1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28
29 #include <asm/apic.h>
30 #include <asm/pvclock-abi.h>
31 #include <asm/desc.h>
32 #include <asm/mtrr.h>
33 #include <asm/msr-index.h>
34 #include <asm/asm.h>
35 #include <asm/kvm_page_track.h>
36 #include <asm/kvm_vcpu_regs.h>
37 #include <asm/hyperv-tlfs.h>
38
39 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
40
41 #define KVM_MAX_VCPUS 1024
42
43 /*
44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45 * might be larger than the actual number of VCPUs because the
46 * APIC ID encodes CPU topology information.
47 *
48 * In the worst case, we'll need less than one extra bit for the
49 * Core ID, and less than one extra bit for the Package (Die) ID,
50 * so ratio of 4 should be enough.
51 */
52 #define KVM_VCPU_ID_RATIO 4
53 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54
55 /* memory slots that are not exposed to userspace */
56 #define KVM_INTERNAL_MEM_SLOTS 3
57
58 #define KVM_HALT_POLL_NS_DEFAULT 200000
59
60 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
61
62 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 KVM_DIRTY_LOG_INITIALLY_SET)
64
65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
66 KVM_BUS_LOCK_DETECTION_EXIT)
67
68 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
69 KVM_X86_NOTIFY_VMEXIT_USER)
70
71 /* x86-specific vcpu->requests bit members */
72 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
73 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
74 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
75 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
76 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
77 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
78 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
79 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
80 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
81 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
82 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
83 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
84 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
85 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
86 #define KVM_REQ_MCLOCK_INPROGRESS \
87 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
88 #define KVM_REQ_SCAN_IOAPIC \
89 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
91 #define KVM_REQ_APIC_PAGE_RELOAD \
92 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
94 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
95 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
96 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
97 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
98 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
99 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
100 #define KVM_REQ_APICV_UPDATE \
101 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
103 #define KVM_REQ_TLB_FLUSH_GUEST \
104 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
106 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
107 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
108 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
110 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
111
112 #define CR0_RESERVED_BITS \
113 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
114 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
115 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
116
117 #define CR4_RESERVED_BITS \
118 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
119 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
120 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
121 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
122 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
123 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
124
125 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
126
127
128
129 #define INVALID_PAGE (~(hpa_t)0)
130 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
131
132 #define INVALID_GPA (~(gpa_t)0)
133
134 /* KVM Hugepage definitions for x86 */
135 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
136 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
137 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
138 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
139 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
140 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
141 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
142
143 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
144 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
145 #define KVM_MMU_HASH_SHIFT 12
146 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
147 #define KVM_MIN_FREE_MMU_PAGES 5
148 #define KVM_REFILL_PAGES 25
149 #define KVM_MAX_CPUID_ENTRIES 256
150 #define KVM_NR_FIXED_MTRR_REGION 88
151 #define KVM_NR_VAR_MTRR 8
152
153 #define ASYNC_PF_PER_VCPU 64
154
155 enum kvm_reg {
156 VCPU_REGS_RAX = __VCPU_REGS_RAX,
157 VCPU_REGS_RCX = __VCPU_REGS_RCX,
158 VCPU_REGS_RDX = __VCPU_REGS_RDX,
159 VCPU_REGS_RBX = __VCPU_REGS_RBX,
160 VCPU_REGS_RSP = __VCPU_REGS_RSP,
161 VCPU_REGS_RBP = __VCPU_REGS_RBP,
162 VCPU_REGS_RSI = __VCPU_REGS_RSI,
163 VCPU_REGS_RDI = __VCPU_REGS_RDI,
164 #ifdef CONFIG_X86_64
165 VCPU_REGS_R8 = __VCPU_REGS_R8,
166 VCPU_REGS_R9 = __VCPU_REGS_R9,
167 VCPU_REGS_R10 = __VCPU_REGS_R10,
168 VCPU_REGS_R11 = __VCPU_REGS_R11,
169 VCPU_REGS_R12 = __VCPU_REGS_R12,
170 VCPU_REGS_R13 = __VCPU_REGS_R13,
171 VCPU_REGS_R14 = __VCPU_REGS_R14,
172 VCPU_REGS_R15 = __VCPU_REGS_R15,
173 #endif
174 VCPU_REGS_RIP,
175 NR_VCPU_REGS,
176
177 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
178 VCPU_EXREG_CR0,
179 VCPU_EXREG_CR3,
180 VCPU_EXREG_CR4,
181 VCPU_EXREG_RFLAGS,
182 VCPU_EXREG_SEGMENTS,
183 VCPU_EXREG_EXIT_INFO_1,
184 VCPU_EXREG_EXIT_INFO_2,
185 };
186
187 enum {
188 VCPU_SREG_ES,
189 VCPU_SREG_CS,
190 VCPU_SREG_SS,
191 VCPU_SREG_DS,
192 VCPU_SREG_FS,
193 VCPU_SREG_GS,
194 VCPU_SREG_TR,
195 VCPU_SREG_LDTR,
196 };
197
198 enum exit_fastpath_completion {
199 EXIT_FASTPATH_NONE,
200 EXIT_FASTPATH_REENTER_GUEST,
201 EXIT_FASTPATH_EXIT_HANDLED,
202 };
203 typedef enum exit_fastpath_completion fastpath_t;
204
205 struct x86_emulate_ctxt;
206 struct x86_exception;
207 enum x86_intercept;
208 enum x86_intercept_stage;
209
210 #define KVM_NR_DB_REGS 4
211
212 #define DR6_BUS_LOCK (1 << 11)
213 #define DR6_BD (1 << 13)
214 #define DR6_BS (1 << 14)
215 #define DR6_BT (1 << 15)
216 #define DR6_RTM (1 << 16)
217 /*
218 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
219 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
220 * they will never be 0 for now, but when they are defined
221 * in the future it will require no code change.
222 *
223 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
224 */
225 #define DR6_ACTIVE_LOW 0xffff0ff0
226 #define DR6_VOLATILE 0x0001e80f
227 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
228
229 #define DR7_BP_EN_MASK 0x000000ff
230 #define DR7_GE (1 << 9)
231 #define DR7_GD (1 << 13)
232 #define DR7_FIXED_1 0x00000400
233 #define DR7_VOLATILE 0xffff2bff
234
235 #define KVM_GUESTDBG_VALID_MASK \
236 (KVM_GUESTDBG_ENABLE | \
237 KVM_GUESTDBG_SINGLESTEP | \
238 KVM_GUESTDBG_USE_HW_BP | \
239 KVM_GUESTDBG_USE_SW_BP | \
240 KVM_GUESTDBG_INJECT_BP | \
241 KVM_GUESTDBG_INJECT_DB | \
242 KVM_GUESTDBG_BLOCKIRQ)
243
244
245 #define PFERR_PRESENT_BIT 0
246 #define PFERR_WRITE_BIT 1
247 #define PFERR_USER_BIT 2
248 #define PFERR_RSVD_BIT 3
249 #define PFERR_FETCH_BIT 4
250 #define PFERR_PK_BIT 5
251 #define PFERR_SGX_BIT 15
252 #define PFERR_GUEST_FINAL_BIT 32
253 #define PFERR_GUEST_PAGE_BIT 33
254 #define PFERR_IMPLICIT_ACCESS_BIT 48
255
256 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
257 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
258 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
259 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
260 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
261 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
262 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
263 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
264 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
265 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
266
267 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
268 PFERR_WRITE_MASK | \
269 PFERR_PRESENT_MASK)
270
271 /* apic attention bits */
272 #define KVM_APIC_CHECK_VAPIC 0
273 /*
274 * The following bit is set with PV-EOI, unset on EOI.
275 * We detect PV-EOI changes by guest by comparing
276 * this bit with PV-EOI in guest memory.
277 * See the implementation in apic_update_pv_eoi.
278 */
279 #define KVM_APIC_PV_EOI_PENDING 1
280
281 struct kvm_kernel_irq_routing_entry;
282
283 /*
284 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
285 * also includes TDP pages) to determine whether or not a page can be used in
286 * the given MMU context. This is a subset of the overall kvm_cpu_role to
287 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
288 * 2 bytes per gfn instead of 4 bytes per gfn.
289 *
290 * Upper-level shadow pages having gptes are tracked for write-protection via
291 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
292 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
293 * gfn_track will overflow and explosions will ensure.
294 *
295 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
296 * cannot be reused. The ability to reuse a SP is tracked by its role, which
297 * incorporates various mode bits and properties of the SP. Roughly speaking,
298 * the number of unique SPs that can theoretically be created is 2^n, where n
299 * is the number of bits that are used to compute the role.
300 *
301 * But, even though there are 19 bits in the mask below, not all combinations
302 * of modes and flags are possible:
303 *
304 * - invalid shadow pages are not accounted, so the bits are effectively 18
305 *
306 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
307 * execonly and ad_disabled are only used for nested EPT which has
308 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
309 *
310 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
311 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
312 * paging has exactly one upper level, making level completely redundant
313 * when has_4_byte_gpte=1.
314 *
315 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
316 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
317 *
318 * Therefore, the maximum number of possible upper-level shadow pages for a
319 * single gfn is a bit less than 2^13.
320 */
321 union kvm_mmu_page_role {
322 u32 word;
323 struct {
324 unsigned level:4;
325 unsigned has_4_byte_gpte:1;
326 unsigned quadrant:2;
327 unsigned direct:1;
328 unsigned access:3;
329 unsigned invalid:1;
330 unsigned efer_nx:1;
331 unsigned cr0_wp:1;
332 unsigned smep_andnot_wp:1;
333 unsigned smap_andnot_wp:1;
334 unsigned ad_disabled:1;
335 unsigned guest_mode:1;
336 unsigned passthrough:1;
337 unsigned :5;
338
339 /*
340 * This is left at the top of the word so that
341 * kvm_memslots_for_spte_role can extract it with a
342 * simple shift. While there is room, give it a whole
343 * byte so it is also faster to load it from memory.
344 */
345 unsigned smm:8;
346 };
347 };
348
349 /*
350 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
351 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
352 * including on nested transitions, if nothing in the full role changes then
353 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
354 * don't treat all-zero structure as valid data.
355 *
356 * The properties that are tracked in the extended role but not the page role
357 * are for things that either (a) do not affect the validity of the shadow page
358 * or (b) are indirectly reflected in the shadow page's role. For example,
359 * CR4.PKE only affects permission checks for software walks of the guest page
360 * tables (because KVM doesn't support Protection Keys with shadow paging), and
361 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
362 *
363 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
364 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
365 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
366 * SMAP aware regardless of CR0.WP.
367 */
368 union kvm_mmu_extended_role {
369 u32 word;
370 struct {
371 unsigned int valid:1;
372 unsigned int execonly:1;
373 unsigned int cr4_pse:1;
374 unsigned int cr4_pke:1;
375 unsigned int cr4_smap:1;
376 unsigned int cr4_smep:1;
377 unsigned int cr4_la57:1;
378 unsigned int efer_lma:1;
379 };
380 };
381
382 union kvm_cpu_role {
383 u64 as_u64;
384 struct {
385 union kvm_mmu_page_role base;
386 union kvm_mmu_extended_role ext;
387 };
388 };
389
390 struct kvm_rmap_head {
391 unsigned long val;
392 };
393
394 struct kvm_pio_request {
395 unsigned long linear_rip;
396 unsigned long count;
397 int in;
398 int port;
399 int size;
400 };
401
402 #define PT64_ROOT_MAX_LEVEL 5
403
404 struct rsvd_bits_validate {
405 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
406 u64 bad_mt_xwr;
407 };
408
409 struct kvm_mmu_root_info {
410 gpa_t pgd;
411 hpa_t hpa;
412 };
413
414 #define KVM_MMU_ROOT_INFO_INVALID \
415 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
416
417 #define KVM_MMU_NUM_PREV_ROOTS 3
418
419 #define KVM_HAVE_MMU_RWLOCK
420
421 struct kvm_mmu_page;
422 struct kvm_page_fault;
423
424 /*
425 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
426 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
427 * current mmu mode.
428 */
429 struct kvm_mmu {
430 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
431 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
432 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
433 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
434 struct x86_exception *fault);
435 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
436 gpa_t gva_or_gpa, u64 access,
437 struct x86_exception *exception);
438 int (*sync_page)(struct kvm_vcpu *vcpu,
439 struct kvm_mmu_page *sp);
440 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
441 struct kvm_mmu_root_info root;
442 union kvm_cpu_role cpu_role;
443 union kvm_mmu_page_role root_role;
444
445 /*
446 * The pkru_mask indicates if protection key checks are needed. It
447 * consists of 16 domains indexed by page fault error code bits [4:1],
448 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
449 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
450 */
451 u32 pkru_mask;
452
453 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
454
455 /*
456 * Bitmap; bit set = permission fault
457 * Byte index: page fault error code [4:1]
458 * Bit index: pte permissions in ACC_* format
459 */
460 u8 permissions[16];
461
462 u64 *pae_root;
463 u64 *pml4_root;
464 u64 *pml5_root;
465
466 /*
467 * check zero bits on shadow page table entries, these
468 * bits include not only hardware reserved bits but also
469 * the bits spte never used.
470 */
471 struct rsvd_bits_validate shadow_zero_check;
472
473 struct rsvd_bits_validate guest_rsvd_check;
474
475 u64 pdptrs[4]; /* pae */
476 };
477
478 struct kvm_tlb_range {
479 u64 start_gfn;
480 u64 pages;
481 };
482
483 enum pmc_type {
484 KVM_PMC_GP = 0,
485 KVM_PMC_FIXED,
486 };
487
488 struct kvm_pmc {
489 enum pmc_type type;
490 u8 idx;
491 u64 counter;
492 u64 eventsel;
493 struct perf_event *perf_event;
494 struct kvm_vcpu *vcpu;
495 /*
496 * eventsel value for general purpose counters,
497 * ctrl value for fixed counters.
498 */
499 u64 current_config;
500 bool is_paused;
501 bool intr;
502 };
503
504 /* More counters may conflict with other existing Architectural MSRs */
505 #define KVM_INTEL_PMC_MAX_GENERIC 8
506 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
507 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
508 #define KVM_PMC_MAX_FIXED 3
509 #define KVM_AMD_PMC_MAX_GENERIC 6
510 struct kvm_pmu {
511 unsigned nr_arch_gp_counters;
512 unsigned nr_arch_fixed_counters;
513 unsigned available_event_types;
514 u64 fixed_ctr_ctrl;
515 u64 fixed_ctr_ctrl_mask;
516 u64 global_ctrl;
517 u64 global_status;
518 u64 counter_bitmask[2];
519 u64 global_ctrl_mask;
520 u64 global_ovf_ctrl_mask;
521 u64 reserved_bits;
522 u64 raw_event_mask;
523 u8 version;
524 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
525 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
526 struct irq_work irq_work;
527 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
528 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
529 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
530
531 u64 ds_area;
532 u64 pebs_enable;
533 u64 pebs_enable_mask;
534 u64 pebs_data_cfg;
535 u64 pebs_data_cfg_mask;
536
537 /*
538 * If a guest counter is cross-mapped to host counter with different
539 * index, its PEBS capability will be temporarily disabled.
540 *
541 * The user should make sure that this mask is updated
542 * after disabling interrupts and before perf_guest_get_msrs();
543 */
544 u64 host_cross_mapped_mask;
545
546 /*
547 * The gate to release perf_events not marked in
548 * pmc_in_use only once in a vcpu time slice.
549 */
550 bool need_cleanup;
551
552 /*
553 * The total number of programmed perf_events and it helps to avoid
554 * redundant check before cleanup if guest don't use vPMU at all.
555 */
556 u8 event_count;
557 };
558
559 struct kvm_pmu_ops;
560
561 enum {
562 KVM_DEBUGREG_BP_ENABLED = 1,
563 KVM_DEBUGREG_WONT_EXIT = 2,
564 };
565
566 struct kvm_mtrr_range {
567 u64 base;
568 u64 mask;
569 struct list_head node;
570 };
571
572 struct kvm_mtrr {
573 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
574 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
575 u64 deftype;
576
577 struct list_head head;
578 };
579
580 /* Hyper-V SynIC timer */
581 struct kvm_vcpu_hv_stimer {
582 struct hrtimer timer;
583 int index;
584 union hv_stimer_config config;
585 u64 count;
586 u64 exp_time;
587 struct hv_message msg;
588 bool msg_pending;
589 };
590
591 /* Hyper-V synthetic interrupt controller (SynIC)*/
592 struct kvm_vcpu_hv_synic {
593 u64 version;
594 u64 control;
595 u64 msg_page;
596 u64 evt_page;
597 atomic64_t sint[HV_SYNIC_SINT_COUNT];
598 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
599 DECLARE_BITMAP(auto_eoi_bitmap, 256);
600 DECLARE_BITMAP(vec_bitmap, 256);
601 bool active;
602 bool dont_zero_synic_pages;
603 };
604
605 /* Hyper-V per vcpu emulation context */
606 struct kvm_vcpu_hv {
607 struct kvm_vcpu *vcpu;
608 u32 vp_index;
609 u64 hv_vapic;
610 s64 runtime_offset;
611 struct kvm_vcpu_hv_synic synic;
612 struct kvm_hyperv_exit exit;
613 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
614 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
615 bool enforce_cpuid;
616 struct {
617 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
618 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
619 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
620 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
621 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
622 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
623 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
624 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
625 } cpuid_cache;
626 };
627
628 /* Xen HVM per vcpu emulation context */
629 struct kvm_vcpu_xen {
630 u64 hypercall_rip;
631 u32 current_runstate;
632 u8 upcall_vector;
633 struct gfn_to_pfn_cache vcpu_info_cache;
634 struct gfn_to_pfn_cache vcpu_time_info_cache;
635 struct gfn_to_pfn_cache runstate_cache;
636 u64 last_steal;
637 u64 runstate_entry_time;
638 u64 runstate_times[4];
639 unsigned long evtchn_pending_sel;
640 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
641 u32 timer_virq;
642 u64 timer_expires; /* In guest epoch */
643 atomic_t timer_pending;
644 struct hrtimer timer;
645 int poll_evtchn;
646 struct timer_list poll_timer;
647 };
648
649 struct kvm_queued_exception {
650 bool pending;
651 bool injected;
652 bool has_error_code;
653 u8 vector;
654 u32 error_code;
655 unsigned long payload;
656 bool has_payload;
657 };
658
659 struct kvm_vcpu_arch {
660 /*
661 * rip and regs accesses must go through
662 * kvm_{register,rip}_{read,write} functions.
663 */
664 unsigned long regs[NR_VCPU_REGS];
665 u32 regs_avail;
666 u32 regs_dirty;
667
668 unsigned long cr0;
669 unsigned long cr0_guest_owned_bits;
670 unsigned long cr2;
671 unsigned long cr3;
672 unsigned long cr4;
673 unsigned long cr4_guest_owned_bits;
674 unsigned long cr4_guest_rsvd_bits;
675 unsigned long cr8;
676 u32 host_pkru;
677 u32 pkru;
678 u32 hflags;
679 u64 efer;
680 u64 apic_base;
681 struct kvm_lapic *apic; /* kernel irqchip context */
682 bool load_eoi_exitmap_pending;
683 DECLARE_BITMAP(ioapic_handled_vectors, 256);
684 unsigned long apic_attention;
685 int32_t apic_arb_prio;
686 int mp_state;
687 u64 ia32_misc_enable_msr;
688 u64 smbase;
689 u64 smi_count;
690 bool at_instruction_boundary;
691 bool tpr_access_reporting;
692 bool xsaves_enabled;
693 bool xfd_no_write_intercept;
694 u64 ia32_xss;
695 u64 microcode_version;
696 u64 arch_capabilities;
697 u64 perf_capabilities;
698
699 /*
700 * Paging state of the vcpu
701 *
702 * If the vcpu runs in guest mode with two level paging this still saves
703 * the paging mode of the l1 guest. This context is always used to
704 * handle faults.
705 */
706 struct kvm_mmu *mmu;
707
708 /* Non-nested MMU for L1 */
709 struct kvm_mmu root_mmu;
710
711 /* L1 MMU when running nested */
712 struct kvm_mmu guest_mmu;
713
714 /*
715 * Paging state of an L2 guest (used for nested npt)
716 *
717 * This context will save all necessary information to walk page tables
718 * of an L2 guest. This context is only initialized for page table
719 * walking and not for faulting since we never handle l2 page faults on
720 * the host.
721 */
722 struct kvm_mmu nested_mmu;
723
724 /*
725 * Pointer to the mmu context currently used for
726 * gva_to_gpa translations.
727 */
728 struct kvm_mmu *walk_mmu;
729
730 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
731 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
732 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
733 struct kvm_mmu_memory_cache mmu_page_header_cache;
734
735 /*
736 * QEMU userspace and the guest each have their own FPU state.
737 * In vcpu_run, we switch between the user and guest FPU contexts.
738 * While running a VCPU, the VCPU thread will have the guest FPU
739 * context.
740 *
741 * Note that while the PKRU state lives inside the fpu registers,
742 * it is switched out separately at VMENTER and VMEXIT time. The
743 * "guest_fpstate" state here contains the guest FPU context, with the
744 * host PRKU bits.
745 */
746 struct fpu_guest guest_fpu;
747
748 u64 xcr0;
749 u64 guest_supported_xcr0;
750
751 struct kvm_pio_request pio;
752 void *pio_data;
753 void *sev_pio_data;
754 unsigned sev_pio_count;
755
756 u8 event_exit_inst_len;
757
758 bool exception_from_userspace;
759
760 /* Exceptions to be injected to the guest. */
761 struct kvm_queued_exception exception;
762 /* Exception VM-Exits to be synthesized to L1. */
763 struct kvm_queued_exception exception_vmexit;
764
765 struct kvm_queued_interrupt {
766 bool injected;
767 bool soft;
768 u8 nr;
769 } interrupt;
770
771 int halt_request; /* real mode on Intel only */
772
773 int cpuid_nent;
774 struct kvm_cpuid_entry2 *cpuid_entries;
775 u32 kvm_cpuid_base;
776
777 u64 reserved_gpa_bits;
778 int maxphyaddr;
779
780 /* emulate context */
781
782 struct x86_emulate_ctxt *emulate_ctxt;
783 bool emulate_regs_need_sync_to_vcpu;
784 bool emulate_regs_need_sync_from_vcpu;
785 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
786
787 gpa_t time;
788 struct pvclock_vcpu_time_info hv_clock;
789 unsigned int hw_tsc_khz;
790 struct gfn_to_pfn_cache pv_time;
791 /* set guest stopped flag in pvclock flags field */
792 bool pvclock_set_guest_stopped_request;
793
794 struct {
795 u8 preempted;
796 u64 msr_val;
797 u64 last_steal;
798 struct gfn_to_hva_cache cache;
799 } st;
800
801 u64 l1_tsc_offset;
802 u64 tsc_offset; /* current tsc offset */
803 u64 last_guest_tsc;
804 u64 last_host_tsc;
805 u64 tsc_offset_adjustment;
806 u64 this_tsc_nsec;
807 u64 this_tsc_write;
808 u64 this_tsc_generation;
809 bool tsc_catchup;
810 bool tsc_always_catchup;
811 s8 virtual_tsc_shift;
812 u32 virtual_tsc_mult;
813 u32 virtual_tsc_khz;
814 s64 ia32_tsc_adjust_msr;
815 u64 msr_ia32_power_ctl;
816 u64 l1_tsc_scaling_ratio;
817 u64 tsc_scaling_ratio; /* current scaling ratio */
818
819 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
820 unsigned nmi_pending; /* NMI queued after currently running handler */
821 bool nmi_injected; /* Trying to inject an NMI this entry */
822 bool smi_pending; /* SMI queued after currently running handler */
823 u8 handling_intr_from_guest;
824
825 struct kvm_mtrr mtrr_state;
826 u64 pat;
827
828 unsigned switch_db_regs;
829 unsigned long db[KVM_NR_DB_REGS];
830 unsigned long dr6;
831 unsigned long dr7;
832 unsigned long eff_db[KVM_NR_DB_REGS];
833 unsigned long guest_debug_dr7;
834 u64 msr_platform_info;
835 u64 msr_misc_features_enables;
836
837 u64 mcg_cap;
838 u64 mcg_status;
839 u64 mcg_ctl;
840 u64 mcg_ext_ctl;
841 u64 *mce_banks;
842 u64 *mci_ctl2_banks;
843
844 /* Cache MMIO info */
845 u64 mmio_gva;
846 unsigned mmio_access;
847 gfn_t mmio_gfn;
848 u64 mmio_gen;
849
850 struct kvm_pmu pmu;
851
852 /* used for guest single stepping over the given code position */
853 unsigned long singlestep_rip;
854
855 bool hyperv_enabled;
856 struct kvm_vcpu_hv *hyperv;
857 struct kvm_vcpu_xen xen;
858
859 cpumask_var_t wbinvd_dirty_mask;
860
861 unsigned long last_retry_eip;
862 unsigned long last_retry_addr;
863
864 struct {
865 bool halted;
866 gfn_t gfns[ASYNC_PF_PER_VCPU];
867 struct gfn_to_hva_cache data;
868 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
869 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
870 u16 vec;
871 u32 id;
872 bool send_user_only;
873 u32 host_apf_flags;
874 bool delivery_as_pf_vmexit;
875 bool pageready_pending;
876 } apf;
877
878 /* OSVW MSRs (AMD only) */
879 struct {
880 u64 length;
881 u64 status;
882 } osvw;
883
884 struct {
885 u64 msr_val;
886 struct gfn_to_hva_cache data;
887 } pv_eoi;
888
889 u64 msr_kvm_poll_control;
890
891 /*
892 * Indicates the guest is trying to write a gfn that contains one or
893 * more of the PTEs used to translate the write itself, i.e. the access
894 * is changing its own translation in the guest page tables. KVM exits
895 * to userspace if emulation of the faulting instruction fails and this
896 * flag is set, as KVM cannot make forward progress.
897 *
898 * If emulation fails for a write to guest page tables, KVM unprotects
899 * (zaps) the shadow page for the target gfn and resumes the guest to
900 * retry the non-emulatable instruction (on hardware). Unprotecting the
901 * gfn doesn't allow forward progress for a self-changing access because
902 * doing so also zaps the translation for the gfn, i.e. retrying the
903 * instruction will hit a !PRESENT fault, which results in a new shadow
904 * page and sends KVM back to square one.
905 */
906 bool write_fault_to_shadow_pgtable;
907
908 /* set at EPT violation at this point */
909 unsigned long exit_qualification;
910
911 /* pv related host specific info */
912 struct {
913 bool pv_unhalted;
914 } pv;
915
916 int pending_ioapic_eoi;
917 int pending_external_vector;
918
919 /* be preempted when it's in kernel-mode(cpl=0) */
920 bool preempted_in_kernel;
921
922 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
923 bool l1tf_flush_l1d;
924
925 /* Host CPU on which VM-entry was most recently attempted */
926 int last_vmentry_cpu;
927
928 /* AMD MSRC001_0015 Hardware Configuration */
929 u64 msr_hwcr;
930
931 /* pv related cpuid info */
932 struct {
933 /*
934 * value of the eax register in the KVM_CPUID_FEATURES CPUID
935 * leaf.
936 */
937 u32 features;
938
939 /*
940 * indicates whether pv emulation should be disabled if features
941 * are not present in the guest's cpuid
942 */
943 bool enforce;
944 } pv_cpuid;
945
946 /* Protected Guests */
947 bool guest_state_protected;
948
949 /*
950 * Set when PDPTS were loaded directly by the userspace without
951 * reading the guest memory
952 */
953 bool pdptrs_from_userspace;
954
955 #if IS_ENABLED(CONFIG_HYPERV)
956 hpa_t hv_root_tdp;
957 #endif
958 };
959
960 struct kvm_lpage_info {
961 int disallow_lpage;
962 };
963
964 struct kvm_arch_memory_slot {
965 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
966 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
967 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
968 };
969
970 /*
971 * We use as the mode the number of bits allocated in the LDR for the
972 * logical processor ID. It happens that these are all powers of two.
973 * This makes it is very easy to detect cases where the APICs are
974 * configured for multiple modes; in that case, we cannot use the map and
975 * hence cannot use kvm_irq_delivery_to_apic_fast either.
976 */
977 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
978 #define KVM_APIC_MODE_XAPIC_FLAT 8
979 #define KVM_APIC_MODE_X2APIC 16
980
981 struct kvm_apic_map {
982 struct rcu_head rcu;
983 u8 mode;
984 u32 max_apic_id;
985 union {
986 struct kvm_lapic *xapic_flat_map[8];
987 struct kvm_lapic *xapic_cluster_map[16][4];
988 };
989 struct kvm_lapic *phys_map[];
990 };
991
992 /* Hyper-V synthetic debugger (SynDbg)*/
993 struct kvm_hv_syndbg {
994 struct {
995 u64 control;
996 u64 status;
997 u64 send_page;
998 u64 recv_page;
999 u64 pending_page;
1000 } control;
1001 u64 options;
1002 };
1003
1004 /* Current state of Hyper-V TSC page clocksource */
1005 enum hv_tsc_page_status {
1006 /* TSC page was not set up or disabled */
1007 HV_TSC_PAGE_UNSET = 0,
1008 /* TSC page MSR was written by the guest, update pending */
1009 HV_TSC_PAGE_GUEST_CHANGED,
1010 /* TSC page update was triggered from the host side */
1011 HV_TSC_PAGE_HOST_CHANGED,
1012 /* TSC page was properly set up and is currently active */
1013 HV_TSC_PAGE_SET,
1014 /* TSC page was set up with an inaccessible GPA */
1015 HV_TSC_PAGE_BROKEN,
1016 };
1017
1018 /* Hyper-V emulation context */
1019 struct kvm_hv {
1020 struct mutex hv_lock;
1021 u64 hv_guest_os_id;
1022 u64 hv_hypercall;
1023 u64 hv_tsc_page;
1024 enum hv_tsc_page_status hv_tsc_page_status;
1025
1026 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1027 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1028 u64 hv_crash_ctl;
1029
1030 struct ms_hyperv_tsc_page tsc_ref;
1031
1032 struct idr conn_to_evt;
1033
1034 u64 hv_reenlightenment_control;
1035 u64 hv_tsc_emulation_control;
1036 u64 hv_tsc_emulation_status;
1037
1038 /* How many vCPUs have VP index != vCPU index */
1039 atomic_t num_mismatched_vp_indexes;
1040
1041 /*
1042 * How many SynICs use 'AutoEOI' feature
1043 * (protected by arch.apicv_update_lock)
1044 */
1045 unsigned int synic_auto_eoi_used;
1046
1047 struct hv_partition_assist_pg *hv_pa_pg;
1048 struct kvm_hv_syndbg hv_syndbg;
1049 };
1050
1051 struct msr_bitmap_range {
1052 u32 flags;
1053 u32 nmsrs;
1054 u32 base;
1055 unsigned long *bitmap;
1056 };
1057
1058 /* Xen emulation context */
1059 struct kvm_xen {
1060 u32 xen_version;
1061 bool long_mode;
1062 u8 upcall_vector;
1063 struct gfn_to_pfn_cache shinfo_cache;
1064 struct idr evtchn_ports;
1065 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1066 };
1067
1068 enum kvm_irqchip_mode {
1069 KVM_IRQCHIP_NONE,
1070 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1071 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1072 };
1073
1074 struct kvm_x86_msr_filter {
1075 u8 count;
1076 bool default_allow:1;
1077 struct msr_bitmap_range ranges[16];
1078 };
1079
1080 enum kvm_apicv_inhibit {
1081
1082 /********************************************************************/
1083 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1084 /********************************************************************/
1085
1086 /*
1087 * APIC acceleration is disabled by a module parameter
1088 * and/or not supported in hardware.
1089 */
1090 APICV_INHIBIT_REASON_DISABLE,
1091
1092 /*
1093 * APIC acceleration is inhibited because AutoEOI feature is
1094 * being used by a HyperV guest.
1095 */
1096 APICV_INHIBIT_REASON_HYPERV,
1097
1098 /*
1099 * APIC acceleration is inhibited because the userspace didn't yet
1100 * enable the kernel/split irqchip.
1101 */
1102 APICV_INHIBIT_REASON_ABSENT,
1103
1104 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1105 * (out of band, debug measure of blocking all interrupts on this vCPU)
1106 * was enabled, to avoid AVIC/APICv bypassing it.
1107 */
1108 APICV_INHIBIT_REASON_BLOCKIRQ,
1109
1110 /*
1111 * For simplicity, the APIC acceleration is inhibited
1112 * first time either APIC ID or APIC base are changed by the guest
1113 * from their reset values.
1114 */
1115 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1116 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1117
1118 /******************************************************/
1119 /* INHIBITs that are relevant only to the AMD's AVIC. */
1120 /******************************************************/
1121
1122 /*
1123 * AVIC is inhibited on a vCPU because it runs a nested guest.
1124 *
1125 * This is needed because unlike APICv, the peers of this vCPU
1126 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1127 * a vCPU runs nested.
1128 */
1129 APICV_INHIBIT_REASON_NESTED,
1130
1131 /*
1132 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1133 * which cannot be injected when the AVIC is enabled, thus AVIC
1134 * is inhibited while KVM waits for IRQ window.
1135 */
1136 APICV_INHIBIT_REASON_IRQWIN,
1137
1138 /*
1139 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1140 * which AVIC doesn't support for edge triggered interrupts.
1141 */
1142 APICV_INHIBIT_REASON_PIT_REINJ,
1143
1144 /*
1145 * AVIC is disabled because SEV doesn't support it.
1146 */
1147 APICV_INHIBIT_REASON_SEV,
1148 };
1149
1150 struct kvm_arch {
1151 unsigned long n_used_mmu_pages;
1152 unsigned long n_requested_mmu_pages;
1153 unsigned long n_max_mmu_pages;
1154 unsigned int indirect_shadow_pages;
1155 u8 mmu_valid_gen;
1156 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1157 struct list_head active_mmu_pages;
1158 struct list_head zapped_obsolete_pages;
1159 struct list_head lpage_disallowed_mmu_pages;
1160 struct kvm_page_track_notifier_node mmu_sp_tracker;
1161 struct kvm_page_track_notifier_head track_notifier_head;
1162 /*
1163 * Protects marking pages unsync during page faults, as TDP MMU page
1164 * faults only take mmu_lock for read. For simplicity, the unsync
1165 * pages lock is always taken when marking pages unsync regardless of
1166 * whether mmu_lock is held for read or write.
1167 */
1168 spinlock_t mmu_unsync_pages_lock;
1169
1170 struct list_head assigned_dev_head;
1171 struct iommu_domain *iommu_domain;
1172 bool iommu_noncoherent;
1173 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1174 atomic_t noncoherent_dma_count;
1175 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1176 atomic_t assigned_device_count;
1177 struct kvm_pic *vpic;
1178 struct kvm_ioapic *vioapic;
1179 struct kvm_pit *vpit;
1180 atomic_t vapics_in_nmi_mode;
1181 struct mutex apic_map_lock;
1182 struct kvm_apic_map __rcu *apic_map;
1183 atomic_t apic_map_dirty;
1184
1185 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1186 struct rw_semaphore apicv_update_lock;
1187
1188 bool apic_access_memslot_enabled;
1189 unsigned long apicv_inhibit_reasons;
1190
1191 gpa_t wall_clock;
1192
1193 bool mwait_in_guest;
1194 bool hlt_in_guest;
1195 bool pause_in_guest;
1196 bool cstate_in_guest;
1197
1198 unsigned long irq_sources_bitmap;
1199 s64 kvmclock_offset;
1200
1201 /*
1202 * This also protects nr_vcpus_matched_tsc which is read from a
1203 * preemption-disabled region, so it must be a raw spinlock.
1204 */
1205 raw_spinlock_t tsc_write_lock;
1206 u64 last_tsc_nsec;
1207 u64 last_tsc_write;
1208 u32 last_tsc_khz;
1209 u64 last_tsc_offset;
1210 u64 cur_tsc_nsec;
1211 u64 cur_tsc_write;
1212 u64 cur_tsc_offset;
1213 u64 cur_tsc_generation;
1214 int nr_vcpus_matched_tsc;
1215
1216 u32 default_tsc_khz;
1217
1218 seqcount_raw_spinlock_t pvclock_sc;
1219 bool use_master_clock;
1220 u64 master_kernel_ns;
1221 u64 master_cycle_now;
1222 struct delayed_work kvmclock_update_work;
1223 struct delayed_work kvmclock_sync_work;
1224
1225 struct kvm_xen_hvm_config xen_hvm_config;
1226
1227 /* reads protected by irq_srcu, writes by irq_lock */
1228 struct hlist_head mask_notifier_list;
1229
1230 struct kvm_hv hyperv;
1231 struct kvm_xen xen;
1232
1233 bool backwards_tsc_observed;
1234 bool boot_vcpu_runs_old_kvmclock;
1235 u32 bsp_vcpu_id;
1236
1237 u64 disabled_quirks;
1238 int cpu_dirty_logging_count;
1239
1240 enum kvm_irqchip_mode irqchip_mode;
1241 u8 nr_reserved_ioapic_pins;
1242
1243 bool disabled_lapic_found;
1244
1245 bool x2apic_format;
1246 bool x2apic_broadcast_quirk_disabled;
1247
1248 bool guest_can_read_msr_platform_info;
1249 bool exception_payload_enabled;
1250
1251 bool triple_fault_event;
1252
1253 bool bus_lock_detection_enabled;
1254 bool enable_pmu;
1255
1256 u32 notify_window;
1257 u32 notify_vmexit_flags;
1258 /*
1259 * If exit_on_emulation_error is set, and the in-kernel instruction
1260 * emulator fails to emulate an instruction, allow userspace
1261 * the opportunity to look at it.
1262 */
1263 bool exit_on_emulation_error;
1264
1265 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1266 u32 user_space_msr_mask;
1267 struct kvm_x86_msr_filter __rcu *msr_filter;
1268
1269 u32 hypercall_exit_enabled;
1270
1271 /* Guest can access the SGX PROVISIONKEY. */
1272 bool sgx_provisioning_allowed;
1273
1274 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1275 struct task_struct *nx_lpage_recovery_thread;
1276
1277 #ifdef CONFIG_X86_64
1278 /*
1279 * Whether the TDP MMU is enabled for this VM. This contains a
1280 * snapshot of the TDP MMU module parameter from when the VM was
1281 * created and remains unchanged for the life of the VM. If this is
1282 * true, TDP MMU handler functions will run for various MMU
1283 * operations.
1284 */
1285 bool tdp_mmu_enabled;
1286
1287 /*
1288 * List of kvm_mmu_page structs being used as roots.
1289 * All kvm_mmu_page structs in the list should have
1290 * tdp_mmu_page set.
1291 *
1292 * For reads, this list is protected by:
1293 * the MMU lock in read mode + RCU or
1294 * the MMU lock in write mode
1295 *
1296 * For writes, this list is protected by:
1297 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1298 * the MMU lock in write mode
1299 *
1300 * Roots will remain in the list until their tdp_mmu_root_count
1301 * drops to zero, at which point the thread that decremented the
1302 * count to zero should removed the root from the list and clean
1303 * it up, freeing the root after an RCU grace period.
1304 */
1305 struct list_head tdp_mmu_roots;
1306
1307 /*
1308 * List of kvm_mmu_page structs not being used as roots.
1309 * All kvm_mmu_page structs in the list should have
1310 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1311 */
1312 struct list_head tdp_mmu_pages;
1313
1314 /*
1315 * Protects accesses to the following fields when the MMU lock
1316 * is held in read mode:
1317 * - tdp_mmu_roots (above)
1318 * - tdp_mmu_pages (above)
1319 * - the link field of kvm_mmu_page structs used by the TDP MMU
1320 * - lpage_disallowed_mmu_pages
1321 * - the lpage_disallowed_link field of kvm_mmu_page structs used
1322 * by the TDP MMU
1323 * It is acceptable, but not necessary, to acquire this lock when
1324 * the thread holds the MMU lock in write mode.
1325 */
1326 spinlock_t tdp_mmu_pages_lock;
1327 struct workqueue_struct *tdp_mmu_zap_wq;
1328 #endif /* CONFIG_X86_64 */
1329
1330 /*
1331 * If set, at least one shadow root has been allocated. This flag
1332 * is used as one input when determining whether certain memslot
1333 * related allocations are necessary.
1334 */
1335 bool shadow_root_allocated;
1336
1337 #if IS_ENABLED(CONFIG_HYPERV)
1338 hpa_t hv_root_tdp;
1339 spinlock_t hv_root_tdp_lock;
1340 #endif
1341 /*
1342 * VM-scope maximum vCPU ID. Used to determine the size of structures
1343 * that increase along with the maximum vCPU ID, in which case, using
1344 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1345 */
1346 u32 max_vcpu_ids;
1347
1348 bool disable_nx_huge_pages;
1349
1350 /*
1351 * Memory caches used to allocate shadow pages when performing eager
1352 * page splitting. No need for a shadowed_info_cache since eager page
1353 * splitting only allocates direct shadow pages.
1354 *
1355 * Protected by kvm->slots_lock.
1356 */
1357 struct kvm_mmu_memory_cache split_shadow_page_cache;
1358 struct kvm_mmu_memory_cache split_page_header_cache;
1359
1360 /*
1361 * Memory cache used to allocate pte_list_desc structs while splitting
1362 * huge pages. In the worst case, to split one huge page, 512
1363 * pte_list_desc structs are needed to add each lower level leaf sptep
1364 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1365 * page table.
1366 *
1367 * Protected by kvm->slots_lock.
1368 */
1369 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1370 struct kvm_mmu_memory_cache split_desc_cache;
1371 };
1372
1373 struct kvm_vm_stat {
1374 struct kvm_vm_stat_generic generic;
1375 u64 mmu_shadow_zapped;
1376 u64 mmu_pte_write;
1377 u64 mmu_pde_zapped;
1378 u64 mmu_flooded;
1379 u64 mmu_recycled;
1380 u64 mmu_cache_miss;
1381 u64 mmu_unsync;
1382 union {
1383 struct {
1384 atomic64_t pages_4k;
1385 atomic64_t pages_2m;
1386 atomic64_t pages_1g;
1387 };
1388 atomic64_t pages[KVM_NR_PAGE_SIZES];
1389 };
1390 u64 nx_lpage_splits;
1391 u64 max_mmu_page_hash_collisions;
1392 u64 max_mmu_rmap_size;
1393 };
1394
1395 struct kvm_vcpu_stat {
1396 struct kvm_vcpu_stat_generic generic;
1397 u64 pf_taken;
1398 u64 pf_fixed;
1399 u64 pf_emulate;
1400 u64 pf_spurious;
1401 u64 pf_fast;
1402 u64 pf_mmio_spte_created;
1403 u64 pf_guest;
1404 u64 tlb_flush;
1405 u64 invlpg;
1406
1407 u64 exits;
1408 u64 io_exits;
1409 u64 mmio_exits;
1410 u64 signal_exits;
1411 u64 irq_window_exits;
1412 u64 nmi_window_exits;
1413 u64 l1d_flush;
1414 u64 halt_exits;
1415 u64 request_irq_exits;
1416 u64 irq_exits;
1417 u64 host_state_reload;
1418 u64 fpu_reload;
1419 u64 insn_emulation;
1420 u64 insn_emulation_fail;
1421 u64 hypercalls;
1422 u64 irq_injections;
1423 u64 nmi_injections;
1424 u64 req_event;
1425 u64 nested_run;
1426 u64 directed_yield_attempted;
1427 u64 directed_yield_successful;
1428 u64 preemption_reported;
1429 u64 preemption_other;
1430 u64 guest_mode;
1431 u64 notify_window_exits;
1432 };
1433
1434 struct x86_instruction_info;
1435
1436 struct msr_data {
1437 bool host_initiated;
1438 u32 index;
1439 u64 data;
1440 };
1441
1442 struct kvm_lapic_irq {
1443 u32 vector;
1444 u16 delivery_mode;
1445 u16 dest_mode;
1446 bool level;
1447 u16 trig_mode;
1448 u32 shorthand;
1449 u32 dest_id;
1450 bool msi_redir_hint;
1451 };
1452
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1453 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1454 {
1455 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1456 }
1457
1458 struct kvm_x86_ops {
1459 const char *name;
1460
1461 int (*hardware_enable)(void);
1462 void (*hardware_disable)(void);
1463 void (*hardware_unsetup)(void);
1464 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1465 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1466
1467 unsigned int vm_size;
1468 int (*vm_init)(struct kvm *kvm);
1469 void (*vm_destroy)(struct kvm *kvm);
1470
1471 /* Create, but do not attach this VCPU */
1472 int (*vcpu_precreate)(struct kvm *kvm);
1473 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1474 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1475 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1476
1477 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1478 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1479 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1480
1481 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1482 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1483 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1484 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1485 void (*get_segment)(struct kvm_vcpu *vcpu,
1486 struct kvm_segment *var, int seg);
1487 int (*get_cpl)(struct kvm_vcpu *vcpu);
1488 void (*set_segment)(struct kvm_vcpu *vcpu,
1489 struct kvm_segment *var, int seg);
1490 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1491 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1492 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1493 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1494 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1495 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1496 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1497 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1498 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1499 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1500 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1501 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1502 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1503 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1504 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1505 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1506
1507 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1508 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1509 int (*tlb_remote_flush)(struct kvm *kvm);
1510 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1511 struct kvm_tlb_range *range);
1512
1513 /*
1514 * Flush any TLB entries associated with the given GVA.
1515 * Does not need to flush GPA->HPA mappings.
1516 * Can potentially get non-canonical addresses through INVLPGs, which
1517 * the implementation may choose to ignore if appropriate.
1518 */
1519 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1520
1521 /*
1522 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1523 * does not need to flush GPA->HPA mappings.
1524 */
1525 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1526
1527 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1528 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1529 int (*handle_exit)(struct kvm_vcpu *vcpu,
1530 enum exit_fastpath_completion exit_fastpath);
1531 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1532 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1533 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1534 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1535 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1536 unsigned char *hypercall_addr);
1537 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1538 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1539 void (*inject_exception)(struct kvm_vcpu *vcpu);
1540 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1541 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1542 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1543 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1544 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1545 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1546 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1547 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1548 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1549 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1550 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1551 void (*hwapic_isr_update)(int isr);
1552 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1553 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1554 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1555 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1556 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1557 int trig_mode, int vector);
1558 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1559 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1560 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1561 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1562
1563 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1564 int root_level);
1565
1566 bool (*has_wbinvd_exit)(void);
1567
1568 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1569 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1570 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1571 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1572
1573 /*
1574 * Retrieve somewhat arbitrary exit information. Intended to
1575 * be used only from within tracepoints or error paths.
1576 */
1577 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1578 u64 *info1, u64 *info2,
1579 u32 *exit_int_info, u32 *exit_int_info_err_code);
1580
1581 int (*check_intercept)(struct kvm_vcpu *vcpu,
1582 struct x86_instruction_info *info,
1583 enum x86_intercept_stage stage,
1584 struct x86_exception *exception);
1585 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1586
1587 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1588
1589 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1590
1591 /*
1592 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1593 * value indicates CPU dirty logging is unsupported or disabled.
1594 */
1595 int cpu_dirty_log_size;
1596 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1597
1598 const struct kvm_x86_nested_ops *nested_ops;
1599
1600 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1601 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1602
1603 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1604 uint32_t guest_irq, bool set);
1605 void (*pi_start_assignment)(struct kvm *kvm);
1606 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1607 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1608
1609 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1610 bool *expired);
1611 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1612
1613 void (*setup_mce)(struct kvm_vcpu *vcpu);
1614
1615 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1616 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1617 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1618 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1619
1620 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1621 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1622 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1623 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1624 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1625 void (*guest_memory_reclaimed)(struct kvm *kvm);
1626
1627 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1628
1629 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1630 void *insn, int insn_len);
1631
1632 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1633 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1634
1635 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1636 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1637 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1638
1639 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1640
1641 /*
1642 * Returns vCPU specific APICv inhibit reasons
1643 */
1644 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1645 };
1646
1647 struct kvm_x86_nested_ops {
1648 void (*leave_nested)(struct kvm_vcpu *vcpu);
1649 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1650 u32 error_code);
1651 int (*check_events)(struct kvm_vcpu *vcpu);
1652 bool (*has_events)(struct kvm_vcpu *vcpu);
1653 void (*triple_fault)(struct kvm_vcpu *vcpu);
1654 int (*get_state)(struct kvm_vcpu *vcpu,
1655 struct kvm_nested_state __user *user_kvm_nested_state,
1656 unsigned user_data_size);
1657 int (*set_state)(struct kvm_vcpu *vcpu,
1658 struct kvm_nested_state __user *user_kvm_nested_state,
1659 struct kvm_nested_state *kvm_state);
1660 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1661 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1662
1663 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1664 uint16_t *vmcs_version);
1665 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1666 };
1667
1668 struct kvm_x86_init_ops {
1669 int (*cpu_has_kvm_support)(void);
1670 int (*disabled_by_bios)(void);
1671 int (*check_processor_compatibility)(void);
1672 int (*hardware_setup)(void);
1673 unsigned int (*handle_intel_pt_intr)(void);
1674
1675 struct kvm_x86_ops *runtime_ops;
1676 struct kvm_pmu_ops *pmu_ops;
1677 };
1678
1679 struct kvm_arch_async_pf {
1680 u32 token;
1681 gfn_t gfn;
1682 unsigned long cr3;
1683 bool direct_map;
1684 };
1685
1686 extern u32 __read_mostly kvm_nr_uret_msrs;
1687 extern u64 __read_mostly host_efer;
1688 extern bool __read_mostly allow_smaller_maxphyaddr;
1689 extern bool __read_mostly enable_apicv;
1690 extern struct kvm_x86_ops kvm_x86_ops;
1691
1692 #define KVM_X86_OP(func) \
1693 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1694 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1695 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1696 #include <asm/kvm-x86-ops.h>
1697
1698 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1699 static inline struct kvm *kvm_arch_alloc_vm(void)
1700 {
1701 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1702 }
1703
1704 #define __KVM_HAVE_ARCH_VM_FREE
1705 void kvm_arch_free_vm(struct kvm *kvm);
1706
1707 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1708 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1709 {
1710 if (kvm_x86_ops.tlb_remote_flush &&
1711 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1712 return 0;
1713 else
1714 return -ENOTSUPP;
1715 }
1716
1717 #define kvm_arch_pmi_in_guest(vcpu) \
1718 ((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1719
1720 void __init kvm_mmu_x86_module_init(void);
1721 int kvm_mmu_vendor_module_init(void);
1722 void kvm_mmu_vendor_module_exit(void);
1723
1724 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1725 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1726 int kvm_mmu_init_vm(struct kvm *kvm);
1727 void kvm_mmu_uninit_vm(struct kvm *kvm);
1728
1729 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1730 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1731 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1732 const struct kvm_memory_slot *memslot,
1733 int start_level);
1734 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1735 const struct kvm_memory_slot *memslot,
1736 int target_level);
1737 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1738 const struct kvm_memory_slot *memslot,
1739 u64 start, u64 end,
1740 int target_level);
1741 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1742 const struct kvm_memory_slot *memslot);
1743 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1744 const struct kvm_memory_slot *memslot);
1745 void kvm_mmu_zap_all(struct kvm *kvm);
1746 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1747 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1748
1749 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1750
1751 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1752 const void *val, int bytes);
1753
1754 struct kvm_irq_mask_notifier {
1755 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1756 int irq;
1757 struct hlist_node link;
1758 };
1759
1760 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1761 struct kvm_irq_mask_notifier *kimn);
1762 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1763 struct kvm_irq_mask_notifier *kimn);
1764 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1765 bool mask);
1766
1767 extern bool tdp_enabled;
1768
1769 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1770
1771 /*
1772 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1773 * userspace I/O) to indicate that the emulation context
1774 * should be reused as is, i.e. skip initialization of
1775 * emulation context, instruction fetch and decode.
1776 *
1777 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1778 * Indicates that only select instructions (tagged with
1779 * EmulateOnUD) should be emulated (to minimize the emulator
1780 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1781 *
1782 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1783 * decode the instruction length. For use *only* by
1784 * kvm_x86_ops.skip_emulated_instruction() implementations if
1785 * EMULTYPE_COMPLETE_USER_EXIT is not set.
1786 *
1787 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1788 * retry native execution under certain conditions,
1789 * Can only be set in conjunction with EMULTYPE_PF.
1790 *
1791 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1792 * triggered by KVM's magic "force emulation" prefix,
1793 * which is opt in via module param (off by default).
1794 * Bypasses EmulateOnUD restriction despite emulating
1795 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1796 * Used to test the full emulator from userspace.
1797 *
1798 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1799 * backdoor emulation, which is opt in via module param.
1800 * VMware backdoor emulation handles select instructions
1801 * and reinjects the #GP for all other cases.
1802 *
1803 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1804 * case the CR2/GPA value pass on the stack is valid.
1805 *
1806 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1807 * state and inject single-step #DBs after skipping
1808 * an instruction (after completing userspace I/O).
1809 */
1810 #define EMULTYPE_NO_DECODE (1 << 0)
1811 #define EMULTYPE_TRAP_UD (1 << 1)
1812 #define EMULTYPE_SKIP (1 << 2)
1813 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1814 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1815 #define EMULTYPE_VMWARE_GP (1 << 5)
1816 #define EMULTYPE_PF (1 << 6)
1817 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1818
1819 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1820 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1821 void *insn, int insn_len);
1822 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1823 u64 *data, u8 ndata);
1824 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1825
1826 void kvm_enable_efer_bits(u64);
1827 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1828 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1829 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1830 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1831 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1832 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1833 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1834 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1835 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1836 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1837 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1838
1839 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1840 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1841 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1842 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1843 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1844 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1845
1846 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1847 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1848 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1849
1850 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1851 int reason, bool has_error_code, u32 error_code);
1852
1853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1854 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1855 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1856 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1857 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1858 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1859 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1860 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1861 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1863 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1864
1865 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1866 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1867
1868 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1869 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1870 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1871
1872 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1873 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1874 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1875 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1876 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1877 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1878 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1879 struct x86_exception *fault);
1880 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1881 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1882
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)1883 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1884 int irq_source_id, int level)
1885 {
1886 /* Logical OR for level trig interrupt */
1887 if (level)
1888 __set_bit(irq_source_id, irq_state);
1889 else
1890 __clear_bit(irq_source_id, irq_state);
1891
1892 return !!(*irq_state);
1893 }
1894
1895 #define KVM_MMU_ROOT_CURRENT BIT(0)
1896 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1897 #define KVM_MMU_ROOTS_ALL (~0UL)
1898
1899 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1900 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1901
1902 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1903
1904 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1905
1906 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1907 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1908 ulong roots_to_free);
1909 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1910 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1911 struct x86_exception *exception);
1912 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1913 struct x86_exception *exception);
1914 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1915 struct x86_exception *exception);
1916 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1917 struct x86_exception *exception);
1918
1919 bool kvm_apicv_activated(struct kvm *kvm);
1920 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1921 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1922 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1923 enum kvm_apicv_inhibit reason, bool set);
1924 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1925 enum kvm_apicv_inhibit reason, bool set);
1926
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)1927 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1928 enum kvm_apicv_inhibit reason)
1929 {
1930 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1931 }
1932
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)1933 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1934 enum kvm_apicv_inhibit reason)
1935 {
1936 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
1937 }
1938
1939 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1940
1941 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1942 void *insn, int insn_len);
1943 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1944 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1945 gva_t gva, hpa_t root_hpa);
1946 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1947 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1948
1949 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1950 int tdp_max_root_level, int tdp_huge_page_level);
1951
kvm_read_ldt(void)1952 static inline u16 kvm_read_ldt(void)
1953 {
1954 u16 ldt;
1955 asm("sldt %0" : "=g"(ldt));
1956 return ldt;
1957 }
1958
kvm_load_ldt(u16 sel)1959 static inline void kvm_load_ldt(u16 sel)
1960 {
1961 asm("lldt %0" : : "rm"(sel));
1962 }
1963
1964 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)1965 static inline unsigned long read_msr(unsigned long msr)
1966 {
1967 u64 value;
1968
1969 rdmsrl(msr, value);
1970 return value;
1971 }
1972 #endif
1973
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)1974 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1975 {
1976 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1977 }
1978
1979 #define TSS_IOPB_BASE_OFFSET 0x66
1980 #define TSS_BASE_SIZE 0x68
1981 #define TSS_IOPB_SIZE (65536 / 8)
1982 #define TSS_REDIRECTION_SIZE (256 / 8)
1983 #define RMODE_TSS_SIZE \
1984 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1985
1986 enum {
1987 TASK_SWITCH_CALL = 0,
1988 TASK_SWITCH_IRET = 1,
1989 TASK_SWITCH_JMP = 2,
1990 TASK_SWITCH_GATE = 3,
1991 };
1992
1993 #define HF_GIF_MASK (1 << 0)
1994 #define HF_NMI_MASK (1 << 3)
1995 #define HF_IRET_MASK (1 << 4)
1996 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1997 #define HF_SMM_MASK (1 << 6)
1998 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1999
2000 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2001 #define KVM_ADDRESS_SPACE_NUM 2
2002
2003 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2004 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2005
2006 #define KVM_ARCH_WANT_MMU_NOTIFIER
2007
2008 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2009 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2010 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2011 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2012 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2013 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2014
2015 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2016 unsigned long ipi_bitmap_high, u32 min,
2017 unsigned long icr, int op_64_bit);
2018
2019 int kvm_add_user_return_msr(u32 msr);
2020 int kvm_find_user_return_msr(u32 msr);
2021 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2022
kvm_is_supported_user_return_msr(u32 msr)2023 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2024 {
2025 return kvm_find_user_return_msr(msr) >= 0;
2026 }
2027
2028 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2029 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2030 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2031 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2032
2033 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2034 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2035
2036 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2037 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2038 unsigned long *vcpu_bitmap);
2039
2040 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2041 struct kvm_async_pf *work);
2042 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2043 struct kvm_async_pf *work);
2044 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2045 struct kvm_async_pf *work);
2046 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2047 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2048 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2049
2050 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2051 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2052 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2053
2054 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2055 u32 size);
2056 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2057 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2058
2059 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2060 struct kvm_vcpu **dest_vcpu);
2061
2062 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2063 struct kvm_lapic_irq *irq);
2064
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2065 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2066 {
2067 /* We can only post Fixed and LowPrio IRQs */
2068 return (irq->delivery_mode == APIC_DM_FIXED ||
2069 irq->delivery_mode == APIC_DM_LOWEST);
2070 }
2071
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2072 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2073 {
2074 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2075 }
2076
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2077 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2078 {
2079 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2080 }
2081
kvm_cpu_get_apicid(int mps_cpu)2082 static inline int kvm_cpu_get_apicid(int mps_cpu)
2083 {
2084 #ifdef CONFIG_X86_LOCAL_APIC
2085 return default_cpu_present_to_apicid(mps_cpu);
2086 #else
2087 WARN_ON_ONCE(1);
2088 return BAD_APICID;
2089 #endif
2090 }
2091
2092 #define put_smstate(type, buf, offset, val) \
2093 *(type *)((buf) + (offset) - 0x7e00) = val
2094
2095 #define GET_SMSTATE(type, buf, offset) \
2096 (*(type *)((buf) + (offset) - 0x7e00))
2097
2098 int kvm_cpu_dirty_log_size(void);
2099
2100 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2101
2102 #define KVM_CLOCK_VALID_FLAGS \
2103 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2104
2105 #define KVM_X86_VALID_QUIRKS \
2106 (KVM_X86_QUIRK_LINT0_REENABLED | \
2107 KVM_X86_QUIRK_CD_NW_CLEARED | \
2108 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2109 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2110 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2111 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2112 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2113
2114 #endif /* _ASM_X86_KVM_HOST_H */
2115