1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci-p2pdma.h>
16
17 MODULE_IMPORT_NS(DMA_BUF);
18
19 #define HL_MMU_DEBUG 0
20
21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22 #define DRAM_POOL_PAGE_SIZE SZ_8M
23
24 #define MEM_HANDLE_INVALID ULONG_MAX
25
26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27 struct hl_mem_in *args, u64 *handle);
28
set_alloc_page_size(struct hl_device * hdev,struct hl_mem_in * args,u32 * page_size)29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30 {
31 struct asic_fixed_properties *prop = &hdev->asic_prop;
32 u64 psize;
33
34 /*
35 * for ASIC that supports setting the allocation page size by user we will address
36 * user's choice only if it is not 0 (as 0 means taking the default page size)
37 */
38 if (prop->supports_user_set_page_size && args->alloc.page_size) {
39 psize = args->alloc.page_size;
40
41 if (!is_power_of_2(psize)) {
42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43 return -EINVAL;
44 }
45 } else {
46 psize = prop->device_mem_alloc_default_page_size;
47 }
48
49 *page_size = psize;
50
51 return 0;
52 }
53
54 /*
55 * The va ranges in context object contain a list with the available chunks of
56 * device virtual memory.
57 * There is one range for host allocations and one for DRAM allocations.
58 *
59 * On initialization each range contains one chunk of all of its available
60 * virtual range which is a half of the total device virtual range.
61 *
62 * On each mapping of physical pages, a suitable virtual range chunk (with a
63 * minimum size) is selected from the list. If the chunk size equals the
64 * requested size, the chunk is returned. Otherwise, the chunk is split into
65 * two chunks - one to return as result and a remainder to stay in the list.
66 *
67 * On each Unmapping of a virtual address, the relevant virtual chunk is
68 * returned to the list. The chunk is added to the list and if its edges match
69 * the edges of the adjacent chunks (means a contiguous chunk can be created),
70 * the chunks are merged.
71 *
72 * On finish, the list is checked to have only one chunk of all the relevant
73 * virtual range (which is a half of the device total virtual range).
74 * If not (means not all mappings were unmapped), a warning is printed.
75 */
76
77 /*
78 * alloc_device_memory() - allocate device memory.
79 * @ctx: pointer to the context structure.
80 * @args: host parameters containing the requested size.
81 * @ret_handle: result handle.
82 *
83 * This function does the following:
84 * - Allocate the requested size rounded up to 'dram_page_size' pages.
85 * - Return unique handle for later map/unmap/free.
86 */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88 u32 *ret_handle)
89 {
90 struct hl_device *hdev = ctx->hdev;
91 struct hl_vm *vm = &hdev->vm;
92 struct hl_vm_phys_pg_pack *phys_pg_pack;
93 u64 paddr = 0, total_size, num_pgs, i;
94 u32 num_curr_pgs, page_size;
95 bool contiguous;
96 int handle, rc;
97
98 num_curr_pgs = 0;
99
100 rc = set_alloc_page_size(hdev, args, &page_size);
101 if (rc)
102 return rc;
103
104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105 total_size = num_pgs * page_size;
106
107 if (!total_size) {
108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109 return -EINVAL;
110 }
111
112 contiguous = args->flags & HL_MEM_CONTIGUOUS;
113
114 if (contiguous) {
115 if (is_power_of_2(page_size))
116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117 total_size, NULL, page_size);
118 else
119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120 if (!paddr) {
121 dev_err(hdev->dev,
122 "Cannot allocate %llu contiguous pages with total size of %llu\n",
123 num_pgs, total_size);
124 return -ENOMEM;
125 }
126 }
127
128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129 if (!phys_pg_pack) {
130 rc = -ENOMEM;
131 goto pages_pack_err;
132 }
133
134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135 phys_pg_pack->asid = ctx->asid;
136 phys_pg_pack->npages = num_pgs;
137 phys_pg_pack->page_size = page_size;
138 phys_pg_pack->total_size = total_size;
139 phys_pg_pack->flags = args->flags;
140 phys_pg_pack->contiguous = contiguous;
141
142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144 rc = -ENOMEM;
145 goto pages_arr_err;
146 }
147
148 if (phys_pg_pack->contiguous) {
149 for (i = 0 ; i < num_pgs ; i++)
150 phys_pg_pack->pages[i] = paddr + i * page_size;
151 } else {
152 for (i = 0 ; i < num_pgs ; i++) {
153 if (is_power_of_2(page_size))
154 phys_pg_pack->pages[i] =
155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156 page_size, NULL,
157 page_size);
158 else
159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160 page_size);
161
162 if (!phys_pg_pack->pages[i]) {
163 dev_err(hdev->dev,
164 "Cannot allocate device memory (out of memory)\n");
165 rc = -ENOMEM;
166 goto page_err;
167 }
168
169 num_curr_pgs++;
170 }
171 }
172
173 spin_lock(&vm->idr_lock);
174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175 GFP_ATOMIC);
176 spin_unlock(&vm->idr_lock);
177
178 if (handle < 0) {
179 dev_err(hdev->dev, "Failed to get handle for page\n");
180 rc = -EFAULT;
181 goto idr_err;
182 }
183
184 for (i = 0 ; i < num_pgs ; i++)
185 kref_get(&vm->dram_pg_pool_refcount);
186
187 phys_pg_pack->handle = handle;
188
189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191
192 *ret_handle = handle;
193
194 return 0;
195
196 idr_err:
197 page_err:
198 if (!phys_pg_pack->contiguous)
199 for (i = 0 ; i < num_curr_pgs ; i++)
200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201 page_size);
202
203 kvfree(phys_pg_pack->pages);
204 pages_arr_err:
205 kfree(phys_pg_pack);
206 pages_pack_err:
207 if (contiguous)
208 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209
210 return rc;
211 }
212
213 /**
214 * dma_map_host_va() - DMA mapping of the given host virtual address.
215 * @hdev: habanalabs device structure.
216 * @addr: the host virtual address of the memory area.
217 * @size: the size of the memory area.
218 * @p_userptr: pointer to result userptr structure.
219 *
220 * This function does the following:
221 * - Allocate userptr structure.
222 * - Pin the given host memory using the userptr structure.
223 * - Perform DMA mapping to have the DMA addresses of the pages.
224 */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226 struct hl_userptr **p_userptr)
227 {
228 struct hl_userptr *userptr;
229 int rc;
230
231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232 if (!userptr) {
233 rc = -ENOMEM;
234 goto userptr_err;
235 }
236
237 rc = hl_pin_host_memory(hdev, addr, size, userptr);
238 if (rc)
239 goto pin_err;
240
241 userptr->dma_mapped = true;
242 userptr->dir = DMA_BIDIRECTIONAL;
243 userptr->vm_type = VM_TYPE_USERPTR;
244
245 *p_userptr = userptr;
246
247 rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248 if (rc) {
249 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250 goto dma_map_err;
251 }
252
253 return 0;
254
255 dma_map_err:
256 hl_unpin_host_memory(hdev, userptr);
257 pin_err:
258 kfree(userptr);
259 userptr_err:
260
261 return rc;
262 }
263
264 /**
265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266 * @hdev: habanalabs device structure.
267 * @userptr: userptr to free.
268 *
269 * This function does the following:
270 * - Unpins the physical pages.
271 * - Frees the userptr structure.
272 */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)273 static void dma_unmap_host_va(struct hl_device *hdev,
274 struct hl_userptr *userptr)
275 {
276 hl_unpin_host_memory(hdev, userptr);
277 kfree(userptr);
278 }
279
280 /**
281 * dram_pg_pool_do_release() - free DRAM pages pool
282 * @ref: pointer to reference object.
283 *
284 * This function does the following:
285 * - Frees the idr structure of physical pages handles.
286 * - Frees the generic pool of DRAM physical pages.
287 */
dram_pg_pool_do_release(struct kref * ref)288 static void dram_pg_pool_do_release(struct kref *ref)
289 {
290 struct hl_vm *vm = container_of(ref, struct hl_vm,
291 dram_pg_pool_refcount);
292
293 /*
294 * free the idr here as only here we know for sure that there are no
295 * allocated physical pages and hence there are no handles in use
296 */
297 idr_destroy(&vm->phys_pg_pack_handles);
298 gen_pool_destroy(vm->dram_pg_pool);
299 }
300
301 /**
302 * free_phys_pg_pack() - free physical page pack.
303 * @hdev: habanalabs device structure.
304 * @phys_pg_pack: physical page pack to free.
305 *
306 * This function does the following:
307 * - For DRAM memory only
308 * - iterate over the pack, free each physical block structure by
309 * returning it to the general pool.
310 * - Free the hl_vm_phys_pg_pack structure.
311 */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)312 static void free_phys_pg_pack(struct hl_device *hdev,
313 struct hl_vm_phys_pg_pack *phys_pg_pack)
314 {
315 struct hl_vm *vm = &hdev->vm;
316 u64 i;
317
318 if (phys_pg_pack->created_from_userptr)
319 goto end;
320
321 if (phys_pg_pack->contiguous) {
322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323 phys_pg_pack->total_size);
324
325 for (i = 0; i < phys_pg_pack->npages ; i++)
326 kref_put(&vm->dram_pg_pool_refcount,
327 dram_pg_pool_do_release);
328 } else {
329 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330 gen_pool_free(vm->dram_pg_pool,
331 phys_pg_pack->pages[i],
332 phys_pg_pack->page_size);
333 kref_put(&vm->dram_pg_pool_refcount,
334 dram_pg_pool_do_release);
335 }
336 }
337
338 end:
339 kvfree(phys_pg_pack->pages);
340 kfree(phys_pg_pack);
341
342 return;
343 }
344
345 /**
346 * free_device_memory() - free device memory.
347 * @ctx: pointer to the context structure.
348 * @args: host parameters containing the requested size.
349 *
350 * This function does the following:
351 * - Free the device memory related to the given handle.
352 */
free_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args)353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354 {
355 struct hl_device *hdev = ctx->hdev;
356 struct hl_vm *vm = &hdev->vm;
357 struct hl_vm_phys_pg_pack *phys_pg_pack;
358 u32 handle = args->free.handle;
359
360 spin_lock(&vm->idr_lock);
361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362 if (!phys_pg_pack) {
363 spin_unlock(&vm->idr_lock);
364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365 return -EINVAL;
366 }
367
368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369 spin_unlock(&vm->idr_lock);
370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371 return -EINVAL;
372 }
373
374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool
375 * is also the trigger of the idr destroy
376 */
377 idr_remove(&vm->phys_pg_pack_handles, handle);
378 spin_unlock(&vm->idr_lock);
379
380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382
383 free_phys_pg_pack(hdev, phys_pg_pack);
384
385 return 0;
386 }
387
388 /**
389 * clear_va_list_locked() - free virtual addresses list.
390 * @hdev: habanalabs device structure.
391 * @va_list: list of virtual addresses to free.
392 *
393 * This function does the following:
394 * - Iterate over the list and free each virtual addresses block.
395 *
396 * This function should be called only when va_list lock is taken.
397 */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)398 static void clear_va_list_locked(struct hl_device *hdev,
399 struct list_head *va_list)
400 {
401 struct hl_vm_va_block *va_block, *tmp;
402
403 list_for_each_entry_safe(va_block, tmp, va_list, node) {
404 list_del(&va_block->node);
405 kfree(va_block);
406 }
407 }
408
409 /**
410 * print_va_list_locked() - print virtual addresses list.
411 * @hdev: habanalabs device structure.
412 * @va_list: list of virtual addresses to print.
413 *
414 * This function does the following:
415 * - Iterate over the list and print each virtual addresses block.
416 *
417 * This function should be called only when va_list lock is taken.
418 */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)419 static void print_va_list_locked(struct hl_device *hdev,
420 struct list_head *va_list)
421 {
422 #if HL_MMU_DEBUG
423 struct hl_vm_va_block *va_block;
424
425 dev_dbg(hdev->dev, "print va list:\n");
426
427 list_for_each_entry(va_block, va_list, node)
428 dev_dbg(hdev->dev,
429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430 va_block->start, va_block->end, va_block->size);
431 #endif
432 }
433
434 /**
435 * merge_va_blocks_locked() - merge a virtual block if possible.
436 * @hdev: pointer to the habanalabs device structure.
437 * @va_list: pointer to the virtual addresses block list.
438 * @va_block: virtual block to merge with adjacent blocks.
439 *
440 * This function does the following:
441 * - Merge the given blocks with the adjacent blocks if their virtual ranges
442 * create a contiguous virtual range.
443 *
444 * This Function should be called only when va_list lock is taken.
445 */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)446 static void merge_va_blocks_locked(struct hl_device *hdev,
447 struct list_head *va_list, struct hl_vm_va_block *va_block)
448 {
449 struct hl_vm_va_block *prev, *next;
450
451 prev = list_prev_entry(va_block, node);
452 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453 prev->end = va_block->end;
454 prev->size = prev->end - prev->start + 1;
455 list_del(&va_block->node);
456 kfree(va_block);
457 va_block = prev;
458 }
459
460 next = list_next_entry(va_block, node);
461 if (&next->node != va_list && va_block->end + 1 == next->start) {
462 next->start = va_block->start;
463 next->size = next->end - next->start + 1;
464 list_del(&va_block->node);
465 kfree(va_block);
466 }
467 }
468
469 /**
470 * add_va_block_locked() - add a virtual block to the virtual addresses list.
471 * @hdev: pointer to the habanalabs device structure.
472 * @va_list: pointer to the virtual addresses block list.
473 * @start: start virtual address.
474 * @end: end virtual address.
475 *
476 * This function does the following:
477 * - Add the given block to the virtual blocks list and merge with other blocks
478 * if a contiguous virtual block can be created.
479 *
480 * This Function should be called only when va_list lock is taken.
481 */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)482 static int add_va_block_locked(struct hl_device *hdev,
483 struct list_head *va_list, u64 start, u64 end)
484 {
485 struct hl_vm_va_block *va_block, *res = NULL;
486 u64 size = end - start + 1;
487
488 print_va_list_locked(hdev, va_list);
489
490 list_for_each_entry(va_block, va_list, node) {
491 /* TODO: remove upon matureness */
492 if (hl_mem_area_crosses_range(start, size, va_block->start,
493 va_block->end)) {
494 dev_err(hdev->dev,
495 "block crossing ranges at start 0x%llx, end 0x%llx\n",
496 va_block->start, va_block->end);
497 return -EINVAL;
498 }
499
500 if (va_block->end < start)
501 res = va_block;
502 }
503
504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505 if (!va_block)
506 return -ENOMEM;
507
508 va_block->start = start;
509 va_block->end = end;
510 va_block->size = size;
511
512 if (!res)
513 list_add(&va_block->node, va_list);
514 else
515 list_add(&va_block->node, &res->node);
516
517 merge_va_blocks_locked(hdev, va_list, va_block);
518
519 print_va_list_locked(hdev, va_list);
520
521 return 0;
522 }
523
524 /**
525 * add_va_block() - wrapper for add_va_block_locked.
526 * @hdev: pointer to the habanalabs device structure.
527 * @va_range: pointer to the virtual addresses range object.
528 * @start: start virtual address.
529 * @end: end virtual address.
530 *
531 * This function does the following:
532 * - Takes the list lock and calls add_va_block_locked.
533 */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)534 static inline int add_va_block(struct hl_device *hdev,
535 struct hl_va_range *va_range, u64 start, u64 end)
536 {
537 int rc;
538
539 mutex_lock(&va_range->lock);
540 rc = add_va_block_locked(hdev, &va_range->list, start, end);
541 mutex_unlock(&va_range->lock);
542
543 return rc;
544 }
545
546 /**
547 * is_hint_crossing_range() - check if hint address crossing specified reserved.
548 * @range_type: virtual space range type.
549 * @start_addr: start virtual address.
550 * @size: block size.
551 * @prop: asic properties structure to retrieve reserved ranges from.
552 */
is_hint_crossing_range(enum hl_va_range_type range_type,u64 start_addr,u32 size,struct asic_fixed_properties * prop)553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555 bool range_cross;
556
557 if (range_type == HL_VA_RANGE_TYPE_DRAM)
558 range_cross =
559 hl_mem_area_crosses_range(start_addr, size,
560 prop->hints_dram_reserved_va_range.start_addr,
561 prop->hints_dram_reserved_va_range.end_addr);
562 else if (range_type == HL_VA_RANGE_TYPE_HOST)
563 range_cross =
564 hl_mem_area_crosses_range(start_addr, size,
565 prop->hints_host_reserved_va_range.start_addr,
566 prop->hints_host_reserved_va_range.end_addr);
567 else
568 range_cross =
569 hl_mem_area_crosses_range(start_addr, size,
570 prop->hints_host_hpage_reserved_va_range.start_addr,
571 prop->hints_host_hpage_reserved_va_range.end_addr);
572
573 return range_cross;
574 }
575
576 /**
577 * get_va_block() - get a virtual block for the given size and alignment.
578 *
579 * @hdev: pointer to the habanalabs device structure.
580 * @va_range: pointer to the virtual addresses range.
581 * @size: requested block size.
582 * @hint_addr: hint for requested address by the user.
583 * @va_block_align: required alignment of the virtual block start address.
584 * @range_type: va range type (host, dram)
585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586 *
587 * This function does the following:
588 * - Iterate on the virtual block list to find a suitable virtual block for the
589 * given size, hint address and alignment.
590 * - Reserve the requested block and update the list.
591 * - Return the start address of the virtual block.
592 */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align,enum hl_va_range_type range_type,u32 flags)593 static u64 get_va_block(struct hl_device *hdev,
594 struct hl_va_range *va_range,
595 u64 size, u64 hint_addr, u32 va_block_align,
596 enum hl_va_range_type range_type,
597 u32 flags)
598 {
599 struct hl_vm_va_block *va_block, *new_va_block = NULL;
600 struct asic_fixed_properties *prop = &hdev->asic_prop;
601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603 dram_hint_mask = prop->dram_hints_align_mask;
604 bool add_prev = false;
605 bool is_align_pow_2 = is_power_of_2(va_range->page_size);
606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607 bool force_hint = flags & HL_MEM_FORCE_HINT;
608 int rc;
609
610 if (is_align_pow_2)
611 align_mask = ~((u64)va_block_align - 1);
612 else
613 /*
614 * with non-power-of-2 range we work only with page granularity
615 * and the start address is page aligned,
616 * so no need for alignment checking.
617 */
618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619 va_range->page_size;
620
621 tmp_hint_addr = hint_addr & ~dram_hint_mask;
622
623 /* Check if we need to ignore hint address */
624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625 (!is_align_pow_2 && is_hint_dram_addr &&
626 do_div(tmp_hint_addr, va_range->page_size))) {
627
628 if (force_hint) {
629 /* Hint must be respected, so here we just fail */
630 dev_err(hdev->dev,
631 "Hint address 0x%llx is not page aligned - cannot be respected\n",
632 hint_addr);
633 return 0;
634 }
635
636 dev_dbg(hdev->dev,
637 "Hint address 0x%llx will be ignored because it is not aligned\n",
638 hint_addr);
639 hint_addr = 0;
640 }
641
642 mutex_lock(&va_range->lock);
643
644 print_va_list_locked(hdev, &va_range->list);
645
646 list_for_each_entry(va_block, &va_range->list, node) {
647 /* Calc the first possible aligned addr */
648 valid_start = va_block->start;
649
650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651 valid_start &= align_mask;
652 valid_start += va_block_align;
653 if (valid_start > va_block->end)
654 continue;
655 }
656
657 valid_size = va_block->end - valid_start + 1;
658 if (valid_size < size)
659 continue;
660
661 /*
662 * In case hint address is 0, and hints_range_reservation
663 * property enabled, then avoid allocating va blocks from the
664 * range reserved for hint addresses
665 */
666 if (prop->hints_range_reservation && !hint_addr)
667 if (is_hint_crossing_range(range_type, valid_start,
668 size, prop))
669 continue;
670
671 /* Pick the minimal length block which has the required size */
672 if (!new_va_block || (valid_size < reserved_valid_size)) {
673 new_va_block = va_block;
674 reserved_valid_start = valid_start;
675 reserved_valid_size = valid_size;
676 }
677
678 if (hint_addr && hint_addr >= valid_start &&
679 (hint_addr + size) <= va_block->end) {
680 new_va_block = va_block;
681 reserved_valid_start = hint_addr;
682 reserved_valid_size = valid_size;
683 break;
684 }
685 }
686
687 if (!new_va_block) {
688 dev_err(hdev->dev, "no available va block for size %llu\n",
689 size);
690 goto out;
691 }
692
693 if (force_hint && reserved_valid_start != hint_addr) {
694 /* Hint address must be respected. If we are here - this means
695 * we could not respect it.
696 */
697 dev_err(hdev->dev,
698 "Hint address 0x%llx could not be respected\n",
699 hint_addr);
700 reserved_valid_start = 0;
701 goto out;
702 }
703
704 /*
705 * Check if there is some leftover range due to reserving the new
706 * va block, then return it to the main virtual addresses list.
707 */
708 if (reserved_valid_start > new_va_block->start) {
709 prev_start = new_va_block->start;
710 prev_end = reserved_valid_start - 1;
711
712 new_va_block->start = reserved_valid_start;
713 new_va_block->size = reserved_valid_size;
714
715 add_prev = true;
716 }
717
718 if (new_va_block->size > size) {
719 new_va_block->start += size;
720 new_va_block->size = new_va_block->end - new_va_block->start + 1;
721 } else {
722 list_del(&new_va_block->node);
723 kfree(new_va_block);
724 }
725
726 if (add_prev) {
727 rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728 if (rc) {
729 reserved_valid_start = 0;
730 goto out;
731 }
732 }
733
734 print_va_list_locked(hdev, &va_range->list);
735 out:
736 mutex_unlock(&va_range->lock);
737
738 return reserved_valid_start;
739 }
740
741 /*
742 * hl_reserve_va_block() - reserve a virtual block of a given size.
743 * @hdev: pointer to the habanalabs device structure.
744 * @ctx: current context
745 * @type: virtual addresses range type.
746 * @size: requested block size.
747 * @alignment: required alignment in bytes of the virtual block start address,
748 * 0 means no alignment.
749 *
750 * This function does the following:
751 * - Iterate on the virtual block list to find a suitable virtual block for the
752 * given size and alignment.
753 * - Reserve the requested block and update the list.
754 * - Return the start address of the virtual block.
755 */
hl_reserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_va_range_type type,u64 size,u32 alignment)756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757 enum hl_va_range_type type, u64 size, u32 alignment)
758 {
759 return get_va_block(hdev, ctx->va_range[type], size, 0,
760 max(alignment, ctx->va_range[type]->page_size),
761 type, 0);
762 }
763
764 /**
765 * hl_get_va_range_type() - get va_range type for the given address and size.
766 * @ctx: context to fetch va_range from.
767 * @address: the start address of the area we want to validate.
768 * @size: the size in bytes of the area we want to validate.
769 * @type: returned va_range type.
770 *
771 * Return: true if the area is inside a valid range, false otherwise.
772 */
hl_get_va_range_type(struct hl_ctx * ctx,u64 address,u64 size,enum hl_va_range_type * type)773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774 enum hl_va_range_type *type)
775 {
776 int i;
777
778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779 if (hl_mem_area_inside_range(address, size,
780 ctx->va_range[i]->start_addr,
781 ctx->va_range[i]->end_addr)) {
782 *type = i;
783 return 0;
784 }
785 }
786
787 return -EINVAL;
788 }
789
790 /**
791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792 * @hdev: pointer to the habanalabs device structure
793 * @ctx: pointer to the context structure.
794 * @start_addr: start virtual address.
795 * @size: number of bytes to unreserve.
796 *
797 * This function does the following:
798 * - Takes the list lock and calls add_va_block_locked.
799 */
hl_unreserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,u64 start_addr,u64 size)800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801 u64 start_addr, u64 size)
802 {
803 enum hl_va_range_type type;
804 int rc;
805
806 rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807 if (rc) {
808 dev_err(hdev->dev,
809 "cannot find va_range for va %#llx size %llu",
810 start_addr, size);
811 return rc;
812 }
813
814 rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815 start_addr + size - 1);
816 if (rc)
817 dev_warn(hdev->dev,
818 "add va block failed for vaddr: 0x%llx\n", start_addr);
819
820 return rc;
821 }
822
823 /**
824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825 * memory
826 * @ctx: pointer to the context structure.
827 * @userptr: userptr to initialize from.
828 * @pphys_pg_pack: result pointer.
829 * @force_regular_page: tell the function to ignore huge page optimization,
830 * even if possible. Needed for cases where the device VA
831 * is allocated before we know the composition of the
832 * physical pages
833 *
834 * This function does the following:
835 * - Pin the physical pages related to the given virtual block.
836 * - Create a physical page pack from the physical pages related to the given
837 * virtual block.
838 */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack,bool force_regular_page)839 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
840 struct hl_userptr *userptr,
841 struct hl_vm_phys_pg_pack **pphys_pg_pack,
842 bool force_regular_page)
843 {
844 u32 npages, page_size = PAGE_SIZE,
845 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
846 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
847 struct hl_vm_phys_pg_pack *phys_pg_pack;
848 bool first = true, is_huge_page_opt;
849 u64 page_mask, total_npages;
850 struct scatterlist *sg;
851 dma_addr_t dma_addr;
852 int rc, i, j;
853
854 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
855 if (!phys_pg_pack)
856 return -ENOMEM;
857
858 phys_pg_pack->vm_type = userptr->vm_type;
859 phys_pg_pack->created_from_userptr = true;
860 phys_pg_pack->asid = ctx->asid;
861 atomic_set(&phys_pg_pack->mapping_cnt, 1);
862
863 is_huge_page_opt = (force_regular_page ? false : true);
864
865 /* Only if all dma_addrs are aligned to 2MB and their
866 * sizes is at least 2MB, we can use huge page mapping.
867 * We limit the 2MB optimization to this condition,
868 * since later on we acquire the related VA range as one
869 * consecutive block.
870 */
871 total_npages = 0;
872 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
873 npages = hl_get_sg_info(sg, &dma_addr);
874
875 total_npages += npages;
876
877 if ((npages % pgs_in_huge_page) ||
878 (dma_addr & (huge_page_size - 1)))
879 is_huge_page_opt = false;
880 }
881
882 if (is_huge_page_opt) {
883 page_size = huge_page_size;
884 do_div(total_npages, pgs_in_huge_page);
885 }
886
887 page_mask = ~(((u64) page_size) - 1);
888
889 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
890 GFP_KERNEL);
891 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
892 rc = -ENOMEM;
893 goto page_pack_arr_mem_err;
894 }
895
896 phys_pg_pack->npages = total_npages;
897 phys_pg_pack->page_size = page_size;
898 phys_pg_pack->total_size = total_npages * page_size;
899
900 j = 0;
901 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
902 npages = hl_get_sg_info(sg, &dma_addr);
903
904 /* align down to physical page size and save the offset */
905 if (first) {
906 first = false;
907 phys_pg_pack->offset = dma_addr & (page_size - 1);
908 dma_addr &= page_mask;
909 }
910
911 while (npages) {
912 phys_pg_pack->pages[j++] = dma_addr;
913 dma_addr += page_size;
914
915 if (is_huge_page_opt)
916 npages -= pgs_in_huge_page;
917 else
918 npages--;
919 }
920 }
921
922 *pphys_pg_pack = phys_pg_pack;
923
924 return 0;
925
926 page_pack_arr_mem_err:
927 kfree(phys_pg_pack);
928
929 return rc;
930 }
931
932 /**
933 * map_phys_pg_pack() - maps the physical page pack..
934 * @ctx: pointer to the context structure.
935 * @vaddr: start address of the virtual area to map from.
936 * @phys_pg_pack: the pack of physical pages to map to.
937 *
938 * This function does the following:
939 * - Maps each chunk of virtual memory to matching physical chunk.
940 * - Stores number of successful mappings in the given argument.
941 * - Returns 0 on success, error code otherwise.
942 */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)943 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
944 struct hl_vm_phys_pg_pack *phys_pg_pack)
945 {
946 struct hl_device *hdev = ctx->hdev;
947 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
948 u32 page_size = phys_pg_pack->page_size;
949 int rc = 0;
950 bool is_host_addr;
951
952 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
953 paddr = phys_pg_pack->pages[i];
954
955 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
956 (i + 1) == phys_pg_pack->npages);
957 if (rc) {
958 dev_err(hdev->dev,
959 "map failed for handle %u, npages: %llu, mapped: %llu",
960 phys_pg_pack->handle, phys_pg_pack->npages,
961 mapped_pg_cnt);
962 goto err;
963 }
964
965 mapped_pg_cnt++;
966 next_vaddr += page_size;
967 }
968
969 return 0;
970
971 err:
972 is_host_addr = !hl_is_dram_va(hdev, vaddr);
973
974 next_vaddr = vaddr;
975 for (i = 0 ; i < mapped_pg_cnt ; i++) {
976 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
977 (i + 1) == mapped_pg_cnt))
978 dev_warn_ratelimited(hdev->dev,
979 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
980 phys_pg_pack->handle, next_vaddr,
981 phys_pg_pack->pages[i], page_size);
982
983 next_vaddr += page_size;
984
985 /*
986 * unmapping on Palladium can be really long, so avoid a CPU
987 * soft lockup bug by sleeping a little between unmapping pages
988 *
989 * In addition, on host num of pages could be huge,
990 * because page size could be 4KB, so when unmapping host
991 * pages sleep every 32K pages to avoid soft lockup
992 */
993 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
994 usleep_range(50, 200);
995 }
996
997 return rc;
998 }
999
1000 /**
1001 * unmap_phys_pg_pack() - unmaps the physical page pack.
1002 * @ctx: pointer to the context structure.
1003 * @vaddr: start address of the virtual area to unmap.
1004 * @phys_pg_pack: the pack of physical pages to unmap.
1005 */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)1006 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1007 struct hl_vm_phys_pg_pack *phys_pg_pack)
1008 {
1009 struct hl_device *hdev = ctx->hdev;
1010 u64 next_vaddr, i;
1011 bool is_host_addr;
1012 u32 page_size;
1013
1014 is_host_addr = !hl_is_dram_va(hdev, vaddr);
1015 page_size = phys_pg_pack->page_size;
1016 next_vaddr = vaddr;
1017
1018 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1019 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1020 (i + 1) == phys_pg_pack->npages))
1021 dev_warn_ratelimited(hdev->dev,
1022 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1023
1024 /*
1025 * unmapping on Palladium can be really long, so avoid a CPU
1026 * soft lockup bug by sleeping a little between unmapping pages
1027 *
1028 * In addition, on host num of pages could be huge,
1029 * because page size could be 4KB, so when unmapping host
1030 * pages sleep every 32K pages to avoid soft lockup
1031 */
1032 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1033 usleep_range(50, 200);
1034 }
1035 }
1036
1037 /**
1038 * map_device_va() - map the given memory.
1039 * @ctx: pointer to the context structure.
1040 * @args: host parameters with handle/host virtual address.
1041 * @device_addr: pointer to result device virtual address.
1042 *
1043 * This function does the following:
1044 * - If given a physical device memory handle, map to a device virtual block
1045 * and return the start address of this block.
1046 * - If given a host virtual address and size, find the related physical pages,
1047 * map a device virtual block to this pages and return the start address of
1048 * this block.
1049 */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)1050 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1051 {
1052 struct hl_vm_phys_pg_pack *phys_pg_pack;
1053 enum hl_va_range_type va_range_type = 0;
1054 struct hl_device *hdev = ctx->hdev;
1055 struct hl_userptr *userptr = NULL;
1056 u32 handle = 0, va_block_align;
1057 struct hl_vm_hash_node *hnode;
1058 struct hl_vm *vm = &hdev->vm;
1059 struct hl_va_range *va_range;
1060 bool is_userptr, do_prefetch;
1061 u64 ret_vaddr, hint_addr;
1062 enum vm_type *vm_type;
1063 int rc;
1064
1065 /* set map flags */
1066 is_userptr = args->flags & HL_MEM_USERPTR;
1067 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1068
1069 /* Assume failure */
1070 *device_addr = 0;
1071
1072 if (is_userptr) {
1073 u64 addr = args->map_host.host_virt_addr,
1074 size = args->map_host.mem_size;
1075 u32 page_size = hdev->asic_prop.pmmu.page_size,
1076 huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1077
1078 rc = dma_map_host_va(hdev, addr, size, &userptr);
1079 if (rc)
1080 return rc;
1081
1082 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1083 &phys_pg_pack, false);
1084 if (rc) {
1085 dev_err(hdev->dev,
1086 "unable to init page pack for vaddr 0x%llx\n",
1087 addr);
1088 goto init_page_pack_err;
1089 }
1090
1091 vm_type = (enum vm_type *) userptr;
1092 hint_addr = args->map_host.hint_addr;
1093 handle = phys_pg_pack->handle;
1094
1095 /* get required alignment */
1096 if (phys_pg_pack->page_size == page_size) {
1097 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1098 va_range_type = HL_VA_RANGE_TYPE_HOST;
1099 /*
1100 * huge page alignment may be needed in case of regular
1101 * page mapping, depending on the host VA alignment
1102 */
1103 if (addr & (huge_page_size - 1))
1104 va_block_align = page_size;
1105 else
1106 va_block_align = huge_page_size;
1107 } else {
1108 /*
1109 * huge page alignment is needed in case of huge page
1110 * mapping
1111 */
1112 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1113 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1114 va_block_align = huge_page_size;
1115 }
1116 } else {
1117 handle = lower_32_bits(args->map_device.handle);
1118
1119 spin_lock(&vm->idr_lock);
1120 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1121 if (!phys_pg_pack) {
1122 spin_unlock(&vm->idr_lock);
1123 dev_err(hdev->dev,
1124 "no match for handle %u\n", handle);
1125 return -EINVAL;
1126 }
1127
1128 /* increment now to avoid freeing device memory while mapping */
1129 atomic_inc(&phys_pg_pack->mapping_cnt);
1130
1131 spin_unlock(&vm->idr_lock);
1132
1133 vm_type = (enum vm_type *) phys_pg_pack;
1134
1135 hint_addr = args->map_device.hint_addr;
1136
1137 /* DRAM VA alignment is the same as the MMU page size */
1138 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1139 va_range_type = HL_VA_RANGE_TYPE_DRAM;
1140 va_block_align = hdev->asic_prop.dmmu.page_size;
1141 }
1142
1143 /*
1144 * relevant for mapping device physical memory only, as host memory is
1145 * implicitly shared
1146 */
1147 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1148 phys_pg_pack->asid != ctx->asid) {
1149 dev_err(hdev->dev,
1150 "Failed to map memory, handle %u is not shared\n",
1151 handle);
1152 rc = -EPERM;
1153 goto shared_err;
1154 }
1155
1156 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1157 if (!hnode) {
1158 rc = -ENOMEM;
1159 goto hnode_err;
1160 }
1161
1162 if (hint_addr && phys_pg_pack->offset) {
1163 if (args->flags & HL_MEM_FORCE_HINT) {
1164 /* Fail if hint must be respected but it can't be */
1165 dev_err(hdev->dev,
1166 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1167 hint_addr, phys_pg_pack->offset);
1168 rc = -EINVAL;
1169 goto va_block_err;
1170 }
1171 dev_dbg(hdev->dev,
1172 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1173 hint_addr, phys_pg_pack->offset);
1174 }
1175
1176 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1177 hint_addr, va_block_align,
1178 va_range_type, args->flags);
1179 if (!ret_vaddr) {
1180 dev_err(hdev->dev, "no available va block for handle %u\n",
1181 handle);
1182 rc = -ENOMEM;
1183 goto va_block_err;
1184 }
1185
1186 mutex_lock(&hdev->mmu_lock);
1187
1188 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1189 if (rc) {
1190 dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1191 mutex_unlock(&hdev->mmu_lock);
1192 goto map_err;
1193 }
1194
1195 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196 ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197 mutex_unlock(&hdev->mmu_lock);
1198 if (rc)
1199 goto map_err;
1200
1201 /*
1202 * prefetch is done upon user's request. it is performed in WQ as and so can
1203 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1204 */
1205 if (do_prefetch) {
1206 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1207 phys_pg_pack->total_size);
1208 if (rc)
1209 goto map_err;
1210 }
1211
1212 ret_vaddr += phys_pg_pack->offset;
1213
1214 hnode->ptr = vm_type;
1215 hnode->vaddr = ret_vaddr;
1216 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217
1218 mutex_lock(&ctx->mem_hash_lock);
1219 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220 mutex_unlock(&ctx->mem_hash_lock);
1221
1222 *device_addr = ret_vaddr;
1223
1224 if (is_userptr)
1225 free_phys_pg_pack(hdev, phys_pg_pack);
1226
1227 return rc;
1228
1229 map_err:
1230 if (add_va_block(hdev, va_range, ret_vaddr,
1231 ret_vaddr + phys_pg_pack->total_size - 1))
1232 dev_warn(hdev->dev,
1233 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234 handle, ret_vaddr);
1235
1236 va_block_err:
1237 kfree(hnode);
1238 hnode_err:
1239 shared_err:
1240 atomic_dec(&phys_pg_pack->mapping_cnt);
1241 if (is_userptr)
1242 free_phys_pg_pack(hdev, phys_pg_pack);
1243 init_page_pack_err:
1244 if (is_userptr)
1245 dma_unmap_host_va(hdev, userptr);
1246
1247 return rc;
1248 }
1249
1250 /* Should be called while the context's mem_hash_lock is taken */
get_vm_hash_node_locked(struct hl_ctx * ctx,u64 vaddr)1251 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252 {
1253 struct hl_vm_hash_node *hnode;
1254
1255 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256 if (vaddr == hnode->vaddr)
1257 return hnode;
1258
1259 return NULL;
1260 }
1261
1262 /**
1263 * unmap_device_va() - unmap the given device virtual address.
1264 * @ctx: pointer to the context structure.
1265 * @args: host parameters with device virtual address to unmap.
1266 * @ctx_free: true if in context free flow, false otherwise.
1267 *
1268 * This function does the following:
1269 * - unmap the physical pages related to the given virtual address.
1270 * - return the device virtual block to the virtual block list.
1271 */
unmap_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,bool ctx_free)1272 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273 bool ctx_free)
1274 {
1275 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276 u64 vaddr = args->unmap.device_virt_addr;
1277 struct asic_fixed_properties *prop;
1278 struct hl_device *hdev = ctx->hdev;
1279 struct hl_userptr *userptr = NULL;
1280 struct hl_vm_hash_node *hnode;
1281 struct hl_va_range *va_range;
1282 enum vm_type *vm_type;
1283 bool is_userptr;
1284 int rc = 0;
1285
1286 prop = &hdev->asic_prop;
1287
1288 /* protect from double entrance */
1289 mutex_lock(&ctx->mem_hash_lock);
1290 hnode = get_vm_hash_node_locked(ctx, vaddr);
1291 if (!hnode) {
1292 mutex_unlock(&ctx->mem_hash_lock);
1293 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294 return -EINVAL;
1295 }
1296
1297 if (hnode->export_cnt) {
1298 mutex_unlock(&ctx->mem_hash_lock);
1299 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300 return -EINVAL;
1301 }
1302
1303 hash_del(&hnode->node);
1304 mutex_unlock(&ctx->mem_hash_lock);
1305
1306 vm_type = hnode->ptr;
1307
1308 if (*vm_type == VM_TYPE_USERPTR) {
1309 is_userptr = true;
1310 userptr = hnode->ptr;
1311
1312 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1313 false);
1314 if (rc) {
1315 dev_err(hdev->dev,
1316 "unable to init page pack for vaddr 0x%llx\n",
1317 vaddr);
1318 goto vm_type_err;
1319 }
1320
1321 if (phys_pg_pack->page_size ==
1322 hdev->asic_prop.pmmu.page_size)
1323 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324 else
1325 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327 is_userptr = false;
1328 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329 phys_pg_pack = hnode->ptr;
1330 } else {
1331 dev_warn(hdev->dev,
1332 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333 vaddr);
1334 rc = -EFAULT;
1335 goto vm_type_err;
1336 }
1337
1338 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1339 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340 rc = -EINVAL;
1341 goto mapping_cnt_err;
1342 }
1343
1344 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1345 vaddr = prop->dram_base_address +
1346 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347 phys_pg_pack->page_size) *
1348 phys_pg_pack->page_size;
1349 else
1350 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351
1352 mutex_lock(&hdev->mmu_lock);
1353
1354 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355
1356 /*
1357 * During context free this function is called in a loop to clean all
1358 * the context mappings. Hence the cache invalidation can be called once
1359 * at the loop end rather than for each iteration
1360 */
1361 if (!ctx_free)
1362 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1363 phys_pg_pack->total_size);
1364
1365 mutex_unlock(&hdev->mmu_lock);
1366
1367 /*
1368 * If the context is closing we don't need to check for the MMU cache
1369 * invalidation return code and update the VA free list as in this flow
1370 * we invalidate the MMU cache outside of this unmap function and the VA
1371 * free list will be freed anyway.
1372 */
1373 if (!ctx_free) {
1374 int tmp_rc;
1375
1376 tmp_rc = add_va_block(hdev, va_range, vaddr,
1377 vaddr + phys_pg_pack->total_size - 1);
1378 if (tmp_rc) {
1379 dev_warn(hdev->dev,
1380 "add va block failed for vaddr: 0x%llx\n",
1381 vaddr);
1382 if (!rc)
1383 rc = tmp_rc;
1384 }
1385 }
1386
1387 atomic_dec(&phys_pg_pack->mapping_cnt);
1388 kfree(hnode);
1389
1390 if (is_userptr) {
1391 free_phys_pg_pack(hdev, phys_pg_pack);
1392 dma_unmap_host_va(hdev, userptr);
1393 }
1394
1395 return rc;
1396
1397 mapping_cnt_err:
1398 if (is_userptr)
1399 free_phys_pg_pack(hdev, phys_pg_pack);
1400 vm_type_err:
1401 mutex_lock(&ctx->mem_hash_lock);
1402 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403 mutex_unlock(&ctx->mem_hash_lock);
1404
1405 return rc;
1406 }
1407
map_block(struct hl_device * hdev,u64 address,u64 * handle,u32 * size)1408 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409 {
1410 u32 block_id;
1411 int rc;
1412
1413 *handle = 0;
1414 if (size)
1415 *size = 0;
1416
1417 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418 if (rc)
1419 return rc;
1420
1421 *handle = block_id | HL_MMAP_TYPE_BLOCK;
1422 *handle <<= PAGE_SHIFT;
1423
1424 return 0;
1425 }
1426
hw_block_vm_close(struct vm_area_struct * vma)1427 static void hw_block_vm_close(struct vm_area_struct *vma)
1428 {
1429 struct hl_vm_hw_block_list_node *lnode =
1430 (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431 struct hl_ctx *ctx = lnode->ctx;
1432 long new_mmap_size;
1433
1434 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435 if (new_mmap_size > 0) {
1436 lnode->mapped_size = new_mmap_size;
1437 return;
1438 }
1439
1440 mutex_lock(&ctx->hw_block_list_lock);
1441 list_del(&lnode->node);
1442 mutex_unlock(&ctx->hw_block_list_lock);
1443 hl_ctx_put(ctx);
1444 kfree(lnode);
1445 vma->vm_private_data = NULL;
1446 }
1447
1448 static const struct vm_operations_struct hw_block_vm_ops = {
1449 .close = hw_block_vm_close
1450 };
1451
1452 /**
1453 * hl_hw_block_mmap() - mmap a hw block to user.
1454 * @hpriv: pointer to the private data of the fd
1455 * @vma: pointer to vm_area_struct of the process
1456 *
1457 * Driver increments context reference for every HW block mapped in order
1458 * to prevent user from closing FD without unmapping first
1459 */
hl_hw_block_mmap(struct hl_fpriv * hpriv,struct vm_area_struct * vma)1460 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461 {
1462 struct hl_vm_hw_block_list_node *lnode;
1463 struct hl_device *hdev = hpriv->hdev;
1464 struct hl_ctx *ctx = hpriv->ctx;
1465 u32 block_id, block_size;
1466 int rc;
1467
1468 /* We use the page offset to hold the block id and thus we need to clear
1469 * it before doing the mmap itself
1470 */
1471 block_id = vma->vm_pgoff;
1472 vma->vm_pgoff = 0;
1473
1474 /* Driver only allows mapping of a complete HW block */
1475 block_size = vma->vm_end - vma->vm_start;
1476
1477 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478 dev_err(hdev->dev,
1479 "user pointer is invalid - 0x%lx\n",
1480 vma->vm_start);
1481
1482 return -EINVAL;
1483 }
1484
1485 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1486 if (!lnode)
1487 return -ENOMEM;
1488
1489 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490 if (rc) {
1491 kfree(lnode);
1492 return rc;
1493 }
1494
1495 hl_ctx_get(ctx);
1496
1497 lnode->ctx = ctx;
1498 lnode->vaddr = vma->vm_start;
1499 lnode->block_size = block_size;
1500 lnode->mapped_size = lnode->block_size;
1501 lnode->id = block_id;
1502
1503 vma->vm_private_data = lnode;
1504 vma->vm_ops = &hw_block_vm_ops;
1505
1506 mutex_lock(&ctx->hw_block_list_lock);
1507 list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1508 mutex_unlock(&ctx->hw_block_list_lock);
1509
1510 vma->vm_pgoff = block_id;
1511
1512 return 0;
1513 }
1514
set_dma_sg(struct scatterlist * sg,u64 bar_address,u64 chunk_size,struct device * dev,enum dma_data_direction dir)1515 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516 struct device *dev, enum dma_data_direction dir)
1517 {
1518 dma_addr_t addr;
1519 int rc;
1520
1521 addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1522 DMA_ATTR_SKIP_CPU_SYNC);
1523 rc = dma_mapping_error(dev, addr);
1524 if (rc)
1525 return rc;
1526
1527 sg_set_page(sg, NULL, chunk_size, 0);
1528 sg_dma_address(sg) = addr;
1529 sg_dma_len(sg) = chunk_size;
1530
1531 return 0;
1532 }
1533
alloc_sgt_from_device_pages(struct hl_device * hdev,u64 * pages,u64 npages,u64 page_size,u64 exported_size,struct device * dev,enum dma_data_direction dir)1534 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535 u64 page_size, u64 exported_size,
1536 struct device *dev, enum dma_data_direction dir)
1537 {
1538 u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages;
1539 struct asic_fixed_properties *prop;
1540 int rc, i, j, nents, cur_page;
1541 struct scatterlist *sg;
1542 struct sg_table *sgt;
1543
1544 prop = &hdev->asic_prop;
1545
1546 dma_max_seg_size = dma_get_max_seg_size(dev);
1547
1548 /* We would like to align the max segment size to PAGE_SIZE, so the
1549 * SGL will contain aligned addresses that can be easily mapped to
1550 * an MMU
1551 */
1552 dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1553 if (dma_max_seg_size < PAGE_SIZE) {
1554 dev_err_ratelimited(hdev->dev,
1555 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1556 dma_max_seg_size);
1557 return ERR_PTR(-EINVAL);
1558 }
1559
1560 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1561 if (!sgt)
1562 return ERR_PTR(-ENOMEM);
1563
1564 /* remove export size restrictions in case not explicitly defined */
1565 cur_size_to_export = exported_size ? exported_size : (npages * page_size);
1566
1567 /* If the size of each page is larger than the dma max segment size,
1568 * then we can't combine pages and the number of entries in the SGL
1569 * will just be the
1570 * <number of pages> * <chunks of max segment size in each page>
1571 */
1572 if (page_size > dma_max_seg_size) {
1573 /* we should limit number of pages according to the exported size */
1574 cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size);
1575 nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size);
1576 } else {
1577 cur_npages = npages;
1578
1579 /* Get number of non-contiguous chunks */
1580 for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) {
1581 if (pages[i - 1] + page_size != pages[i] ||
1582 chunk_size + page_size > dma_max_seg_size) {
1583 nents++;
1584 chunk_size = page_size;
1585 continue;
1586 }
1587
1588 chunk_size += page_size;
1589 }
1590 }
1591
1592 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1593 if (rc)
1594 goto error_free;
1595
1596 cur_page = 0;
1597
1598 if (page_size > dma_max_seg_size) {
1599 u64 size_left, cur_device_address = 0;
1600
1601 size_left = page_size;
1602
1603 /* Need to split each page into the number of chunks of
1604 * dma_max_seg_size
1605 */
1606 for_each_sgtable_dma_sg(sgt, sg, i) {
1607 if (size_left == page_size)
1608 cur_device_address =
1609 pages[cur_page] - prop->dram_base_address;
1610 else
1611 cur_device_address += dma_max_seg_size;
1612
1613 /* make sure not to export over exported size */
1614 chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export);
1615
1616 bar_address = hdev->dram_pci_bar_start + cur_device_address;
1617
1618 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1619 if (rc)
1620 goto error_unmap;
1621
1622 cur_size_to_export -= chunk_size;
1623
1624 if (size_left > dma_max_seg_size) {
1625 size_left -= dma_max_seg_size;
1626 } else {
1627 cur_page++;
1628 size_left = page_size;
1629 }
1630 }
1631 } else {
1632 /* Merge pages and put them into the scatterlist */
1633 for_each_sgtable_dma_sg(sgt, sg, i) {
1634 chunk_size = page_size;
1635 for (j = cur_page + 1 ; j < cur_npages ; j++) {
1636 if (pages[j - 1] + page_size != pages[j] ||
1637 chunk_size + page_size > dma_max_seg_size)
1638 break;
1639
1640 chunk_size += page_size;
1641 }
1642
1643 bar_address = hdev->dram_pci_bar_start +
1644 (pages[cur_page] - prop->dram_base_address);
1645
1646 /* make sure not to export over exported size */
1647 chunk_size = min(chunk_size, cur_size_to_export);
1648 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1649 if (rc)
1650 goto error_unmap;
1651
1652 cur_size_to_export -= chunk_size;
1653 cur_page = j;
1654 }
1655 }
1656
1657 /* Because we are not going to include a CPU list we want to have some
1658 * chance that other users will detect this by setting the orig_nents
1659 * to 0 and using only nents (length of DMA list) when going over the
1660 * sgl
1661 */
1662 sgt->orig_nents = 0;
1663
1664 return sgt;
1665
1666 error_unmap:
1667 for_each_sgtable_dma_sg(sgt, sg, i) {
1668 if (!sg_dma_len(sg))
1669 continue;
1670
1671 dma_unmap_resource(dev, sg_dma_address(sg),
1672 sg_dma_len(sg), dir,
1673 DMA_ATTR_SKIP_CPU_SYNC);
1674 }
1675
1676 sg_free_table(sgt);
1677
1678 error_free:
1679 kfree(sgt);
1680 return ERR_PTR(rc);
1681 }
1682
hl_dmabuf_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)1683 static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1684 struct dma_buf_attachment *attachment)
1685 {
1686 struct hl_dmabuf_priv *hl_dmabuf;
1687 struct hl_device *hdev;
1688 int rc;
1689
1690 hl_dmabuf = dmabuf->priv;
1691 hdev = hl_dmabuf->ctx->hdev;
1692
1693 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1694
1695 if (rc < 0)
1696 attachment->peer2peer = false;
1697 return 0;
1698 }
1699
hl_map_dmabuf(struct dma_buf_attachment * attachment,enum dma_data_direction dir)1700 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1701 enum dma_data_direction dir)
1702 {
1703 struct dma_buf *dma_buf = attachment->dmabuf;
1704 struct hl_vm_phys_pg_pack *phys_pg_pack;
1705 struct hl_dmabuf_priv *hl_dmabuf;
1706 struct hl_device *hdev;
1707 struct sg_table *sgt;
1708
1709 hl_dmabuf = dma_buf->priv;
1710 hdev = hl_dmabuf->ctx->hdev;
1711 phys_pg_pack = hl_dmabuf->phys_pg_pack;
1712
1713 if (!attachment->peer2peer) {
1714 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1715 return ERR_PTR(-EPERM);
1716 }
1717
1718 if (phys_pg_pack)
1719 sgt = alloc_sgt_from_device_pages(hdev,
1720 phys_pg_pack->pages,
1721 phys_pg_pack->npages,
1722 phys_pg_pack->page_size,
1723 phys_pg_pack->exported_size,
1724 attachment->dev,
1725 dir);
1726 else
1727 sgt = alloc_sgt_from_device_pages(hdev,
1728 &hl_dmabuf->device_address,
1729 1,
1730 hl_dmabuf->dmabuf->size,
1731 0,
1732 attachment->dev,
1733 dir);
1734
1735 if (IS_ERR(sgt))
1736 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1737
1738 return sgt;
1739 }
1740
hl_unmap_dmabuf(struct dma_buf_attachment * attachment,struct sg_table * sgt,enum dma_data_direction dir)1741 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1742 struct sg_table *sgt,
1743 enum dma_data_direction dir)
1744 {
1745 struct scatterlist *sg;
1746 int i;
1747
1748 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1749 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1750 * device memory).
1751 *
1752 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1753 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1754 */
1755 for_each_sgtable_dma_sg(sgt, sg, i)
1756 dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1757 sg_dma_len(sg), dir,
1758 DMA_ATTR_SKIP_CPU_SYNC);
1759
1760 /* Need to restore orig_nents because sg_free_table use that field */
1761 sgt->orig_nents = sgt->nents;
1762 sg_free_table(sgt);
1763 kfree(sgt);
1764 }
1765
memhash_node_export_get(struct hl_ctx * ctx,u64 addr)1766 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1767 {
1768 struct hl_device *hdev = ctx->hdev;
1769 struct hl_vm_hash_node *hnode;
1770
1771 /* get the memory handle */
1772 mutex_lock(&ctx->mem_hash_lock);
1773 hnode = get_vm_hash_node_locked(ctx, addr);
1774 if (!hnode) {
1775 mutex_unlock(&ctx->mem_hash_lock);
1776 dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1777 return ERR_PTR(-EINVAL);
1778 }
1779
1780 if (upper_32_bits(hnode->handle)) {
1781 mutex_unlock(&ctx->mem_hash_lock);
1782 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1783 hnode->handle, addr);
1784 return ERR_PTR(-EINVAL);
1785 }
1786
1787 /*
1788 * node found, increase export count so this memory cannot be unmapped
1789 * and the hash node cannot be deleted.
1790 */
1791 hnode->export_cnt++;
1792 mutex_unlock(&ctx->mem_hash_lock);
1793
1794 return hnode;
1795 }
1796
memhash_node_export_put(struct hl_ctx * ctx,struct hl_vm_hash_node * hnode)1797 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1798 {
1799 mutex_lock(&ctx->mem_hash_lock);
1800 hnode->export_cnt--;
1801 mutex_unlock(&ctx->mem_hash_lock);
1802 }
1803
hl_release_dmabuf(struct dma_buf * dmabuf)1804 static void hl_release_dmabuf(struct dma_buf *dmabuf)
1805 {
1806 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1807 struct hl_ctx *ctx;
1808
1809 if (!hl_dmabuf)
1810 return;
1811
1812 ctx = hl_dmabuf->ctx;
1813
1814 if (hl_dmabuf->memhash_hnode)
1815 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1816
1817 atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1818 hl_ctx_put(ctx);
1819
1820 /* Paired with get_file() in export_dmabuf() */
1821 fput(ctx->hpriv->filp);
1822
1823 kfree(hl_dmabuf);
1824 }
1825
1826 static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1827 .attach = hl_dmabuf_attach,
1828 .map_dma_buf = hl_map_dmabuf,
1829 .unmap_dma_buf = hl_unmap_dmabuf,
1830 .release = hl_release_dmabuf,
1831 };
1832
export_dmabuf(struct hl_ctx * ctx,struct hl_dmabuf_priv * hl_dmabuf,u64 total_size,int flags,int * dmabuf_fd)1833 static int export_dmabuf(struct hl_ctx *ctx,
1834 struct hl_dmabuf_priv *hl_dmabuf,
1835 u64 total_size, int flags, int *dmabuf_fd)
1836 {
1837 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1838 struct hl_device *hdev = ctx->hdev;
1839 int rc, fd;
1840
1841 exp_info.ops = &habanalabs_dmabuf_ops;
1842 exp_info.size = total_size;
1843 exp_info.flags = flags;
1844 exp_info.priv = hl_dmabuf;
1845
1846 hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1847 if (IS_ERR(hl_dmabuf->dmabuf)) {
1848 dev_err(hdev->dev, "failed to export dma-buf\n");
1849 return PTR_ERR(hl_dmabuf->dmabuf);
1850 }
1851
1852 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1853 if (fd < 0) {
1854 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1855 rc = fd;
1856 goto err_dma_buf_put;
1857 }
1858
1859 hl_dmabuf->ctx = ctx;
1860 hl_ctx_get(hl_dmabuf->ctx);
1861 atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1862
1863 /* Get compute device file to enforce release order, such that all exported dma-buf will be
1864 * released first and only then the compute device.
1865 * Paired with fput() in hl_release_dmabuf().
1866 */
1867 get_file(ctx->hpriv->filp);
1868
1869 *dmabuf_fd = fd;
1870
1871 return 0;
1872
1873 err_dma_buf_put:
1874 hl_dmabuf->dmabuf->priv = NULL;
1875 dma_buf_put(hl_dmabuf->dmabuf);
1876 return rc;
1877 }
1878
validate_export_params_common(struct hl_device * hdev,u64 device_addr,u64 size)1879 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size)
1880 {
1881 if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1882 dev_dbg(hdev->dev,
1883 "exported device memory address 0x%llx should be aligned to 0x%lx\n",
1884 device_addr, PAGE_SIZE);
1885 return -EINVAL;
1886 }
1887
1888 if (size < PAGE_SIZE) {
1889 dev_dbg(hdev->dev,
1890 "exported device memory size %llu should be equal to or greater than %lu\n",
1891 size, PAGE_SIZE);
1892 return -EINVAL;
1893 }
1894
1895 return 0;
1896 }
1897
validate_export_params_no_mmu(struct hl_device * hdev,u64 device_addr,u64 size)1898 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1899 {
1900 struct asic_fixed_properties *prop = &hdev->asic_prop;
1901 u64 bar_address;
1902 int rc;
1903
1904 rc = validate_export_params_common(hdev, device_addr, size);
1905 if (rc)
1906 return rc;
1907
1908 if (device_addr < prop->dram_user_base_address ||
1909 (device_addr + size) > prop->dram_end_address ||
1910 (device_addr + size) < device_addr) {
1911 dev_dbg(hdev->dev,
1912 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1913 device_addr, size);
1914 return -EINVAL;
1915 }
1916
1917 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1918
1919 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1920 (bar_address + size) < bar_address) {
1921 dev_dbg(hdev->dev,
1922 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1923 device_addr, size);
1924 return -EINVAL;
1925 }
1926
1927 return 0;
1928 }
1929
validate_export_params(struct hl_device * hdev,u64 device_addr,u64 size,u64 offset,struct hl_vm_phys_pg_pack * phys_pg_pack)1930 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1931 struct hl_vm_phys_pg_pack *phys_pg_pack)
1932 {
1933 struct asic_fixed_properties *prop = &hdev->asic_prop;
1934 u64 bar_address;
1935 int i, rc;
1936
1937 rc = validate_export_params_common(hdev, device_addr, size);
1938 if (rc)
1939 return rc;
1940
1941 if ((offset + size) > phys_pg_pack->total_size) {
1942 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1943 offset, size, phys_pg_pack->total_size);
1944 return -EINVAL;
1945 }
1946
1947 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1948
1949 bar_address = hdev->dram_pci_bar_start +
1950 (phys_pg_pack->pages[i] - prop->dram_base_address);
1951
1952 if ((bar_address + phys_pg_pack->page_size) >
1953 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1954 (bar_address + phys_pg_pack->page_size) < bar_address) {
1955 dev_dbg(hdev->dev,
1956 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1957 phys_pg_pack->pages[i],
1958 phys_pg_pack->page_size);
1959
1960 return -EINVAL;
1961 }
1962 }
1963
1964 return 0;
1965 }
1966
get_phys_pg_pack_from_hash_node(struct hl_device * hdev,struct hl_vm_hash_node * hnode)1967 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1968 struct hl_vm_hash_node *hnode)
1969 {
1970 struct hl_vm_phys_pg_pack *phys_pg_pack;
1971 struct hl_vm *vm = &hdev->vm;
1972
1973 spin_lock(&vm->idr_lock);
1974 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1975 if (!phys_pg_pack) {
1976 spin_unlock(&vm->idr_lock);
1977 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
1978 return ERR_PTR(-EINVAL);
1979 }
1980
1981 spin_unlock(&vm->idr_lock);
1982
1983 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
1984 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
1985 return ERR_PTR(-EINVAL);
1986 }
1987
1988 return phys_pg_pack;
1989 }
1990
1991 /**
1992 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
1993 * address and size.
1994 * @ctx: pointer to the context structure.
1995 * @addr: device address.
1996 * @size: size of device memory to export.
1997 * @offset: the offset into the buffer from which to start exporting
1998 * @flags: DMA-BUF file/FD flags.
1999 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2000 *
2001 * Create and export a dma-buf object for an existing memory allocation inside
2002 * the device memory, and return a FD which is associated with the dma-buf
2003 * object.
2004 *
2005 * Return: 0 on success, non-zero for failure.
2006 */
export_dmabuf_from_addr(struct hl_ctx * ctx,u64 addr,u64 size,u64 offset,int flags,int * dmabuf_fd)2007 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2008 int flags, int *dmabuf_fd)
2009 {
2010 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2011 struct hl_vm_hash_node *hnode = NULL;
2012 struct asic_fixed_properties *prop;
2013 struct hl_dmabuf_priv *hl_dmabuf;
2014 struct hl_device *hdev;
2015 u64 export_addr;
2016 int rc;
2017
2018 hdev = ctx->hdev;
2019 prop = &hdev->asic_prop;
2020
2021 /* offset must be 0 in devices without virtual memory support */
2022 if (!prop->dram_supports_virtual_memory && offset) {
2023 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2024 return -EINVAL;
2025 }
2026
2027 export_addr = addr + offset;
2028
2029 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2030 if (!hl_dmabuf)
2031 return -ENOMEM;
2032
2033 if (prop->dram_supports_virtual_memory) {
2034 hnode = memhash_node_export_get(ctx, addr);
2035 if (IS_ERR(hnode)) {
2036 rc = PTR_ERR(hnode);
2037 goto err_free_dmabuf_wrapper;
2038 }
2039 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2040 if (IS_ERR(phys_pg_pack)) {
2041 rc = PTR_ERR(phys_pg_pack);
2042 goto dec_memhash_export_cnt;
2043 }
2044 rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack);
2045 if (rc)
2046 goto dec_memhash_export_cnt;
2047
2048 phys_pg_pack->exported_size = size;
2049 hl_dmabuf->phys_pg_pack = phys_pg_pack;
2050 hl_dmabuf->memhash_hnode = hnode;
2051 } else {
2052 rc = validate_export_params_no_mmu(hdev, export_addr, size);
2053 if (rc)
2054 goto err_free_dmabuf_wrapper;
2055 }
2056
2057 hl_dmabuf->device_address = export_addr;
2058
2059 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2060 if (rc)
2061 goto dec_memhash_export_cnt;
2062
2063 return 0;
2064
2065 dec_memhash_export_cnt:
2066 if (prop->dram_supports_virtual_memory)
2067 memhash_node_export_put(ctx, hnode);
2068 err_free_dmabuf_wrapper:
2069 kfree(hl_dmabuf);
2070 return rc;
2071 }
2072
ts_buff_release(struct hl_mmap_mem_buf * buf)2073 static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2074 {
2075 struct hl_ts_buff *ts_buff = buf->private;
2076
2077 vfree(ts_buff->kernel_buff_address);
2078 vfree(ts_buff->user_buff_address);
2079 kfree(ts_buff);
2080 }
2081
hl_ts_mmap(struct hl_mmap_mem_buf * buf,struct vm_area_struct * vma,void * args)2082 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2083 {
2084 struct hl_ts_buff *ts_buff = buf->private;
2085
2086 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2087 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2088 }
2089
hl_ts_alloc_buf(struct hl_mmap_mem_buf * buf,gfp_t gfp,void * args)2090 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2091 {
2092 struct hl_ts_buff *ts_buff = NULL;
2093 u32 num_elements;
2094 size_t size;
2095 void *p;
2096
2097 num_elements = *(u32 *)args;
2098
2099 ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2100 if (!ts_buff)
2101 return -ENOMEM;
2102
2103 /* Allocate the user buffer */
2104 size = num_elements * sizeof(u64);
2105 p = vmalloc_user(size);
2106 if (!p)
2107 goto free_mem;
2108
2109 ts_buff->user_buff_address = p;
2110 buf->mappable_size = size;
2111
2112 /* Allocate the internal kernel buffer */
2113 size = num_elements * sizeof(struct hl_user_pending_interrupt);
2114 p = vzalloc(size);
2115 if (!p)
2116 goto free_user_buff;
2117
2118 ts_buff->kernel_buff_address = p;
2119 ts_buff->kernel_buff_size = size;
2120
2121 buf->private = ts_buff;
2122
2123 return 0;
2124
2125 free_user_buff:
2126 vfree(ts_buff->user_buff_address);
2127 free_mem:
2128 kfree(ts_buff);
2129 return -ENOMEM;
2130 }
2131
2132 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2133 .topic = "TS",
2134 .mem_id = HL_MMAP_TYPE_TS_BUFF,
2135 .mmap = hl_ts_mmap,
2136 .alloc = hl_ts_alloc_buf,
2137 .release = ts_buff_release,
2138 };
2139
2140 /**
2141 * allocate_timestamps_buffers() - allocate timestamps buffers
2142 * This function will allocate ts buffer that will later on be mapped to the user
2143 * in order to be able to read the timestamp.
2144 * in addition it'll allocate an extra buffer for registration management.
2145 * since we cannot fail during registration for out-of-memory situation, so
2146 * we'll prepare a pool which will be used as user interrupt nodes and instead
2147 * of dynamically allocating nodes while registration we'll pick the node from
2148 * this pool. in addition it'll add node to the mapping hash which will be used
2149 * to map user ts buffer to the internal kernel ts buffer.
2150 * @hpriv: pointer to the private data of the fd
2151 * @args: ioctl input
2152 * @handle: user timestamp buffer handle as an output
2153 */
allocate_timestamps_buffers(struct hl_fpriv * hpriv,struct hl_mem_in * args,u64 * handle)2154 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2155 {
2156 struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2157 struct hl_mmap_mem_buf *buf;
2158
2159 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2160 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2161 args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2162 return -EINVAL;
2163 }
2164
2165 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2166 if (!buf)
2167 return -ENOMEM;
2168
2169 *handle = buf->handle;
2170
2171 return 0;
2172 }
2173
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)2174 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2175 {
2176 enum hl_device_status status;
2177 union hl_mem_args *args = data;
2178 struct hl_device *hdev = hpriv->hdev;
2179 struct hl_ctx *ctx = hpriv->ctx;
2180 u64 block_handle, device_addr = 0;
2181 u32 handle = 0, block_size;
2182 int rc, dmabuf_fd = -EBADF;
2183
2184 if (!hl_device_operational(hdev, &status)) {
2185 dev_dbg_ratelimited(hdev->dev,
2186 "Device is %s. Can't execute MEMORY IOCTL\n",
2187 hdev->status[status]);
2188 return -EBUSY;
2189 }
2190
2191 switch (args->in.op) {
2192 case HL_MEM_OP_ALLOC:
2193 if (args->in.alloc.mem_size == 0) {
2194 dev_err(hdev->dev,
2195 "alloc size must be larger than 0\n");
2196 rc = -EINVAL;
2197 goto out;
2198 }
2199
2200 /* If DRAM does not support virtual memory the driver won't
2201 * handle the allocation/freeing of that memory. However, for
2202 * system administration/monitoring purposes, the driver will
2203 * keep track of the amount of DRAM memory that is allocated
2204 * and freed by the user. Because this code totally relies on
2205 * the user's input, the driver can't ensure the validity
2206 * of this accounting.
2207 */
2208 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2209 atomic64_add(args->in.alloc.mem_size,
2210 &ctx->dram_phys_mem);
2211 atomic64_add(args->in.alloc.mem_size,
2212 &hdev->dram_used_mem);
2213
2214 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2215 rc = 0;
2216
2217 memset(args, 0, sizeof(*args));
2218 args->out.handle = 0;
2219 goto out;
2220 }
2221
2222 rc = alloc_device_memory(ctx, &args->in, &handle);
2223
2224 memset(args, 0, sizeof(*args));
2225 args->out.handle = (__u64) handle;
2226 break;
2227
2228 case HL_MEM_OP_FREE:
2229 /* If DRAM does not support virtual memory the driver won't
2230 * handle the allocation/freeing of that memory. However, for
2231 * system administration/monitoring purposes, the driver will
2232 * keep track of the amount of DRAM memory that is allocated
2233 * and freed by the user. Because this code totally relies on
2234 * the user's input, the driver can't ensure the validity
2235 * of this accounting.
2236 */
2237 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2238 atomic64_sub(args->in.alloc.mem_size,
2239 &ctx->dram_phys_mem);
2240 atomic64_sub(args->in.alloc.mem_size,
2241 &hdev->dram_used_mem);
2242
2243 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2244 rc = 0;
2245
2246 goto out;
2247 }
2248
2249 rc = free_device_memory(ctx, &args->in);
2250 break;
2251
2252 case HL_MEM_OP_MAP:
2253 rc = map_device_va(ctx, &args->in, &device_addr);
2254
2255 memset(args, 0, sizeof(*args));
2256 args->out.device_virt_addr = device_addr;
2257 break;
2258
2259 case HL_MEM_OP_UNMAP:
2260 rc = unmap_device_va(ctx, &args->in, false);
2261 break;
2262
2263 case HL_MEM_OP_MAP_BLOCK:
2264 rc = map_block(hdev, args->in.map_block.block_addr,
2265 &block_handle, &block_size);
2266 args->out.block_handle = block_handle;
2267 args->out.block_size = block_size;
2268 break;
2269
2270 case HL_MEM_OP_EXPORT_DMABUF_FD:
2271 rc = export_dmabuf_from_addr(ctx,
2272 args->in.export_dmabuf_fd.addr,
2273 args->in.export_dmabuf_fd.mem_size,
2274 args->in.export_dmabuf_fd.offset,
2275 args->in.flags,
2276 &dmabuf_fd);
2277 memset(args, 0, sizeof(*args));
2278 args->out.fd = dmabuf_fd;
2279 break;
2280
2281 case HL_MEM_OP_TS_ALLOC:
2282 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2283 break;
2284 default:
2285 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2286 rc = -EINVAL;
2287 break;
2288 }
2289
2290 out:
2291 return rc;
2292 }
2293
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)2294 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2295 u32 npages, u64 start, u32 offset,
2296 struct hl_userptr *userptr)
2297 {
2298 int rc;
2299
2300 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2301 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2302 return -EFAULT;
2303 }
2304
2305 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2306 if (!userptr->pages)
2307 return -ENOMEM;
2308
2309 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2310 userptr->pages);
2311
2312 if (rc != npages) {
2313 dev_err(hdev->dev,
2314 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2315 rc, addr, size, npages);
2316 if (rc < 0)
2317 goto destroy_pages;
2318 npages = rc;
2319 rc = -EFAULT;
2320 goto put_pages;
2321 }
2322 userptr->npages = npages;
2323
2324 rc = sg_alloc_table_from_pages(userptr->sgt,
2325 userptr->pages,
2326 npages, offset, size, GFP_KERNEL);
2327 if (rc < 0) {
2328 dev_err(hdev->dev, "failed to create SG table from pages\n");
2329 goto put_pages;
2330 }
2331
2332 return 0;
2333
2334 put_pages:
2335 unpin_user_pages(userptr->pages, npages);
2336 destroy_pages:
2337 kvfree(userptr->pages);
2338 return rc;
2339 }
2340
2341 /**
2342 * hl_pin_host_memory() - pins a chunk of host memory.
2343 * @hdev: pointer to the habanalabs device structure.
2344 * @addr: the host virtual address of the memory area.
2345 * @size: the size of the memory area.
2346 * @userptr: pointer to hl_userptr structure.
2347 *
2348 * This function does the following:
2349 * - Pins the physical pages.
2350 * - Create an SG list from those pages.
2351 */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)2352 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2353 struct hl_userptr *userptr)
2354 {
2355 u64 start, end;
2356 u32 npages, offset;
2357 int rc;
2358
2359 if (!size) {
2360 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2361 return -EINVAL;
2362 }
2363
2364 /*
2365 * If the combination of the address and size requested for this memory
2366 * region causes an integer overflow, return error.
2367 */
2368 if (((addr + size) < addr) ||
2369 PAGE_ALIGN(addr + size) < (addr + size)) {
2370 dev_err(hdev->dev,
2371 "user pointer 0x%llx + %llu causes integer overflow\n",
2372 addr, size);
2373 return -EINVAL;
2374 }
2375
2376 userptr->pid = current->pid;
2377 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2378 if (!userptr->sgt)
2379 return -ENOMEM;
2380
2381 start = addr & PAGE_MASK;
2382 offset = addr & ~PAGE_MASK;
2383 end = PAGE_ALIGN(addr + size);
2384 npages = (end - start) >> PAGE_SHIFT;
2385
2386 userptr->size = size;
2387 userptr->addr = addr;
2388 userptr->dma_mapped = false;
2389 INIT_LIST_HEAD(&userptr->job_node);
2390
2391 rc = get_user_memory(hdev, addr, size, npages, start, offset,
2392 userptr);
2393 if (rc) {
2394 dev_err(hdev->dev,
2395 "failed to get user memory for address 0x%llx\n",
2396 addr);
2397 goto free_sgt;
2398 }
2399
2400 hl_debugfs_add_userptr(hdev, userptr);
2401
2402 return 0;
2403
2404 free_sgt:
2405 kfree(userptr->sgt);
2406 return rc;
2407 }
2408
2409 /*
2410 * hl_unpin_host_memory - unpins a chunk of host memory.
2411 * @hdev: pointer to the habanalabs device structure
2412 * @userptr: pointer to hl_userptr structure
2413 *
2414 * This function does the following:
2415 * - Unpins the physical pages related to the host memory
2416 * - Free the SG list
2417 */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)2418 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2419 {
2420 hl_debugfs_remove_userptr(hdev, userptr);
2421
2422 if (userptr->dma_mapped)
2423 hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2424
2425 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2426 kvfree(userptr->pages);
2427
2428 list_del(&userptr->job_node);
2429
2430 sg_free_table(userptr->sgt);
2431 kfree(userptr->sgt);
2432 }
2433
2434 /**
2435 * hl_userptr_delete_list() - clear userptr list.
2436 * @hdev: pointer to the habanalabs device structure.
2437 * @userptr_list: pointer to the list to clear.
2438 *
2439 * This function does the following:
2440 * - Iterates over the list and unpins the host memory and frees the userptr
2441 * structure.
2442 */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)2443 void hl_userptr_delete_list(struct hl_device *hdev,
2444 struct list_head *userptr_list)
2445 {
2446 struct hl_userptr *userptr, *tmp;
2447
2448 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2449 hl_unpin_host_memory(hdev, userptr);
2450 kfree(userptr);
2451 }
2452
2453 INIT_LIST_HEAD(userptr_list);
2454 }
2455
2456 /**
2457 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2458 * @hdev: pointer to the habanalabs device structure.
2459 * @addr: user address to check.
2460 * @size: user block size to check.
2461 * @userptr_list: pointer to the list to clear.
2462 * @userptr: pointer to userptr to check.
2463 *
2464 * This function does the following:
2465 * - Iterates over the list and checks if the given userptr is in it, means is
2466 * pinned. If so, returns true, otherwise returns false.
2467 */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)2468 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2469 u32 size, struct list_head *userptr_list,
2470 struct hl_userptr **userptr)
2471 {
2472 list_for_each_entry((*userptr), userptr_list, job_node) {
2473 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2474 return true;
2475 }
2476
2477 return false;
2478 }
2479
2480 /**
2481 * va_range_init() - initialize virtual addresses range.
2482 * @hdev: pointer to the habanalabs device structure.
2483 * @va_ranges: pointer to va_ranges array.
2484 * @range_type: virtual address range type.
2485 * @start: range start address, inclusive.
2486 * @end: range end address, inclusive.
2487 * @page_size: page size for this va_range.
2488 *
2489 * This function does the following:
2490 * - Initializes the virtual addresses list of the given range with the given
2491 * addresses.
2492 */
va_range_init(struct hl_device * hdev,struct hl_va_range ** va_ranges,enum hl_va_range_type range_type,u64 start,u64 end,u32 page_size)2493 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2494 enum hl_va_range_type range_type, u64 start,
2495 u64 end, u32 page_size)
2496 {
2497 struct hl_va_range *va_range = va_ranges[range_type];
2498 int rc;
2499
2500 INIT_LIST_HEAD(&va_range->list);
2501
2502 /*
2503 * PAGE_SIZE alignment
2504 * it is the caller's responsibility to align the addresses if the
2505 * page size is not a power of 2
2506 */
2507
2508 if (is_power_of_2(page_size)) {
2509 start = round_up(start, page_size);
2510
2511 /*
2512 * The end of the range is inclusive, hence we need to align it
2513 * to the end of the last full page in the range. For example if
2514 * end = 0x3ff5 with page size 0x1000, we need to align it to
2515 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2516 */
2517 end = round_down(end + 1, page_size) - 1;
2518 }
2519
2520 if (start >= end) {
2521 dev_err(hdev->dev, "too small vm range for va list\n");
2522 return -EFAULT;
2523 }
2524
2525 rc = add_va_block(hdev, va_range, start, end);
2526
2527 if (rc) {
2528 dev_err(hdev->dev, "Failed to init host va list\n");
2529 return rc;
2530 }
2531
2532 va_range->start_addr = start;
2533 va_range->end_addr = end;
2534 va_range->page_size = page_size;
2535
2536 return 0;
2537 }
2538
2539 /**
2540 * va_range_fini() - clear a virtual addresses range.
2541 * @hdev: pointer to the habanalabs structure.
2542 * @va_range: pointer to virtual addresses range.
2543 *
2544 * This function does the following:
2545 * - Frees the virtual addresses block list and its lock.
2546 */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)2547 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2548 {
2549 mutex_lock(&va_range->lock);
2550 clear_va_list_locked(hdev, &va_range->list);
2551 mutex_unlock(&va_range->lock);
2552
2553 mutex_destroy(&va_range->lock);
2554 kfree(va_range);
2555 }
2556
2557 /**
2558 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2559 * @ctx: pointer to the habanalabs context structure.
2560 * @host_range_start: host virtual addresses range start.
2561 * @host_range_end: host virtual addresses range end.
2562 * @host_page_size: host page size.
2563 * @host_huge_range_start: host virtual addresses range start for memory
2564 * allocated with huge pages.
2565 * @host_huge_range_end: host virtual addresses range end for memory allocated
2566 * with huge pages.
2567 * @host_huge_page_size: host huge page size.
2568 * @dram_range_start: dram virtual addresses range start.
2569 * @dram_range_end: dram virtual addresses range end.
2570 * @dram_page_size: dram page size.
2571 *
2572 * This function initializes the following:
2573 * - MMU for context.
2574 * - Virtual address to area descriptor hashtable.
2575 * - Virtual block list of available virtual memory.
2576 */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u32 host_page_size,u64 host_huge_range_start,u64 host_huge_range_end,u32 host_huge_page_size,u64 dram_range_start,u64 dram_range_end,u32 dram_page_size)2577 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2578 u64 host_range_start,
2579 u64 host_range_end,
2580 u32 host_page_size,
2581 u64 host_huge_range_start,
2582 u64 host_huge_range_end,
2583 u32 host_huge_page_size,
2584 u64 dram_range_start,
2585 u64 dram_range_end,
2586 u32 dram_page_size)
2587 {
2588 struct hl_device *hdev = ctx->hdev;
2589 int i, rc;
2590
2591 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2592 ctx->va_range[i] =
2593 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2594 if (!ctx->va_range[i]) {
2595 rc = -ENOMEM;
2596 goto free_va_range;
2597 }
2598 }
2599
2600 rc = hl_mmu_ctx_init(ctx);
2601 if (rc) {
2602 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2603 goto free_va_range;
2604 }
2605
2606 mutex_init(&ctx->mem_hash_lock);
2607 hash_init(ctx->mem_hash);
2608
2609 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2610
2611 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2612 host_range_start, host_range_end, host_page_size);
2613 if (rc) {
2614 dev_err(hdev->dev, "failed to init host vm range\n");
2615 goto mmu_ctx_fini;
2616 }
2617
2618 if (hdev->pmmu_huge_range) {
2619 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2620
2621 rc = va_range_init(hdev,
2622 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2623 host_huge_range_start, host_huge_range_end,
2624 host_huge_page_size);
2625 if (rc) {
2626 dev_err(hdev->dev,
2627 "failed to init host huge vm range\n");
2628 goto clear_host_va_range;
2629 }
2630 } else {
2631 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2632 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2633 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2634 }
2635
2636 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2637
2638 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2639 dram_range_start, dram_range_end, dram_page_size);
2640 if (rc) {
2641 dev_err(hdev->dev, "failed to init dram vm range\n");
2642 goto clear_host_huge_va_range;
2643 }
2644
2645 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2646
2647 return 0;
2648
2649 clear_host_huge_va_range:
2650 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2651
2652 if (hdev->pmmu_huge_range) {
2653 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2654 clear_va_list_locked(hdev,
2655 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2656 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2657 }
2658 clear_host_va_range:
2659 if (hdev->pmmu_huge_range)
2660 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2661 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2662 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2663 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2664 mmu_ctx_fini:
2665 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2666 mutex_destroy(&ctx->mem_hash_lock);
2667 hl_mmu_ctx_fini(ctx);
2668 free_va_range:
2669 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2670 kfree(ctx->va_range[i]);
2671
2672 return rc;
2673 }
2674
hl_vm_ctx_init(struct hl_ctx * ctx)2675 int hl_vm_ctx_init(struct hl_ctx *ctx)
2676 {
2677 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2678 u64 host_range_start, host_range_end, host_huge_range_start,
2679 host_huge_range_end, dram_range_start, dram_range_end;
2680 u32 host_page_size, host_huge_page_size, dram_page_size;
2681
2682 atomic64_set(&ctx->dram_phys_mem, 0);
2683
2684 /*
2685 * In case of DRAM mapping, the returned address is the physical
2686 * address of the memory related to the given handle.
2687 */
2688 if (ctx->hdev->mmu_disable)
2689 return 0;
2690
2691 dram_range_start = prop->dmmu.start_addr;
2692 dram_range_end = prop->dmmu.end_addr - 1;
2693 dram_page_size = prop->dram_page_size ?
2694 prop->dram_page_size : prop->dmmu.page_size;
2695 host_range_start = prop->pmmu.start_addr;
2696 host_range_end = prop->pmmu.end_addr - 1;
2697 host_page_size = prop->pmmu.page_size;
2698 host_huge_range_start = prop->pmmu_huge.start_addr;
2699 host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2700 host_huge_page_size = prop->pmmu_huge.page_size;
2701
2702 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2703 host_page_size, host_huge_range_start,
2704 host_huge_range_end, host_huge_page_size,
2705 dram_range_start, dram_range_end, dram_page_size);
2706 }
2707
2708 /**
2709 * hl_vm_ctx_fini() - virtual memory teardown of context.
2710 * @ctx: pointer to the habanalabs context structure.
2711 *
2712 * This function perform teardown the following:
2713 * - Virtual block list of available virtual memory.
2714 * - Virtual address to area descriptor hashtable.
2715 * - MMU for context.
2716 *
2717 * In addition this function does the following:
2718 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2719 * hashtable should be empty as no valid mappings should exist at this
2720 * point.
2721 * - Frees any existing physical page list from the idr which relates to the
2722 * current context asid.
2723 * - This function checks the virtual block list for correctness. At this point
2724 * the list should contain one element which describes the whole virtual
2725 * memory range of the context. Otherwise, a warning is printed.
2726 */
hl_vm_ctx_fini(struct hl_ctx * ctx)2727 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2728 {
2729 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2730 struct hl_device *hdev = ctx->hdev;
2731 struct hl_vm_hash_node *hnode;
2732 struct hl_vm *vm = &hdev->vm;
2733 struct hlist_node *tmp_node;
2734 struct list_head free_list;
2735 struct hl_mem_in args;
2736 int i;
2737
2738 if (hdev->mmu_disable)
2739 return;
2740
2741 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2742
2743 /*
2744 * Clearly something went wrong on hard reset so no point in printing
2745 * another side effect error
2746 */
2747 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2748 dev_dbg(hdev->dev,
2749 "user released device without removing its memory mappings\n");
2750
2751 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2752 dev_dbg(hdev->dev,
2753 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2754 hnode->vaddr, ctx->asid);
2755 args.unmap.device_virt_addr = hnode->vaddr;
2756 unmap_device_va(ctx, &args, true);
2757 }
2758
2759 mutex_lock(&hdev->mmu_lock);
2760
2761 /* invalidate the cache once after the unmapping loop */
2762 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2763 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2764
2765 mutex_unlock(&hdev->mmu_lock);
2766
2767 INIT_LIST_HEAD(&free_list);
2768
2769 spin_lock(&vm->idr_lock);
2770 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2771 if (phys_pg_list->asid == ctx->asid) {
2772 dev_dbg(hdev->dev,
2773 "page list 0x%px of asid %d is still alive\n",
2774 phys_pg_list, ctx->asid);
2775
2776 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2777 idr_remove(&vm->phys_pg_pack_handles, i);
2778 list_add(&phys_pg_list->node, &free_list);
2779 }
2780 spin_unlock(&vm->idr_lock);
2781
2782 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2783 free_phys_pg_pack(hdev, phys_pg_list);
2784
2785 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2786 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2787
2788 if (hdev->pmmu_huge_range)
2789 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2790
2791 mutex_destroy(&ctx->mem_hash_lock);
2792 hl_mmu_ctx_fini(ctx);
2793
2794 /* In this case we need to clear the global accounting of DRAM usage
2795 * because the user notifies us on allocations. If the user is no more,
2796 * all DRAM is available
2797 */
2798 if (ctx->asid != HL_KERNEL_ASID_ID &&
2799 !hdev->asic_prop.dram_supports_virtual_memory)
2800 atomic64_set(&hdev->dram_used_mem, 0);
2801 }
2802
2803 /**
2804 * hl_vm_init() - initialize virtual memory module.
2805 * @hdev: pointer to the habanalabs device structure.
2806 *
2807 * This function initializes the following:
2808 * - MMU module.
2809 * - DRAM physical pages pool of 2MB.
2810 * - Idr for device memory allocation handles.
2811 */
hl_vm_init(struct hl_device * hdev)2812 int hl_vm_init(struct hl_device *hdev)
2813 {
2814 struct asic_fixed_properties *prop = &hdev->asic_prop;
2815 struct hl_vm *vm = &hdev->vm;
2816 int rc;
2817
2818 if (is_power_of_2(prop->dram_page_size))
2819 vm->dram_pg_pool =
2820 gen_pool_create(__ffs(prop->dram_page_size), -1);
2821 else
2822 vm->dram_pg_pool =
2823 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2824
2825 if (!vm->dram_pg_pool) {
2826 dev_err(hdev->dev, "Failed to create dram page pool\n");
2827 return -ENOMEM;
2828 }
2829
2830 kref_init(&vm->dram_pg_pool_refcount);
2831
2832 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2833 prop->dram_end_address - prop->dram_user_base_address,
2834 -1);
2835
2836 if (rc) {
2837 dev_err(hdev->dev,
2838 "Failed to add memory to dram page pool %d\n", rc);
2839 goto pool_add_err;
2840 }
2841
2842 spin_lock_init(&vm->idr_lock);
2843 idr_init(&vm->phys_pg_pack_handles);
2844
2845 atomic64_set(&hdev->dram_used_mem, 0);
2846
2847 vm->init_done = true;
2848
2849 return 0;
2850
2851 pool_add_err:
2852 gen_pool_destroy(vm->dram_pg_pool);
2853
2854 return rc;
2855 }
2856
2857 /**
2858 * hl_vm_fini() - virtual memory module teardown.
2859 * @hdev: pointer to the habanalabs device structure.
2860 *
2861 * This function perform teardown to the following:
2862 * - Idr for device memory allocation handles.
2863 * - DRAM physical pages pool of 2MB.
2864 * - MMU module.
2865 */
hl_vm_fini(struct hl_device * hdev)2866 void hl_vm_fini(struct hl_device *hdev)
2867 {
2868 struct hl_vm *vm = &hdev->vm;
2869
2870 if (!vm->init_done)
2871 return;
2872
2873 /*
2874 * At this point all the contexts should be freed and hence no DRAM
2875 * memory should be in use. Hence the DRAM pool should be freed here.
2876 */
2877 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2878 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2879 __func__);
2880
2881 vm->init_done = false;
2882 }
2883
2884 /**
2885 * hl_hw_block_mem_init() - HW block memory initialization.
2886 * @ctx: pointer to the habanalabs context structure.
2887 *
2888 * This function initializes the HW block virtual mapped addresses list and
2889 * it's lock.
2890 */
hl_hw_block_mem_init(struct hl_ctx * ctx)2891 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2892 {
2893 mutex_init(&ctx->hw_block_list_lock);
2894 INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2895 }
2896
2897 /**
2898 * hl_hw_block_mem_fini() - HW block memory teardown.
2899 * @ctx: pointer to the habanalabs context structure.
2900 *
2901 * This function clears the HW block virtual mapped addresses list and destroys
2902 * it's lock.
2903 */
hl_hw_block_mem_fini(struct hl_ctx * ctx)2904 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2905 {
2906 struct hl_vm_hw_block_list_node *lnode, *tmp;
2907
2908 if (!list_empty(&ctx->hw_block_mem_list))
2909 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2910
2911 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2912 list_del(&lnode->node);
2913 kfree(lnode);
2914 }
2915
2916 mutex_destroy(&ctx->hw_block_list_lock);
2917 }
2918