1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright 2011-2014 Autronica Fire and Security AS
3 *
4 * Author(s):
5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se
6 *
7 * The HSR spec says never to forward the same frame twice on the same
8 * interface. A frame is identified by its source MAC address and its HSR
9 * sequence number. This code keeps track of senders and their sequence numbers
10 * to allow filtering of duplicate frames, and to detect HSR ring errors.
11 * Same code handles filtering of duplicates for PRP as well.
12 */
13
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/slab.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include "hsr_main.h"
20 #include "hsr_framereg.h"
21 #include "hsr_netlink.h"
22
23 #ifdef CONFIG_LOCKDEP
lockdep_hsr_is_held(spinlock_t * lock)24 int lockdep_hsr_is_held(spinlock_t *lock)
25 {
26 return lockdep_is_held(lock);
27 }
28 #endif
29
hsr_mac_hash(struct hsr_priv * hsr,const unsigned char * addr)30 u32 hsr_mac_hash(struct hsr_priv *hsr, const unsigned char *addr)
31 {
32 u32 hash = jhash(addr, ETH_ALEN, hsr->hash_seed);
33
34 return reciprocal_scale(hash, hsr->hash_buckets);
35 }
36
hsr_node_get_first(struct hlist_head * head,spinlock_t * lock)37 struct hsr_node *hsr_node_get_first(struct hlist_head *head, spinlock_t *lock)
38 {
39 struct hlist_node *first;
40
41 first = rcu_dereference_bh_check(hlist_first_rcu(head),
42 lockdep_hsr_is_held(lock));
43 if (first)
44 return hlist_entry(first, struct hsr_node, mac_list);
45
46 return NULL;
47 }
48
49 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b,
50 * false otherwise.
51 */
seq_nr_after(u16 a,u16 b)52 static bool seq_nr_after(u16 a, u16 b)
53 {
54 /* Remove inconsistency where
55 * seq_nr_after(a, b) == seq_nr_before(a, b)
56 */
57 if ((int)b - a == 32768)
58 return false;
59
60 return (((s16)(b - a)) < 0);
61 }
62
63 #define seq_nr_before(a, b) seq_nr_after((b), (a))
64 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b)))
65
hsr_addr_is_self(struct hsr_priv * hsr,unsigned char * addr)66 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr)
67 {
68 struct hsr_node *node;
69
70 node = hsr_node_get_first(&hsr->self_node_db, &hsr->list_lock);
71 if (!node) {
72 WARN_ONCE(1, "HSR: No self node\n");
73 return false;
74 }
75
76 if (ether_addr_equal(addr, node->macaddress_A))
77 return true;
78 if (ether_addr_equal(addr, node->macaddress_B))
79 return true;
80
81 return false;
82 }
83
84 /* Search for mac entry. Caller must hold rcu read lock.
85 */
find_node_by_addr_A(struct hlist_head * node_db,const unsigned char addr[ETH_ALEN])86 static struct hsr_node *find_node_by_addr_A(struct hlist_head *node_db,
87 const unsigned char addr[ETH_ALEN])
88 {
89 struct hsr_node *node;
90
91 hlist_for_each_entry_rcu(node, node_db, mac_list) {
92 if (ether_addr_equal(node->macaddress_A, addr))
93 return node;
94 }
95
96 return NULL;
97 }
98
99 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize
100 * frames from self that's been looped over the HSR ring.
101 */
hsr_create_self_node(struct hsr_priv * hsr,const unsigned char addr_a[ETH_ALEN],const unsigned char addr_b[ETH_ALEN])102 int hsr_create_self_node(struct hsr_priv *hsr,
103 const unsigned char addr_a[ETH_ALEN],
104 const unsigned char addr_b[ETH_ALEN])
105 {
106 struct hlist_head *self_node_db = &hsr->self_node_db;
107 struct hsr_node *node, *oldnode;
108
109 node = kmalloc(sizeof(*node), GFP_KERNEL);
110 if (!node)
111 return -ENOMEM;
112
113 ether_addr_copy(node->macaddress_A, addr_a);
114 ether_addr_copy(node->macaddress_B, addr_b);
115
116 spin_lock_bh(&hsr->list_lock);
117 oldnode = hsr_node_get_first(self_node_db, &hsr->list_lock);
118 if (oldnode) {
119 hlist_replace_rcu(&oldnode->mac_list, &node->mac_list);
120 spin_unlock_bh(&hsr->list_lock);
121 kfree_rcu(oldnode, rcu_head);
122 } else {
123 hlist_add_tail_rcu(&node->mac_list, self_node_db);
124 spin_unlock_bh(&hsr->list_lock);
125 }
126
127 return 0;
128 }
129
hsr_del_self_node(struct hsr_priv * hsr)130 void hsr_del_self_node(struct hsr_priv *hsr)
131 {
132 struct hlist_head *self_node_db = &hsr->self_node_db;
133 struct hsr_node *node;
134
135 spin_lock_bh(&hsr->list_lock);
136 node = hsr_node_get_first(self_node_db, &hsr->list_lock);
137 if (node) {
138 hlist_del_rcu(&node->mac_list);
139 kfree_rcu(node, rcu_head);
140 }
141 spin_unlock_bh(&hsr->list_lock);
142 }
143
hsr_del_nodes(struct hlist_head * node_db)144 void hsr_del_nodes(struct hlist_head *node_db)
145 {
146 struct hsr_node *node;
147 struct hlist_node *tmp;
148
149 hlist_for_each_entry_safe(node, tmp, node_db, mac_list)
150 kfree_rcu(node, rcu_head);
151 }
152
prp_handle_san_frame(bool san,enum hsr_port_type port,struct hsr_node * node)153 void prp_handle_san_frame(bool san, enum hsr_port_type port,
154 struct hsr_node *node)
155 {
156 /* Mark if the SAN node is over LAN_A or LAN_B */
157 if (port == HSR_PT_SLAVE_A) {
158 node->san_a = true;
159 return;
160 }
161
162 if (port == HSR_PT_SLAVE_B)
163 node->san_b = true;
164 }
165
166 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A;
167 * seq_out is used to initialize filtering of outgoing duplicate frames
168 * originating from the newly added node.
169 */
hsr_add_node(struct hsr_priv * hsr,struct hlist_head * node_db,unsigned char addr[],u16 seq_out,bool san,enum hsr_port_type rx_port)170 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr,
171 struct hlist_head *node_db,
172 unsigned char addr[],
173 u16 seq_out, bool san,
174 enum hsr_port_type rx_port)
175 {
176 struct hsr_node *new_node, *node;
177 unsigned long now;
178 int i;
179
180 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
181 if (!new_node)
182 return NULL;
183
184 ether_addr_copy(new_node->macaddress_A, addr);
185
186 /* We are only interested in time diffs here, so use current jiffies
187 * as initialization. (0 could trigger an spurious ring error warning).
188 */
189 now = jiffies;
190 for (i = 0; i < HSR_PT_PORTS; i++) {
191 new_node->time_in[i] = now;
192 new_node->time_out[i] = now;
193 }
194 for (i = 0; i < HSR_PT_PORTS; i++)
195 new_node->seq_out[i] = seq_out;
196
197 if (san && hsr->proto_ops->handle_san_frame)
198 hsr->proto_ops->handle_san_frame(san, rx_port, new_node);
199
200 spin_lock_bh(&hsr->list_lock);
201 hlist_for_each_entry_rcu(node, node_db, mac_list,
202 lockdep_hsr_is_held(&hsr->list_lock)) {
203 if (ether_addr_equal(node->macaddress_A, addr))
204 goto out;
205 if (ether_addr_equal(node->macaddress_B, addr))
206 goto out;
207 }
208 hlist_add_tail_rcu(&new_node->mac_list, node_db);
209 spin_unlock_bh(&hsr->list_lock);
210 return new_node;
211 out:
212 spin_unlock_bh(&hsr->list_lock);
213 kfree(new_node);
214 return node;
215 }
216
prp_update_san_info(struct hsr_node * node,bool is_sup)217 void prp_update_san_info(struct hsr_node *node, bool is_sup)
218 {
219 if (!is_sup)
220 return;
221
222 node->san_a = false;
223 node->san_b = false;
224 }
225
226 /* Get the hsr_node from which 'skb' was sent.
227 */
hsr_get_node(struct hsr_port * port,struct hlist_head * node_db,struct sk_buff * skb,bool is_sup,enum hsr_port_type rx_port)228 struct hsr_node *hsr_get_node(struct hsr_port *port, struct hlist_head *node_db,
229 struct sk_buff *skb, bool is_sup,
230 enum hsr_port_type rx_port)
231 {
232 struct hsr_priv *hsr = port->hsr;
233 struct hsr_node *node;
234 struct ethhdr *ethhdr;
235 struct prp_rct *rct;
236 bool san = false;
237 u16 seq_out;
238
239 if (!skb_mac_header_was_set(skb))
240 return NULL;
241
242 ethhdr = (struct ethhdr *)skb_mac_header(skb);
243
244 hlist_for_each_entry_rcu(node, node_db, mac_list) {
245 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) {
246 if (hsr->proto_ops->update_san_info)
247 hsr->proto_ops->update_san_info(node, is_sup);
248 return node;
249 }
250 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) {
251 if (hsr->proto_ops->update_san_info)
252 hsr->proto_ops->update_san_info(node, is_sup);
253 return node;
254 }
255 }
256
257 /* Everyone may create a node entry, connected node to a HSR/PRP
258 * device.
259 */
260 if (ethhdr->h_proto == htons(ETH_P_PRP) ||
261 ethhdr->h_proto == htons(ETH_P_HSR)) {
262 /* Use the existing sequence_nr from the tag as starting point
263 * for filtering duplicate frames.
264 */
265 seq_out = hsr_get_skb_sequence_nr(skb) - 1;
266 } else {
267 rct = skb_get_PRP_rct(skb);
268 if (rct && prp_check_lsdu_size(skb, rct, is_sup)) {
269 seq_out = prp_get_skb_sequence_nr(rct);
270 } else {
271 if (rx_port != HSR_PT_MASTER)
272 san = true;
273 seq_out = HSR_SEQNR_START;
274 }
275 }
276
277 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out,
278 san, rx_port);
279 }
280
281 /* Use the Supervision frame's info about an eventual macaddress_B for merging
282 * nodes that has previously had their macaddress_B registered as a separate
283 * node.
284 */
hsr_handle_sup_frame(struct hsr_frame_info * frame)285 void hsr_handle_sup_frame(struct hsr_frame_info *frame)
286 {
287 struct hsr_node *node_curr = frame->node_src;
288 struct hsr_port *port_rcv = frame->port_rcv;
289 struct hsr_priv *hsr = port_rcv->hsr;
290 struct hsr_sup_payload *hsr_sp;
291 struct hsr_sup_tlv *hsr_sup_tlv;
292 struct hsr_node *node_real;
293 struct sk_buff *skb = NULL;
294 struct hlist_head *node_db;
295 struct ethhdr *ethhdr;
296 int i;
297 unsigned int pull_size = 0;
298 unsigned int total_pull_size = 0;
299 u32 hash;
300
301 /* Here either frame->skb_hsr or frame->skb_prp should be
302 * valid as supervision frame always will have protocol
303 * header info.
304 */
305 if (frame->skb_hsr)
306 skb = frame->skb_hsr;
307 else if (frame->skb_prp)
308 skb = frame->skb_prp;
309 else if (frame->skb_std)
310 skb = frame->skb_std;
311 if (!skb)
312 return;
313
314 /* Leave the ethernet header. */
315 pull_size = sizeof(struct ethhdr);
316 skb_pull(skb, pull_size);
317 total_pull_size += pull_size;
318
319 ethhdr = (struct ethhdr *)skb_mac_header(skb);
320
321 /* And leave the HSR tag. */
322 if (ethhdr->h_proto == htons(ETH_P_HSR)) {
323 pull_size = sizeof(struct ethhdr);
324 skb_pull(skb, pull_size);
325 total_pull_size += pull_size;
326 }
327
328 /* And leave the HSR sup tag. */
329 pull_size = sizeof(struct hsr_tag);
330 skb_pull(skb, pull_size);
331 total_pull_size += pull_size;
332
333 /* get HSR sup payload */
334 hsr_sp = (struct hsr_sup_payload *)skb->data;
335
336 /* Merge node_curr (registered on macaddress_B) into node_real */
337 node_db = port_rcv->hsr->node_db;
338 hash = hsr_mac_hash(hsr, hsr_sp->macaddress_A);
339 node_real = find_node_by_addr_A(&node_db[hash], hsr_sp->macaddress_A);
340 if (!node_real)
341 /* No frame received from AddrA of this node yet */
342 node_real = hsr_add_node(hsr, &node_db[hash],
343 hsr_sp->macaddress_A,
344 HSR_SEQNR_START - 1, true,
345 port_rcv->type);
346 if (!node_real)
347 goto done; /* No mem */
348 if (node_real == node_curr)
349 /* Node has already been merged */
350 goto done;
351
352 /* Leave the first HSR sup payload. */
353 pull_size = sizeof(struct hsr_sup_payload);
354 skb_pull(skb, pull_size);
355 total_pull_size += pull_size;
356
357 /* Get second supervision tlv */
358 hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data;
359 /* And check if it is a redbox mac TLV */
360 if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) {
361 /* We could stop here after pushing hsr_sup_payload,
362 * or proceed and allow macaddress_B and for redboxes.
363 */
364 /* Sanity check length */
365 if (hsr_sup_tlv->HSR_TLV_length != 6)
366 goto done;
367
368 /* Leave the second HSR sup tlv. */
369 pull_size = sizeof(struct hsr_sup_tlv);
370 skb_pull(skb, pull_size);
371 total_pull_size += pull_size;
372
373 /* Get redbox mac address. */
374 hsr_sp = (struct hsr_sup_payload *)skb->data;
375
376 /* Check if redbox mac and node mac are equal. */
377 if (!ether_addr_equal(node_real->macaddress_A,
378 hsr_sp->macaddress_A)) {
379 /* This is a redbox supervision frame for a VDAN! */
380 goto done;
381 }
382 }
383
384 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source);
385 for (i = 0; i < HSR_PT_PORTS; i++) {
386 if (!node_curr->time_in_stale[i] &&
387 time_after(node_curr->time_in[i], node_real->time_in[i])) {
388 node_real->time_in[i] = node_curr->time_in[i];
389 node_real->time_in_stale[i] =
390 node_curr->time_in_stale[i];
391 }
392 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i]))
393 node_real->seq_out[i] = node_curr->seq_out[i];
394 }
395 node_real->addr_B_port = port_rcv->type;
396
397 spin_lock_bh(&hsr->list_lock);
398 hlist_del_rcu(&node_curr->mac_list);
399 spin_unlock_bh(&hsr->list_lock);
400 kfree_rcu(node_curr, rcu_head);
401
402 done:
403 /* Push back here */
404 skb_push(skb, total_pull_size);
405 }
406
407 /* 'skb' is a frame meant for this host, that is to be passed to upper layers.
408 *
409 * If the frame was sent by a node's B interface, replace the source
410 * address with that node's "official" address (macaddress_A) so that upper
411 * layers recognize where it came from.
412 */
hsr_addr_subst_source(struct hsr_node * node,struct sk_buff * skb)413 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb)
414 {
415 if (!skb_mac_header_was_set(skb)) {
416 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
417 return;
418 }
419
420 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN);
421 }
422
423 /* 'skb' is a frame meant for another host.
424 * 'port' is the outgoing interface
425 *
426 * Substitute the target (dest) MAC address if necessary, so the it matches the
427 * recipient interface MAC address, regardless of whether that is the
428 * recipient's A or B interface.
429 * This is needed to keep the packets flowing through switches that learn on
430 * which "side" the different interfaces are.
431 */
hsr_addr_subst_dest(struct hsr_node * node_src,struct sk_buff * skb,struct hsr_port * port)432 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb,
433 struct hsr_port *port)
434 {
435 struct hsr_node *node_dst;
436 u32 hash;
437
438 if (!skb_mac_header_was_set(skb)) {
439 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
440 return;
441 }
442
443 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest))
444 return;
445
446 hash = hsr_mac_hash(port->hsr, eth_hdr(skb)->h_dest);
447 node_dst = find_node_by_addr_A(&port->hsr->node_db[hash],
448 eth_hdr(skb)->h_dest);
449 if (!node_dst) {
450 if (net_ratelimit())
451 netdev_err(skb->dev, "%s: Unknown node\n", __func__);
452 return;
453 }
454 if (port->type != node_dst->addr_B_port)
455 return;
456
457 if (is_valid_ether_addr(node_dst->macaddress_B))
458 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B);
459 }
460
hsr_register_frame_in(struct hsr_node * node,struct hsr_port * port,u16 sequence_nr)461 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port,
462 u16 sequence_nr)
463 {
464 /* Don't register incoming frames without a valid sequence number. This
465 * ensures entries of restarted nodes gets pruned so that they can
466 * re-register and resume communications.
467 */
468 if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) &&
469 seq_nr_before(sequence_nr, node->seq_out[port->type]))
470 return;
471
472 node->time_in[port->type] = jiffies;
473 node->time_in_stale[port->type] = false;
474 }
475
476 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid
477 * ethhdr->h_source address and skb->mac_header set.
478 *
479 * Return:
480 * 1 if frame can be shown to have been sent recently on this interface,
481 * 0 otherwise, or
482 * negative error code on error
483 */
hsr_register_frame_out(struct hsr_port * port,struct hsr_node * node,u16 sequence_nr)484 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node,
485 u16 sequence_nr)
486 {
487 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) &&
488 time_is_after_jiffies(node->time_out[port->type] +
489 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME)))
490 return 1;
491
492 node->time_out[port->type] = jiffies;
493 node->seq_out[port->type] = sequence_nr;
494 return 0;
495 }
496
get_late_port(struct hsr_priv * hsr,struct hsr_node * node)497 static struct hsr_port *get_late_port(struct hsr_priv *hsr,
498 struct hsr_node *node)
499 {
500 if (node->time_in_stale[HSR_PT_SLAVE_A])
501 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
502 if (node->time_in_stale[HSR_PT_SLAVE_B])
503 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
504
505 if (time_after(node->time_in[HSR_PT_SLAVE_B],
506 node->time_in[HSR_PT_SLAVE_A] +
507 msecs_to_jiffies(MAX_SLAVE_DIFF)))
508 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
509 if (time_after(node->time_in[HSR_PT_SLAVE_A],
510 node->time_in[HSR_PT_SLAVE_B] +
511 msecs_to_jiffies(MAX_SLAVE_DIFF)))
512 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
513
514 return NULL;
515 }
516
517 /* Remove stale sequence_nr records. Called by timer every
518 * HSR_LIFE_CHECK_INTERVAL (two seconds or so).
519 */
hsr_prune_nodes(struct timer_list * t)520 void hsr_prune_nodes(struct timer_list *t)
521 {
522 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer);
523 struct hlist_node *tmp;
524 struct hsr_node *node;
525 struct hsr_port *port;
526 unsigned long timestamp;
527 unsigned long time_a, time_b;
528 int i;
529
530 spin_lock_bh(&hsr->list_lock);
531
532 for (i = 0; i < hsr->hash_buckets; i++) {
533 hlist_for_each_entry_safe(node, tmp, &hsr->node_db[i],
534 mac_list) {
535 /* Don't prune own node.
536 * Neither time_in[HSR_PT_SLAVE_A]
537 * nor time_in[HSR_PT_SLAVE_B], will ever be updated
538 * for the master port. Thus the master node will be
539 * repeatedly pruned leading to packet loss.
540 */
541 if (hsr_addr_is_self(hsr, node->macaddress_A))
542 continue;
543
544 /* Shorthand */
545 time_a = node->time_in[HSR_PT_SLAVE_A];
546 time_b = node->time_in[HSR_PT_SLAVE_B];
547
548 /* Check for timestamps old enough to
549 * risk wrap-around
550 */
551 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2))
552 node->time_in_stale[HSR_PT_SLAVE_A] = true;
553 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2))
554 node->time_in_stale[HSR_PT_SLAVE_B] = true;
555
556 /* Get age of newest frame from node.
557 * At least one time_in is OK here; nodes get pruned
558 * long before both time_ins can get stale
559 */
560 timestamp = time_a;
561 if (node->time_in_stale[HSR_PT_SLAVE_A] ||
562 (!node->time_in_stale[HSR_PT_SLAVE_B] &&
563 time_after(time_b, time_a)))
564 timestamp = time_b;
565
566 /* Warn of ring error only as long as we get
567 * frames at all
568 */
569 if (time_is_after_jiffies(timestamp +
570 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) {
571 rcu_read_lock();
572 port = get_late_port(hsr, node);
573 if (port)
574 hsr_nl_ringerror(hsr,
575 node->macaddress_A,
576 port);
577 rcu_read_unlock();
578 }
579
580 /* Prune old entries */
581 if (time_is_before_jiffies(timestamp +
582 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) {
583 hsr_nl_nodedown(hsr, node->macaddress_A);
584 hlist_del_rcu(&node->mac_list);
585 /* Note that we need to free this
586 * entry later:
587 */
588 kfree_rcu(node, rcu_head);
589 }
590 }
591 }
592 spin_unlock_bh(&hsr->list_lock);
593
594 /* Restart timer */
595 mod_timer(&hsr->prune_timer,
596 jiffies + msecs_to_jiffies(PRUNE_PERIOD));
597 }
598
hsr_get_next_node(struct hsr_priv * hsr,void * _pos,unsigned char addr[ETH_ALEN])599 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos,
600 unsigned char addr[ETH_ALEN])
601 {
602 struct hsr_node *node;
603 u32 hash;
604
605 hash = hsr_mac_hash(hsr, addr);
606
607 if (!_pos) {
608 node = hsr_node_get_first(&hsr->node_db[hash],
609 &hsr->list_lock);
610 if (node)
611 ether_addr_copy(addr, node->macaddress_A);
612 return node;
613 }
614
615 node = _pos;
616 hlist_for_each_entry_continue_rcu(node, mac_list) {
617 ether_addr_copy(addr, node->macaddress_A);
618 return node;
619 }
620
621 return NULL;
622 }
623
hsr_get_node_data(struct hsr_priv * hsr,const unsigned char * addr,unsigned char addr_b[ETH_ALEN],unsigned int * addr_b_ifindex,int * if1_age,u16 * if1_seq,int * if2_age,u16 * if2_seq)624 int hsr_get_node_data(struct hsr_priv *hsr,
625 const unsigned char *addr,
626 unsigned char addr_b[ETH_ALEN],
627 unsigned int *addr_b_ifindex,
628 int *if1_age,
629 u16 *if1_seq,
630 int *if2_age,
631 u16 *if2_seq)
632 {
633 struct hsr_node *node;
634 struct hsr_port *port;
635 unsigned long tdiff;
636 u32 hash;
637
638 hash = hsr_mac_hash(hsr, addr);
639
640 node = find_node_by_addr_A(&hsr->node_db[hash], addr);
641 if (!node)
642 return -ENOENT;
643
644 ether_addr_copy(addr_b, node->macaddress_B);
645
646 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A];
647 if (node->time_in_stale[HSR_PT_SLAVE_A])
648 *if1_age = INT_MAX;
649 #if HZ <= MSEC_PER_SEC
650 else if (tdiff > msecs_to_jiffies(INT_MAX))
651 *if1_age = INT_MAX;
652 #endif
653 else
654 *if1_age = jiffies_to_msecs(tdiff);
655
656 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B];
657 if (node->time_in_stale[HSR_PT_SLAVE_B])
658 *if2_age = INT_MAX;
659 #if HZ <= MSEC_PER_SEC
660 else if (tdiff > msecs_to_jiffies(INT_MAX))
661 *if2_age = INT_MAX;
662 #endif
663 else
664 *if2_age = jiffies_to_msecs(tdiff);
665
666 /* Present sequence numbers as if they were incoming on interface */
667 *if1_seq = node->seq_out[HSR_PT_SLAVE_B];
668 *if2_seq = node->seq_out[HSR_PT_SLAVE_A];
669
670 if (node->addr_B_port != HSR_PT_NONE) {
671 port = hsr_port_get_hsr(hsr, node->addr_B_port);
672 *addr_b_ifindex = port->dev->ifindex;
673 } else {
674 *addr_b_ifindex = -1;
675 }
676
677 return 0;
678 }
679