1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <linux/slab.h>
9
10 #include "../habanalabs.h"
11
12 #include <trace/events/habanalabs.h>
13
14 /**
15 * hl_mmu_get_funcs() - get MMU functions structure
16 * @hdev: habanalabs device structure.
17 * @pgt_residency: page table residency.
18 * @is_dram_addr: true if we need HMMU functions
19 *
20 * @return appropriate MMU functions structure
21 */
hl_mmu_get_funcs(struct hl_device * hdev,int pgt_residency,bool is_dram_addr)22 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
23 bool is_dram_addr)
24 {
25 return &hdev->mmu_func[pgt_residency];
26 }
27
hl_is_dram_va(struct hl_device * hdev,u64 virt_addr)28 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
29 {
30 struct asic_fixed_properties *prop = &hdev->asic_prop;
31
32 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
33 prop->dmmu.start_addr,
34 prop->dmmu.end_addr);
35 }
36
37 /**
38 * hl_mmu_init() - initialize the MMU module.
39 * @hdev: habanalabs device structure.
40 *
41 * Return: 0 for success, non-zero for failure.
42 */
hl_mmu_init(struct hl_device * hdev)43 int hl_mmu_init(struct hl_device *hdev)
44 {
45 int rc = -EOPNOTSUPP;
46
47 if (hdev->mmu_disable)
48 return 0;
49
50 mutex_init(&hdev->mmu_lock);
51
52 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
53 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
54 if (rc)
55 return rc;
56 }
57
58 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
59 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
60 if (rc)
61 goto fini_dr_mmu;
62 }
63
64 return 0;
65
66 fini_dr_mmu:
67 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
68 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
69
70 return rc;
71 }
72
73 /**
74 * hl_mmu_fini() - release the MMU module.
75 * @hdev: habanalabs device structure.
76 *
77 * This function does the following:
78 * - Disable MMU in H/W.
79 * - Free the pgt_infos pool.
80 *
81 * All contexts should be freed before calling this function.
82 */
hl_mmu_fini(struct hl_device * hdev)83 void hl_mmu_fini(struct hl_device *hdev)
84 {
85 if (hdev->mmu_disable)
86 return;
87
88 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
89 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
90
91 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
92 hdev->mmu_func[MMU_HR_PGT].fini(hdev);
93
94 mutex_destroy(&hdev->mmu_lock);
95 }
96
97 /**
98 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
99 * @ctx: pointer to the context structure to initialize.
100 *
101 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
102 * page tables hops related to this context.
103 * Return: 0 on success, non-zero otherwise.
104 */
hl_mmu_ctx_init(struct hl_ctx * ctx)105 int hl_mmu_ctx_init(struct hl_ctx *ctx)
106 {
107 struct hl_device *hdev = ctx->hdev;
108 int rc = -EOPNOTSUPP;
109
110 if (hdev->mmu_disable)
111 return 0;
112
113 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
114 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
115 if (rc)
116 return rc;
117 }
118
119 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
120 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
121 if (rc)
122 goto fini_dr_ctx;
123 }
124
125 return 0;
126
127 fini_dr_ctx:
128 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
129 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
130
131 return rc;
132 }
133
134 /*
135 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
136 *
137 * @ctx: pointer to the context structure
138 *
139 * This function does the following:
140 * - Free any pgts which were not freed yet
141 * - Free the mutex
142 * - Free DRAM default page mapping hops
143 */
hl_mmu_ctx_fini(struct hl_ctx * ctx)144 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
145 {
146 struct hl_device *hdev = ctx->hdev;
147
148 if (hdev->mmu_disable)
149 return;
150
151 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
152 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
153
154 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
155 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
156 }
157
158 /*
159 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
160 *
161 * @hdev: pointer to device data.
162 * @mmu_prop: MMU properties.
163 * @page_size: page size
164 * @real_page_size: set here the actual page size to use for the operation
165 * @is_dram_addr: true if DRAM address, otherwise false.
166 *
167 * @return 0 on success, otherwise non 0 error code
168 *
169 * note that this is general implementation that can fit most MMU arch. but as this is used as an
170 * MMU function:
171 * 1. it shall not be called directly- only from mmu_func structure instance
172 * 2. each MMU may modify the implementation internally
173 */
hl_mmu_get_real_page_size(struct hl_device * hdev,struct hl_mmu_properties * mmu_prop,u32 page_size,u32 * real_page_size,bool is_dram_addr)174 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
175 u32 page_size, u32 *real_page_size, bool is_dram_addr)
176 {
177 /*
178 * The H/W handles mapping of specific page sizes. Hence if the page
179 * size is bigger, we break it to sub-pages and map them separately.
180 */
181 if ((page_size % mmu_prop->page_size) == 0) {
182 *real_page_size = mmu_prop->page_size;
183 return 0;
184 }
185
186 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
187 page_size, mmu_prop->page_size >> 10);
188
189 return -EFAULT;
190 }
191
hl_mmu_get_prop(struct hl_device * hdev,u32 page_size,bool is_dram_addr)192 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
193 bool is_dram_addr)
194 {
195 struct asic_fixed_properties *prop = &hdev->asic_prop;
196
197 if (is_dram_addr)
198 return &prop->dmmu;
199 else if ((page_size % prop->pmmu_huge.page_size) == 0)
200 return &prop->pmmu_huge;
201
202 return &prop->pmmu;
203 }
204
205 /*
206 * hl_mmu_unmap_page - unmaps a virtual addr
207 *
208 * @ctx: pointer to the context structure
209 * @virt_addr: virt addr to map from
210 * @page_size: size of the page to unmap
211 * @flush_pte: whether to do a PCI flush
212 *
213 * This function does the following:
214 * - Check that the virt addr is mapped
215 * - Unmap the virt addr and frees pgts if possible
216 * - Returns 0 on success, -EINVAL if the given addr is not mapped
217 *
218 * Because this function changes the page tables in the device and because it
219 * changes the MMU hash, it must be protected by a lock.
220 * However, because it maps only a single page, the lock should be implemented
221 * in a higher level in order to protect the entire mapping of the memory area
222 *
223 * For optimization reasons PCI flush may be requested once after unmapping of
224 * large area.
225 */
hl_mmu_unmap_page(struct hl_ctx * ctx,u64 virt_addr,u32 page_size,bool flush_pte)226 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
227 {
228 struct hl_device *hdev = ctx->hdev;
229 struct hl_mmu_properties *mmu_prop;
230 struct hl_mmu_funcs *mmu_funcs;
231 int i, pgt_residency, rc = 0;
232 u32 real_page_size, npages;
233 u64 real_virt_addr;
234 bool is_dram_addr;
235
236 if (hdev->mmu_disable)
237 return 0;
238
239 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
240 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
241
242 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
243 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
244
245 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
246 is_dram_addr);
247 if (rc)
248 return rc;
249
250 npages = page_size / real_page_size;
251 real_virt_addr = virt_addr;
252
253 for (i = 0 ; i < npages ; i++) {
254 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
255 if (rc)
256 break;
257
258 real_virt_addr += real_page_size;
259 }
260
261 if (flush_pte)
262 mmu_funcs->flush(ctx);
263
264 if (trace_habanalabs_mmu_unmap_enabled() && !rc)
265 trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
266
267 return rc;
268 }
269
270 /*
271 * hl_mmu_map_page - maps a virtual addr to physical addr
272 *
273 * @ctx: pointer to the context structure
274 * @virt_addr: virt addr to map from
275 * @phys_addr: phys addr to map to
276 * @page_size: physical page size
277 * @flush_pte: whether to do a PCI flush
278 *
279 * This function does the following:
280 * - Check that the virt addr is not mapped
281 * - Allocate pgts as necessary in order to map the virt addr to the phys
282 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
283 *
284 * Because this function changes the page tables in the device and because it
285 * changes the MMU hash, it must be protected by a lock.
286 * However, because it maps only a single page, the lock should be implemented
287 * in a higher level in order to protect the entire mapping of the memory area
288 *
289 * For optimization reasons PCI flush may be requested once after mapping of
290 * large area.
291 */
hl_mmu_map_page(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool flush_pte)292 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
293 bool flush_pte)
294 {
295 int i, rc, pgt_residency, mapped_cnt = 0;
296 struct hl_device *hdev = ctx->hdev;
297 struct hl_mmu_properties *mmu_prop;
298 u64 real_virt_addr, real_phys_addr;
299 struct hl_mmu_funcs *mmu_funcs;
300 u32 real_page_size, npages;
301 bool is_dram_addr;
302
303
304 if (hdev->mmu_disable)
305 return 0;
306
307 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
308 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
309
310 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
311 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
312
313 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
314 is_dram_addr);
315 if (rc)
316 return rc;
317
318 /*
319 * Verify that the phys and virt addresses are aligned with the
320 * MMU page size (in dram this means checking the address and MMU
321 * after scrambling)
322 */
323 if ((is_dram_addr &&
324 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
325 (mmu_prop->page_size - 1)) ||
326 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
327 (mmu_prop->page_size - 1)))) ||
328 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
329 (virt_addr & (real_page_size - 1)))))
330 dev_crit(hdev->dev,
331 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
332 phys_addr, virt_addr, real_page_size);
333
334 npages = page_size / real_page_size;
335 real_virt_addr = virt_addr;
336 real_phys_addr = phys_addr;
337
338 for (i = 0 ; i < npages ; i++) {
339 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
340 is_dram_addr);
341 if (rc)
342 goto err;
343
344 real_virt_addr += real_page_size;
345 real_phys_addr += real_page_size;
346 mapped_cnt++;
347 }
348
349 if (flush_pte)
350 mmu_funcs->flush(ctx);
351
352 trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
353
354 return 0;
355
356 err:
357 real_virt_addr = virt_addr;
358 for (i = 0 ; i < mapped_cnt ; i++) {
359 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
360 dev_warn_ratelimited(hdev->dev,
361 "failed to unmap va: 0x%llx\n", real_virt_addr);
362
363 real_virt_addr += real_page_size;
364 }
365
366 mmu_funcs->flush(ctx);
367
368 return rc;
369 }
370
371 /*
372 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
373 * for mapping contiguous physical memory
374 *
375 * @ctx: pointer to the context structure
376 * @virt_addr: virt addr to map from
377 * @phys_addr: phys addr to map to
378 * @size: size to map
379 *
380 */
hl_mmu_map_contiguous(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 size)381 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
382 u64 phys_addr, u32 size)
383 {
384 struct hl_device *hdev = ctx->hdev;
385 struct asic_fixed_properties *prop = &hdev->asic_prop;
386 u64 curr_va, curr_pa;
387 u32 page_size;
388 bool flush_pte;
389 int rc = 0, off;
390
391 if (hl_mem_area_inside_range(virt_addr, size,
392 prop->dmmu.start_addr, prop->dmmu.end_addr))
393 page_size = prop->dmmu.page_size;
394 else if (hl_mem_area_inside_range(virt_addr, size,
395 prop->pmmu.start_addr, prop->pmmu.end_addr))
396 page_size = prop->pmmu.page_size;
397 else if (hl_mem_area_inside_range(virt_addr, size,
398 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
399 page_size = prop->pmmu_huge.page_size;
400 else
401 return -EINVAL;
402
403 for (off = 0 ; off < size ; off += page_size) {
404 curr_va = virt_addr + off;
405 curr_pa = phys_addr + off;
406 flush_pte = (off + page_size) >= size;
407 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
408 flush_pte);
409 if (rc) {
410 dev_err(hdev->dev,
411 "Map failed for va 0x%llx to pa 0x%llx\n",
412 curr_va, curr_pa);
413 /* last mapping failed so don't try to unmap it - reduce off by page_size */
414 off -= page_size;
415 goto unmap;
416 }
417 }
418
419 return rc;
420
421 unmap:
422 for (; off >= 0 ; off -= page_size) {
423 curr_va = virt_addr + off;
424 flush_pte = (off - (s32) page_size) < 0;
425 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
426 dev_warn_ratelimited(hdev->dev,
427 "failed to unmap va 0x%llx\n", curr_va);
428 }
429
430 return rc;
431 }
432
433 /*
434 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
435 * for unmapping contiguous physical memory
436 *
437 * @ctx: pointer to the context structure
438 * @virt_addr: virt addr to unmap
439 * @size: size to unmap
440 *
441 */
hl_mmu_unmap_contiguous(struct hl_ctx * ctx,u64 virt_addr,u32 size)442 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
443 {
444 struct hl_device *hdev = ctx->hdev;
445 struct asic_fixed_properties *prop = &hdev->asic_prop;
446 u64 curr_va;
447 u32 page_size;
448 bool flush_pte;
449 int rc = 0, off;
450
451 if (hl_mem_area_inside_range(virt_addr, size,
452 prop->dmmu.start_addr, prop->dmmu.end_addr))
453 page_size = prop->dmmu.page_size;
454 else if (hl_mem_area_inside_range(virt_addr, size,
455 prop->pmmu.start_addr, prop->pmmu.end_addr))
456 page_size = prop->pmmu.page_size;
457 else if (hl_mem_area_inside_range(virt_addr, size,
458 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
459 page_size = prop->pmmu_huge.page_size;
460 else
461 return -EINVAL;
462
463 for (off = 0 ; off < size ; off += page_size) {
464 curr_va = virt_addr + off;
465 flush_pte = (off + page_size) >= size;
466 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
467 if (rc)
468 dev_warn_ratelimited(hdev->dev,
469 "Unmap failed for va 0x%llx\n", curr_va);
470 }
471
472 return rc;
473 }
474
hl_mmu_pa_page_with_offset(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,u64 * phys_addr)475 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
476 struct hl_mmu_hop_info *hops,
477 u64 *phys_addr)
478 {
479 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
480 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
481 struct hl_mmu_properties *mmu_prop;
482
483 /* last hop holds the phys address and flags */
484 if (hops->unscrambled_paddr)
485 tmp_phys_addr = hops->unscrambled_paddr;
486 else
487 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
488
489 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
490 mmu_prop = &prop->pmmu_huge;
491 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
492 mmu_prop = &prop->pmmu;
493 else /* HL_VA_RANGE_TYPE_DRAM */
494 mmu_prop = &prop->dmmu;
495
496 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
497 !is_power_of_2(prop->dram_page_size)) {
498 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
499 page_id, page_start;
500 u32 page_off;
501
502 /*
503 * Bit arithmetic cannot be used for non power of two page
504 * sizes. In addition, since bit arithmetic is not used,
505 * we cannot ignore dram base. All that shall be considered.
506 */
507
508 dram_page_size = prop->dram_page_size;
509 dram_base = prop->dram_base_address;
510 abs_phys_addr = tmp_phys_addr - dram_base;
511 abs_virt_addr = virt_addr - dram_base;
512 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
513 page_start = page_id * dram_page_size;
514 div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
515
516 *phys_addr = page_start + page_off + dram_base;
517 } else {
518 /*
519 * find the correct hop shift field in hl_mmu_properties
520 * structure in order to determine the right masks
521 * for the page offset.
522 */
523 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
524 offset_mask = (1ull << hop_shift) - 1;
525 addr_mask = ~(offset_mask);
526 *phys_addr = (tmp_phys_addr & addr_mask) |
527 (virt_addr & offset_mask);
528 }
529 }
530
hl_mmu_va_to_pa(struct hl_ctx * ctx,u64 virt_addr,u64 * phys_addr)531 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
532 {
533 struct hl_mmu_hop_info hops;
534 int rc;
535
536 memset(&hops, 0, sizeof(hops));
537
538 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
539 if (rc)
540 return rc;
541
542 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
543
544 return 0;
545 }
546
hl_mmu_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)547 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
548 struct hl_mmu_hop_info *hops)
549 {
550 struct hl_device *hdev = ctx->hdev;
551 struct asic_fixed_properties *prop;
552 struct hl_mmu_properties *mmu_prop;
553 struct hl_mmu_funcs *mmu_funcs;
554 int pgt_residency, rc;
555 bool is_dram_addr;
556
557 if (hdev->mmu_disable)
558 return -EOPNOTSUPP;
559
560 prop = &hdev->asic_prop;
561 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
562
563 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
564 prop->dmmu.start_addr,
565 prop->dmmu.end_addr);
566
567 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
568 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
569 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
570 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
571
572 mutex_lock(&hdev->mmu_lock);
573 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
574 mutex_unlock(&hdev->mmu_lock);
575
576 if (rc)
577 return rc;
578
579 /* add page offset to physical address */
580 if (hops->unscrambled_paddr)
581 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
582
583 return 0;
584 }
585
hl_mmu_if_set_funcs(struct hl_device * hdev)586 int hl_mmu_if_set_funcs(struct hl_device *hdev)
587 {
588 if (hdev->mmu_disable)
589 return 0;
590
591 switch (hdev->asic_type) {
592 case ASIC_GOYA:
593 case ASIC_GAUDI:
594 case ASIC_GAUDI_SEC:
595 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
596 break;
597 case ASIC_GAUDI2:
598 case ASIC_GAUDI2B:
599 case ASIC_GAUDI2C:
600 /* MMUs in Gaudi2 are always host resident */
601 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
602 break;
603 default:
604 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
605 hdev->asic_type);
606 return -EOPNOTSUPP;
607 }
608
609 return 0;
610 }
611
612 /**
613 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
614 * @hdev: pointer to device data.
615 * @addr: The address to scramble.
616 *
617 * Return: The scrambled address.
618 */
hl_mmu_scramble_addr(struct hl_device * hdev,u64 addr)619 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
620 {
621 return addr;
622 }
623
624 /**
625 * hl_mmu_descramble_addr() - The generic mmu address descrambling
626 * routine.
627 * @hdev: pointer to device data.
628 * @addr: The address to descramble.
629 *
630 * Return: The un-scrambled address.
631 */
hl_mmu_descramble_addr(struct hl_device * hdev,u64 addr)632 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
633 {
634 return addr;
635 }
636
hl_mmu_invalidate_cache(struct hl_device * hdev,bool is_hard,u32 flags)637 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
638 {
639 int rc;
640
641 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
642 if (rc)
643 dev_err_ratelimited(hdev->dev,
644 "%s cache invalidation failed, rc=%d\n",
645 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
646
647 return rc;
648 }
649
hl_mmu_invalidate_cache_range(struct hl_device * hdev,bool is_hard,u32 flags,u32 asid,u64 va,u64 size)650 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
651 u32 flags, u32 asid, u64 va, u64 size)
652 {
653 int rc;
654
655 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
656 asid, va, size);
657 if (rc)
658 dev_err_ratelimited(hdev->dev,
659 "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
660 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
661
662 return rc;
663 }
664
hl_mmu_prefetch_work_function(struct work_struct * work)665 static void hl_mmu_prefetch_work_function(struct work_struct *work)
666 {
667 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
668 struct hl_ctx *ctx = pfw->ctx;
669 struct hl_device *hdev = ctx->hdev;
670
671 if (!hl_device_operational(hdev, NULL))
672 goto put_ctx;
673
674 mutex_lock(&hdev->mmu_lock);
675
676 hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
677
678 mutex_unlock(&hdev->mmu_lock);
679
680 put_ctx:
681 /*
682 * context was taken in the common mmu prefetch function- see comment there about
683 * context handling.
684 */
685 hl_ctx_put(ctx);
686 kfree(pfw);
687 }
688
hl_mmu_prefetch_cache_range(struct hl_ctx * ctx,u32 flags,u32 asid,u64 va,u64 size)689 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
690 {
691 struct hl_prefetch_work *handle_prefetch_work;
692
693 handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
694 if (!handle_prefetch_work)
695 return -ENOMEM;
696
697 INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
698 handle_prefetch_work->ctx = ctx;
699 handle_prefetch_work->va = va;
700 handle_prefetch_work->size = size;
701 handle_prefetch_work->flags = flags;
702 handle_prefetch_work->asid = asid;
703
704 /*
705 * as actual prefetch is done in a WQ we must get the context (and put it
706 * at the end of the work function)
707 */
708 hl_ctx_get(ctx);
709 queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
710
711 return 0;
712 }
713
hl_mmu_get_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte)714 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
715 {
716 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
717 }
718
719 /**
720 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
721 * @ctx: pointer to the context structure to initialize.
722 * @mmu_prop: MMU properties.
723 * @hop_idx: HOP index.
724 * @hop_addr: HOP address.
725 * @virt_addr: virtual address for the translation.
726 *
727 * @return the matching PTE value on success, otherwise U64_MAX.
728 */
hl_mmu_get_hop_pte_phys_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u8 hop_idx,u64 hop_addr,u64 virt_addr)729 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
730 u8 hop_idx, u64 hop_addr, u64 virt_addr)
731 {
732 u64 mask, shift;
733
734 if (hop_idx >= mmu_prop->num_hops) {
735 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
736 return U64_MAX;
737 }
738
739 shift = mmu_prop->hop_shifts[hop_idx];
740 mask = mmu_prop->hop_masks[hop_idx];
741
742 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
743 }
744
mmu_dma_mem_free_from_chunk(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data)745 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
746 struct gen_pool_chunk *chunk,
747 void *data)
748 {
749 struct hl_device *hdev = data;
750
751 hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
752 (void *)chunk->start_addr, chunk->phys_addr);
753 }
754
hl_mmu_hr_flush(struct hl_ctx * ctx)755 void hl_mmu_hr_flush(struct hl_ctx *ctx)
756 {
757 /* a flush operation requires memory barrier */
758 mb();
759 }
760
761 /**
762 * hl_mmu_hr_pool_destroy() - destroy genpool
763 * @hdev: habanalabs device structure.
764 * @hr_priv: MMU HR private data.
765 * @hop_table_size: HOP table size.
766 *
767 * This function does the following:
768 * - free entries allocated for shadow HOP0
769 * - free pool chunks
770 * - free pool
771 */
hl_mmu_hr_pool_destroy(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)772 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
773 u32 hop_table_size)
774 {
775 struct asic_fixed_properties *prop = &hdev->asic_prop;
776 struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
777 struct pgt_info *hop0_pgt;
778 int asid;
779
780 if (ZERO_OR_NULL_PTR(*pool))
781 return;
782
783 /* Free the Fixed allocation of HOPs0 */
784 if (hr_priv->mmu_asid_hop0) {
785 for (asid = 0 ; asid < prop->max_asid ; asid++) {
786 hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
787 if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
788 continue;
789
790 gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
791 }
792 }
793
794 gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
795 gen_pool_destroy(*pool);
796
797 /* Make sure that if we arrive here again without init was called we
798 * won't cause kernel panic. This can happen for example if we fail
799 * during hard reset code at certain points
800 */
801 *pool = NULL;
802 }
803
804 /**
805 * hl_mmu_hr_init() - initialize the MMU module.
806 * @hdev: habanalabs device structure.
807 * @hr_priv: MMU HR private data.
808 * @hop_table_size: HOP table size.
809 * @pgt_size: memory size allocated for the page table
810 *
811 * @return 0 on success otherwise non-zero error code
812 *
813 * This function does the following:
814 * - Create a pool of pages for pgt_infos.
815 * - Create a shadow table for pgt
816 */
hl_mmu_hr_init(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size,u64 pgt_size)817 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
818 u64 pgt_size)
819 {
820 struct asic_fixed_properties *prop = &hdev->asic_prop;
821 size_t pool_chunk_size = SZ_4M;
822 struct pgt_info *hop0_pgt;
823 dma_addr_t dma_addr;
824 u64 virt_addr;
825 int i, rc;
826
827 /*
828 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
829 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
830 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
831 * allocations with higher-order alignment restrictions
832 */
833 hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
834 if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
835 dev_err(hdev->dev, "Failed to create hr page pool\n");
836 return -ENOMEM;
837 }
838
839 hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
840 if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
841 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
842 rc = -ENOMEM;
843 goto destroy_mmu_pgt_pool;
844 }
845
846 for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
847 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
848 &dma_addr,
849 GFP_KERNEL | __GFP_ZERO);
850 if (ZERO_OR_NULL_PTR(virt_addr)) {
851 dev_err(hdev->dev,
852 "Failed to allocate memory for host-resident page pool\n");
853 rc = -ENOMEM;
854 goto destroy_mmu_pgt_pool;
855 }
856
857 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
858 pool_chunk_size, -1);
859 if (rc) {
860 dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
861 goto destroy_mmu_pgt_pool;
862 }
863 }
864
865 for (i = 0 ; i < prop->max_asid ; i++) {
866 hop0_pgt = &hr_priv->mmu_asid_hop0[i];
867 hop0_pgt->virt_addr = (uintptr_t)
868 gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
869 hop_table_size,
870 (dma_addr_t *) &hop0_pgt->phys_addr,
871 hop_table_size);
872 if (!hop0_pgt->virt_addr) {
873 dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
874 rc = -ENOMEM;
875 goto destroy_mmu_pgt_pool;
876 }
877 }
878
879 /* MMU H/W init will be done in device hw_init() */
880
881 return 0;
882
883 destroy_mmu_pgt_pool:
884 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
885 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
886 kvfree(hr_priv->mmu_asid_hop0);
887
888 return rc;
889 }
890
891 /**
892 * hl_mmu_hr_fini() - release the MMU module.
893 * @hdev: habanalabs device structure.
894 * @hr_priv: MMU host resident private info.
895 * @hop_table_size: HOP table size
896 *
897 * This function does the following:
898 * - Disable MMU in H/W.
899 * - Free the pgt_infos pool.
900 *
901 * All contexts should be freed before calling this function.
902 */
hl_mmu_hr_fini(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)903 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
904 {
905 /* MMU H/W fini was already done in device hw_fini() */
906
907 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
908
909 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
910 kvfree(hr_priv->mmu_asid_hop0);
911
912 /* Make sure that if we arrive here again without init was
913 * called we won't cause kernel panic. This can happen for
914 * example if we fail during hard reset code at certain points
915 */
916 hr_priv->mmu_asid_hop0 = NULL;
917 }
918 }
919
920 /**
921 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
922 * @pgt_info: page table info structure.
923 * @hr_priv: MMU HR private data.
924 * @hop_table_size: HOP table size.
925 */
hl_mmu_hr_free_hop_remove_pgt(struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)926 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
927 u32 hop_table_size)
928 {
929 gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
930 hash_del(&pgt_info->node);
931 kfree(pgt_info);
932 }
933
934 /**
935 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
936 * @ctx: pointer to the context structure
937 * @pgt: pgt_info for the HOP hosting the PTE
938 * @phys_pte_addr: phys address of the PTE
939 * @hop_table_size: HOP table size
940 *
941 * @return PTE virtual address
942 *
943 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
944 * by adding the PTE offset.
945 */
hl_mmu_hr_pte_phys_to_virt(struct hl_ctx * ctx,struct pgt_info * pgt,u64 phys_pte_addr,u32 hop_table_size)946 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
947 u64 phys_pte_addr, u32 hop_table_size)
948 {
949 u64 page_mask = (hop_table_size - 1);
950 u64 pte_offset = phys_pte_addr & page_mask;
951
952 return pgt->virt_addr + pte_offset;
953 }
954
955 /**
956 * hl_mmu_hr_write_pte() - write HR PTE
957 * @ctx: pointer to the context structure
958 * @pgt_info: HOP's page table info structure
959 * @phys_pte_addr: phys PTE address
960 * @val: raw PTE data
961 * @hop_table_size: HOP table size
962 */
hl_mmu_hr_write_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u64 val,u32 hop_table_size)963 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
964 u64 val, u32 hop_table_size)
965 {
966 /*
967 * The value to write is the phys address of the next hop +
968 * flags at the 12 LSBs.
969 */
970 u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
971
972 *((u64 *) (uintptr_t) virt_addr) = val;
973 }
974
975 /**
976 * hl_mmu_hr_clear_pte() - clear HR PTE
977 * @ctx: pointer to the context structure
978 * @pgt_info: HOP's page table info structure
979 * @phys_pte_addr: phys PTE address
980 * @hop_table_size: HOP table size
981 */
hl_mmu_hr_clear_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u32 hop_table_size)982 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
983 u32 hop_table_size)
984 {
985 /* no need to transform the value to physical address */
986 hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
987 }
988
989 /**
990 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
991 * @ctx: pointer to the context structure
992 * @pgt_info: HOP's page table info structure
993 * @hr_priv: HR MMU private info
994 * @hop_table_size: HOP table size
995 *
996 * @return number of PTEs still in the HOP
997 */
hl_mmu_hr_put_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)998 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
999 struct hl_mmu_hr_priv *hr_priv,
1000 u32 hop_table_size)
1001 {
1002 int num_of_ptes_left;
1003
1004 pgt_info->num_of_ptes--;
1005
1006 /*
1007 * Need to save the number of ptes left because free_hop might free
1008 * the pgt_info
1009 */
1010 num_of_ptes_left = pgt_info->num_of_ptes;
1011 if (!num_of_ptes_left)
1012 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1013
1014 return num_of_ptes_left;
1015 }
1016
1017 /**
1018 * hl_mmu_hr_get_pte() - increase PGT PTE count
1019 * @ctx: pointer to the context structure
1020 * @hr_func: host resident functions
1021 * @phys_hop_addr: HOP phys address
1022 */
hl_mmu_hr_get_pte(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 phys_hop_addr)1023 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1024 {
1025 hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1026 }
1027
1028 /**
1029 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1030 * @ctx: pointer to the context structure.
1031 * @hr_func: host resident functions.
1032 * @curr_pte: current PTE value.
1033 *
1034 * @return pgt_info structure on success, otherwise NULL.
1035 */
hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 curr_pte)1036 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1037 struct hl_hr_mmu_funcs *hr_func,
1038 u64 curr_pte)
1039 {
1040 u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1041
1042 if (next_hop_phys_addr == ULLONG_MAX)
1043 return NULL;
1044
1045 return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1046 }
1047
1048 /**
1049 * hl_mmu_hr_alloc_hop() - allocate HOP
1050 * @ctx: pointer to the context structure.
1051 * @hr_priv: host resident private info structure.
1052 * @hr_func: host resident functions.
1053 * @mmu_prop: MMU properties.
1054 *
1055 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1056 */
hl_mmu_hr_alloc_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop)1057 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1058 struct hl_hr_mmu_funcs *hr_func,
1059 struct hl_mmu_properties *mmu_prop)
1060 {
1061 struct hl_device *hdev = ctx->hdev;
1062 struct pgt_info *pgt_info;
1063 dma_addr_t phys_addr;
1064 void *virt_addr;
1065 int i, retry = 1;
1066
1067 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1068 if (!pgt_info)
1069 return NULL;
1070
1071 for (i = 0; i <= retry; i++) {
1072 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1073 mmu_prop->hop_table_size,
1074 &phys_addr,
1075 mmu_prop->hop_table_size);
1076 if (virt_addr)
1077 break;
1078
1079 /* No memory in pool - get some and try again */
1080 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1081 GFP_KERNEL | __GFP_ZERO);
1082 if (ZERO_OR_NULL_PTR(virt_addr))
1083 break;
1084
1085 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1086 phys_addr, SZ_2M, -1)) {
1087 hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1088 virt_addr = NULL;
1089 break;
1090 }
1091 }
1092
1093 if (ZERO_OR_NULL_PTR(virt_addr)) {
1094 dev_err(hdev->dev, "failed to allocate page\n");
1095 goto pool_alloc_err;
1096 }
1097
1098 pgt_info->phys_addr = phys_addr;
1099 pgt_info->shadow_addr = (unsigned long) NULL;
1100 pgt_info->virt_addr = (unsigned long)virt_addr;
1101 pgt_info->ctx = ctx;
1102 pgt_info->num_of_ptes = 0;
1103 hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1104
1105 return pgt_info;
1106
1107 pool_alloc_err:
1108 kfree(pgt_info);
1109
1110 return NULL;
1111 }
1112
1113 /**
1114 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1115 * @ctx: pointer to the context structure.
1116 * @hr_priv: host resident private info structure.
1117 * @hr_func: host resident functions.
1118 * @mmu_prop: MMU properties.
1119 * @curr_pte: current PTE value.
1120 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1121 *
1122 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1123 */
hl_mmu_hr_get_alloc_next_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop,u64 curr_pte,bool * is_new_hop)1124 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1125 struct hl_mmu_hr_priv *hr_priv,
1126 struct hl_hr_mmu_funcs *hr_func,
1127 struct hl_mmu_properties *mmu_prop,
1128 u64 curr_pte, bool *is_new_hop)
1129 {
1130 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1131
1132 if (hop_addr != ULLONG_MAX)
1133 return hr_func->get_pgt_info(ctx, hop_addr);
1134
1135 *is_new_hop = true;
1136 return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1137 }
1138
1139 /**
1140 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1141 * @ctx: pointer to the context structure.
1142 * @virt_addr: the virt address for which to get info.
1143 * @hops: HOPs info structure.
1144 * @hr_func: host resident functions.
1145 *
1146 * @return 0 on success, otherwise non 0 error code..
1147 */
hl_mmu_hr_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,struct hl_hr_mmu_funcs * hr_func)1148 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1149 struct hl_hr_mmu_funcs *hr_func)
1150 {
1151 /* using 6 HOPs as this is the maximum number of HOPs */
1152 struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1153 struct hl_device *hdev = ctx->hdev;
1154 struct hl_mmu_properties *mmu_prop;
1155 int rc, i, used_hops;
1156 bool is_huge;
1157
1158 rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1159 if (rc)
1160 return rc;
1161
1162 used_hops = mmu_prop->num_hops;
1163
1164 /* huge pages use one less hop */
1165 if (is_huge)
1166 used_hops--;
1167
1168 hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1169
1170 for (i = 0 ; i < used_hops ; i++) {
1171 if (i == 0)
1172 hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1173 else
1174 hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1175 hops->hop_info[i - 1].hop_pte_val);
1176
1177 if (!hops_pgt_info[i])
1178 return -EFAULT;
1179
1180 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1181 hops->hop_info[i].hop_pte_addr =
1182 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1183 hops->hop_info[i].hop_addr,
1184 hops->scrambled_vaddr);
1185 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1186 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1187 hops->hop_info[i].hop_pte_addr,
1188 mmu_prop->hop_table_size);
1189
1190 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1191 return -EFAULT;
1192
1193 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1194 break;
1195 }
1196
1197 /* if passed over all hops then no last hop was found */
1198 if (i == mmu_prop->num_hops)
1199 return -EFAULT;
1200
1201 if (hops->scrambled_vaddr != virt_addr)
1202 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1203 (hdev, hops->hop_info[i].hop_pte_val);
1204 else
1205 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1206
1207 hops->used_hops = i + 1;
1208
1209 return 0;
1210 }
1211
1212