1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 
49 #include <asm/uaccess.h>
50 
51 #include <trace/events/timer.h>
52 
53 /*
54  * The timer bases:
55  *
56  * There are more clockids then hrtimer bases. Thus, we index
57  * into the timer bases by the hrtimer_base_type enum. When trying
58  * to reach a base using a clockid, hrtimer_clockid_to_base()
59  * is used to convert from clockid to the proper hrtimer_base_type.
60  */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63 
64 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
65 	.clock_base =
66 	{
67 		{
68 			.index = HRTIMER_BASE_MONOTONIC,
69 			.clockid = CLOCK_MONOTONIC,
70 			.get_time = &ktime_get,
71 			.resolution = KTIME_LOW_RES,
72 		},
73 		{
74 			.index = HRTIMER_BASE_REALTIME,
75 			.clockid = CLOCK_REALTIME,
76 			.get_time = &ktime_get_real,
77 			.resolution = KTIME_LOW_RES,
78 		},
79 		{
80 			.index = HRTIMER_BASE_BOOTTIME,
81 			.clockid = CLOCK_BOOTTIME,
82 			.get_time = &ktime_get_boottime,
83 			.resolution = KTIME_LOW_RES,
84 		},
85 	}
86 };
87 
88 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
89 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
90 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
91 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
92 };
93 
hrtimer_clockid_to_base(clockid_t clock_id)94 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
95 {
96 	return hrtimer_clock_to_base_table[clock_id];
97 }
98 
99 
100 /*
101  * Get the coarse grained time at the softirq based on xtime and
102  * wall_to_monotonic.
103  */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)104 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
105 {
106 	ktime_t xtim, mono, boot;
107 	struct timespec xts, tom, slp;
108 
109 	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
110 
111 	xtim = timespec_to_ktime(xts);
112 	mono = ktime_add(xtim, timespec_to_ktime(tom));
113 	boot = ktime_add(mono, timespec_to_ktime(slp));
114 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
115 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
116 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
117 }
118 
119 /*
120  * Functions and macros which are different for UP/SMP systems are kept in a
121  * single place
122  */
123 #ifdef CONFIG_SMP
124 
125 /*
126  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127  * means that all timers which are tied to this base via timer->base are
128  * locked, and the base itself is locked too.
129  *
130  * So __run_timers/migrate_timers can safely modify all timers which could
131  * be found on the lists/queues.
132  *
133  * When the timer's base is locked, and the timer removed from list, it is
134  * possible to set timer->base = NULL and drop the lock: the timer remains
135  * locked.
136  */
137 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)138 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 					     unsigned long *flags)
140 {
141 	struct hrtimer_clock_base *base;
142 
143 	for (;;) {
144 		base = timer->base;
145 		if (likely(base != NULL)) {
146 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 			if (likely(base == timer->base))
148 				return base;
149 			/* The timer has migrated to another CPU: */
150 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 		}
152 		cpu_relax();
153 	}
154 }
155 
156 
157 /*
158  * Get the preferred target CPU for NOHZ
159  */
hrtimer_get_target(int this_cpu,int pinned)160 static int hrtimer_get_target(int this_cpu, int pinned)
161 {
162 #ifdef CONFIG_NO_HZ
163 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
164 		return get_nohz_timer_target();
165 #endif
166 	return this_cpu;
167 }
168 
169 /*
170  * With HIGHRES=y we do not migrate the timer when it is expiring
171  * before the next event on the target cpu because we cannot reprogram
172  * the target cpu hardware and we would cause it to fire late.
173  *
174  * Called with cpu_base->lock of target cpu held.
175  */
176 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)177 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
178 {
179 #ifdef CONFIG_HIGH_RES_TIMERS
180 	ktime_t expires;
181 
182 	if (!new_base->cpu_base->hres_active)
183 		return 0;
184 
185 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
186 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
187 #else
188 	return 0;
189 #endif
190 }
191 
192 /*
193  * Switch the timer base to the current CPU when possible.
194  */
195 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
197 		    int pinned)
198 {
199 	struct hrtimer_clock_base *new_base;
200 	struct hrtimer_cpu_base *new_cpu_base;
201 	int this_cpu = smp_processor_id();
202 	int cpu = hrtimer_get_target(this_cpu, pinned);
203 	int basenum = base->index;
204 
205 again:
206 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
207 	new_base = &new_cpu_base->clock_base[basenum];
208 
209 	if (base != new_base) {
210 		/*
211 		 * We are trying to move timer to new_base.
212 		 * However we can't change timer's base while it is running,
213 		 * so we keep it on the same CPU. No hassle vs. reprogramming
214 		 * the event source in the high resolution case. The softirq
215 		 * code will take care of this when the timer function has
216 		 * completed. There is no conflict as we hold the lock until
217 		 * the timer is enqueued.
218 		 */
219 		if (unlikely(hrtimer_callback_running(timer)))
220 			return base;
221 
222 		/* See the comment in lock_timer_base() */
223 		timer->base = NULL;
224 		raw_spin_unlock(&base->cpu_base->lock);
225 		raw_spin_lock(&new_base->cpu_base->lock);
226 
227 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
228 			cpu = this_cpu;
229 			raw_spin_unlock(&new_base->cpu_base->lock);
230 			raw_spin_lock(&base->cpu_base->lock);
231 			timer->base = base;
232 			goto again;
233 		}
234 		timer->base = new_base;
235 	} else {
236 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
237 			cpu = this_cpu;
238 			goto again;
239 		}
240 	}
241 	return new_base;
242 }
243 
244 #else /* CONFIG_SMP */
245 
246 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)247 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
248 {
249 	struct hrtimer_clock_base *base = timer->base;
250 
251 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
252 
253 	return base;
254 }
255 
256 # define switch_hrtimer_base(t, b, p)	(b)
257 
258 #endif	/* !CONFIG_SMP */
259 
260 /*
261  * Functions for the union type storage format of ktime_t which are
262  * too large for inlining:
263  */
264 #if BITS_PER_LONG < 64
265 # ifndef CONFIG_KTIME_SCALAR
266 /**
267  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
268  * @kt:		addend
269  * @nsec:	the scalar nsec value to add
270  *
271  * Returns the sum of kt and nsec in ktime_t format
272  */
ktime_add_ns(const ktime_t kt,u64 nsec)273 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
274 {
275 	ktime_t tmp;
276 
277 	if (likely(nsec < NSEC_PER_SEC)) {
278 		tmp.tv64 = nsec;
279 	} else {
280 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
281 
282 		tmp = ktime_set((long)nsec, rem);
283 	}
284 
285 	return ktime_add(kt, tmp);
286 }
287 
288 EXPORT_SYMBOL_GPL(ktime_add_ns);
289 
290 /**
291  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
292  * @kt:		minuend
293  * @nsec:	the scalar nsec value to subtract
294  *
295  * Returns the subtraction of @nsec from @kt in ktime_t format
296  */
ktime_sub_ns(const ktime_t kt,u64 nsec)297 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
298 {
299 	ktime_t tmp;
300 
301 	if (likely(nsec < NSEC_PER_SEC)) {
302 		tmp.tv64 = nsec;
303 	} else {
304 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
305 
306 		/* Make sure nsec fits into long */
307 		if (unlikely(nsec > KTIME_SEC_MAX))
308 			return (ktime_t){ .tv64 = KTIME_MAX };
309 
310 		tmp = ktime_set((long)nsec, rem);
311 	}
312 
313 	return ktime_sub(kt, tmp);
314 }
315 
316 EXPORT_SYMBOL_GPL(ktime_sub_ns);
317 # endif /* !CONFIG_KTIME_SCALAR */
318 
319 /*
320  * Divide a ktime value by a nanosecond value
321  */
ktime_divns(const ktime_t kt,s64 div)322 u64 ktime_divns(const ktime_t kt, s64 div)
323 {
324 	u64 dclc;
325 	int sft = 0;
326 
327 	dclc = ktime_to_ns(kt);
328 	/* Make sure the divisor is less than 2^32: */
329 	while (div >> 32) {
330 		sft++;
331 		div >>= 1;
332 	}
333 	dclc >>= sft;
334 	do_div(dclc, (unsigned long) div);
335 
336 	return dclc;
337 }
338 #endif /* BITS_PER_LONG >= 64 */
339 
340 /*
341  * Add two ktime values and do a safety check for overflow:
342  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)343 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
344 {
345 	ktime_t res = ktime_add(lhs, rhs);
346 
347 	/*
348 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
349 	 * return to user space in a timespec:
350 	 */
351 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
352 		res = ktime_set(KTIME_SEC_MAX, 0);
353 
354 	return res;
355 }
356 
357 EXPORT_SYMBOL_GPL(ktime_add_safe);
358 
359 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
360 
361 static struct debug_obj_descr hrtimer_debug_descr;
362 
hrtimer_debug_hint(void * addr)363 static void *hrtimer_debug_hint(void *addr)
364 {
365 	return ((struct hrtimer *) addr)->function;
366 }
367 
368 /*
369  * fixup_init is called when:
370  * - an active object is initialized
371  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)372 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
373 {
374 	struct hrtimer *timer = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		hrtimer_cancel(timer);
379 		debug_object_init(timer, &hrtimer_debug_descr);
380 		return 1;
381 	default:
382 		return 0;
383 	}
384 }
385 
386 /*
387  * fixup_activate is called when:
388  * - an active object is activated
389  * - an unknown object is activated (might be a statically initialized object)
390  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)391 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
392 {
393 	switch (state) {
394 
395 	case ODEBUG_STATE_NOTAVAILABLE:
396 		WARN_ON_ONCE(1);
397 		return 0;
398 
399 	case ODEBUG_STATE_ACTIVE:
400 		WARN_ON(1);
401 
402 	default:
403 		return 0;
404 	}
405 }
406 
407 /*
408  * fixup_free is called when:
409  * - an active object is freed
410  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)411 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
412 {
413 	struct hrtimer *timer = addr;
414 
415 	switch (state) {
416 	case ODEBUG_STATE_ACTIVE:
417 		hrtimer_cancel(timer);
418 		debug_object_free(timer, &hrtimer_debug_descr);
419 		return 1;
420 	default:
421 		return 0;
422 	}
423 }
424 
425 static struct debug_obj_descr hrtimer_debug_descr = {
426 	.name		= "hrtimer",
427 	.debug_hint	= hrtimer_debug_hint,
428 	.fixup_init	= hrtimer_fixup_init,
429 	.fixup_activate	= hrtimer_fixup_activate,
430 	.fixup_free	= hrtimer_fixup_free,
431 };
432 
debug_hrtimer_init(struct hrtimer * timer)433 static inline void debug_hrtimer_init(struct hrtimer *timer)
434 {
435 	debug_object_init(timer, &hrtimer_debug_descr);
436 }
437 
debug_hrtimer_activate(struct hrtimer * timer)438 static inline void debug_hrtimer_activate(struct hrtimer *timer)
439 {
440 	debug_object_activate(timer, &hrtimer_debug_descr);
441 }
442 
debug_hrtimer_deactivate(struct hrtimer * timer)443 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
444 {
445 	debug_object_deactivate(timer, &hrtimer_debug_descr);
446 }
447 
debug_hrtimer_free(struct hrtimer * timer)448 static inline void debug_hrtimer_free(struct hrtimer *timer)
449 {
450 	debug_object_free(timer, &hrtimer_debug_descr);
451 }
452 
453 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
454 			   enum hrtimer_mode mode);
455 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)456 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
457 			   enum hrtimer_mode mode)
458 {
459 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
460 	__hrtimer_init(timer, clock_id, mode);
461 }
462 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
463 
destroy_hrtimer_on_stack(struct hrtimer * timer)464 void destroy_hrtimer_on_stack(struct hrtimer *timer)
465 {
466 	debug_object_free(timer, &hrtimer_debug_descr);
467 }
468 
469 #else
debug_hrtimer_init(struct hrtimer * timer)470 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)471 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)472 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
473 #endif
474 
475 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)476 debug_init(struct hrtimer *timer, clockid_t clockid,
477 	   enum hrtimer_mode mode)
478 {
479 	debug_hrtimer_init(timer);
480 	trace_hrtimer_init(timer, clockid, mode);
481 }
482 
debug_activate(struct hrtimer * timer)483 static inline void debug_activate(struct hrtimer *timer)
484 {
485 	debug_hrtimer_activate(timer);
486 	trace_hrtimer_start(timer);
487 }
488 
debug_deactivate(struct hrtimer * timer)489 static inline void debug_deactivate(struct hrtimer *timer)
490 {
491 	debug_hrtimer_deactivate(timer);
492 	trace_hrtimer_cancel(timer);
493 }
494 
495 /* High resolution timer related functions */
496 #ifdef CONFIG_HIGH_RES_TIMERS
497 
498 /*
499  * High resolution timer enabled ?
500  */
501 static int hrtimer_hres_enabled __read_mostly  = 1;
502 
503 /*
504  * Enable / Disable high resolution mode
505  */
setup_hrtimer_hres(char * str)506 static int __init setup_hrtimer_hres(char *str)
507 {
508 	if (!strcmp(str, "off"))
509 		hrtimer_hres_enabled = 0;
510 	else if (!strcmp(str, "on"))
511 		hrtimer_hres_enabled = 1;
512 	else
513 		return 0;
514 	return 1;
515 }
516 
517 __setup("highres=", setup_hrtimer_hres);
518 
519 /*
520  * hrtimer_high_res_enabled - query, if the highres mode is enabled
521  */
hrtimer_is_hres_enabled(void)522 static inline int hrtimer_is_hres_enabled(void)
523 {
524 	return hrtimer_hres_enabled;
525 }
526 
527 /*
528  * Is the high resolution mode active ?
529  */
hrtimer_hres_active(void)530 static inline int hrtimer_hres_active(void)
531 {
532 	return __this_cpu_read(hrtimer_bases.hres_active);
533 }
534 
535 /*
536  * Reprogram the event source with checking both queues for the
537  * next event
538  * Called with interrupts disabled and base->lock held
539  */
540 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)541 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
542 {
543 	int i;
544 	struct hrtimer_clock_base *base = cpu_base->clock_base;
545 	ktime_t expires, expires_next;
546 
547 	expires_next.tv64 = KTIME_MAX;
548 
549 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
550 		struct hrtimer *timer;
551 		struct timerqueue_node *next;
552 
553 		next = timerqueue_getnext(&base->active);
554 		if (!next)
555 			continue;
556 		timer = container_of(next, struct hrtimer, node);
557 
558 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
559 		/*
560 		 * clock_was_set() has changed base->offset so the
561 		 * result might be negative. Fix it up to prevent a
562 		 * false positive in clockevents_program_event()
563 		 */
564 		if (expires.tv64 < 0)
565 			expires.tv64 = 0;
566 		if (expires.tv64 < expires_next.tv64)
567 			expires_next = expires;
568 	}
569 
570 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
571 		return;
572 
573 	cpu_base->expires_next.tv64 = expires_next.tv64;
574 
575 	/*
576 	 * If a hang was detected in the last timer interrupt then we
577 	 * leave the hang delay active in the hardware. We want the
578 	 * system to make progress. That also prevents the following
579 	 * scenario:
580 	 * T1 expires 50ms from now
581 	 * T2 expires 5s from now
582 	 *
583 	 * T1 is removed, so this code is called and would reprogram
584 	 * the hardware to 5s from now. Any hrtimer_start after that
585 	 * will not reprogram the hardware due to hang_detected being
586 	 * set. So we'd effectivly block all timers until the T2 event
587 	 * fires.
588 	 */
589 	if (cpu_base->hang_detected)
590 		return;
591 
592 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
593 		tick_program_event(cpu_base->expires_next, 1);
594 }
595 
596 /*
597  * Shared reprogramming for clock_realtime and clock_monotonic
598  *
599  * When a timer is enqueued and expires earlier than the already enqueued
600  * timers, we have to check, whether it expires earlier than the timer for
601  * which the clock event device was armed.
602  *
603  * Called with interrupts disabled and base->cpu_base.lock held
604  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)605 static int hrtimer_reprogram(struct hrtimer *timer,
606 			     struct hrtimer_clock_base *base)
607 {
608 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
609 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
610 	int res;
611 
612 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613 
614 	/*
615 	 * When the callback is running, we do not reprogram the clock event
616 	 * device. The timer callback is either running on a different CPU or
617 	 * the callback is executed in the hrtimer_interrupt context. The
618 	 * reprogramming is handled either by the softirq, which called the
619 	 * callback or at the end of the hrtimer_interrupt.
620 	 */
621 	if (hrtimer_callback_running(timer))
622 		return 0;
623 
624 	/*
625 	 * CLOCK_REALTIME timer might be requested with an absolute
626 	 * expiry time which is less than base->offset. Nothing wrong
627 	 * about that, just avoid to call into the tick code, which
628 	 * has now objections against negative expiry values.
629 	 */
630 	if (expires.tv64 < 0)
631 		return -ETIME;
632 
633 	if (expires.tv64 >= cpu_base->expires_next.tv64)
634 		return 0;
635 
636 	/*
637 	 * If a hang was detected in the last timer interrupt then we
638 	 * do not schedule a timer which is earlier than the expiry
639 	 * which we enforced in the hang detection. We want the system
640 	 * to make progress.
641 	 */
642 	if (cpu_base->hang_detected)
643 		return 0;
644 
645 	/*
646 	 * Clockevents returns -ETIME, when the event was in the past.
647 	 */
648 	res = tick_program_event(expires, 0);
649 	if (!IS_ERR_VALUE(res))
650 		cpu_base->expires_next = expires;
651 	return res;
652 }
653 
654 /*
655  * Initialize the high resolution related parts of cpu_base
656  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)657 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
658 {
659 	base->expires_next.tv64 = KTIME_MAX;
660 	base->hres_active = 0;
661 }
662 
663 /*
664  * When High resolution timers are active, try to reprogram. Note, that in case
665  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
666  * check happens. The timer gets enqueued into the rbtree. The reprogramming
667  * and expiry check is done in the hrtimer_interrupt or in the softirq.
668  */
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)669 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
670 					    struct hrtimer_clock_base *base)
671 {
672 	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
673 }
674 
hrtimer_update_base(struct hrtimer_cpu_base * base)675 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
676 {
677 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
678 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
679 
680 	return ktime_get_update_offsets(offs_real, offs_boot);
681 }
682 
683 /*
684  * Retrigger next event is called after clock was set
685  *
686  * Called with interrupts disabled via on_each_cpu()
687  */
retrigger_next_event(void * arg)688 static void retrigger_next_event(void *arg)
689 {
690 	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
691 
692 	if (!hrtimer_hres_active())
693 		return;
694 
695 	raw_spin_lock(&base->lock);
696 	hrtimer_update_base(base);
697 	hrtimer_force_reprogram(base, 0);
698 	raw_spin_unlock(&base->lock);
699 }
700 
701 /*
702  * Switch to high resolution mode
703  */
hrtimer_switch_to_hres(void)704 static int hrtimer_switch_to_hres(void)
705 {
706 	int i, cpu = smp_processor_id();
707 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
708 	unsigned long flags;
709 
710 	if (base->hres_active)
711 		return 1;
712 
713 	local_irq_save(flags);
714 
715 	if (tick_init_highres()) {
716 		local_irq_restore(flags);
717 		printk(KERN_WARNING "Could not switch to high resolution "
718 				    "mode on CPU %d\n", cpu);
719 		return 0;
720 	}
721 	base->hres_active = 1;
722 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
723 		base->clock_base[i].resolution = KTIME_HIGH_RES;
724 
725 	tick_setup_sched_timer();
726 	/* "Retrigger" the interrupt to get things going */
727 	retrigger_next_event(NULL);
728 	local_irq_restore(flags);
729 	return 1;
730 }
731 
clock_was_set_work(struct work_struct * work)732 static void clock_was_set_work(struct work_struct *work)
733 {
734 	clock_was_set();
735 }
736 
737 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
738 
739 /*
740  * Called from timekeeping and resume code to reprogramm the hrtimer
741  * interrupt device on all cpus.
742  */
clock_was_set_delayed(void)743 void clock_was_set_delayed(void)
744 {
745 	schedule_work(&hrtimer_work);
746 }
747 
748 #else
749 
hrtimer_hres_active(void)750 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)751 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)752 static inline int hrtimer_switch_to_hres(void) { return 0; }
753 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)754 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)755 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
756 					    struct hrtimer_clock_base *base)
757 {
758 	return 0;
759 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)760 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)761 static inline void retrigger_next_event(void *arg) { }
762 
763 #endif /* CONFIG_HIGH_RES_TIMERS */
764 
765 /*
766  * Clock realtime was set
767  *
768  * Change the offset of the realtime clock vs. the monotonic
769  * clock.
770  *
771  * We might have to reprogram the high resolution timer interrupt. On
772  * SMP we call the architecture specific code to retrigger _all_ high
773  * resolution timer interrupts. On UP we just disable interrupts and
774  * call the high resolution interrupt code.
775  */
clock_was_set(void)776 void clock_was_set(void)
777 {
778 #ifdef CONFIG_HIGH_RES_TIMERS
779 	/* Retrigger the CPU local events everywhere */
780 	on_each_cpu(retrigger_next_event, NULL, 1);
781 #endif
782 	timerfd_clock_was_set();
783 }
784 
785 /*
786  * During resume we might have to reprogram the high resolution timer
787  * interrupt (on the local CPU):
788  */
hrtimers_resume(void)789 void hrtimers_resume(void)
790 {
791 	WARN_ONCE(!irqs_disabled(),
792 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
793 
794 	/* Retrigger on the local CPU */
795 	retrigger_next_event(NULL);
796 	/* And schedule a retrigger for all others */
797 	clock_was_set_delayed();
798 }
799 
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)800 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
801 {
802 #ifdef CONFIG_TIMER_STATS
803 	if (timer->start_site)
804 		return;
805 	timer->start_site = __builtin_return_address(0);
806 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
807 	timer->start_pid = current->pid;
808 #endif
809 }
810 
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)811 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
812 {
813 #ifdef CONFIG_TIMER_STATS
814 	timer->start_site = NULL;
815 #endif
816 }
817 
timer_stats_account_hrtimer(struct hrtimer * timer)818 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
819 {
820 #ifdef CONFIG_TIMER_STATS
821 	if (likely(!timer_stats_active))
822 		return;
823 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
824 				 timer->function, timer->start_comm, 0);
825 #endif
826 }
827 
828 /*
829  * Counterpart to lock_hrtimer_base above:
830  */
831 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)832 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
833 {
834 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
835 }
836 
837 /**
838  * hrtimer_forward - forward the timer expiry
839  * @timer:	hrtimer to forward
840  * @now:	forward past this time
841  * @interval:	the interval to forward
842  *
843  * Forward the timer expiry so it will expire in the future.
844  * Returns the number of overruns.
845  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)846 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
847 {
848 	u64 orun = 1;
849 	ktime_t delta;
850 
851 	delta = ktime_sub(now, hrtimer_get_expires(timer));
852 
853 	if (delta.tv64 < 0)
854 		return 0;
855 
856 	if (interval.tv64 < timer->base->resolution.tv64)
857 		interval.tv64 = timer->base->resolution.tv64;
858 
859 	if (unlikely(delta.tv64 >= interval.tv64)) {
860 		s64 incr = ktime_to_ns(interval);
861 
862 		orun = ktime_divns(delta, incr);
863 		hrtimer_add_expires_ns(timer, incr * orun);
864 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
865 			return orun;
866 		/*
867 		 * This (and the ktime_add() below) is the
868 		 * correction for exact:
869 		 */
870 		orun++;
871 	}
872 	hrtimer_add_expires(timer, interval);
873 
874 	return orun;
875 }
876 EXPORT_SYMBOL_GPL(hrtimer_forward);
877 
878 /*
879  * enqueue_hrtimer - internal function to (re)start a timer
880  *
881  * The timer is inserted in expiry order. Insertion into the
882  * red black tree is O(log(n)). Must hold the base lock.
883  *
884  * Returns 1 when the new timer is the leftmost timer in the tree.
885  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)886 static int enqueue_hrtimer(struct hrtimer *timer,
887 			   struct hrtimer_clock_base *base)
888 {
889 	debug_activate(timer);
890 
891 	timerqueue_add(&base->active, &timer->node);
892 	base->cpu_base->active_bases |= 1 << base->index;
893 
894 	/*
895 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
896 	 * state of a possibly running callback.
897 	 */
898 	timer->state |= HRTIMER_STATE_ENQUEUED;
899 
900 	return (&timer->node == base->active.next);
901 }
902 
903 /*
904  * __remove_hrtimer - internal function to remove a timer
905  *
906  * Caller must hold the base lock.
907  *
908  * High resolution timer mode reprograms the clock event device when the
909  * timer is the one which expires next. The caller can disable this by setting
910  * reprogram to zero. This is useful, when the context does a reprogramming
911  * anyway (e.g. timer interrupt)
912  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)913 static void __remove_hrtimer(struct hrtimer *timer,
914 			     struct hrtimer_clock_base *base,
915 			     unsigned long newstate, int reprogram)
916 {
917 	struct timerqueue_node *next_timer;
918 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
919 		goto out;
920 
921 	next_timer = timerqueue_getnext(&base->active);
922 	timerqueue_del(&base->active, &timer->node);
923 	if (&timer->node == next_timer) {
924 #ifdef CONFIG_HIGH_RES_TIMERS
925 		/* Reprogram the clock event device. if enabled */
926 		if (reprogram && hrtimer_hres_active()) {
927 			ktime_t expires;
928 
929 			expires = ktime_sub(hrtimer_get_expires(timer),
930 					    base->offset);
931 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
932 				hrtimer_force_reprogram(base->cpu_base, 1);
933 		}
934 #endif
935 	}
936 	if (!timerqueue_getnext(&base->active))
937 		base->cpu_base->active_bases &= ~(1 << base->index);
938 out:
939 	timer->state = newstate;
940 }
941 
942 /*
943  * remove hrtimer, called with base lock held
944  */
945 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)946 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
947 {
948 	if (hrtimer_is_queued(timer)) {
949 		unsigned long state;
950 		int reprogram;
951 
952 		/*
953 		 * Remove the timer and force reprogramming when high
954 		 * resolution mode is active and the timer is on the current
955 		 * CPU. If we remove a timer on another CPU, reprogramming is
956 		 * skipped. The interrupt event on this CPU is fired and
957 		 * reprogramming happens in the interrupt handler. This is a
958 		 * rare case and less expensive than a smp call.
959 		 */
960 		debug_deactivate(timer);
961 		timer_stats_hrtimer_clear_start_info(timer);
962 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
963 		/*
964 		 * We must preserve the CALLBACK state flag here,
965 		 * otherwise we could move the timer base in
966 		 * switch_hrtimer_base.
967 		 */
968 		state = timer->state & HRTIMER_STATE_CALLBACK;
969 		__remove_hrtimer(timer, base, state, reprogram);
970 		return 1;
971 	}
972 	return 0;
973 }
974 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode,int wakeup)975 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
976 		unsigned long delta_ns, const enum hrtimer_mode mode,
977 		int wakeup)
978 {
979 	struct hrtimer_clock_base *base, *new_base;
980 	unsigned long flags;
981 	int ret, leftmost;
982 
983 	base = lock_hrtimer_base(timer, &flags);
984 
985 	/* Remove an active timer from the queue: */
986 	ret = remove_hrtimer(timer, base);
987 
988 	if (mode & HRTIMER_MODE_REL) {
989 		tim = ktime_add_safe(tim, base->get_time());
990 		/*
991 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
992 		 * to signal that they simply return xtime in
993 		 * do_gettimeoffset(). In this case we want to round up by
994 		 * resolution when starting a relative timer, to avoid short
995 		 * timeouts. This will go away with the GTOD framework.
996 		 */
997 #ifdef CONFIG_TIME_LOW_RES
998 		tim = ktime_add_safe(tim, base->resolution);
999 #endif
1000 	}
1001 
1002 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1003 
1004 	/* Switch the timer base, if necessary: */
1005 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1006 
1007 	timer_stats_hrtimer_set_start_info(timer);
1008 
1009 	leftmost = enqueue_hrtimer(timer, new_base);
1010 
1011 	/*
1012 	 * Only allow reprogramming if the new base is on this CPU.
1013 	 * (it might still be on another CPU if the timer was pending)
1014 	 *
1015 	 * XXX send_remote_softirq() ?
1016 	 */
1017 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1018 		&& hrtimer_enqueue_reprogram(timer, new_base)) {
1019 		if (wakeup) {
1020 			/*
1021 			 * We need to drop cpu_base->lock to avoid a
1022 			 * lock ordering issue vs. rq->lock.
1023 			 */
1024 			raw_spin_unlock(&new_base->cpu_base->lock);
1025 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1026 			local_irq_restore(flags);
1027 			return ret;
1028 		} else {
1029 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1030 		}
1031 	}
1032 
1033 	unlock_hrtimer_base(timer, &flags);
1034 
1035 	return ret;
1036 }
1037 
1038 /**
1039  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1040  * @timer:	the timer to be added
1041  * @tim:	expiry time
1042  * @delta_ns:	"slack" range for the timer
1043  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1044  *
1045  * Returns:
1046  *  0 on success
1047  *  1 when the timer was active
1048  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)1049 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1050 		unsigned long delta_ns, const enum hrtimer_mode mode)
1051 {
1052 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1053 }
1054 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1055 
1056 /**
1057  * hrtimer_start - (re)start an hrtimer on the current CPU
1058  * @timer:	the timer to be added
1059  * @tim:	expiry time
1060  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1061  *
1062  * Returns:
1063  *  0 on success
1064  *  1 when the timer was active
1065  */
1066 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1067 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1068 {
1069 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1070 }
1071 EXPORT_SYMBOL_GPL(hrtimer_start);
1072 
1073 
1074 /**
1075  * hrtimer_try_to_cancel - try to deactivate a timer
1076  * @timer:	hrtimer to stop
1077  *
1078  * Returns:
1079  *  0 when the timer was not active
1080  *  1 when the timer was active
1081  * -1 when the timer is currently excuting the callback function and
1082  *    cannot be stopped
1083  */
hrtimer_try_to_cancel(struct hrtimer * timer)1084 int hrtimer_try_to_cancel(struct hrtimer *timer)
1085 {
1086 	struct hrtimer_clock_base *base;
1087 	unsigned long flags;
1088 	int ret = -1;
1089 
1090 	base = lock_hrtimer_base(timer, &flags);
1091 
1092 	if (!hrtimer_callback_running(timer))
1093 		ret = remove_hrtimer(timer, base);
1094 
1095 	unlock_hrtimer_base(timer, &flags);
1096 
1097 	return ret;
1098 
1099 }
1100 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1101 
1102 /**
1103  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1104  * @timer:	the timer to be cancelled
1105  *
1106  * Returns:
1107  *  0 when the timer was not active
1108  *  1 when the timer was active
1109  */
hrtimer_cancel(struct hrtimer * timer)1110 int hrtimer_cancel(struct hrtimer *timer)
1111 {
1112 	for (;;) {
1113 		int ret = hrtimer_try_to_cancel(timer);
1114 
1115 		if (ret >= 0)
1116 			return ret;
1117 		cpu_relax();
1118 	}
1119 }
1120 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1121 
1122 /**
1123  * hrtimer_get_remaining - get remaining time for the timer
1124  * @timer:	the timer to read
1125  */
hrtimer_get_remaining(const struct hrtimer * timer)1126 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1127 {
1128 	unsigned long flags;
1129 	ktime_t rem;
1130 
1131 	lock_hrtimer_base(timer, &flags);
1132 	rem = hrtimer_expires_remaining(timer);
1133 	unlock_hrtimer_base(timer, &flags);
1134 
1135 	return rem;
1136 }
1137 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1138 
1139 #ifdef CONFIG_NO_HZ
1140 /**
1141  * hrtimer_get_next_event - get the time until next expiry event
1142  *
1143  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1144  * is pending.
1145  */
hrtimer_get_next_event(void)1146 ktime_t hrtimer_get_next_event(void)
1147 {
1148 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1149 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1150 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1151 	unsigned long flags;
1152 	int i;
1153 
1154 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1155 
1156 	if (!hrtimer_hres_active()) {
1157 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1158 			struct hrtimer *timer;
1159 			struct timerqueue_node *next;
1160 
1161 			next = timerqueue_getnext(&base->active);
1162 			if (!next)
1163 				continue;
1164 
1165 			timer = container_of(next, struct hrtimer, node);
1166 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1167 			delta = ktime_sub(delta, base->get_time());
1168 			if (delta.tv64 < mindelta.tv64)
1169 				mindelta.tv64 = delta.tv64;
1170 		}
1171 	}
1172 
1173 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1174 
1175 	if (mindelta.tv64 < 0)
1176 		mindelta.tv64 = 0;
1177 	return mindelta;
1178 }
1179 #endif
1180 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1181 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1182 			   enum hrtimer_mode mode)
1183 {
1184 	struct hrtimer_cpu_base *cpu_base;
1185 	int base;
1186 
1187 	memset(timer, 0, sizeof(struct hrtimer));
1188 
1189 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1190 
1191 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1192 		clock_id = CLOCK_MONOTONIC;
1193 
1194 	base = hrtimer_clockid_to_base(clock_id);
1195 	timer->base = &cpu_base->clock_base[base];
1196 	timerqueue_init(&timer->node);
1197 
1198 #ifdef CONFIG_TIMER_STATS
1199 	timer->start_site = NULL;
1200 	timer->start_pid = -1;
1201 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1202 #endif
1203 }
1204 
1205 /**
1206  * hrtimer_init - initialize a timer to the given clock
1207  * @timer:	the timer to be initialized
1208  * @clock_id:	the clock to be used
1209  * @mode:	timer mode abs/rel
1210  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1211 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1212 		  enum hrtimer_mode mode)
1213 {
1214 	debug_init(timer, clock_id, mode);
1215 	__hrtimer_init(timer, clock_id, mode);
1216 }
1217 EXPORT_SYMBOL_GPL(hrtimer_init);
1218 
1219 /**
1220  * hrtimer_get_res - get the timer resolution for a clock
1221  * @which_clock: which clock to query
1222  * @tp:		 pointer to timespec variable to store the resolution
1223  *
1224  * Store the resolution of the clock selected by @which_clock in the
1225  * variable pointed to by @tp.
1226  */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1227 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1228 {
1229 	struct hrtimer_cpu_base *cpu_base;
1230 	int base = hrtimer_clockid_to_base(which_clock);
1231 
1232 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1233 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1234 
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1238 
__run_hrtimer(struct hrtimer * timer,ktime_t * now)1239 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1240 {
1241 	struct hrtimer_clock_base *base = timer->base;
1242 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1243 	enum hrtimer_restart (*fn)(struct hrtimer *);
1244 	int restart;
1245 
1246 	WARN_ON(!irqs_disabled());
1247 
1248 	debug_deactivate(timer);
1249 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1250 	timer_stats_account_hrtimer(timer);
1251 	fn = timer->function;
1252 
1253 	/*
1254 	 * Because we run timers from hardirq context, there is no chance
1255 	 * they get migrated to another cpu, therefore its safe to unlock
1256 	 * the timer base.
1257 	 */
1258 	raw_spin_unlock(&cpu_base->lock);
1259 	trace_hrtimer_expire_entry(timer, now);
1260 	restart = fn(timer);
1261 	trace_hrtimer_expire_exit(timer);
1262 	raw_spin_lock(&cpu_base->lock);
1263 
1264 	/*
1265 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1266 	 * we do not reprogramm the event hardware. Happens either in
1267 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1268 	 */
1269 	if (restart != HRTIMER_NORESTART) {
1270 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1271 		enqueue_hrtimer(timer, base);
1272 	}
1273 
1274 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1275 
1276 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1277 }
1278 
1279 #ifdef CONFIG_HIGH_RES_TIMERS
1280 
1281 /*
1282  * High resolution timer interrupt
1283  * Called with interrupts disabled
1284  */
hrtimer_interrupt(struct clock_event_device * dev)1285 void hrtimer_interrupt(struct clock_event_device *dev)
1286 {
1287 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1288 	ktime_t expires_next, now, entry_time, delta;
1289 	int i, retries = 0;
1290 
1291 	BUG_ON(!cpu_base->hres_active);
1292 	cpu_base->nr_events++;
1293 	dev->next_event.tv64 = KTIME_MAX;
1294 
1295 	raw_spin_lock(&cpu_base->lock);
1296 	entry_time = now = hrtimer_update_base(cpu_base);
1297 retry:
1298 	expires_next.tv64 = KTIME_MAX;
1299 	/*
1300 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1301 	 * held to prevent that a timer is enqueued in our queue via
1302 	 * the migration code. This does not affect enqueueing of
1303 	 * timers which run their callback and need to be requeued on
1304 	 * this CPU.
1305 	 */
1306 	cpu_base->expires_next.tv64 = KTIME_MAX;
1307 
1308 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1309 		struct hrtimer_clock_base *base;
1310 		struct timerqueue_node *node;
1311 		ktime_t basenow;
1312 
1313 		if (!(cpu_base->active_bases & (1 << i)))
1314 			continue;
1315 
1316 		base = cpu_base->clock_base + i;
1317 		basenow = ktime_add(now, base->offset);
1318 
1319 		while ((node = timerqueue_getnext(&base->active))) {
1320 			struct hrtimer *timer;
1321 
1322 			timer = container_of(node, struct hrtimer, node);
1323 
1324 			/*
1325 			 * The immediate goal for using the softexpires is
1326 			 * minimizing wakeups, not running timers at the
1327 			 * earliest interrupt after their soft expiration.
1328 			 * This allows us to avoid using a Priority Search
1329 			 * Tree, which can answer a stabbing querry for
1330 			 * overlapping intervals and instead use the simple
1331 			 * BST we already have.
1332 			 * We don't add extra wakeups by delaying timers that
1333 			 * are right-of a not yet expired timer, because that
1334 			 * timer will have to trigger a wakeup anyway.
1335 			 */
1336 
1337 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1338 				ktime_t expires;
1339 
1340 				expires = ktime_sub(hrtimer_get_expires(timer),
1341 						    base->offset);
1342 				if (expires.tv64 < 0)
1343 					expires.tv64 = KTIME_MAX;
1344 				if (expires.tv64 < expires_next.tv64)
1345 					expires_next = expires;
1346 				break;
1347 			}
1348 
1349 			__run_hrtimer(timer, &basenow);
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Store the new expiry value so the migration code can verify
1355 	 * against it.
1356 	 */
1357 	cpu_base->expires_next = expires_next;
1358 	raw_spin_unlock(&cpu_base->lock);
1359 
1360 	/* Reprogramming necessary ? */
1361 	if (expires_next.tv64 == KTIME_MAX ||
1362 	    !tick_program_event(expires_next, 0)) {
1363 		cpu_base->hang_detected = 0;
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * The next timer was already expired due to:
1369 	 * - tracing
1370 	 * - long lasting callbacks
1371 	 * - being scheduled away when running in a VM
1372 	 *
1373 	 * We need to prevent that we loop forever in the hrtimer
1374 	 * interrupt routine. We give it 3 attempts to avoid
1375 	 * overreacting on some spurious event.
1376 	 *
1377 	 * Acquire base lock for updating the offsets and retrieving
1378 	 * the current time.
1379 	 */
1380 	raw_spin_lock(&cpu_base->lock);
1381 	now = hrtimer_update_base(cpu_base);
1382 	cpu_base->nr_retries++;
1383 	if (++retries < 3)
1384 		goto retry;
1385 	/*
1386 	 * Give the system a chance to do something else than looping
1387 	 * here. We stored the entry time, so we know exactly how long
1388 	 * we spent here. We schedule the next event this amount of
1389 	 * time away.
1390 	 */
1391 	cpu_base->nr_hangs++;
1392 	cpu_base->hang_detected = 1;
1393 	raw_spin_unlock(&cpu_base->lock);
1394 	delta = ktime_sub(now, entry_time);
1395 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1396 		cpu_base->max_hang_time = delta;
1397 	/*
1398 	 * Limit it to a sensible value as we enforce a longer
1399 	 * delay. Give the CPU at least 100ms to catch up.
1400 	 */
1401 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1402 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1403 	else
1404 		expires_next = ktime_add(now, delta);
1405 	tick_program_event(expires_next, 1);
1406 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1407 		    ktime_to_ns(delta));
1408 }
1409 
1410 /*
1411  * local version of hrtimer_peek_ahead_timers() called with interrupts
1412  * disabled.
1413  */
__hrtimer_peek_ahead_timers(void)1414 static void __hrtimer_peek_ahead_timers(void)
1415 {
1416 	struct tick_device *td;
1417 
1418 	if (!hrtimer_hres_active())
1419 		return;
1420 
1421 	td = &__get_cpu_var(tick_cpu_device);
1422 	if (td && td->evtdev)
1423 		hrtimer_interrupt(td->evtdev);
1424 }
1425 
1426 /**
1427  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1428  *
1429  * hrtimer_peek_ahead_timers will peek at the timer queue of
1430  * the current cpu and check if there are any timers for which
1431  * the soft expires time has passed. If any such timers exist,
1432  * they are run immediately and then removed from the timer queue.
1433  *
1434  */
hrtimer_peek_ahead_timers(void)1435 void hrtimer_peek_ahead_timers(void)
1436 {
1437 	unsigned long flags;
1438 
1439 	local_irq_save(flags);
1440 	__hrtimer_peek_ahead_timers();
1441 	local_irq_restore(flags);
1442 }
1443 
run_hrtimer_softirq(struct softirq_action * h)1444 static void run_hrtimer_softirq(struct softirq_action *h)
1445 {
1446 	hrtimer_peek_ahead_timers();
1447 }
1448 
1449 #else /* CONFIG_HIGH_RES_TIMERS */
1450 
__hrtimer_peek_ahead_timers(void)1451 static inline void __hrtimer_peek_ahead_timers(void) { }
1452 
1453 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1454 
1455 /*
1456  * Called from timer softirq every jiffy, expire hrtimers:
1457  *
1458  * For HRT its the fall back code to run the softirq in the timer
1459  * softirq context in case the hrtimer initialization failed or has
1460  * not been done yet.
1461  */
hrtimer_run_pending(void)1462 void hrtimer_run_pending(void)
1463 {
1464 	if (hrtimer_hres_active())
1465 		return;
1466 
1467 	/*
1468 	 * This _is_ ugly: We have to check in the softirq context,
1469 	 * whether we can switch to highres and / or nohz mode. The
1470 	 * clocksource switch happens in the timer interrupt with
1471 	 * xtime_lock held. Notification from there only sets the
1472 	 * check bit in the tick_oneshot code, otherwise we might
1473 	 * deadlock vs. xtime_lock.
1474 	 */
1475 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1476 		hrtimer_switch_to_hres();
1477 }
1478 
1479 /*
1480  * Called from hardirq context every jiffy
1481  */
hrtimer_run_queues(void)1482 void hrtimer_run_queues(void)
1483 {
1484 	struct timerqueue_node *node;
1485 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1486 	struct hrtimer_clock_base *base;
1487 	int index, gettime = 1;
1488 
1489 	if (hrtimer_hres_active())
1490 		return;
1491 
1492 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1493 		base = &cpu_base->clock_base[index];
1494 		if (!timerqueue_getnext(&base->active))
1495 			continue;
1496 
1497 		if (gettime) {
1498 			hrtimer_get_softirq_time(cpu_base);
1499 			gettime = 0;
1500 		}
1501 
1502 		raw_spin_lock(&cpu_base->lock);
1503 
1504 		while ((node = timerqueue_getnext(&base->active))) {
1505 			struct hrtimer *timer;
1506 
1507 			timer = container_of(node, struct hrtimer, node);
1508 			if (base->softirq_time.tv64 <=
1509 					hrtimer_get_expires_tv64(timer))
1510 				break;
1511 
1512 			__run_hrtimer(timer, &base->softirq_time);
1513 		}
1514 		raw_spin_unlock(&cpu_base->lock);
1515 	}
1516 }
1517 
1518 /*
1519  * Sleep related functions:
1520  */
hrtimer_wakeup(struct hrtimer * timer)1521 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1522 {
1523 	struct hrtimer_sleeper *t =
1524 		container_of(timer, struct hrtimer_sleeper, timer);
1525 	struct task_struct *task = t->task;
1526 
1527 	t->task = NULL;
1528 	if (task)
1529 		wake_up_process(task);
1530 
1531 	return HRTIMER_NORESTART;
1532 }
1533 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1534 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1535 {
1536 	sl->timer.function = hrtimer_wakeup;
1537 	sl->task = task;
1538 }
1539 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1540 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1541 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1542 {
1543 	hrtimer_init_sleeper(t, current);
1544 
1545 	do {
1546 		set_current_state(TASK_INTERRUPTIBLE);
1547 		hrtimer_start_expires(&t->timer, mode);
1548 		if (!hrtimer_active(&t->timer))
1549 			t->task = NULL;
1550 
1551 		if (likely(t->task))
1552 			schedule();
1553 
1554 		hrtimer_cancel(&t->timer);
1555 		mode = HRTIMER_MODE_ABS;
1556 
1557 	} while (t->task && !signal_pending(current));
1558 
1559 	__set_current_state(TASK_RUNNING);
1560 
1561 	return t->task == NULL;
1562 }
1563 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1564 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1565 {
1566 	struct timespec rmt;
1567 	ktime_t rem;
1568 
1569 	rem = hrtimer_expires_remaining(timer);
1570 	if (rem.tv64 <= 0)
1571 		return 0;
1572 	rmt = ktime_to_timespec(rem);
1573 
1574 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1575 		return -EFAULT;
1576 
1577 	return 1;
1578 }
1579 
hrtimer_nanosleep_restart(struct restart_block * restart)1580 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1581 {
1582 	struct hrtimer_sleeper t;
1583 	struct timespec __user  *rmtp;
1584 	int ret = 0;
1585 
1586 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1587 				HRTIMER_MODE_ABS);
1588 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1589 
1590 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1591 		goto out;
1592 
1593 	rmtp = restart->nanosleep.rmtp;
1594 	if (rmtp) {
1595 		ret = update_rmtp(&t.timer, rmtp);
1596 		if (ret <= 0)
1597 			goto out;
1598 	}
1599 
1600 	/* The other values in restart are already filled in */
1601 	ret = -ERESTART_RESTARTBLOCK;
1602 out:
1603 	destroy_hrtimer_on_stack(&t.timer);
1604 	return ret;
1605 }
1606 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1607 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1608 		       const enum hrtimer_mode mode, const clockid_t clockid)
1609 {
1610 	struct restart_block *restart;
1611 	struct hrtimer_sleeper t;
1612 	int ret = 0;
1613 	unsigned long slack;
1614 
1615 	slack = current->timer_slack_ns;
1616 	if (rt_task(current))
1617 		slack = 0;
1618 
1619 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1620 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1621 	if (do_nanosleep(&t, mode))
1622 		goto out;
1623 
1624 	/* Absolute timers do not update the rmtp value and restart: */
1625 	if (mode == HRTIMER_MODE_ABS) {
1626 		ret = -ERESTARTNOHAND;
1627 		goto out;
1628 	}
1629 
1630 	if (rmtp) {
1631 		ret = update_rmtp(&t.timer, rmtp);
1632 		if (ret <= 0)
1633 			goto out;
1634 	}
1635 
1636 	restart = &current_thread_info()->restart_block;
1637 	restart->fn = hrtimer_nanosleep_restart;
1638 	restart->nanosleep.clockid = t.timer.base->clockid;
1639 	restart->nanosleep.rmtp = rmtp;
1640 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1641 
1642 	ret = -ERESTART_RESTARTBLOCK;
1643 out:
1644 	destroy_hrtimer_on_stack(&t.timer);
1645 	return ret;
1646 }
1647 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1648 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1649 		struct timespec __user *, rmtp)
1650 {
1651 	struct timespec tu;
1652 
1653 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1654 		return -EFAULT;
1655 
1656 	if (!timespec_valid(&tu))
1657 		return -EINVAL;
1658 
1659 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1660 }
1661 
1662 /*
1663  * Functions related to boot-time initialization:
1664  */
init_hrtimers_cpu(int cpu)1665 static void __cpuinit init_hrtimers_cpu(int cpu)
1666 {
1667 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1668 	int i;
1669 
1670 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1671 		cpu_base->clock_base[i].cpu_base = cpu_base;
1672 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1673 	}
1674 
1675 	hrtimer_init_hres(cpu_base);
1676 }
1677 
1678 #ifdef CONFIG_HOTPLUG_CPU
1679 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1680 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1681 				struct hrtimer_clock_base *new_base)
1682 {
1683 	struct hrtimer *timer;
1684 	struct timerqueue_node *node;
1685 
1686 	while ((node = timerqueue_getnext(&old_base->active))) {
1687 		timer = container_of(node, struct hrtimer, node);
1688 		BUG_ON(hrtimer_callback_running(timer));
1689 		debug_deactivate(timer);
1690 
1691 		/*
1692 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1693 		 * timer could be seen as !active and just vanish away
1694 		 * under us on another CPU
1695 		 */
1696 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1697 		timer->base = new_base;
1698 		/*
1699 		 * Enqueue the timers on the new cpu. This does not
1700 		 * reprogram the event device in case the timer
1701 		 * expires before the earliest on this CPU, but we run
1702 		 * hrtimer_interrupt after we migrated everything to
1703 		 * sort out already expired timers and reprogram the
1704 		 * event device.
1705 		 */
1706 		enqueue_hrtimer(timer, new_base);
1707 
1708 		/* Clear the migration state bit */
1709 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1710 	}
1711 }
1712 
migrate_hrtimers(int scpu)1713 static void migrate_hrtimers(int scpu)
1714 {
1715 	struct hrtimer_cpu_base *old_base, *new_base;
1716 	int i;
1717 
1718 	BUG_ON(cpu_online(scpu));
1719 	tick_cancel_sched_timer(scpu);
1720 
1721 	local_irq_disable();
1722 	old_base = &per_cpu(hrtimer_bases, scpu);
1723 	new_base = &__get_cpu_var(hrtimer_bases);
1724 	/*
1725 	 * The caller is globally serialized and nobody else
1726 	 * takes two locks at once, deadlock is not possible.
1727 	 */
1728 	raw_spin_lock(&new_base->lock);
1729 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1730 
1731 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1732 		migrate_hrtimer_list(&old_base->clock_base[i],
1733 				     &new_base->clock_base[i]);
1734 	}
1735 
1736 	raw_spin_unlock(&old_base->lock);
1737 	raw_spin_unlock(&new_base->lock);
1738 
1739 	/* Check, if we got expired work to do */
1740 	__hrtimer_peek_ahead_timers();
1741 	local_irq_enable();
1742 }
1743 
1744 #endif /* CONFIG_HOTPLUG_CPU */
1745 
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1746 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1747 					unsigned long action, void *hcpu)
1748 {
1749 	int scpu = (long)hcpu;
1750 
1751 	switch (action) {
1752 
1753 	case CPU_UP_PREPARE:
1754 	case CPU_UP_PREPARE_FROZEN:
1755 		init_hrtimers_cpu(scpu);
1756 		break;
1757 
1758 #ifdef CONFIG_HOTPLUG_CPU
1759 	case CPU_DYING:
1760 	case CPU_DYING_FROZEN:
1761 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1762 		break;
1763 	case CPU_DEAD:
1764 	case CPU_DEAD_FROZEN:
1765 	{
1766 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1767 		migrate_hrtimers(scpu);
1768 		break;
1769 	}
1770 #endif
1771 
1772 	default:
1773 		break;
1774 	}
1775 
1776 	return NOTIFY_OK;
1777 }
1778 
1779 static struct notifier_block __cpuinitdata hrtimers_nb = {
1780 	.notifier_call = hrtimer_cpu_notify,
1781 };
1782 
hrtimers_init(void)1783 void __init hrtimers_init(void)
1784 {
1785 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1786 			  (void *)(long)smp_processor_id());
1787 	register_cpu_notifier(&hrtimers_nb);
1788 #ifdef CONFIG_HIGH_RES_TIMERS
1789 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1790 #endif
1791 }
1792 
1793 /**
1794  * schedule_hrtimeout_range_clock - sleep until timeout
1795  * @expires:	timeout value (ktime_t)
1796  * @delta:	slack in expires timeout (ktime_t)
1797  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1798  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1799  */
1800 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode,int clock)1801 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1802 			       const enum hrtimer_mode mode, int clock)
1803 {
1804 	struct hrtimer_sleeper t;
1805 
1806 	/*
1807 	 * Optimize when a zero timeout value is given. It does not
1808 	 * matter whether this is an absolute or a relative time.
1809 	 */
1810 	if (expires && !expires->tv64) {
1811 		__set_current_state(TASK_RUNNING);
1812 		return 0;
1813 	}
1814 
1815 	/*
1816 	 * A NULL parameter means "infinite"
1817 	 */
1818 	if (!expires) {
1819 		schedule();
1820 		__set_current_state(TASK_RUNNING);
1821 		return -EINTR;
1822 	}
1823 
1824 	hrtimer_init_on_stack(&t.timer, clock, mode);
1825 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1826 
1827 	hrtimer_init_sleeper(&t, current);
1828 
1829 	hrtimer_start_expires(&t.timer, mode);
1830 	if (!hrtimer_active(&t.timer))
1831 		t.task = NULL;
1832 
1833 	if (likely(t.task))
1834 		schedule();
1835 
1836 	hrtimer_cancel(&t.timer);
1837 	destroy_hrtimer_on_stack(&t.timer);
1838 
1839 	__set_current_state(TASK_RUNNING);
1840 
1841 	return !t.task ? 0 : -EINTR;
1842 }
1843 
1844 /**
1845  * schedule_hrtimeout_range - sleep until timeout
1846  * @expires:	timeout value (ktime_t)
1847  * @delta:	slack in expires timeout (ktime_t)
1848  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1849  *
1850  * Make the current task sleep until the given expiry time has
1851  * elapsed. The routine will return immediately unless
1852  * the current task state has been set (see set_current_state()).
1853  *
1854  * The @delta argument gives the kernel the freedom to schedule the
1855  * actual wakeup to a time that is both power and performance friendly.
1856  * The kernel give the normal best effort behavior for "@expires+@delta",
1857  * but may decide to fire the timer earlier, but no earlier than @expires.
1858  *
1859  * You can set the task state as follows -
1860  *
1861  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1862  * pass before the routine returns.
1863  *
1864  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1865  * delivered to the current task.
1866  *
1867  * The current task state is guaranteed to be TASK_RUNNING when this
1868  * routine returns.
1869  *
1870  * Returns 0 when the timer has expired otherwise -EINTR
1871  */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1872 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1873 				     const enum hrtimer_mode mode)
1874 {
1875 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1876 					      CLOCK_MONOTONIC);
1877 }
1878 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1879 
1880 /**
1881  * schedule_hrtimeout - sleep until timeout
1882  * @expires:	timeout value (ktime_t)
1883  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1884  *
1885  * Make the current task sleep until the given expiry time has
1886  * elapsed. The routine will return immediately unless
1887  * the current task state has been set (see set_current_state()).
1888  *
1889  * You can set the task state as follows -
1890  *
1891  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1892  * pass before the routine returns.
1893  *
1894  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1895  * delivered to the current task.
1896  *
1897  * The current task state is guaranteed to be TASK_RUNNING when this
1898  * routine returns.
1899  *
1900  * Returns 0 when the timer has expired otherwise -EINTR
1901  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1902 int __sched schedule_hrtimeout(ktime_t *expires,
1903 			       const enum hrtimer_mode mode)
1904 {
1905 	return schedule_hrtimeout_range(expires, 0, mode);
1906 }
1907 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1908