1 /*
2 * Copyright (c) 2016 Hisilicon Limited.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/vmalloc.h>
35 #include <rdma/ib_umem.h>
36 #include "hns_roce_device.h"
37 #include "hns_roce_cmd.h"
38 #include "hns_roce_hem.h"
39
hw_index_to_key(int ind)40 static u32 hw_index_to_key(int ind)
41 {
42 return ((u32)ind >> 24) | ((u32)ind << 8);
43 }
44
key_to_hw_index(u32 key)45 unsigned long key_to_hw_index(u32 key)
46 {
47 return (key << 24) | (key >> 8);
48 }
49
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)50 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
51 {
52 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
53 struct ib_device *ibdev = &hr_dev->ib_dev;
54 int err;
55 int id;
56
57 /* Allocate a key for mr from mr_table */
58 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
59 GFP_KERNEL);
60 if (id < 0) {
61 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
62 return -ENOMEM;
63 }
64
65 mr->key = hw_index_to_key(id); /* MR key */
66
67 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
68 (unsigned long)id);
69 if (err) {
70 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
71 goto err_free_bitmap;
72 }
73
74 return 0;
75 err_free_bitmap:
76 ida_free(&mtpt_ida->ida, id);
77 return err;
78 }
79
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)80 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
81 {
82 unsigned long obj = key_to_hw_index(mr->key);
83
84 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
85 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
86 }
87
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)88 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
89 struct ib_udata *udata, u64 start)
90 {
91 struct ib_device *ibdev = &hr_dev->ib_dev;
92 bool is_fast = mr->type == MR_TYPE_FRMR;
93 struct hns_roce_buf_attr buf_attr = {};
94 int err;
95
96 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
97 buf_attr.page_shift = is_fast ? PAGE_SHIFT :
98 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
99 buf_attr.region[0].size = mr->size;
100 buf_attr.region[0].hopnum = mr->pbl_hop_num;
101 buf_attr.region_count = 1;
102 buf_attr.user_access = mr->access;
103 /* fast MR's buffer is alloced before mapping, not at creation */
104 buf_attr.mtt_only = is_fast;
105
106 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
107 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
108 udata, start);
109 if (err)
110 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
111 else
112 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
113
114 return err;
115 }
116
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)117 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
118 {
119 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
120 }
121
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)122 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
123 {
124 struct ib_device *ibdev = &hr_dev->ib_dev;
125 int ret;
126
127 if (mr->enabled) {
128 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
129 key_to_hw_index(mr->key) &
130 (hr_dev->caps.num_mtpts - 1));
131 if (ret)
132 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
133 ret);
134 }
135
136 free_mr_pbl(hr_dev, mr);
137 free_mr_key(hr_dev, mr);
138 }
139
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)140 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
141 struct hns_roce_mr *mr)
142 {
143 unsigned long mtpt_idx = key_to_hw_index(mr->key);
144 struct hns_roce_cmd_mailbox *mailbox;
145 struct device *dev = hr_dev->dev;
146 int ret;
147
148 /* Allocate mailbox memory */
149 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
150 if (IS_ERR(mailbox))
151 return PTR_ERR(mailbox);
152
153 if (mr->type != MR_TYPE_FRMR)
154 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
155 else
156 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
157 if (ret) {
158 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
159 goto err_page;
160 }
161
162 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
163 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
164 if (ret) {
165 dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
166 goto err_page;
167 }
168
169 mr->enabled = 1;
170
171 err_page:
172 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
173
174 return ret;
175 }
176
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)177 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
178 {
179 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
180
181 ida_init(&mtpt_ida->ida);
182 mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
183 mtpt_ida->min = hr_dev->caps.reserved_mrws;
184 }
185
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)186 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
187 {
188 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
189 struct hns_roce_mr *mr;
190 int ret;
191
192 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
193 if (mr == NULL)
194 return ERR_PTR(-ENOMEM);
195
196 mr->type = MR_TYPE_DMA;
197 mr->pd = to_hr_pd(pd)->pdn;
198 mr->access = acc;
199
200 /* Allocate memory region key */
201 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
202 ret = alloc_mr_key(hr_dev, mr);
203 if (ret)
204 goto err_free;
205
206 ret = hns_roce_mr_enable(hr_dev, mr);
207 if (ret)
208 goto err_mr;
209
210 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
211
212 return &mr->ibmr;
213 err_mr:
214 free_mr_key(hr_dev, mr);
215
216 err_free:
217 kfree(mr);
218 return ERR_PTR(ret);
219 }
220
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)221 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
222 u64 virt_addr, int access_flags,
223 struct ib_udata *udata)
224 {
225 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
226 struct hns_roce_mr *mr;
227 int ret;
228
229 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
230 if (!mr)
231 return ERR_PTR(-ENOMEM);
232
233 mr->iova = virt_addr;
234 mr->size = length;
235 mr->pd = to_hr_pd(pd)->pdn;
236 mr->access = access_flags;
237 mr->type = MR_TYPE_MR;
238
239 ret = alloc_mr_key(hr_dev, mr);
240 if (ret)
241 goto err_alloc_mr;
242
243 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
244 if (ret)
245 goto err_alloc_key;
246
247 ret = hns_roce_mr_enable(hr_dev, mr);
248 if (ret)
249 goto err_alloc_pbl;
250
251 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
252 mr->ibmr.length = length;
253
254 return &mr->ibmr;
255
256 err_alloc_pbl:
257 free_mr_pbl(hr_dev, mr);
258 err_alloc_key:
259 free_mr_key(hr_dev, mr);
260 err_alloc_mr:
261 kfree(mr);
262 return ERR_PTR(ret);
263 }
264
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)265 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
266 u64 length, u64 virt_addr,
267 int mr_access_flags, struct ib_pd *pd,
268 struct ib_udata *udata)
269 {
270 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
271 struct ib_device *ib_dev = &hr_dev->ib_dev;
272 struct hns_roce_mr *mr = to_hr_mr(ibmr);
273 struct hns_roce_cmd_mailbox *mailbox;
274 unsigned long mtpt_idx;
275 int ret;
276
277 if (!mr->enabled)
278 return ERR_PTR(-EINVAL);
279
280 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
281 if (IS_ERR(mailbox))
282 return ERR_CAST(mailbox);
283
284 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
285
286 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
287 mtpt_idx);
288 if (ret)
289 goto free_cmd_mbox;
290
291 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
292 mtpt_idx);
293 if (ret)
294 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
295
296 mr->enabled = 0;
297 mr->iova = virt_addr;
298 mr->size = length;
299
300 if (flags & IB_MR_REREG_PD)
301 mr->pd = to_hr_pd(pd)->pdn;
302
303 if (flags & IB_MR_REREG_ACCESS)
304 mr->access = mr_access_flags;
305
306 if (flags & IB_MR_REREG_TRANS) {
307 free_mr_pbl(hr_dev, mr);
308 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
309 if (ret) {
310 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
311 ret);
312 goto free_cmd_mbox;
313 }
314 }
315
316 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
317 if (ret) {
318 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
319 goto free_cmd_mbox;
320 }
321
322 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
323 mtpt_idx);
324 if (ret) {
325 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
326 goto free_cmd_mbox;
327 }
328
329 mr->enabled = 1;
330
331 free_cmd_mbox:
332 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
333
334 if (ret)
335 return ERR_PTR(ret);
336 return NULL;
337 }
338
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)339 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
340 {
341 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
342 struct hns_roce_mr *mr = to_hr_mr(ibmr);
343
344 if (hr_dev->hw->dereg_mr)
345 hr_dev->hw->dereg_mr(hr_dev);
346
347 hns_roce_mr_free(hr_dev, mr);
348 kfree(mr);
349
350 return 0;
351 }
352
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)353 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
354 u32 max_num_sg)
355 {
356 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
357 struct device *dev = hr_dev->dev;
358 struct hns_roce_mr *mr;
359 int ret;
360
361 if (mr_type != IB_MR_TYPE_MEM_REG)
362 return ERR_PTR(-EINVAL);
363
364 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
365 dev_err(dev, "max_num_sg larger than %d\n",
366 HNS_ROCE_FRMR_MAX_PA);
367 return ERR_PTR(-EINVAL);
368 }
369
370 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
371 if (!mr)
372 return ERR_PTR(-ENOMEM);
373
374 mr->type = MR_TYPE_FRMR;
375 mr->pd = to_hr_pd(pd)->pdn;
376 mr->size = max_num_sg * (1 << PAGE_SHIFT);
377
378 /* Allocate memory region key */
379 ret = alloc_mr_key(hr_dev, mr);
380 if (ret)
381 goto err_free;
382
383 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
384 if (ret)
385 goto err_key;
386
387 ret = hns_roce_mr_enable(hr_dev, mr);
388 if (ret)
389 goto err_pbl;
390
391 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
392 mr->ibmr.length = mr->size;
393
394 return &mr->ibmr;
395
396 err_key:
397 free_mr_key(hr_dev, mr);
398 err_pbl:
399 free_mr_pbl(hr_dev, mr);
400 err_free:
401 kfree(mr);
402 return ERR_PTR(ret);
403 }
404
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)405 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
406 {
407 struct hns_roce_mr *mr = to_hr_mr(ibmr);
408
409 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
410 mr->page_list[mr->npages++] = addr;
411 return 0;
412 }
413
414 return -ENOBUFS;
415 }
416
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)417 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
418 unsigned int *sg_offset)
419 {
420 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
421 struct ib_device *ibdev = &hr_dev->ib_dev;
422 struct hns_roce_mr *mr = to_hr_mr(ibmr);
423 struct hns_roce_mtr *mtr = &mr->pbl_mtr;
424 int ret = 0;
425
426 mr->npages = 0;
427 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
428 sizeof(dma_addr_t), GFP_KERNEL);
429 if (!mr->page_list)
430 return ret;
431
432 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
433 if (ret < 1) {
434 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
435 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
436 goto err_page_list;
437 }
438
439 mtr->hem_cfg.region[0].offset = 0;
440 mtr->hem_cfg.region[0].count = mr->npages;
441 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
442 mtr->hem_cfg.region_count = 1;
443 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
444 if (ret) {
445 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
446 ret = 0;
447 } else {
448 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
449 ret = mr->npages;
450 }
451
452 err_page_list:
453 kvfree(mr->page_list);
454 mr->page_list = NULL;
455
456 return ret;
457 }
458
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)459 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
460 struct hns_roce_mw *mw)
461 {
462 struct device *dev = hr_dev->dev;
463 int ret;
464
465 if (mw->enabled) {
466 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
467 key_to_hw_index(mw->rkey) &
468 (hr_dev->caps.num_mtpts - 1));
469 if (ret)
470 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
471
472 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
473 key_to_hw_index(mw->rkey));
474 }
475
476 ida_free(&hr_dev->mr_table.mtpt_ida.ida,
477 (int)key_to_hw_index(mw->rkey));
478 }
479
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)480 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
481 struct hns_roce_mw *mw)
482 {
483 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
484 struct hns_roce_cmd_mailbox *mailbox;
485 struct device *dev = hr_dev->dev;
486 unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
487 int ret;
488
489 /* prepare HEM entry memory */
490 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
491 if (ret)
492 return ret;
493
494 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
495 if (IS_ERR(mailbox)) {
496 ret = PTR_ERR(mailbox);
497 goto err_table;
498 }
499
500 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
501 if (ret) {
502 dev_err(dev, "MW write mtpt fail!\n");
503 goto err_page;
504 }
505
506 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
507 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
508 if (ret) {
509 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
510 goto err_page;
511 }
512
513 mw->enabled = 1;
514
515 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
516
517 return 0;
518
519 err_page:
520 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
521
522 err_table:
523 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
524
525 return ret;
526 }
527
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)528 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
529 {
530 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
531 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
532 struct ib_device *ibdev = &hr_dev->ib_dev;
533 struct hns_roce_mw *mw = to_hr_mw(ibmw);
534 int ret;
535 int id;
536
537 /* Allocate a key for mw from mr_table */
538 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
539 GFP_KERNEL);
540 if (id < 0) {
541 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
542 return -ENOMEM;
543 }
544
545 mw->rkey = hw_index_to_key(id);
546
547 ibmw->rkey = mw->rkey;
548 mw->pdn = to_hr_pd(ibmw->pd)->pdn;
549 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
550 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
551 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
552
553 ret = hns_roce_mw_enable(hr_dev, mw);
554 if (ret)
555 goto err_mw;
556
557 return 0;
558
559 err_mw:
560 hns_roce_mw_free(hr_dev, mw);
561 return ret;
562 }
563
hns_roce_dealloc_mw(struct ib_mw * ibmw)564 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
565 {
566 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
567 struct hns_roce_mw *mw = to_hr_mw(ibmw);
568
569 hns_roce_mw_free(hr_dev, mw);
570 return 0;
571 }
572
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)573 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
574 struct hns_roce_buf_region *region, dma_addr_t *pages,
575 int max_count)
576 {
577 int count, npage;
578 int offset, end;
579 __le64 *mtts;
580 u64 addr;
581 int i;
582
583 offset = region->offset;
584 end = offset + region->count;
585 npage = 0;
586 while (offset < end && npage < max_count) {
587 count = 0;
588 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
589 offset, &count, NULL);
590 if (!mtts)
591 return -ENOBUFS;
592
593 for (i = 0; i < count && npage < max_count; i++) {
594 addr = pages[npage];
595
596 mtts[i] = cpu_to_le64(addr);
597 npage++;
598 }
599 offset += count;
600 }
601
602 return npage;
603 }
604
mtr_has_mtt(struct hns_roce_buf_attr * attr)605 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
606 {
607 int i;
608
609 for (i = 0; i < attr->region_count; i++)
610 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
611 attr->region[i].hopnum > 0)
612 return true;
613
614 /* because the mtr only one root base address, when hopnum is 0 means
615 * root base address equals the first buffer address, thus all alloced
616 * memory must in a continuous space accessed by direct mode.
617 */
618 return false;
619 }
620
mtr_bufs_size(struct hns_roce_buf_attr * attr)621 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
622 {
623 size_t size = 0;
624 int i;
625
626 for (i = 0; i < attr->region_count; i++)
627 size += attr->region[i].size;
628
629 return size;
630 }
631
632 /*
633 * check the given pages in continuous address space
634 * Returns 0 on success, or the error page num.
635 */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)636 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
637 unsigned int page_shift)
638 {
639 size_t page_size = 1 << page_shift;
640 int i;
641
642 for (i = 1; i < page_count; i++)
643 if (pages[i] - pages[i - 1] != page_size)
644 return i;
645
646 return 0;
647 }
648
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)649 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
650 {
651 /* release user buffers */
652 if (mtr->umem) {
653 ib_umem_release(mtr->umem);
654 mtr->umem = NULL;
655 }
656
657 /* release kernel buffers */
658 if (mtr->kmem) {
659 hns_roce_buf_free(hr_dev, mtr->kmem);
660 mtr->kmem = NULL;
661 }
662 }
663
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)664 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
665 struct hns_roce_buf_attr *buf_attr,
666 struct ib_udata *udata, unsigned long user_addr)
667 {
668 struct ib_device *ibdev = &hr_dev->ib_dev;
669 size_t total_size;
670
671 total_size = mtr_bufs_size(buf_attr);
672
673 if (udata) {
674 mtr->kmem = NULL;
675 mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
676 buf_attr->user_access);
677 if (IS_ERR_OR_NULL(mtr->umem)) {
678 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
679 PTR_ERR(mtr->umem));
680 return -ENOMEM;
681 }
682 } else {
683 mtr->umem = NULL;
684 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
685 buf_attr->page_shift,
686 mtr->hem_cfg.is_direct ?
687 HNS_ROCE_BUF_DIRECT : 0);
688 if (IS_ERR(mtr->kmem)) {
689 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
690 PTR_ERR(mtr->kmem));
691 return PTR_ERR(mtr->kmem);
692 }
693 }
694
695 return 0;
696 }
697
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,int page_count,unsigned int page_shift)698 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
699 int page_count, unsigned int page_shift)
700 {
701 struct ib_device *ibdev = &hr_dev->ib_dev;
702 dma_addr_t *pages;
703 int npage;
704 int ret;
705
706 /* alloc a tmp array to store buffer's dma address */
707 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
708 if (!pages)
709 return -ENOMEM;
710
711 if (mtr->umem)
712 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
713 mtr->umem, page_shift);
714 else
715 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
716 mtr->kmem, page_shift);
717
718 if (npage != page_count) {
719 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
720 page_count);
721 ret = -ENOBUFS;
722 goto err_alloc_list;
723 }
724
725 if (mtr->hem_cfg.is_direct && npage > 1) {
726 ret = mtr_check_direct_pages(pages, npage, page_shift);
727 if (ret) {
728 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
729 mtr->umem ? "umtr" : "kmtr", ret, npage);
730 ret = -ENOBUFS;
731 goto err_alloc_list;
732 }
733 }
734
735 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
736 if (ret)
737 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
738
739 err_alloc_list:
740 kvfree(pages);
741
742 return ret;
743 }
744
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)745 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
746 dma_addr_t *pages, unsigned int page_cnt)
747 {
748 struct ib_device *ibdev = &hr_dev->ib_dev;
749 struct hns_roce_buf_region *r;
750 unsigned int i, mapped_cnt;
751 int ret = 0;
752
753 /*
754 * Only use the first page address as root ba when hopnum is 0, this
755 * is because the addresses of all pages are consecutive in this case.
756 */
757 if (mtr->hem_cfg.is_direct) {
758 mtr->hem_cfg.root_ba = pages[0];
759 return 0;
760 }
761
762 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
763 mapped_cnt < page_cnt; i++) {
764 r = &mtr->hem_cfg.region[i];
765 /* if hopnum is 0, no need to map pages in this region */
766 if (!r->hopnum) {
767 mapped_cnt += r->count;
768 continue;
769 }
770
771 if (r->offset + r->count > page_cnt) {
772 ret = -EINVAL;
773 ibdev_err(ibdev,
774 "failed to check mtr%u count %u + %u > %u.\n",
775 i, r->offset, r->count, page_cnt);
776 return ret;
777 }
778
779 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
780 page_cnt - mapped_cnt);
781 if (ret < 0) {
782 ibdev_err(ibdev,
783 "failed to map mtr%u offset %u, ret = %d.\n",
784 i, r->offset, ret);
785 return ret;
786 }
787 mapped_cnt += ret;
788 ret = 0;
789 }
790
791 if (mapped_cnt < page_cnt) {
792 ret = -ENOBUFS;
793 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
794 mapped_cnt, page_cnt);
795 }
796
797 return ret;
798 }
799
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max,u64 * base_addr)800 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
801 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
802 {
803 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
804 int mtt_count, left;
805 u32 start_index;
806 int total = 0;
807 __le64 *mtts;
808 u32 npage;
809 u64 addr;
810
811 if (!mtt_buf || mtt_max < 1)
812 goto done;
813
814 /* no mtt memory in direct mode, so just return the buffer address */
815 if (cfg->is_direct) {
816 start_index = offset >> HNS_HW_PAGE_SHIFT;
817 for (mtt_count = 0; mtt_count < cfg->region_count &&
818 total < mtt_max; mtt_count++) {
819 npage = cfg->region[mtt_count].offset;
820 if (npage < start_index)
821 continue;
822
823 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
824 mtt_buf[total] = addr;
825
826 total++;
827 }
828
829 goto done;
830 }
831
832 start_index = offset >> cfg->buf_pg_shift;
833 left = mtt_max;
834 while (left > 0) {
835 mtt_count = 0;
836 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
837 start_index + total,
838 &mtt_count, NULL);
839 if (!mtts || !mtt_count)
840 goto done;
841
842 npage = min(mtt_count, left);
843 left -= npage;
844 for (mtt_count = 0; mtt_count < npage; mtt_count++)
845 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
846 }
847
848 done:
849 if (base_addr)
850 *base_addr = cfg->root_ba;
851
852 return total;
853 }
854
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr,struct hns_roce_hem_cfg * cfg,unsigned int * buf_page_shift,u64 unalinged_size)855 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
856 struct hns_roce_buf_attr *attr,
857 struct hns_roce_hem_cfg *cfg,
858 unsigned int *buf_page_shift, u64 unalinged_size)
859 {
860 struct hns_roce_buf_region *r;
861 u64 first_region_padding;
862 int page_cnt, region_cnt;
863 unsigned int page_shift;
864 size_t buf_size;
865
866 /* If mtt is disabled, all pages must be within a continuous range */
867 cfg->is_direct = !mtr_has_mtt(attr);
868 buf_size = mtr_bufs_size(attr);
869 if (cfg->is_direct) {
870 /* When HEM buffer uses 0-level addressing, the page size is
871 * equal to the whole buffer size, and we split the buffer into
872 * small pages which is used to check whether the adjacent
873 * units are in the continuous space and its size is fixed to
874 * 4K based on hns ROCEE's requirement.
875 */
876 page_shift = HNS_HW_PAGE_SHIFT;
877
878 /* The ROCEE requires the page size to be 4K * 2 ^ N. */
879 cfg->buf_pg_count = 1;
880 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
881 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
882 first_region_padding = 0;
883 } else {
884 page_shift = attr->page_shift;
885 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
886 1 << page_shift);
887 cfg->buf_pg_shift = page_shift;
888 first_region_padding = unalinged_size;
889 }
890
891 /* Convert buffer size to page index and page count for each region and
892 * the buffer's offset needs to be appended to the first region.
893 */
894 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
895 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
896 r = &cfg->region[region_cnt];
897 r->offset = page_cnt;
898 buf_size = hr_hw_page_align(attr->region[region_cnt].size +
899 first_region_padding);
900 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
901 first_region_padding = 0;
902 page_cnt += r->count;
903 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
904 r->count);
905 }
906
907 cfg->region_count = region_cnt;
908 *buf_page_shift = page_shift;
909
910 return page_cnt;
911 }
912
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)913 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
914 unsigned int ba_page_shift)
915 {
916 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
917 int ret;
918
919 hns_roce_hem_list_init(&mtr->hem_list);
920 if (!cfg->is_direct) {
921 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
922 cfg->region, cfg->region_count,
923 ba_page_shift);
924 if (ret)
925 return ret;
926 cfg->root_ba = mtr->hem_list.root_ba;
927 cfg->ba_pg_shift = ba_page_shift;
928 } else {
929 cfg->ba_pg_shift = cfg->buf_pg_shift;
930 }
931
932 return 0;
933 }
934
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)935 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
936 {
937 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
938 }
939
940 /**
941 * hns_roce_mtr_create - Create hns memory translate region.
942 *
943 * @hr_dev: RoCE device struct pointer
944 * @mtr: memory translate region
945 * @buf_attr: buffer attribute for creating mtr
946 * @ba_page_shift: page shift for multi-hop base address table
947 * @udata: user space context, if it's NULL, means kernel space
948 * @user_addr: userspace virtual address to start at
949 */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)950 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
951 struct hns_roce_buf_attr *buf_attr,
952 unsigned int ba_page_shift, struct ib_udata *udata,
953 unsigned long user_addr)
954 {
955 struct ib_device *ibdev = &hr_dev->ib_dev;
956 unsigned int buf_page_shift = 0;
957 int buf_page_cnt;
958 int ret;
959
960 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
961 &buf_page_shift,
962 udata ? user_addr & ~PAGE_MASK : 0);
963 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
964 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
965 buf_page_cnt, buf_page_shift);
966 return -EINVAL;
967 }
968
969 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
970 if (ret) {
971 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
972 return ret;
973 }
974
975 /* The caller has its own buffer list and invokes the hns_roce_mtr_map()
976 * to finish the MTT configuration.
977 */
978 if (buf_attr->mtt_only) {
979 mtr->umem = NULL;
980 mtr->kmem = NULL;
981 return 0;
982 }
983
984 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
985 if (ret) {
986 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
987 goto err_alloc_mtt;
988 }
989
990 /* Write buffer's dma address to MTT */
991 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
992 if (ret)
993 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
994 else
995 return 0;
996
997 mtr_free_bufs(hr_dev, mtr);
998 err_alloc_mtt:
999 mtr_free_mtt(hr_dev, mtr);
1000 return ret;
1001 }
1002
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1003 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1004 {
1005 /* release multi-hop addressing resource */
1006 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1007
1008 /* free buffers */
1009 mtr_free_bufs(hr_dev, mtr);
1010 }
1011