1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 
49 #include <asm/uaccess.h>
50 
51 #include <trace/events/timer.h>
52 
53 /*
54  * The timer bases:
55  *
56  * There are more clockids then hrtimer bases. Thus, we index
57  * into the timer bases by the hrtimer_base_type enum. When trying
58  * to reach a base using a clockid, hrtimer_clockid_to_base()
59  * is used to convert from clockid to the proper hrtimer_base_type.
60  */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63 
64 	.clock_base =
65 	{
66 		{
67 			.index = CLOCK_REALTIME,
68 			.get_time = &ktime_get_real,
69 			.resolution = KTIME_LOW_RES,
70 		},
71 		{
72 			.index = CLOCK_MONOTONIC,
73 			.get_time = &ktime_get,
74 			.resolution = KTIME_LOW_RES,
75 		},
76 		{
77 			.index = CLOCK_BOOTTIME,
78 			.get_time = &ktime_get_boottime,
79 			.resolution = KTIME_LOW_RES,
80 		},
81 	}
82 };
83 
84 static int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
85 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
86 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
87 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
88 };
89 
hrtimer_clockid_to_base(clockid_t clock_id)90 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
91 {
92 	return hrtimer_clock_to_base_table[clock_id];
93 }
94 
95 
96 /*
97  * Get the coarse grained time at the softirq based on xtime and
98  * wall_to_monotonic.
99  */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)100 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
101 {
102 	ktime_t xtim, mono, boot;
103 	struct timespec xts, tom, slp;
104 
105 	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
106 
107 	xtim = timespec_to_ktime(xts);
108 	mono = ktime_add(xtim, timespec_to_ktime(tom));
109 	boot = ktime_add(mono, timespec_to_ktime(slp));
110 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
111 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
112 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
113 }
114 
115 /*
116  * Functions and macros which are different for UP/SMP systems are kept in a
117  * single place
118  */
119 #ifdef CONFIG_SMP
120 
121 /*
122  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
123  * means that all timers which are tied to this base via timer->base are
124  * locked, and the base itself is locked too.
125  *
126  * So __run_timers/migrate_timers can safely modify all timers which could
127  * be found on the lists/queues.
128  *
129  * When the timer's base is locked, and the timer removed from list, it is
130  * possible to set timer->base = NULL and drop the lock: the timer remains
131  * locked.
132  */
133 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)134 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
135 					     unsigned long *flags)
136 {
137 	struct hrtimer_clock_base *base;
138 
139 	for (;;) {
140 		base = timer->base;
141 		if (likely(base != NULL)) {
142 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
143 			if (likely(base == timer->base))
144 				return base;
145 			/* The timer has migrated to another CPU: */
146 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
147 		}
148 		cpu_relax();
149 	}
150 }
151 
152 
153 /*
154  * Get the preferred target CPU for NOHZ
155  */
hrtimer_get_target(int this_cpu,int pinned)156 static int hrtimer_get_target(int this_cpu, int pinned)
157 {
158 #ifdef CONFIG_NO_HZ
159 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
160 		return get_nohz_timer_target();
161 #endif
162 	return this_cpu;
163 }
164 
165 /*
166  * With HIGHRES=y we do not migrate the timer when it is expiring
167  * before the next event on the target cpu because we cannot reprogram
168  * the target cpu hardware and we would cause it to fire late.
169  *
170  * Called with cpu_base->lock of target cpu held.
171  */
172 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)173 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
174 {
175 #ifdef CONFIG_HIGH_RES_TIMERS
176 	ktime_t expires;
177 
178 	if (!new_base->cpu_base->hres_active)
179 		return 0;
180 
181 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
182 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
183 #else
184 	return 0;
185 #endif
186 }
187 
188 /*
189  * Switch the timer base to the current CPU when possible.
190  */
191 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)192 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
193 		    int pinned)
194 {
195 	struct hrtimer_clock_base *new_base;
196 	struct hrtimer_cpu_base *new_cpu_base;
197 	int this_cpu = smp_processor_id();
198 	int cpu = hrtimer_get_target(this_cpu, pinned);
199 	int basenum = hrtimer_clockid_to_base(base->index);
200 
201 again:
202 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
203 	new_base = &new_cpu_base->clock_base[basenum];
204 
205 	if (base != new_base) {
206 		/*
207 		 * We are trying to move timer to new_base.
208 		 * However we can't change timer's base while it is running,
209 		 * so we keep it on the same CPU. No hassle vs. reprogramming
210 		 * the event source in the high resolution case. The softirq
211 		 * code will take care of this when the timer function has
212 		 * completed. There is no conflict as we hold the lock until
213 		 * the timer is enqueued.
214 		 */
215 		if (unlikely(hrtimer_callback_running(timer)))
216 			return base;
217 
218 		/* See the comment in lock_timer_base() */
219 		timer->base = NULL;
220 		raw_spin_unlock(&base->cpu_base->lock);
221 		raw_spin_lock(&new_base->cpu_base->lock);
222 
223 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
224 			cpu = this_cpu;
225 			raw_spin_unlock(&new_base->cpu_base->lock);
226 			raw_spin_lock(&base->cpu_base->lock);
227 			timer->base = base;
228 			goto again;
229 		}
230 		timer->base = new_base;
231 	}
232 	return new_base;
233 }
234 
235 #else /* CONFIG_SMP */
236 
237 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239 {
240 	struct hrtimer_clock_base *base = timer->base;
241 
242 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
243 
244 	return base;
245 }
246 
247 # define switch_hrtimer_base(t, b, p)	(b)
248 
249 #endif	/* !CONFIG_SMP */
250 
251 /*
252  * Functions for the union type storage format of ktime_t which are
253  * too large for inlining:
254  */
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
257 /**
258  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259  * @kt:		addend
260  * @nsec:	the scalar nsec value to add
261  *
262  * Returns the sum of kt and nsec in ktime_t format
263  */
ktime_add_ns(const ktime_t kt,u64 nsec)264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265 {
266 	ktime_t tmp;
267 
268 	if (likely(nsec < NSEC_PER_SEC)) {
269 		tmp.tv64 = nsec;
270 	} else {
271 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272 
273 		tmp = ktime_set((long)nsec, rem);
274 	}
275 
276 	return ktime_add(kt, tmp);
277 }
278 
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
280 
281 /**
282  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283  * @kt:		minuend
284  * @nsec:	the scalar nsec value to subtract
285  *
286  * Returns the subtraction of @nsec from @kt in ktime_t format
287  */
ktime_sub_ns(const ktime_t kt,u64 nsec)288 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289 {
290 	ktime_t tmp;
291 
292 	if (likely(nsec < NSEC_PER_SEC)) {
293 		tmp.tv64 = nsec;
294 	} else {
295 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296 
297 		tmp = ktime_set((long)nsec, rem);
298 	}
299 
300 	return ktime_sub(kt, tmp);
301 }
302 
303 EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 # endif /* !CONFIG_KTIME_SCALAR */
305 
306 /*
307  * Divide a ktime value by a nanosecond value
308  */
ktime_divns(const ktime_t kt,s64 div)309 u64 ktime_divns(const ktime_t kt, s64 div)
310 {
311 	u64 dclc;
312 	int sft = 0;
313 
314 	dclc = ktime_to_ns(kt);
315 	/* Make sure the divisor is less than 2^32: */
316 	while (div >> 32) {
317 		sft++;
318 		div >>= 1;
319 	}
320 	dclc >>= sft;
321 	do_div(dclc, (unsigned long) div);
322 
323 	return dclc;
324 }
325 #endif /* BITS_PER_LONG >= 64 */
326 
327 /*
328  * Add two ktime values and do a safety check for overflow:
329  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331 {
332 	ktime_t res = ktime_add(lhs, rhs);
333 
334 	/*
335 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336 	 * return to user space in a timespec:
337 	 */
338 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
339 		res = ktime_set(KTIME_SEC_MAX, 0);
340 
341 	return res;
342 }
343 
344 EXPORT_SYMBOL_GPL(ktime_add_safe);
345 
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347 
348 static struct debug_obj_descr hrtimer_debug_descr;
349 
hrtimer_debug_hint(void * addr)350 static void *hrtimer_debug_hint(void *addr)
351 {
352 	return ((struct hrtimer *) addr)->function;
353 }
354 
355 /*
356  * fixup_init is called when:
357  * - an active object is initialized
358  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)359 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360 {
361 	struct hrtimer *timer = addr;
362 
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		hrtimer_cancel(timer);
366 		debug_object_init(timer, &hrtimer_debug_descr);
367 		return 1;
368 	default:
369 		return 0;
370 	}
371 }
372 
373 /*
374  * fixup_activate is called when:
375  * - an active object is activated
376  * - an unknown object is activated (might be a statically initialized object)
377  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)378 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380 	switch (state) {
381 
382 	case ODEBUG_STATE_NOTAVAILABLE:
383 		WARN_ON_ONCE(1);
384 		return 0;
385 
386 	case ODEBUG_STATE_ACTIVE:
387 		WARN_ON(1);
388 
389 	default:
390 		return 0;
391 	}
392 }
393 
394 /*
395  * fixup_free is called when:
396  * - an active object is freed
397  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)398 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
399 {
400 	struct hrtimer *timer = addr;
401 
402 	switch (state) {
403 	case ODEBUG_STATE_ACTIVE:
404 		hrtimer_cancel(timer);
405 		debug_object_free(timer, &hrtimer_debug_descr);
406 		return 1;
407 	default:
408 		return 0;
409 	}
410 }
411 
412 static struct debug_obj_descr hrtimer_debug_descr = {
413 	.name		= "hrtimer",
414 	.debug_hint	= hrtimer_debug_hint,
415 	.fixup_init	= hrtimer_fixup_init,
416 	.fixup_activate	= hrtimer_fixup_activate,
417 	.fixup_free	= hrtimer_fixup_free,
418 };
419 
debug_hrtimer_init(struct hrtimer * timer)420 static inline void debug_hrtimer_init(struct hrtimer *timer)
421 {
422 	debug_object_init(timer, &hrtimer_debug_descr);
423 }
424 
debug_hrtimer_activate(struct hrtimer * timer)425 static inline void debug_hrtimer_activate(struct hrtimer *timer)
426 {
427 	debug_object_activate(timer, &hrtimer_debug_descr);
428 }
429 
debug_hrtimer_deactivate(struct hrtimer * timer)430 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
431 {
432 	debug_object_deactivate(timer, &hrtimer_debug_descr);
433 }
434 
debug_hrtimer_free(struct hrtimer * timer)435 static inline void debug_hrtimer_free(struct hrtimer *timer)
436 {
437 	debug_object_free(timer, &hrtimer_debug_descr);
438 }
439 
440 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
441 			   enum hrtimer_mode mode);
442 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)443 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
444 			   enum hrtimer_mode mode)
445 {
446 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
447 	__hrtimer_init(timer, clock_id, mode);
448 }
449 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
450 
destroy_hrtimer_on_stack(struct hrtimer * timer)451 void destroy_hrtimer_on_stack(struct hrtimer *timer)
452 {
453 	debug_object_free(timer, &hrtimer_debug_descr);
454 }
455 
456 #else
debug_hrtimer_init(struct hrtimer * timer)457 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)458 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)459 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
460 #endif
461 
462 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)463 debug_init(struct hrtimer *timer, clockid_t clockid,
464 	   enum hrtimer_mode mode)
465 {
466 	debug_hrtimer_init(timer);
467 	trace_hrtimer_init(timer, clockid, mode);
468 }
469 
debug_activate(struct hrtimer * timer)470 static inline void debug_activate(struct hrtimer *timer)
471 {
472 	debug_hrtimer_activate(timer);
473 	trace_hrtimer_start(timer);
474 }
475 
debug_deactivate(struct hrtimer * timer)476 static inline void debug_deactivate(struct hrtimer *timer)
477 {
478 	debug_hrtimer_deactivate(timer);
479 	trace_hrtimer_cancel(timer);
480 }
481 
482 /* High resolution timer related functions */
483 #ifdef CONFIG_HIGH_RES_TIMERS
484 
485 /*
486  * High resolution timer enabled ?
487  */
488 static int hrtimer_hres_enabled __read_mostly  = 1;
489 
490 /*
491  * Enable / Disable high resolution mode
492  */
setup_hrtimer_hres(char * str)493 static int __init setup_hrtimer_hres(char *str)
494 {
495 	if (!strcmp(str, "off"))
496 		hrtimer_hres_enabled = 0;
497 	else if (!strcmp(str, "on"))
498 		hrtimer_hres_enabled = 1;
499 	else
500 		return 0;
501 	return 1;
502 }
503 
504 __setup("highres=", setup_hrtimer_hres);
505 
506 /*
507  * hrtimer_high_res_enabled - query, if the highres mode is enabled
508  */
hrtimer_is_hres_enabled(void)509 static inline int hrtimer_is_hres_enabled(void)
510 {
511 	return hrtimer_hres_enabled;
512 }
513 
514 /*
515  * Is the high resolution mode active ?
516  */
hrtimer_hres_active(void)517 static inline int hrtimer_hres_active(void)
518 {
519 	return __this_cpu_read(hrtimer_bases.hres_active);
520 }
521 
522 /*
523  * Reprogram the event source with checking both queues for the
524  * next event
525  * Called with interrupts disabled and base->lock held
526  */
527 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)528 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
529 {
530 	int i;
531 	struct hrtimer_clock_base *base = cpu_base->clock_base;
532 	ktime_t expires, expires_next;
533 
534 	expires_next.tv64 = KTIME_MAX;
535 
536 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
537 		struct hrtimer *timer;
538 		struct timerqueue_node *next;
539 
540 		next = timerqueue_getnext(&base->active);
541 		if (!next)
542 			continue;
543 		timer = container_of(next, struct hrtimer, node);
544 
545 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
546 		/*
547 		 * clock_was_set() has changed base->offset so the
548 		 * result might be negative. Fix it up to prevent a
549 		 * false positive in clockevents_program_event()
550 		 */
551 		if (expires.tv64 < 0)
552 			expires.tv64 = 0;
553 		if (expires.tv64 < expires_next.tv64)
554 			expires_next = expires;
555 	}
556 
557 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
558 		return;
559 
560 	cpu_base->expires_next.tv64 = expires_next.tv64;
561 
562 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
563 		tick_program_event(cpu_base->expires_next, 1);
564 }
565 
566 /*
567  * Shared reprogramming for clock_realtime and clock_monotonic
568  *
569  * When a timer is enqueued and expires earlier than the already enqueued
570  * timers, we have to check, whether it expires earlier than the timer for
571  * which the clock event device was armed.
572  *
573  * Called with interrupts disabled and base->cpu_base.lock held
574  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)575 static int hrtimer_reprogram(struct hrtimer *timer,
576 			     struct hrtimer_clock_base *base)
577 {
578 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
579 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
580 	int res;
581 
582 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
583 
584 	/*
585 	 * When the callback is running, we do not reprogram the clock event
586 	 * device. The timer callback is either running on a different CPU or
587 	 * the callback is executed in the hrtimer_interrupt context. The
588 	 * reprogramming is handled either by the softirq, which called the
589 	 * callback or at the end of the hrtimer_interrupt.
590 	 */
591 	if (hrtimer_callback_running(timer))
592 		return 0;
593 
594 	/*
595 	 * CLOCK_REALTIME timer might be requested with an absolute
596 	 * expiry time which is less than base->offset. Nothing wrong
597 	 * about that, just avoid to call into the tick code, which
598 	 * has now objections against negative expiry values.
599 	 */
600 	if (expires.tv64 < 0)
601 		return -ETIME;
602 
603 	if (expires.tv64 >= cpu_base->expires_next.tv64)
604 		return 0;
605 
606 	/*
607 	 * If a hang was detected in the last timer interrupt then we
608 	 * do not schedule a timer which is earlier than the expiry
609 	 * which we enforced in the hang detection. We want the system
610 	 * to make progress.
611 	 */
612 	if (cpu_base->hang_detected)
613 		return 0;
614 
615 	/*
616 	 * Clockevents returns -ETIME, when the event was in the past.
617 	 */
618 	res = tick_program_event(expires, 0);
619 	if (!IS_ERR_VALUE(res))
620 		cpu_base->expires_next = expires;
621 	return res;
622 }
623 
624 
625 /*
626  * Retrigger next event is called after clock was set
627  *
628  * Called with interrupts disabled via on_each_cpu()
629  */
retrigger_next_event(void * arg)630 static void retrigger_next_event(void *arg)
631 {
632 	struct hrtimer_cpu_base *base;
633 	struct timespec realtime_offset, wtm, sleep;
634 
635 	if (!hrtimer_hres_active())
636 		return;
637 
638 	get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm,
639 							&sleep);
640 	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
641 
642 	base = &__get_cpu_var(hrtimer_bases);
643 
644 	/* Adjust CLOCK_REALTIME offset */
645 	raw_spin_lock(&base->lock);
646 	base->clock_base[HRTIMER_BASE_REALTIME].offset =
647 		timespec_to_ktime(realtime_offset);
648 	base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
649 		timespec_to_ktime(sleep);
650 
651 	hrtimer_force_reprogram(base, 0);
652 	raw_spin_unlock(&base->lock);
653 }
654 
655 /*
656  * Clock realtime was set
657  *
658  * Change the offset of the realtime clock vs. the monotonic
659  * clock.
660  *
661  * We might have to reprogram the high resolution timer interrupt. On
662  * SMP we call the architecture specific code to retrigger _all_ high
663  * resolution timer interrupts. On UP we just disable interrupts and
664  * call the high resolution interrupt code.
665  */
clock_was_set(void)666 void clock_was_set(void)
667 {
668 	/* Retrigger the CPU local events everywhere */
669 	on_each_cpu(retrigger_next_event, NULL, 1);
670 }
671 
672 /*
673  * During resume we might have to reprogram the high resolution timer
674  * interrupt (on the local CPU):
675  */
hres_timers_resume(void)676 void hres_timers_resume(void)
677 {
678 	WARN_ONCE(!irqs_disabled(),
679 		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");
680 
681 	retrigger_next_event(NULL);
682 }
683 
684 /*
685  * Initialize the high resolution related parts of cpu_base
686  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)687 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
688 {
689 	base->expires_next.tv64 = KTIME_MAX;
690 	base->hres_active = 0;
691 }
692 
693 /*
694  * When High resolution timers are active, try to reprogram. Note, that in case
695  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
696  * check happens. The timer gets enqueued into the rbtree. The reprogramming
697  * and expiry check is done in the hrtimer_interrupt or in the softirq.
698  */
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base,int wakeup)699 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
700 					    struct hrtimer_clock_base *base,
701 					    int wakeup)
702 {
703 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
704 		if (wakeup) {
705 			raw_spin_unlock(&base->cpu_base->lock);
706 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
707 			raw_spin_lock(&base->cpu_base->lock);
708 		} else
709 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
710 
711 		return 1;
712 	}
713 
714 	return 0;
715 }
716 
717 /*
718  * Switch to high resolution mode
719  */
hrtimer_switch_to_hres(void)720 static int hrtimer_switch_to_hres(void)
721 {
722 	int cpu = smp_processor_id();
723 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
724 	unsigned long flags;
725 
726 	if (base->hres_active)
727 		return 1;
728 
729 	local_irq_save(flags);
730 
731 	if (tick_init_highres()) {
732 		local_irq_restore(flags);
733 		printk(KERN_WARNING "Could not switch to high resolution "
734 				    "mode on CPU %d\n", cpu);
735 		return 0;
736 	}
737 	base->hres_active = 1;
738 	base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
739 	base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
740 	base->clock_base[HRTIMER_BASE_BOOTTIME].resolution = KTIME_HIGH_RES;
741 
742 	tick_setup_sched_timer();
743 
744 	/* "Retrigger" the interrupt to get things going */
745 	retrigger_next_event(NULL);
746 	local_irq_restore(flags);
747 	return 1;
748 }
749 
750 #else
751 
hrtimer_hres_active(void)752 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)753 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)754 static inline int hrtimer_switch_to_hres(void) { return 0; }
755 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)756 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base,int wakeup)757 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
758 					    struct hrtimer_clock_base *base,
759 					    int wakeup)
760 {
761 	return 0;
762 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)763 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
764 
765 #endif /* CONFIG_HIGH_RES_TIMERS */
766 
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)767 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
768 {
769 #ifdef CONFIG_TIMER_STATS
770 	if (timer->start_site)
771 		return;
772 	timer->start_site = __builtin_return_address(0);
773 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
774 	timer->start_pid = current->pid;
775 #endif
776 }
777 
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)778 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
779 {
780 #ifdef CONFIG_TIMER_STATS
781 	timer->start_site = NULL;
782 #endif
783 }
784 
timer_stats_account_hrtimer(struct hrtimer * timer)785 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
786 {
787 #ifdef CONFIG_TIMER_STATS
788 	if (likely(!timer_stats_active))
789 		return;
790 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
791 				 timer->function, timer->start_comm, 0);
792 #endif
793 }
794 
795 /*
796  * Counterpart to lock_hrtimer_base above:
797  */
798 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)799 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
800 {
801 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
802 }
803 
804 /**
805  * hrtimer_forward - forward the timer expiry
806  * @timer:	hrtimer to forward
807  * @now:	forward past this time
808  * @interval:	the interval to forward
809  *
810  * Forward the timer expiry so it will expire in the future.
811  * Returns the number of overruns.
812  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)813 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
814 {
815 	u64 orun = 1;
816 	ktime_t delta;
817 
818 	delta = ktime_sub(now, hrtimer_get_expires(timer));
819 
820 	if (delta.tv64 < 0)
821 		return 0;
822 
823 	if (interval.tv64 < timer->base->resolution.tv64)
824 		interval.tv64 = timer->base->resolution.tv64;
825 
826 	if (unlikely(delta.tv64 >= interval.tv64)) {
827 		s64 incr = ktime_to_ns(interval);
828 
829 		orun = ktime_divns(delta, incr);
830 		hrtimer_add_expires_ns(timer, incr * orun);
831 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
832 			return orun;
833 		/*
834 		 * This (and the ktime_add() below) is the
835 		 * correction for exact:
836 		 */
837 		orun++;
838 	}
839 	hrtimer_add_expires(timer, interval);
840 
841 	return orun;
842 }
843 EXPORT_SYMBOL_GPL(hrtimer_forward);
844 
845 /*
846  * enqueue_hrtimer - internal function to (re)start a timer
847  *
848  * The timer is inserted in expiry order. Insertion into the
849  * red black tree is O(log(n)). Must hold the base lock.
850  *
851  * Returns 1 when the new timer is the leftmost timer in the tree.
852  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)853 static int enqueue_hrtimer(struct hrtimer *timer,
854 			   struct hrtimer_clock_base *base)
855 {
856 	debug_activate(timer);
857 
858 	timerqueue_add(&base->active, &timer->node);
859 
860 	/*
861 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
862 	 * state of a possibly running callback.
863 	 */
864 	timer->state |= HRTIMER_STATE_ENQUEUED;
865 
866 	return (&timer->node == base->active.next);
867 }
868 
869 /*
870  * __remove_hrtimer - internal function to remove a timer
871  *
872  * Caller must hold the base lock.
873  *
874  * High resolution timer mode reprograms the clock event device when the
875  * timer is the one which expires next. The caller can disable this by setting
876  * reprogram to zero. This is useful, when the context does a reprogramming
877  * anyway (e.g. timer interrupt)
878  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)879 static void __remove_hrtimer(struct hrtimer *timer,
880 			     struct hrtimer_clock_base *base,
881 			     unsigned long newstate, int reprogram)
882 {
883 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
884 		goto out;
885 
886 	if (&timer->node == timerqueue_getnext(&base->active)) {
887 #ifdef CONFIG_HIGH_RES_TIMERS
888 		/* Reprogram the clock event device. if enabled */
889 		if (reprogram && hrtimer_hres_active()) {
890 			ktime_t expires;
891 
892 			expires = ktime_sub(hrtimer_get_expires(timer),
893 					    base->offset);
894 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
895 				hrtimer_force_reprogram(base->cpu_base, 1);
896 		}
897 #endif
898 	}
899 	timerqueue_del(&base->active, &timer->node);
900 out:
901 	timer->state = newstate;
902 }
903 
904 /*
905  * remove hrtimer, called with base lock held
906  */
907 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)908 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
909 {
910 	if (hrtimer_is_queued(timer)) {
911 		unsigned long state;
912 		int reprogram;
913 
914 		/*
915 		 * Remove the timer and force reprogramming when high
916 		 * resolution mode is active and the timer is on the current
917 		 * CPU. If we remove a timer on another CPU, reprogramming is
918 		 * skipped. The interrupt event on this CPU is fired and
919 		 * reprogramming happens in the interrupt handler. This is a
920 		 * rare case and less expensive than a smp call.
921 		 */
922 		debug_deactivate(timer);
923 		timer_stats_hrtimer_clear_start_info(timer);
924 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
925 		/*
926 		 * We must preserve the CALLBACK state flag here,
927 		 * otherwise we could move the timer base in
928 		 * switch_hrtimer_base.
929 		 */
930 		state = timer->state & HRTIMER_STATE_CALLBACK;
931 		__remove_hrtimer(timer, base, state, reprogram);
932 		return 1;
933 	}
934 	return 0;
935 }
936 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode,int wakeup)937 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
938 		unsigned long delta_ns, const enum hrtimer_mode mode,
939 		int wakeup)
940 {
941 	struct hrtimer_clock_base *base, *new_base;
942 	unsigned long flags;
943 	int ret, leftmost;
944 
945 	base = lock_hrtimer_base(timer, &flags);
946 
947 	/* Remove an active timer from the queue: */
948 	ret = remove_hrtimer(timer, base);
949 
950 	/* Switch the timer base, if necessary: */
951 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
952 
953 	if (mode & HRTIMER_MODE_REL) {
954 		tim = ktime_add_safe(tim, new_base->get_time());
955 		/*
956 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
957 		 * to signal that they simply return xtime in
958 		 * do_gettimeoffset(). In this case we want to round up by
959 		 * resolution when starting a relative timer, to avoid short
960 		 * timeouts. This will go away with the GTOD framework.
961 		 */
962 #ifdef CONFIG_TIME_LOW_RES
963 		tim = ktime_add_safe(tim, base->resolution);
964 #endif
965 	}
966 
967 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
968 
969 	timer_stats_hrtimer_set_start_info(timer);
970 
971 	leftmost = enqueue_hrtimer(timer, new_base);
972 
973 	/*
974 	 * Only allow reprogramming if the new base is on this CPU.
975 	 * (it might still be on another CPU if the timer was pending)
976 	 *
977 	 * XXX send_remote_softirq() ?
978 	 */
979 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
980 		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
981 
982 	unlock_hrtimer_base(timer, &flags);
983 
984 	return ret;
985 }
986 
987 /**
988  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
989  * @timer:	the timer to be added
990  * @tim:	expiry time
991  * @delta_ns:	"slack" range for the timer
992  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
993  *
994  * Returns:
995  *  0 on success
996  *  1 when the timer was active
997  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)998 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
999 		unsigned long delta_ns, const enum hrtimer_mode mode)
1000 {
1001 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1002 }
1003 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1004 
1005 /**
1006  * hrtimer_start - (re)start an hrtimer on the current CPU
1007  * @timer:	the timer to be added
1008  * @tim:	expiry time
1009  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1010  *
1011  * Returns:
1012  *  0 on success
1013  *  1 when the timer was active
1014  */
1015 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1016 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1017 {
1018 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1019 }
1020 EXPORT_SYMBOL_GPL(hrtimer_start);
1021 
1022 
1023 /**
1024  * hrtimer_try_to_cancel - try to deactivate a timer
1025  * @timer:	hrtimer to stop
1026  *
1027  * Returns:
1028  *  0 when the timer was not active
1029  *  1 when the timer was active
1030  * -1 when the timer is currently excuting the callback function and
1031  *    cannot be stopped
1032  */
hrtimer_try_to_cancel(struct hrtimer * timer)1033 int hrtimer_try_to_cancel(struct hrtimer *timer)
1034 {
1035 	struct hrtimer_clock_base *base;
1036 	unsigned long flags;
1037 	int ret = -1;
1038 
1039 	base = lock_hrtimer_base(timer, &flags);
1040 
1041 	if (!hrtimer_callback_running(timer))
1042 		ret = remove_hrtimer(timer, base);
1043 
1044 	unlock_hrtimer_base(timer, &flags);
1045 
1046 	return ret;
1047 
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050 
1051 /**
1052  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053  * @timer:	the timer to be cancelled
1054  *
1055  * Returns:
1056  *  0 when the timer was not active
1057  *  1 when the timer was active
1058  */
hrtimer_cancel(struct hrtimer * timer)1059 int hrtimer_cancel(struct hrtimer *timer)
1060 {
1061 	for (;;) {
1062 		int ret = hrtimer_try_to_cancel(timer);
1063 
1064 		if (ret >= 0)
1065 			return ret;
1066 		cpu_relax();
1067 	}
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070 
1071 /**
1072  * hrtimer_get_remaining - get remaining time for the timer
1073  * @timer:	the timer to read
1074  */
hrtimer_get_remaining(const struct hrtimer * timer)1075 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1076 {
1077 	unsigned long flags;
1078 	ktime_t rem;
1079 
1080 	lock_hrtimer_base(timer, &flags);
1081 	rem = hrtimer_expires_remaining(timer);
1082 	unlock_hrtimer_base(timer, &flags);
1083 
1084 	return rem;
1085 }
1086 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1087 
1088 #ifdef CONFIG_NO_HZ
1089 /**
1090  * hrtimer_get_next_event - get the time until next expiry event
1091  *
1092  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1093  * is pending.
1094  */
hrtimer_get_next_event(void)1095 ktime_t hrtimer_get_next_event(void)
1096 {
1097 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1098 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1099 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1100 	unsigned long flags;
1101 	int i;
1102 
1103 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104 
1105 	if (!hrtimer_hres_active()) {
1106 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1107 			struct hrtimer *timer;
1108 			struct timerqueue_node *next;
1109 
1110 			next = timerqueue_getnext(&base->active);
1111 			if (!next)
1112 				continue;
1113 
1114 			timer = container_of(next, struct hrtimer, node);
1115 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1116 			delta = ktime_sub(delta, base->get_time());
1117 			if (delta.tv64 < mindelta.tv64)
1118 				mindelta.tv64 = delta.tv64;
1119 		}
1120 	}
1121 
1122 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1123 
1124 	if (mindelta.tv64 < 0)
1125 		mindelta.tv64 = 0;
1126 	return mindelta;
1127 }
1128 #endif
1129 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1130 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1131 			   enum hrtimer_mode mode)
1132 {
1133 	struct hrtimer_cpu_base *cpu_base;
1134 	int base;
1135 
1136 	memset(timer, 0, sizeof(struct hrtimer));
1137 
1138 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1139 
1140 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1141 		clock_id = CLOCK_MONOTONIC;
1142 
1143 	base = hrtimer_clockid_to_base(clock_id);
1144 	timer->base = &cpu_base->clock_base[base];
1145 	timerqueue_init(&timer->node);
1146 
1147 #ifdef CONFIG_TIMER_STATS
1148 	timer->start_site = NULL;
1149 	timer->start_pid = -1;
1150 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1151 #endif
1152 }
1153 
1154 /**
1155  * hrtimer_init - initialize a timer to the given clock
1156  * @timer:	the timer to be initialized
1157  * @clock_id:	the clock to be used
1158  * @mode:	timer mode abs/rel
1159  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1160 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1161 		  enum hrtimer_mode mode)
1162 {
1163 	debug_init(timer, clock_id, mode);
1164 	__hrtimer_init(timer, clock_id, mode);
1165 }
1166 EXPORT_SYMBOL_GPL(hrtimer_init);
1167 
1168 /**
1169  * hrtimer_get_res - get the timer resolution for a clock
1170  * @which_clock: which clock to query
1171  * @tp:		 pointer to timespec variable to store the resolution
1172  *
1173  * Store the resolution of the clock selected by @which_clock in the
1174  * variable pointed to by @tp.
1175  */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1176 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1177 {
1178 	struct hrtimer_cpu_base *cpu_base;
1179 	int base = hrtimer_clockid_to_base(which_clock);
1180 
1181 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1182 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1183 
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1187 
__run_hrtimer(struct hrtimer * timer,ktime_t * now)1188 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1189 {
1190 	struct hrtimer_clock_base *base = timer->base;
1191 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1192 	enum hrtimer_restart (*fn)(struct hrtimer *);
1193 	int restart;
1194 
1195 	WARN_ON(!irqs_disabled());
1196 
1197 	debug_deactivate(timer);
1198 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1199 	timer_stats_account_hrtimer(timer);
1200 	fn = timer->function;
1201 
1202 	/*
1203 	 * Because we run timers from hardirq context, there is no chance
1204 	 * they get migrated to another cpu, therefore its safe to unlock
1205 	 * the timer base.
1206 	 */
1207 	raw_spin_unlock(&cpu_base->lock);
1208 	trace_hrtimer_expire_entry(timer, now);
1209 	restart = fn(timer);
1210 	trace_hrtimer_expire_exit(timer);
1211 	raw_spin_lock(&cpu_base->lock);
1212 
1213 	/*
1214 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1215 	 * we do not reprogramm the event hardware. Happens either in
1216 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1217 	 */
1218 	if (restart != HRTIMER_NORESTART) {
1219 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1220 		enqueue_hrtimer(timer, base);
1221 	}
1222 
1223 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1224 
1225 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1226 }
1227 
1228 #ifdef CONFIG_HIGH_RES_TIMERS
1229 
1230 /*
1231  * High resolution timer interrupt
1232  * Called with interrupts disabled
1233  */
hrtimer_interrupt(struct clock_event_device * dev)1234 void hrtimer_interrupt(struct clock_event_device *dev)
1235 {
1236 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1237 	struct hrtimer_clock_base *base;
1238 	ktime_t expires_next, now, entry_time, delta;
1239 	int i, retries = 0;
1240 
1241 	BUG_ON(!cpu_base->hres_active);
1242 	cpu_base->nr_events++;
1243 	dev->next_event.tv64 = KTIME_MAX;
1244 
1245 	entry_time = now = ktime_get();
1246 retry:
1247 	expires_next.tv64 = KTIME_MAX;
1248 
1249 	raw_spin_lock(&cpu_base->lock);
1250 	/*
1251 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1252 	 * held to prevent that a timer is enqueued in our queue via
1253 	 * the migration code. This does not affect enqueueing of
1254 	 * timers which run their callback and need to be requeued on
1255 	 * this CPU.
1256 	 */
1257 	cpu_base->expires_next.tv64 = KTIME_MAX;
1258 
1259 	base = cpu_base->clock_base;
1260 
1261 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1262 		ktime_t basenow;
1263 		struct timerqueue_node *node;
1264 
1265 		basenow = ktime_add(now, base->offset);
1266 
1267 		while ((node = timerqueue_getnext(&base->active))) {
1268 			struct hrtimer *timer;
1269 
1270 			timer = container_of(node, struct hrtimer, node);
1271 
1272 			/*
1273 			 * The immediate goal for using the softexpires is
1274 			 * minimizing wakeups, not running timers at the
1275 			 * earliest interrupt after their soft expiration.
1276 			 * This allows us to avoid using a Priority Search
1277 			 * Tree, which can answer a stabbing querry for
1278 			 * overlapping intervals and instead use the simple
1279 			 * BST we already have.
1280 			 * We don't add extra wakeups by delaying timers that
1281 			 * are right-of a not yet expired timer, because that
1282 			 * timer will have to trigger a wakeup anyway.
1283 			 */
1284 
1285 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1286 				ktime_t expires;
1287 
1288 				expires = ktime_sub(hrtimer_get_expires(timer),
1289 						    base->offset);
1290 				if (expires.tv64 < expires_next.tv64)
1291 					expires_next = expires;
1292 				break;
1293 			}
1294 
1295 			__run_hrtimer(timer, &basenow);
1296 		}
1297 		base++;
1298 	}
1299 
1300 	/*
1301 	 * Store the new expiry value so the migration code can verify
1302 	 * against it.
1303 	 */
1304 	cpu_base->expires_next = expires_next;
1305 	raw_spin_unlock(&cpu_base->lock);
1306 
1307 	/* Reprogramming necessary ? */
1308 	if (expires_next.tv64 == KTIME_MAX ||
1309 	    !tick_program_event(expires_next, 0)) {
1310 		cpu_base->hang_detected = 0;
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * The next timer was already expired due to:
1316 	 * - tracing
1317 	 * - long lasting callbacks
1318 	 * - being scheduled away when running in a VM
1319 	 *
1320 	 * We need to prevent that we loop forever in the hrtimer
1321 	 * interrupt routine. We give it 3 attempts to avoid
1322 	 * overreacting on some spurious event.
1323 	 */
1324 	now = ktime_get();
1325 	cpu_base->nr_retries++;
1326 	if (++retries < 3)
1327 		goto retry;
1328 	/*
1329 	 * Give the system a chance to do something else than looping
1330 	 * here. We stored the entry time, so we know exactly how long
1331 	 * we spent here. We schedule the next event this amount of
1332 	 * time away.
1333 	 */
1334 	cpu_base->nr_hangs++;
1335 	cpu_base->hang_detected = 1;
1336 	delta = ktime_sub(now, entry_time);
1337 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1338 		cpu_base->max_hang_time = delta;
1339 	/*
1340 	 * Limit it to a sensible value as we enforce a longer
1341 	 * delay. Give the CPU at least 100ms to catch up.
1342 	 */
1343 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1344 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1345 	else
1346 		expires_next = ktime_add(now, delta);
1347 	tick_program_event(expires_next, 1);
1348 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1349 		    ktime_to_ns(delta));
1350 }
1351 
1352 /*
1353  * local version of hrtimer_peek_ahead_timers() called with interrupts
1354  * disabled.
1355  */
__hrtimer_peek_ahead_timers(void)1356 static void __hrtimer_peek_ahead_timers(void)
1357 {
1358 	struct tick_device *td;
1359 
1360 	if (!hrtimer_hres_active())
1361 		return;
1362 
1363 	td = &__get_cpu_var(tick_cpu_device);
1364 	if (td && td->evtdev)
1365 		hrtimer_interrupt(td->evtdev);
1366 }
1367 
1368 /**
1369  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1370  *
1371  * hrtimer_peek_ahead_timers will peek at the timer queue of
1372  * the current cpu and check if there are any timers for which
1373  * the soft expires time has passed. If any such timers exist,
1374  * they are run immediately and then removed from the timer queue.
1375  *
1376  */
hrtimer_peek_ahead_timers(void)1377 void hrtimer_peek_ahead_timers(void)
1378 {
1379 	unsigned long flags;
1380 
1381 	local_irq_save(flags);
1382 	__hrtimer_peek_ahead_timers();
1383 	local_irq_restore(flags);
1384 }
1385 
run_hrtimer_softirq(struct softirq_action * h)1386 static void run_hrtimer_softirq(struct softirq_action *h)
1387 {
1388 	hrtimer_peek_ahead_timers();
1389 }
1390 
1391 #else /* CONFIG_HIGH_RES_TIMERS */
1392 
__hrtimer_peek_ahead_timers(void)1393 static inline void __hrtimer_peek_ahead_timers(void) { }
1394 
1395 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1396 
1397 /*
1398  * Called from timer softirq every jiffy, expire hrtimers:
1399  *
1400  * For HRT its the fall back code to run the softirq in the timer
1401  * softirq context in case the hrtimer initialization failed or has
1402  * not been done yet.
1403  */
hrtimer_run_pending(void)1404 void hrtimer_run_pending(void)
1405 {
1406 	if (hrtimer_hres_active())
1407 		return;
1408 
1409 	/*
1410 	 * This _is_ ugly: We have to check in the softirq context,
1411 	 * whether we can switch to highres and / or nohz mode. The
1412 	 * clocksource switch happens in the timer interrupt with
1413 	 * xtime_lock held. Notification from there only sets the
1414 	 * check bit in the tick_oneshot code, otherwise we might
1415 	 * deadlock vs. xtime_lock.
1416 	 */
1417 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1418 		hrtimer_switch_to_hres();
1419 }
1420 
1421 /*
1422  * Called from hardirq context every jiffy
1423  */
hrtimer_run_queues(void)1424 void hrtimer_run_queues(void)
1425 {
1426 	struct timerqueue_node *node;
1427 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1428 	struct hrtimer_clock_base *base;
1429 	int index, gettime = 1;
1430 
1431 	if (hrtimer_hres_active())
1432 		return;
1433 
1434 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1435 		base = &cpu_base->clock_base[index];
1436 		if (!timerqueue_getnext(&base->active))
1437 			continue;
1438 
1439 		if (gettime) {
1440 			hrtimer_get_softirq_time(cpu_base);
1441 			gettime = 0;
1442 		}
1443 
1444 		raw_spin_lock(&cpu_base->lock);
1445 
1446 		while ((node = timerqueue_getnext(&base->active))) {
1447 			struct hrtimer *timer;
1448 
1449 			timer = container_of(node, struct hrtimer, node);
1450 			if (base->softirq_time.tv64 <=
1451 					hrtimer_get_expires_tv64(timer))
1452 				break;
1453 
1454 			__run_hrtimer(timer, &base->softirq_time);
1455 		}
1456 		raw_spin_unlock(&cpu_base->lock);
1457 	}
1458 }
1459 
1460 /*
1461  * Sleep related functions:
1462  */
hrtimer_wakeup(struct hrtimer * timer)1463 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1464 {
1465 	struct hrtimer_sleeper *t =
1466 		container_of(timer, struct hrtimer_sleeper, timer);
1467 	struct task_struct *task = t->task;
1468 
1469 	t->task = NULL;
1470 	if (task)
1471 		wake_up_process(task);
1472 
1473 	return HRTIMER_NORESTART;
1474 }
1475 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1476 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1477 {
1478 	sl->timer.function = hrtimer_wakeup;
1479 	sl->task = task;
1480 }
1481 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1482 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1483 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1484 {
1485 	hrtimer_init_sleeper(t, current);
1486 
1487 	do {
1488 		set_current_state(TASK_INTERRUPTIBLE);
1489 		hrtimer_start_expires(&t->timer, mode);
1490 		if (!hrtimer_active(&t->timer))
1491 			t->task = NULL;
1492 
1493 		if (likely(t->task))
1494 			schedule();
1495 
1496 		hrtimer_cancel(&t->timer);
1497 		mode = HRTIMER_MODE_ABS;
1498 
1499 	} while (t->task && !signal_pending(current));
1500 
1501 	__set_current_state(TASK_RUNNING);
1502 
1503 	return t->task == NULL;
1504 }
1505 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1506 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1507 {
1508 	struct timespec rmt;
1509 	ktime_t rem;
1510 
1511 	rem = hrtimer_expires_remaining(timer);
1512 	if (rem.tv64 <= 0)
1513 		return 0;
1514 	rmt = ktime_to_timespec(rem);
1515 
1516 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1517 		return -EFAULT;
1518 
1519 	return 1;
1520 }
1521 
hrtimer_nanosleep_restart(struct restart_block * restart)1522 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1523 {
1524 	struct hrtimer_sleeper t;
1525 	struct timespec __user  *rmtp;
1526 	int ret = 0;
1527 
1528 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1529 				HRTIMER_MODE_ABS);
1530 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1531 
1532 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1533 		goto out;
1534 
1535 	rmtp = restart->nanosleep.rmtp;
1536 	if (rmtp) {
1537 		ret = update_rmtp(&t.timer, rmtp);
1538 		if (ret <= 0)
1539 			goto out;
1540 	}
1541 
1542 	/* The other values in restart are already filled in */
1543 	ret = -ERESTART_RESTARTBLOCK;
1544 out:
1545 	destroy_hrtimer_on_stack(&t.timer);
1546 	return ret;
1547 }
1548 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1549 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1550 		       const enum hrtimer_mode mode, const clockid_t clockid)
1551 {
1552 	struct restart_block *restart;
1553 	struct hrtimer_sleeper t;
1554 	int ret = 0;
1555 	unsigned long slack;
1556 
1557 	slack = current->timer_slack_ns;
1558 	if (rt_task(current))
1559 		slack = 0;
1560 
1561 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1562 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1563 	if (do_nanosleep(&t, mode))
1564 		goto out;
1565 
1566 	/* Absolute timers do not update the rmtp value and restart: */
1567 	if (mode == HRTIMER_MODE_ABS) {
1568 		ret = -ERESTARTNOHAND;
1569 		goto out;
1570 	}
1571 
1572 	if (rmtp) {
1573 		ret = update_rmtp(&t.timer, rmtp);
1574 		if (ret <= 0)
1575 			goto out;
1576 	}
1577 
1578 	restart = &current_thread_info()->restart_block;
1579 	restart->fn = hrtimer_nanosleep_restart;
1580 	restart->nanosleep.index = t.timer.base->index;
1581 	restart->nanosleep.rmtp = rmtp;
1582 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1583 
1584 	ret = -ERESTART_RESTARTBLOCK;
1585 out:
1586 	destroy_hrtimer_on_stack(&t.timer);
1587 	return ret;
1588 }
1589 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1590 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1591 		struct timespec __user *, rmtp)
1592 {
1593 	struct timespec tu;
1594 
1595 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1596 		return -EFAULT;
1597 
1598 	if (!timespec_valid(&tu))
1599 		return -EINVAL;
1600 
1601 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1602 }
1603 
1604 /*
1605  * Functions related to boot-time initialization:
1606  */
init_hrtimers_cpu(int cpu)1607 static void __cpuinit init_hrtimers_cpu(int cpu)
1608 {
1609 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1610 	int i;
1611 
1612 	raw_spin_lock_init(&cpu_base->lock);
1613 
1614 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1615 		cpu_base->clock_base[i].cpu_base = cpu_base;
1616 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1617 	}
1618 
1619 	hrtimer_init_hres(cpu_base);
1620 }
1621 
1622 #ifdef CONFIG_HOTPLUG_CPU
1623 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1624 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1625 				struct hrtimer_clock_base *new_base)
1626 {
1627 	struct hrtimer *timer;
1628 	struct timerqueue_node *node;
1629 
1630 	while ((node = timerqueue_getnext(&old_base->active))) {
1631 		timer = container_of(node, struct hrtimer, node);
1632 		BUG_ON(hrtimer_callback_running(timer));
1633 		debug_deactivate(timer);
1634 
1635 		/*
1636 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1637 		 * timer could be seen as !active and just vanish away
1638 		 * under us on another CPU
1639 		 */
1640 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1641 		timer->base = new_base;
1642 		/*
1643 		 * Enqueue the timers on the new cpu. This does not
1644 		 * reprogram the event device in case the timer
1645 		 * expires before the earliest on this CPU, but we run
1646 		 * hrtimer_interrupt after we migrated everything to
1647 		 * sort out already expired timers and reprogram the
1648 		 * event device.
1649 		 */
1650 		enqueue_hrtimer(timer, new_base);
1651 
1652 		/* Clear the migration state bit */
1653 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1654 	}
1655 }
1656 
migrate_hrtimers(int scpu)1657 static void migrate_hrtimers(int scpu)
1658 {
1659 	struct hrtimer_cpu_base *old_base, *new_base;
1660 	int i;
1661 
1662 	BUG_ON(cpu_online(scpu));
1663 	tick_cancel_sched_timer(scpu);
1664 
1665 	local_irq_disable();
1666 	old_base = &per_cpu(hrtimer_bases, scpu);
1667 	new_base = &__get_cpu_var(hrtimer_bases);
1668 	/*
1669 	 * The caller is globally serialized and nobody else
1670 	 * takes two locks at once, deadlock is not possible.
1671 	 */
1672 	raw_spin_lock(&new_base->lock);
1673 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1674 
1675 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1676 		migrate_hrtimer_list(&old_base->clock_base[i],
1677 				     &new_base->clock_base[i]);
1678 	}
1679 
1680 	raw_spin_unlock(&old_base->lock);
1681 	raw_spin_unlock(&new_base->lock);
1682 
1683 	/* Check, if we got expired work to do */
1684 	__hrtimer_peek_ahead_timers();
1685 	local_irq_enable();
1686 }
1687 
1688 #endif /* CONFIG_HOTPLUG_CPU */
1689 
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1690 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1691 					unsigned long action, void *hcpu)
1692 {
1693 	int scpu = (long)hcpu;
1694 
1695 	switch (action) {
1696 
1697 	case CPU_UP_PREPARE:
1698 	case CPU_UP_PREPARE_FROZEN:
1699 		init_hrtimers_cpu(scpu);
1700 		break;
1701 
1702 #ifdef CONFIG_HOTPLUG_CPU
1703 	case CPU_DYING:
1704 	case CPU_DYING_FROZEN:
1705 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1706 		break;
1707 	case CPU_DEAD:
1708 	case CPU_DEAD_FROZEN:
1709 	{
1710 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1711 		migrate_hrtimers(scpu);
1712 		break;
1713 	}
1714 #endif
1715 
1716 	default:
1717 		break;
1718 	}
1719 
1720 	return NOTIFY_OK;
1721 }
1722 
1723 static struct notifier_block __cpuinitdata hrtimers_nb = {
1724 	.notifier_call = hrtimer_cpu_notify,
1725 };
1726 
hrtimers_init(void)1727 void __init hrtimers_init(void)
1728 {
1729 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1730 			  (void *)(long)smp_processor_id());
1731 	register_cpu_notifier(&hrtimers_nb);
1732 #ifdef CONFIG_HIGH_RES_TIMERS
1733 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1734 #endif
1735 }
1736 
1737 /**
1738  * schedule_hrtimeout_range_clock - sleep until timeout
1739  * @expires:	timeout value (ktime_t)
1740  * @delta:	slack in expires timeout (ktime_t)
1741  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1743  */
1744 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode,int clock)1745 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1746 			       const enum hrtimer_mode mode, int clock)
1747 {
1748 	struct hrtimer_sleeper t;
1749 
1750 	/*
1751 	 * Optimize when a zero timeout value is given. It does not
1752 	 * matter whether this is an absolute or a relative time.
1753 	 */
1754 	if (expires && !expires->tv64) {
1755 		__set_current_state(TASK_RUNNING);
1756 		return 0;
1757 	}
1758 
1759 	/*
1760 	 * A NULL parameter means "infinite"
1761 	 */
1762 	if (!expires) {
1763 		schedule();
1764 		__set_current_state(TASK_RUNNING);
1765 		return -EINTR;
1766 	}
1767 
1768 	hrtimer_init_on_stack(&t.timer, clock, mode);
1769 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1770 
1771 	hrtimer_init_sleeper(&t, current);
1772 
1773 	hrtimer_start_expires(&t.timer, mode);
1774 	if (!hrtimer_active(&t.timer))
1775 		t.task = NULL;
1776 
1777 	if (likely(t.task))
1778 		schedule();
1779 
1780 	hrtimer_cancel(&t.timer);
1781 	destroy_hrtimer_on_stack(&t.timer);
1782 
1783 	__set_current_state(TASK_RUNNING);
1784 
1785 	return !t.task ? 0 : -EINTR;
1786 }
1787 
1788 /**
1789  * schedule_hrtimeout_range - sleep until timeout
1790  * @expires:	timeout value (ktime_t)
1791  * @delta:	slack in expires timeout (ktime_t)
1792  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1793  *
1794  * Make the current task sleep until the given expiry time has
1795  * elapsed. The routine will return immediately unless
1796  * the current task state has been set (see set_current_state()).
1797  *
1798  * The @delta argument gives the kernel the freedom to schedule the
1799  * actual wakeup to a time that is both power and performance friendly.
1800  * The kernel give the normal best effort behavior for "@expires+@delta",
1801  * but may decide to fire the timer earlier, but no earlier than @expires.
1802  *
1803  * You can set the task state as follows -
1804  *
1805  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1806  * pass before the routine returns.
1807  *
1808  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1809  * delivered to the current task.
1810  *
1811  * The current task state is guaranteed to be TASK_RUNNING when this
1812  * routine returns.
1813  *
1814  * Returns 0 when the timer has expired otherwise -EINTR
1815  */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1816 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1817 				     const enum hrtimer_mode mode)
1818 {
1819 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1820 					      CLOCK_MONOTONIC);
1821 }
1822 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1823 
1824 /**
1825  * schedule_hrtimeout - sleep until timeout
1826  * @expires:	timeout value (ktime_t)
1827  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1828  *
1829  * Make the current task sleep until the given expiry time has
1830  * elapsed. The routine will return immediately unless
1831  * the current task state has been set (see set_current_state()).
1832  *
1833  * You can set the task state as follows -
1834  *
1835  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1836  * pass before the routine returns.
1837  *
1838  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1839  * delivered to the current task.
1840  *
1841  * The current task state is guaranteed to be TASK_RUNNING when this
1842  * routine returns.
1843  *
1844  * Returns 0 when the timer has expired otherwise -EINTR
1845  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1846 int __sched schedule_hrtimeout(ktime_t *expires,
1847 			       const enum hrtimer_mode mode)
1848 {
1849 	return schedule_hrtimeout_range(expires, 0, mode);
1850 }
1851 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1852