
2315 }
2316 seq_puts(m, "}\n");
2317
2318 rcu_read_unlock();
2319 }
2320
2321 const struct bpf_map_ops htab_percpu_map_ops = {
2322 .map_meta_equal = bpf_map_meta_equal,
2323 .map_alloc_check = htab_map_alloc_check,
2324 .map_alloc = htab_map_alloc,
2325 .map_free = htab_map_free,
2326 .map_get_next_key = htab_map_get_next_key,
2327 .map_lookup_elem = htab_percpu_map_lookup_elem,
2328 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2329 .map_update_elem = htab_percpu_map_update_elem,
2330 .map_delete_elem = htab_map_delete_elem,
2331 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2332 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2333 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2334 .map_for_each_callback = bpf_for_each_hash_elem,
2335 BATCH_OPS(htab_percpu),
2336 .map_btf_id = &htab_map_btf_ids[0],
2337 .iter_seq_info = &iter_seq_info,
2338 };
2339
2340 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2341 .map_meta_equal = bpf_map_meta_equal,
2342 .map_alloc_check = htab_map_alloc_check,
2343 .map_alloc = htab_map_alloc,
2344 .map_free = htab_map_free,
2345 .map_get_next_key = htab_map_get_next_key,
2346 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2347 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2348 .map_update_elem = htab_lru_percpu_map_update_elem,
2349 .map_delete_elem = htab_lru_map_delete_elem,
2350 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2351 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2352 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2353 .map_for_each_callback = bpf_for_each_hash_elem,
2354 BATCH_OPS(htab_lru_percpu),
2355 .map_btf_id = &htab_map_btf_ids[0],
2356 .iter_seq_info = &iter_seq_info,
2357 };
2358
fd_htab_map_alloc_check(union bpf_attr * attr)2359 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2360 {
2361 if (attr->value_size != sizeof(u32))
2362 return -EINVAL;
2363 return htab_map_alloc_check(attr);
2364 }
2365
fd_htab_map_free(struct bpf_map * map)2366 static void fd_htab_map_free(struct bpf_map *map)
2367 {
2368 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2369 struct hlist_nulls_node *n;
2370 struct hlist_nulls_head *head;
2371 struct htab_elem *l;
2372 int i;
2373
2374 for (i = 0; i < htab->n_buckets; i++) {
2375 head = select_bucket(htab, i);
2376
2377 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2378 void *ptr = fd_htab_map_get_ptr(map, l);
2379
2380 map->ops->map_fd_put_ptr(ptr);
2381 }
2382 }
2383
2384 htab_map_free(map);
2385 }
2386
2387 /* only called from syscall */
bpf_fd_htab_map_lookup_elem(struct bpf_map * map,void * key,u32 * value)2388 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2389 {
2390 void **ptr;
2391 int ret = 0;
2392
2393 if (!map->ops->map_fd_sys_lookup_elem)
2394 return -ENOTSUPP;
2395
2396 rcu_read_lock();
2397 ptr = htab_map_lookup_elem(map, key);
2398 if (ptr)
2399 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2400 else
2401 ret = -ENOENT;
2402 rcu_read_unlock();
2403
2404 return ret;
2405 }
2406
2407 /* only called from syscall */
bpf_fd_htab_map_update_elem(struct bpf_map * map,struct file * map_file,void * key,void * value,u64 map_flags)2408 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2409 void *key, void *value, u64 map_flags)
2410 {
2411 void *ptr;
2412 int ret;
2413 u32 ufd = *(u32 *)value;
2414
2415 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2416 if (IS_ERR(ptr))
2417 return PTR_ERR(ptr);
2418
2419 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2420 if (ret)
2421 map->ops->map_fd_put_ptr(ptr);
2422
2423 return ret;
2424 }
2425
htab_of_map_alloc(union bpf_attr * attr)2426 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2427 {
2428 struct bpf_map *map, *inner_map_meta;
2429
2430 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2431 if (IS_ERR(inner_map_meta))
2432 return inner_map_meta;
2433
2434 map = htab_map_alloc(attr);
2435 if (IS_ERR(map)) {
2436 bpf_map_meta_free(inner_map_meta);
2437 return map;
2438 }
2439
2440 map->inner_map_meta = inner_map_meta;
2441
2442 return map;
2443 }
2444
htab_of_map_lookup_elem(struct bpf_map * map,void * key)2445 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2446 {
2447 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2448
2449 if (!inner_map)
2450 return NULL;
2451
2452 return READ_ONCE(*inner_map);
2453 }
2454
htab_of_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)2455 static int htab_of_map_gen_lookup(struct bpf_map *map,
2456 struct bpf_insn *insn_buf)
2457 {
2458 struct bpf_insn *insn = insn_buf;
2459 const int ret = BPF_REG_0;
2460
2461 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2462 (void *(*)(struct bpf_map *map, void *key))NULL));
2463 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2464 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2465 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2466 offsetof(struct htab_elem, key) +
2467 round_up(map->key_size, 8));
2468 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2469
2470 return insn - insn_buf;
2471 }
2472
htab_of_map_free(struct bpf_map * map)2473 static void htab_of_map_free(struct bpf_map *map)
2474 {
2475 bpf_map_meta_free(map->inner_map_meta);
2476 fd_htab_map_free(map);
2477 }
2478
2479 const struct bpf_map_ops htab_of_maps_map_ops = {
2480 .map_alloc_check = fd_htab_map_alloc_check,
2481 .map_alloc = htab_of_map_alloc,
2482 .map_free = htab_of_map_free,
2483 .map_get_next_key = htab_map_get_next_key,
2484 .map_lookup_elem = htab_of_map_lookup_elem,
2485 .map_delete_elem = htab_map_delete_elem,
2486 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2487 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2488 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2489 .map_gen_lookup = htab_of_map_gen_lookup,
2490 .map_check_btf = map_check_no_btf,
2491 BATCH_OPS(htab),
2492 .map_btf_id = &htab_map_btf_ids[0],
2493 };
2494