1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3 
4 #include <linux/types.h>
5 #include <linux/stddef.h>
6 #include <linux/poison.h>
7 #include <linux/prefetch.h>
8 
9 /*
10  * Simple doubly linked list implementation.
11  *
12  * Some of the internal functions ("__xxx") are useful when
13  * manipulating whole lists rather than single entries, as
14  * sometimes we already know the next/prev entries and we can
15  * generate better code by using them directly rather than
16  * using the generic single-entry routines.
17  */
18 
19 #define LIST_HEAD_INIT(name) { &(name), &(name) }
20 
21 #define LIST_HEAD(name) \
22 	struct list_head name = LIST_HEAD_INIT(name)
23 
INIT_LIST_HEAD(struct list_head * list)24 static inline void INIT_LIST_HEAD(struct list_head *list)
25 {
26 	list->next = list;
27 	list->prev = list;
28 }
29 
30 /*
31  * Insert a new entry between two known consecutive entries.
32  *
33  * This is only for internal list manipulation where we know
34  * the prev/next entries already!
35  */
36 #ifndef CONFIG_DEBUG_LIST
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)37 static inline void __list_add(struct list_head *new,
38 			      struct list_head *prev,
39 			      struct list_head *next)
40 {
41 	next->prev = new;
42 	new->next = next;
43 	new->prev = prev;
44 	prev->next = new;
45 }
46 #else
47 extern void __list_add(struct list_head *new,
48 			      struct list_head *prev,
49 			      struct list_head *next);
50 #endif
51 
52 /**
53  * list_add - add a new entry
54  * @new: new entry to be added
55  * @head: list head to add it after
56  *
57  * Insert a new entry after the specified head.
58  * This is good for implementing stacks.
59  */
list_add(struct list_head * new,struct list_head * head)60 static inline void list_add(struct list_head *new, struct list_head *head)
61 {
62 	__list_add(new, head, head->next);
63 }
64 
65 
66 /**
67  * list_add_tail - add a new entry
68  * @new: new entry to be added
69  * @head: list head to add it before
70  *
71  * Insert a new entry before the specified head.
72  * This is useful for implementing queues.
73  */
list_add_tail(struct list_head * new,struct list_head * head)74 static inline void list_add_tail(struct list_head *new, struct list_head *head)
75 {
76 	__list_add(new, head->prev, head);
77 }
78 
79 /*
80  * Delete a list entry by making the prev/next entries
81  * point to each other.
82  *
83  * This is only for internal list manipulation where we know
84  * the prev/next entries already!
85  */
__list_del(struct list_head * prev,struct list_head * next)86 static inline void __list_del(struct list_head * prev, struct list_head * next)
87 {
88 	next->prev = prev;
89 	prev->next = next;
90 }
91 
92 /**
93  * list_del - deletes entry from list.
94  * @entry: the element to delete from the list.
95  * Note: list_empty() on entry does not return true after this, the entry is
96  * in an undefined state.
97  */
98 #ifndef CONFIG_DEBUG_LIST
__list_del_entry(struct list_head * entry)99 static inline void __list_del_entry(struct list_head *entry)
100 {
101 	__list_del(entry->prev, entry->next);
102 }
103 
list_del(struct list_head * entry)104 static inline void list_del(struct list_head *entry)
105 {
106 	__list_del(entry->prev, entry->next);
107 	entry->next = LIST_POISON1;
108 	entry->prev = LIST_POISON2;
109 }
110 #else
111 extern void __list_del_entry(struct list_head *entry);
112 extern void list_del(struct list_head *entry);
113 #endif
114 
115 /**
116  * list_replace - replace old entry by new one
117  * @old : the element to be replaced
118  * @new : the new element to insert
119  *
120  * If @old was empty, it will be overwritten.
121  */
list_replace(struct list_head * old,struct list_head * new)122 static inline void list_replace(struct list_head *old,
123 				struct list_head *new)
124 {
125 	new->next = old->next;
126 	new->next->prev = new;
127 	new->prev = old->prev;
128 	new->prev->next = new;
129 }
130 
list_replace_init(struct list_head * old,struct list_head * new)131 static inline void list_replace_init(struct list_head *old,
132 					struct list_head *new)
133 {
134 	list_replace(old, new);
135 	INIT_LIST_HEAD(old);
136 }
137 
138 /**
139  * list_del_init - deletes entry from list and reinitialize it.
140  * @entry: the element to delete from the list.
141  */
list_del_init(struct list_head * entry)142 static inline void list_del_init(struct list_head *entry)
143 {
144 	__list_del_entry(entry);
145 	INIT_LIST_HEAD(entry);
146 }
147 
148 /**
149  * list_move - delete from one list and add as another's head
150  * @list: the entry to move
151  * @head: the head that will precede our entry
152  */
list_move(struct list_head * list,struct list_head * head)153 static inline void list_move(struct list_head *list, struct list_head *head)
154 {
155 	__list_del_entry(list);
156 	list_add(list, head);
157 }
158 
159 /**
160  * list_move_tail - delete from one list and add as another's tail
161  * @list: the entry to move
162  * @head: the head that will follow our entry
163  */
list_move_tail(struct list_head * list,struct list_head * head)164 static inline void list_move_tail(struct list_head *list,
165 				  struct list_head *head)
166 {
167 	__list_del_entry(list);
168 	list_add_tail(list, head);
169 }
170 
171 /**
172  * list_is_last - tests whether @list is the last entry in list @head
173  * @list: the entry to test
174  * @head: the head of the list
175  */
list_is_last(const struct list_head * list,const struct list_head * head)176 static inline int list_is_last(const struct list_head *list,
177 				const struct list_head *head)
178 {
179 	return list->next == head;
180 }
181 
182 /**
183  * list_empty - tests whether a list is empty
184  * @head: the list to test.
185  */
list_empty(const struct list_head * head)186 static inline int list_empty(const struct list_head *head)
187 {
188 	return head->next == head;
189 }
190 
191 /**
192  * list_empty_careful - tests whether a list is empty and not being modified
193  * @head: the list to test
194  *
195  * Description:
196  * tests whether a list is empty _and_ checks that no other CPU might be
197  * in the process of modifying either member (next or prev)
198  *
199  * NOTE: using list_empty_careful() without synchronization
200  * can only be safe if the only activity that can happen
201  * to the list entry is list_del_init(). Eg. it cannot be used
202  * if another CPU could re-list_add() it.
203  */
list_empty_careful(const struct list_head * head)204 static inline int list_empty_careful(const struct list_head *head)
205 {
206 	struct list_head *next = head->next;
207 	return (next == head) && (next == head->prev);
208 }
209 
210 /**
211  * list_rotate_left - rotate the list to the left
212  * @head: the head of the list
213  */
list_rotate_left(struct list_head * head)214 static inline void list_rotate_left(struct list_head *head)
215 {
216 	struct list_head *first;
217 
218 	if (!list_empty(head)) {
219 		first = head->next;
220 		list_move_tail(first, head);
221 	}
222 }
223 
224 /**
225  * list_is_singular - tests whether a list has just one entry.
226  * @head: the list to test.
227  */
list_is_singular(const struct list_head * head)228 static inline int list_is_singular(const struct list_head *head)
229 {
230 	return !list_empty(head) && (head->next == head->prev);
231 }
232 
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)233 static inline void __list_cut_position(struct list_head *list,
234 		struct list_head *head, struct list_head *entry)
235 {
236 	struct list_head *new_first = entry->next;
237 	list->next = head->next;
238 	list->next->prev = list;
239 	list->prev = entry;
240 	entry->next = list;
241 	head->next = new_first;
242 	new_first->prev = head;
243 }
244 
245 /**
246  * list_cut_position - cut a list into two
247  * @list: a new list to add all removed entries
248  * @head: a list with entries
249  * @entry: an entry within head, could be the head itself
250  *	and if so we won't cut the list
251  *
252  * This helper moves the initial part of @head, up to and
253  * including @entry, from @head to @list. You should
254  * pass on @entry an element you know is on @head. @list
255  * should be an empty list or a list you do not care about
256  * losing its data.
257  *
258  */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)259 static inline void list_cut_position(struct list_head *list,
260 		struct list_head *head, struct list_head *entry)
261 {
262 	if (list_empty(head))
263 		return;
264 	if (list_is_singular(head) &&
265 		(head->next != entry && head != entry))
266 		return;
267 	if (entry == head)
268 		INIT_LIST_HEAD(list);
269 	else
270 		__list_cut_position(list, head, entry);
271 }
272 
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)273 static inline void __list_splice(const struct list_head *list,
274 				 struct list_head *prev,
275 				 struct list_head *next)
276 {
277 	struct list_head *first = list->next;
278 	struct list_head *last = list->prev;
279 
280 	first->prev = prev;
281 	prev->next = first;
282 
283 	last->next = next;
284 	next->prev = last;
285 }
286 
287 /**
288  * list_splice - join two lists, this is designed for stacks
289  * @list: the new list to add.
290  * @head: the place to add it in the first list.
291  */
list_splice(const struct list_head * list,struct list_head * head)292 static inline void list_splice(const struct list_head *list,
293 				struct list_head *head)
294 {
295 	if (!list_empty(list))
296 		__list_splice(list, head, head->next);
297 }
298 
299 /**
300  * list_splice_tail - join two lists, each list being a queue
301  * @list: the new list to add.
302  * @head: the place to add it in the first list.
303  */
list_splice_tail(struct list_head * list,struct list_head * head)304 static inline void list_splice_tail(struct list_head *list,
305 				struct list_head *head)
306 {
307 	if (!list_empty(list))
308 		__list_splice(list, head->prev, head);
309 }
310 
311 /**
312  * list_splice_init - join two lists and reinitialise the emptied list.
313  * @list: the new list to add.
314  * @head: the place to add it in the first list.
315  *
316  * The list at @list is reinitialised
317  */
list_splice_init(struct list_head * list,struct list_head * head)318 static inline void list_splice_init(struct list_head *list,
319 				    struct list_head *head)
320 {
321 	if (!list_empty(list)) {
322 		__list_splice(list, head, head->next);
323 		INIT_LIST_HEAD(list);
324 	}
325 }
326 
327 /**
328  * list_splice_tail_init - join two lists and reinitialise the emptied list
329  * @list: the new list to add.
330  * @head: the place to add it in the first list.
331  *
332  * Each of the lists is a queue.
333  * The list at @list is reinitialised
334  */
list_splice_tail_init(struct list_head * list,struct list_head * head)335 static inline void list_splice_tail_init(struct list_head *list,
336 					 struct list_head *head)
337 {
338 	if (!list_empty(list)) {
339 		__list_splice(list, head->prev, head);
340 		INIT_LIST_HEAD(list);
341 	}
342 }
343 
344 /**
345  * list_entry - get the struct for this entry
346  * @ptr:	the &struct list_head pointer.
347  * @type:	the type of the struct this is embedded in.
348  * @member:	the name of the list_struct within the struct.
349  */
350 #define list_entry(ptr, type, member) \
351 	container_of(ptr, type, member)
352 
353 /**
354  * list_first_entry - get the first element from a list
355  * @ptr:	the list head to take the element from.
356  * @type:	the type of the struct this is embedded in.
357  * @member:	the name of the list_struct within the struct.
358  *
359  * Note, that list is expected to be not empty.
360  */
361 #define list_first_entry(ptr, type, member) \
362 	list_entry((ptr)->next, type, member)
363 
364 /**
365  * list_for_each	-	iterate over a list
366  * @pos:	the &struct list_head to use as a loop cursor.
367  * @head:	the head for your list.
368  */
369 #define list_for_each(pos, head) \
370 	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
371         	pos = pos->next)
372 
373 /**
374  * __list_for_each	-	iterate over a list
375  * @pos:	the &struct list_head to use as a loop cursor.
376  * @head:	the head for your list.
377  *
378  * This variant differs from list_for_each() in that it's the
379  * simplest possible list iteration code, no prefetching is done.
380  * Use this for code that knows the list to be very short (empty
381  * or 1 entry) most of the time.
382  */
383 #define __list_for_each(pos, head) \
384 	for (pos = (head)->next; pos != (head); pos = pos->next)
385 
386 /**
387  * list_for_each_prev	-	iterate over a list backwards
388  * @pos:	the &struct list_head to use as a loop cursor.
389  * @head:	the head for your list.
390  */
391 #define list_for_each_prev(pos, head) \
392 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
393         	pos = pos->prev)
394 
395 /**
396  * list_for_each_safe - iterate over a list safe against removal of list entry
397  * @pos:	the &struct list_head to use as a loop cursor.
398  * @n:		another &struct list_head to use as temporary storage
399  * @head:	the head for your list.
400  */
401 #define list_for_each_safe(pos, n, head) \
402 	for (pos = (head)->next, n = pos->next; pos != (head); \
403 		pos = n, n = pos->next)
404 
405 /**
406  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
407  * @pos:	the &struct list_head to use as a loop cursor.
408  * @n:		another &struct list_head to use as temporary storage
409  * @head:	the head for your list.
410  */
411 #define list_for_each_prev_safe(pos, n, head) \
412 	for (pos = (head)->prev, n = pos->prev; \
413 	     prefetch(pos->prev), pos != (head); \
414 	     pos = n, n = pos->prev)
415 
416 /**
417  * list_for_each_entry	-	iterate over list of given type
418  * @pos:	the type * to use as a loop cursor.
419  * @head:	the head for your list.
420  * @member:	the name of the list_struct within the struct.
421  */
422 #define list_for_each_entry(pos, head, member)				\
423 	for (pos = list_entry((head)->next, typeof(*pos), member);	\
424 	     prefetch(pos->member.next), &pos->member != (head); 	\
425 	     pos = list_entry(pos->member.next, typeof(*pos), member))
426 
427 /**
428  * list_for_each_entry_reverse - iterate backwards over list of given type.
429  * @pos:	the type * to use as a loop cursor.
430  * @head:	the head for your list.
431  * @member:	the name of the list_struct within the struct.
432  */
433 #define list_for_each_entry_reverse(pos, head, member)			\
434 	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
435 	     prefetch(pos->member.prev), &pos->member != (head); 	\
436 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
437 
438 /**
439  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
440  * @pos:	the type * to use as a start point
441  * @head:	the head of the list
442  * @member:	the name of the list_struct within the struct.
443  *
444  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
445  */
446 #define list_prepare_entry(pos, head, member) \
447 	((pos) ? : list_entry(head, typeof(*pos), member))
448 
449 /**
450  * list_for_each_entry_continue - continue iteration over list of given type
451  * @pos:	the type * to use as a loop cursor.
452  * @head:	the head for your list.
453  * @member:	the name of the list_struct within the struct.
454  *
455  * Continue to iterate over list of given type, continuing after
456  * the current position.
457  */
458 #define list_for_each_entry_continue(pos, head, member) 		\
459 	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
460 	     prefetch(pos->member.next), &pos->member != (head);	\
461 	     pos = list_entry(pos->member.next, typeof(*pos), member))
462 
463 /**
464  * list_for_each_entry_continue_reverse - iterate backwards from the given point
465  * @pos:	the type * to use as a loop cursor.
466  * @head:	the head for your list.
467  * @member:	the name of the list_struct within the struct.
468  *
469  * Start to iterate over list of given type backwards, continuing after
470  * the current position.
471  */
472 #define list_for_each_entry_continue_reverse(pos, head, member)		\
473 	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
474 	     prefetch(pos->member.prev), &pos->member != (head);	\
475 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
476 
477 /**
478  * list_for_each_entry_from - iterate over list of given type from the current point
479  * @pos:	the type * to use as a loop cursor.
480  * @head:	the head for your list.
481  * @member:	the name of the list_struct within the struct.
482  *
483  * Iterate over list of given type, continuing from current position.
484  */
485 #define list_for_each_entry_from(pos, head, member) 			\
486 	for (; prefetch(pos->member.next), &pos->member != (head);	\
487 	     pos = list_entry(pos->member.next, typeof(*pos), member))
488 
489 /**
490  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
491  * @pos:	the type * to use as a loop cursor.
492  * @n:		another type * to use as temporary storage
493  * @head:	the head for your list.
494  * @member:	the name of the list_struct within the struct.
495  */
496 #define list_for_each_entry_safe(pos, n, head, member)			\
497 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
498 		n = list_entry(pos->member.next, typeof(*pos), member);	\
499 	     &pos->member != (head); 					\
500 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
501 
502 /**
503  * list_for_each_entry_safe_continue - continue list iteration safe against removal
504  * @pos:	the type * to use as a loop cursor.
505  * @n:		another type * to use as temporary storage
506  * @head:	the head for your list.
507  * @member:	the name of the list_struct within the struct.
508  *
509  * Iterate over list of given type, continuing after current point,
510  * safe against removal of list entry.
511  */
512 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
513 	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
514 		n = list_entry(pos->member.next, typeof(*pos), member);		\
515 	     &pos->member != (head);						\
516 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
517 
518 /**
519  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
520  * @pos:	the type * to use as a loop cursor.
521  * @n:		another type * to use as temporary storage
522  * @head:	the head for your list.
523  * @member:	the name of the list_struct within the struct.
524  *
525  * Iterate over list of given type from current point, safe against
526  * removal of list entry.
527  */
528 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
529 	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
530 	     &pos->member != (head);						\
531 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
532 
533 /**
534  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
535  * @pos:	the type * to use as a loop cursor.
536  * @n:		another type * to use as temporary storage
537  * @head:	the head for your list.
538  * @member:	the name of the list_struct within the struct.
539  *
540  * Iterate backwards over list of given type, safe against removal
541  * of list entry.
542  */
543 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
544 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
545 		n = list_entry(pos->member.prev, typeof(*pos), member);	\
546 	     &pos->member != (head); 					\
547 	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
548 
549 /**
550  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
551  * @pos:	the loop cursor used in the list_for_each_entry_safe loop
552  * @n:		temporary storage used in list_for_each_entry_safe
553  * @member:	the name of the list_struct within the struct.
554  *
555  * list_safe_reset_next is not safe to use in general if the list may be
556  * modified concurrently (eg. the lock is dropped in the loop body). An
557  * exception to this is if the cursor element (pos) is pinned in the list,
558  * and list_safe_reset_next is called after re-taking the lock and before
559  * completing the current iteration of the loop body.
560  */
561 #define list_safe_reset_next(pos, n, member)				\
562 	n = list_entry(pos->member.next, typeof(*pos), member)
563 
564 /*
565  * Double linked lists with a single pointer list head.
566  * Mostly useful for hash tables where the two pointer list head is
567  * too wasteful.
568  * You lose the ability to access the tail in O(1).
569  */
570 
571 #define HLIST_HEAD_INIT { .first = NULL }
572 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
573 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)574 static inline void INIT_HLIST_NODE(struct hlist_node *h)
575 {
576 	h->next = NULL;
577 	h->pprev = NULL;
578 }
579 
hlist_unhashed(const struct hlist_node * h)580 static inline int hlist_unhashed(const struct hlist_node *h)
581 {
582 	return !h->pprev;
583 }
584 
hlist_empty(const struct hlist_head * h)585 static inline int hlist_empty(const struct hlist_head *h)
586 {
587 	return !h->first;
588 }
589 
__hlist_del(struct hlist_node * n)590 static inline void __hlist_del(struct hlist_node *n)
591 {
592 	struct hlist_node *next = n->next;
593 	struct hlist_node **pprev = n->pprev;
594 	*pprev = next;
595 	if (next)
596 		next->pprev = pprev;
597 }
598 
hlist_del(struct hlist_node * n)599 static inline void hlist_del(struct hlist_node *n)
600 {
601 	__hlist_del(n);
602 	n->next = LIST_POISON1;
603 	n->pprev = LIST_POISON2;
604 }
605 
hlist_del_init(struct hlist_node * n)606 static inline void hlist_del_init(struct hlist_node *n)
607 {
608 	if (!hlist_unhashed(n)) {
609 		__hlist_del(n);
610 		INIT_HLIST_NODE(n);
611 	}
612 }
613 
hlist_add_head(struct hlist_node * n,struct hlist_head * h)614 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
615 {
616 	struct hlist_node *first = h->first;
617 	n->next = first;
618 	if (first)
619 		first->pprev = &n->next;
620 	h->first = n;
621 	n->pprev = &h->first;
622 }
623 
624 /* next must be != NULL */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)625 static inline void hlist_add_before(struct hlist_node *n,
626 					struct hlist_node *next)
627 {
628 	n->pprev = next->pprev;
629 	n->next = next;
630 	next->pprev = &n->next;
631 	*(n->pprev) = n;
632 }
633 
hlist_add_after(struct hlist_node * n,struct hlist_node * next)634 static inline void hlist_add_after(struct hlist_node *n,
635 					struct hlist_node *next)
636 {
637 	next->next = n->next;
638 	n->next = next;
639 	next->pprev = &n->next;
640 
641 	if(next->next)
642 		next->next->pprev  = &next->next;
643 }
644 
645 /* after that we'll appear to be on some hlist and hlist_del will work */
hlist_add_fake(struct hlist_node * n)646 static inline void hlist_add_fake(struct hlist_node *n)
647 {
648 	n->pprev = &n->next;
649 }
650 
651 /*
652  * Move a list from one list head to another. Fixup the pprev
653  * reference of the first entry if it exists.
654  */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)655 static inline void hlist_move_list(struct hlist_head *old,
656 				   struct hlist_head *new)
657 {
658 	new->first = old->first;
659 	if (new->first)
660 		new->first->pprev = &new->first;
661 	old->first = NULL;
662 }
663 
664 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
665 
666 #define hlist_for_each(pos, head) \
667 	for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
668 	     pos = pos->next)
669 
670 #define hlist_for_each_safe(pos, n, head) \
671 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
672 	     pos = n)
673 
674 /**
675  * hlist_for_each_entry	- iterate over list of given type
676  * @tpos:	the type * to use as a loop cursor.
677  * @pos:	the &struct hlist_node to use as a loop cursor.
678  * @head:	the head for your list.
679  * @member:	the name of the hlist_node within the struct.
680  */
681 #define hlist_for_each_entry(tpos, pos, head, member)			 \
682 	for (pos = (head)->first;					 \
683 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
684 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
685 	     pos = pos->next)
686 
687 /**
688  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
689  * @tpos:	the type * to use as a loop cursor.
690  * @pos:	the &struct hlist_node to use as a loop cursor.
691  * @member:	the name of the hlist_node within the struct.
692  */
693 #define hlist_for_each_entry_continue(tpos, pos, member)		 \
694 	for (pos = (pos)->next;						 \
695 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
696 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
697 	     pos = pos->next)
698 
699 /**
700  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
701  * @tpos:	the type * to use as a loop cursor.
702  * @pos:	the &struct hlist_node to use as a loop cursor.
703  * @member:	the name of the hlist_node within the struct.
704  */
705 #define hlist_for_each_entry_from(tpos, pos, member)			 \
706 	for (; pos && ({ prefetch(pos->next); 1;}) &&			 \
707 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
708 	     pos = pos->next)
709 
710 /**
711  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
712  * @tpos:	the type * to use as a loop cursor.
713  * @pos:	the &struct hlist_node to use as a loop cursor.
714  * @n:		another &struct hlist_node to use as temporary storage
715  * @head:	the head for your list.
716  * @member:	the name of the hlist_node within the struct.
717  */
718 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) 		 \
719 	for (pos = (head)->first;					 \
720 	     pos && ({ n = pos->next; 1; }) && 				 \
721 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
722 	     pos = n)
723 
724 #endif
725