1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9 #include "../include/common/hl_boot_if.h"
10
11 #include <linux/firmware.h>
12 #include <linux/crc32.h>
13 #include <linux/slab.h>
14 #include <linux/ctype.h>
15
16 #define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
17
extract_fw_ver_from_str(const char * fw_str)18 static char *extract_fw_ver_from_str(const char *fw_str)
19 {
20 char *str, *fw_ver, *whitespace;
21 u32 ver_offset;
22
23 fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
24 if (!fw_ver)
25 return NULL;
26
27 str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
28 if (!str)
29 goto free_fw_ver;
30
31 /* Skip the fw- part */
32 str += 3;
33 ver_offset = str - fw_str;
34
35 /* Copy until the next whitespace */
36 whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
37 if (!whitespace)
38 goto free_fw_ver;
39
40 strscpy(fw_ver, str, whitespace - str + 1);
41
42 return fw_ver;
43
44 free_fw_ver:
45 kfree(fw_ver);
46 return NULL;
47 }
48
extract_fw_sub_versions(struct hl_device * hdev,char * preboot_ver)49 static int extract_fw_sub_versions(struct hl_device *hdev, char *preboot_ver)
50 {
51 char major[8], minor[8], *first_dot, *second_dot;
52 int rc;
53
54 first_dot = strnstr(preboot_ver, ".", 10);
55 if (first_dot) {
56 strscpy(major, preboot_ver, first_dot - preboot_ver + 1);
57 rc = kstrtou32(major, 10, &hdev->fw_major_version);
58 } else {
59 rc = -EINVAL;
60 }
61
62 if (rc) {
63 dev_err(hdev->dev, "Error %d parsing preboot major version\n", rc);
64 goto out;
65 }
66
67 /* skip the first dot */
68 first_dot++;
69
70 second_dot = strnstr(first_dot, ".", 10);
71 if (second_dot) {
72 strscpy(minor, first_dot, second_dot - first_dot + 1);
73 rc = kstrtou32(minor, 10, &hdev->fw_minor_version);
74 } else {
75 rc = -EINVAL;
76 }
77
78 if (rc)
79 dev_err(hdev->dev, "Error %d parsing preboot minor version\n", rc);
80
81 out:
82 kfree(preboot_ver);
83 return rc;
84 }
85
hl_request_fw(struct hl_device * hdev,const struct firmware ** firmware_p,const char * fw_name)86 static int hl_request_fw(struct hl_device *hdev,
87 const struct firmware **firmware_p,
88 const char *fw_name)
89 {
90 size_t fw_size;
91 int rc;
92
93 rc = request_firmware(firmware_p, fw_name, hdev->dev);
94 if (rc) {
95 dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
96 fw_name, rc);
97 goto out;
98 }
99
100 fw_size = (*firmware_p)->size;
101 if ((fw_size % 4) != 0) {
102 dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
103 fw_name, fw_size);
104 rc = -EINVAL;
105 goto release_fw;
106 }
107
108 dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
109
110 if (fw_size > FW_FILE_MAX_SIZE) {
111 dev_err(hdev->dev,
112 "FW file size %zu exceeds maximum of %u bytes\n",
113 fw_size, FW_FILE_MAX_SIZE);
114 rc = -EINVAL;
115 goto release_fw;
116 }
117
118 return 0;
119
120 release_fw:
121 release_firmware(*firmware_p);
122 out:
123 return rc;
124 }
125
126 /**
127 * hl_release_firmware() - release FW
128 *
129 * @fw: fw descriptor
130 *
131 * note: this inline function added to serve as a comprehensive mirror for the
132 * hl_request_fw function.
133 */
hl_release_firmware(const struct firmware * fw)134 static inline void hl_release_firmware(const struct firmware *fw)
135 {
136 release_firmware(fw);
137 }
138
139 /**
140 * hl_fw_copy_fw_to_device() - copy FW to device
141 *
142 * @hdev: pointer to hl_device structure.
143 * @fw: fw descriptor
144 * @dst: IO memory mapped address space to copy firmware to
145 * @src_offset: offset in src FW to copy from
146 * @size: amount of bytes to copy (0 to copy the whole binary)
147 *
148 * actual copy of FW binary data to device, shared by static and dynamic loaders
149 */
hl_fw_copy_fw_to_device(struct hl_device * hdev,const struct firmware * fw,void __iomem * dst,u32 src_offset,u32 size)150 static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
151 const struct firmware *fw, void __iomem *dst,
152 u32 src_offset, u32 size)
153 {
154 const void *fw_data;
155
156 /* size 0 indicates to copy the whole file */
157 if (!size)
158 size = fw->size;
159
160 if (src_offset + size > fw->size) {
161 dev_err(hdev->dev,
162 "size to copy(%u) and offset(%u) are invalid\n",
163 size, src_offset);
164 return -EINVAL;
165 }
166
167 fw_data = (const void *) fw->data;
168
169 memcpy_toio(dst, fw_data + src_offset, size);
170 return 0;
171 }
172
173 /**
174 * hl_fw_copy_msg_to_device() - copy message to device
175 *
176 * @hdev: pointer to hl_device structure.
177 * @msg: message
178 * @dst: IO memory mapped address space to copy firmware to
179 * @src_offset: offset in src message to copy from
180 * @size: amount of bytes to copy (0 to copy the whole binary)
181 *
182 * actual copy of message data to device.
183 */
hl_fw_copy_msg_to_device(struct hl_device * hdev,struct lkd_msg_comms * msg,void __iomem * dst,u32 src_offset,u32 size)184 static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
185 struct lkd_msg_comms *msg, void __iomem *dst,
186 u32 src_offset, u32 size)
187 {
188 void *msg_data;
189
190 /* size 0 indicates to copy the whole file */
191 if (!size)
192 size = sizeof(struct lkd_msg_comms);
193
194 if (src_offset + size > sizeof(struct lkd_msg_comms)) {
195 dev_err(hdev->dev,
196 "size to copy(%u) and offset(%u) are invalid\n",
197 size, src_offset);
198 return -EINVAL;
199 }
200
201 msg_data = (void *) msg;
202
203 memcpy_toio(dst, msg_data + src_offset, size);
204
205 return 0;
206 }
207
208 /**
209 * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
210 *
211 * @hdev: pointer to hl_device structure.
212 * @fw_name: the firmware image name
213 * @dst: IO memory mapped address space to copy firmware to
214 * @src_offset: offset in src FW to copy from
215 * @size: amount of bytes to copy (0 to copy the whole binary)
216 *
217 * Copy fw code from firmware file to device memory.
218 *
219 * Return: 0 on success, non-zero for failure.
220 */
hl_fw_load_fw_to_device(struct hl_device * hdev,const char * fw_name,void __iomem * dst,u32 src_offset,u32 size)221 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
222 void __iomem *dst, u32 src_offset, u32 size)
223 {
224 const struct firmware *fw;
225 int rc;
226
227 rc = hl_request_fw(hdev, &fw, fw_name);
228 if (rc)
229 return rc;
230
231 rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
232
233 hl_release_firmware(fw);
234 return rc;
235 }
236
hl_fw_send_pci_access_msg(struct hl_device * hdev,u32 opcode,u64 value)237 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
238 {
239 struct cpucp_packet pkt = {};
240
241 pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
242 pkt.value = cpu_to_le64(value);
243
244 return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
245 }
246
hl_fw_send_cpu_message(struct hl_device * hdev,u32 hw_queue_id,u32 * msg,u16 len,u32 timeout,u64 * result)247 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
248 u16 len, u32 timeout, u64 *result)
249 {
250 struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
251 struct asic_fixed_properties *prop = &hdev->asic_prop;
252 struct cpucp_packet *pkt;
253 dma_addr_t pkt_dma_addr;
254 struct hl_bd *sent_bd;
255 u32 tmp, expected_ack_val, pi, opcode;
256 int rc;
257
258 pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr);
259 if (!pkt) {
260 dev_err(hdev->dev,
261 "Failed to allocate DMA memory for packet to CPU\n");
262 return -ENOMEM;
263 }
264
265 memcpy(pkt, msg, len);
266
267 mutex_lock(&hdev->send_cpu_message_lock);
268
269 /* CPU-CP messages can be sent during soft-reset */
270 if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
271 rc = 0;
272 goto out;
273 }
274
275 if (hdev->device_cpu_disabled) {
276 rc = -EIO;
277 goto out;
278 }
279
280 /* set fence to a non valid value */
281 pkt->fence = cpu_to_le32(UINT_MAX);
282 pi = queue->pi;
283
284 /*
285 * The CPU queue is a synchronous queue with an effective depth of
286 * a single entry (although it is allocated with room for multiple
287 * entries). We lock on it using 'send_cpu_message_lock' which
288 * serializes accesses to the CPU queue.
289 * Which means that we don't need to lock the access to the entire H/W
290 * queues module when submitting a JOB to the CPU queue.
291 */
292 hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
293
294 if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
295 expected_ack_val = queue->pi;
296 else
297 expected_ack_val = CPUCP_PACKET_FENCE_VAL;
298
299 rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
300 (tmp == expected_ack_val), 1000,
301 timeout, true);
302
303 hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
304
305 if (rc == -ETIMEDOUT) {
306 /* If FW performed reset just before sending it a packet, we will get a timeout.
307 * This is expected behavior, hence no need for error message.
308 */
309 if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset)
310 dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
311 tmp);
312 else
313 dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
314 hdev->device_cpu_disabled = true;
315 goto out;
316 }
317
318 tmp = le32_to_cpu(pkt->ctl);
319
320 rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
321 if (rc) {
322 opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
323
324 if (!prop->supports_advanced_cpucp_rc) {
325 dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
326 goto scrub_descriptor;
327 }
328
329 switch (rc) {
330 case cpucp_packet_invalid:
331 dev_err(hdev->dev,
332 "CPU packet %d is not supported by F/W\n", opcode);
333 break;
334 case cpucp_packet_fault:
335 dev_err(hdev->dev,
336 "F/W failed processing CPU packet %d\n", opcode);
337 break;
338 case cpucp_packet_invalid_pkt:
339 dev_dbg(hdev->dev,
340 "CPU packet %d is not supported by F/W\n", opcode);
341 break;
342 case cpucp_packet_invalid_params:
343 dev_err(hdev->dev,
344 "F/W reports invalid parameters for CPU packet %d\n", opcode);
345 break;
346
347 default:
348 dev_err(hdev->dev,
349 "Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
350 }
351
352 /* propagate the return code from the f/w to the callers who want to check it */
353 if (result)
354 *result = rc;
355
356 rc = -EIO;
357
358 } else if (result) {
359 *result = le64_to_cpu(pkt->result);
360 }
361
362 scrub_descriptor:
363 /* Scrub previous buffer descriptor 'ctl' field which contains the
364 * previous PI value written during packet submission.
365 * We must do this or else F/W can read an old value upon queue wraparound.
366 */
367 sent_bd = queue->kernel_address;
368 sent_bd += hl_pi_2_offset(pi);
369 sent_bd->ctl = cpu_to_le32(UINT_MAX);
370
371 out:
372 mutex_unlock(&hdev->send_cpu_message_lock);
373
374 hl_cpu_accessible_dma_pool_free(hdev, len, pkt);
375
376 return rc;
377 }
378
hl_fw_unmask_irq(struct hl_device * hdev,u16 event_type)379 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
380 {
381 struct cpucp_packet pkt;
382 u64 result;
383 int rc;
384
385 memset(&pkt, 0, sizeof(pkt));
386
387 pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
388 CPUCP_PKT_CTL_OPCODE_SHIFT);
389 pkt.value = cpu_to_le64(event_type);
390
391 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
392 0, &result);
393
394 if (rc)
395 dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
396
397 return rc;
398 }
399
hl_fw_unmask_irq_arr(struct hl_device * hdev,const u32 * irq_arr,size_t irq_arr_size)400 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
401 size_t irq_arr_size)
402 {
403 struct cpucp_unmask_irq_arr_packet *pkt;
404 size_t total_pkt_size;
405 u64 result;
406 int rc;
407
408 total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
409 irq_arr_size;
410
411 /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
412 total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
413
414 /* total_pkt_size is casted to u16 later on */
415 if (total_pkt_size > USHRT_MAX) {
416 dev_err(hdev->dev, "too many elements in IRQ array\n");
417 return -EINVAL;
418 }
419
420 pkt = kzalloc(total_pkt_size, GFP_KERNEL);
421 if (!pkt)
422 return -ENOMEM;
423
424 pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
425 memcpy(&pkt->irqs, irq_arr, irq_arr_size);
426
427 pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
428 CPUCP_PKT_CTL_OPCODE_SHIFT);
429
430 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
431 total_pkt_size, 0, &result);
432
433 if (rc)
434 dev_err(hdev->dev, "failed to unmask IRQ array\n");
435
436 kfree(pkt);
437
438 return rc;
439 }
440
hl_fw_test_cpu_queue(struct hl_device * hdev)441 int hl_fw_test_cpu_queue(struct hl_device *hdev)
442 {
443 struct cpucp_packet test_pkt = {};
444 u64 result;
445 int rc;
446
447 test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
448 CPUCP_PKT_CTL_OPCODE_SHIFT);
449 test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
450
451 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
452 sizeof(test_pkt), 0, &result);
453
454 if (!rc) {
455 if (result != CPUCP_PACKET_FENCE_VAL)
456 dev_err(hdev->dev,
457 "CPU queue test failed (%#08llx)\n", result);
458 } else {
459 dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
460 }
461
462 return rc;
463 }
464
hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle)465 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
466 dma_addr_t *dma_handle)
467 {
468 u64 kernel_addr;
469
470 kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
471
472 *dma_handle = hdev->cpu_accessible_dma_address +
473 (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
474
475 return (void *) (uintptr_t) kernel_addr;
476 }
477
hl_fw_cpu_accessible_dma_pool_free(struct hl_device * hdev,size_t size,void * vaddr)478 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
479 void *vaddr)
480 {
481 gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
482 size);
483 }
484
hl_fw_send_device_activity(struct hl_device * hdev,bool open)485 int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
486 {
487 struct cpucp_packet pkt;
488 int rc;
489
490 memset(&pkt, 0, sizeof(pkt));
491 pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
492 pkt.value = cpu_to_le64(open);
493 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
494 if (rc)
495 dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
496
497 return rc;
498 }
499
hl_fw_send_heartbeat(struct hl_device * hdev)500 int hl_fw_send_heartbeat(struct hl_device *hdev)
501 {
502 struct cpucp_packet hb_pkt;
503 u64 result;
504 int rc;
505
506 memset(&hb_pkt, 0, sizeof(hb_pkt));
507 hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
508 CPUCP_PKT_CTL_OPCODE_SHIFT);
509 hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
510
511 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
512 sizeof(hb_pkt), 0, &result);
513
514 if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
515 return -EIO;
516
517 if (le32_to_cpu(hb_pkt.status_mask) &
518 CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
519 dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
520 rc = -EIO;
521 }
522
523 return rc;
524 }
525
fw_report_boot_dev0(struct hl_device * hdev,u32 err_val,u32 sts_val)526 static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
527 u32 sts_val)
528 {
529 bool err_exists = false;
530
531 if (!(err_val & CPU_BOOT_ERR0_ENABLED))
532 return false;
533
534 if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
535 dev_err(hdev->dev,
536 "Device boot error - DRAM initialization failed\n");
537 err_exists = true;
538 }
539
540 if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
541 dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
542 err_exists = true;
543 }
544
545 if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
546 dev_err(hdev->dev,
547 "Device boot error - Thermal Sensor initialization failed\n");
548 err_exists = true;
549 }
550
551 if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
552 if (hdev->bmc_enable) {
553 dev_err(hdev->dev,
554 "Device boot error - Skipped waiting for BMC\n");
555 err_exists = true;
556 } else {
557 dev_info(hdev->dev,
558 "Device boot message - Skipped waiting for BMC\n");
559 /* This is an info so we don't want it to disable the
560 * device
561 */
562 err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
563 }
564 }
565
566 if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
567 dev_err(hdev->dev,
568 "Device boot error - Serdes data from BMC not available\n");
569 err_exists = true;
570 }
571
572 if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
573 dev_err(hdev->dev,
574 "Device boot error - NIC F/W initialization failed\n");
575 err_exists = true;
576 }
577
578 if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
579 dev_err(hdev->dev,
580 "Device boot warning - security not ready\n");
581 err_exists = true;
582 }
583
584 if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
585 dev_err(hdev->dev, "Device boot error - security failure\n");
586 err_exists = true;
587 }
588
589 if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
590 dev_err(hdev->dev, "Device boot error - eFuse failure\n");
591 err_exists = true;
592 }
593
594 if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
595 dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
596 err_exists = true;
597 }
598
599 if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
600 dev_err(hdev->dev, "Device boot error - PLL failure\n");
601 err_exists = true;
602 }
603
604 if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
605 /* Ignore this bit, don't prevent driver loading */
606 dev_dbg(hdev->dev, "device unusable status is set\n");
607 err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
608 }
609
610 if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) {
611 dev_err(hdev->dev, "Device boot error - binning failure\n");
612 err_exists = true;
613 }
614
615 if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
616 dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
617
618 /* All warnings should go here in order not to reach the unknown error validation */
619 if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
620 dev_warn(hdev->dev,
621 "Device boot warning - EEPROM failure detected, default settings applied\n");
622 /* This is a warning so we don't want it to disable the
623 * device
624 */
625 err_val &= ~CPU_BOOT_ERR0_EEPROM_FAIL;
626 }
627
628 if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
629 dev_warn(hdev->dev,
630 "Device boot warning - Skipped DRAM initialization\n");
631 /* This is a warning so we don't want it to disable the
632 * device
633 */
634 err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
635 }
636
637 if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
638 dev_warn(hdev->dev,
639 "Device boot warning - Failed to load preboot primary image\n");
640 /* This is a warning so we don't want it to disable the
641 * device as we have a secondary preboot image
642 */
643 err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
644 }
645
646 if (err_val & CPU_BOOT_ERR0_TPM_FAIL) {
647 dev_warn(hdev->dev,
648 "Device boot warning - TPM failure\n");
649 /* This is a warning so we don't want it to disable the
650 * device
651 */
652 err_val &= ~CPU_BOOT_ERR0_TPM_FAIL;
653 }
654
655 if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
656 dev_err(hdev->dev,
657 "Device boot error - unknown ERR0 error 0x%08x\n", err_val);
658 err_exists = true;
659 }
660
661 /* return error only if it's in the predefined mask */
662 if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
663 lower_32_bits(hdev->boot_error_status_mask)))
664 return true;
665
666 return false;
667 }
668
669 /* placeholder for ERR1 as no errors defined there yet */
fw_report_boot_dev1(struct hl_device * hdev,u32 err_val,u32 sts_val)670 static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
671 u32 sts_val)
672 {
673 /*
674 * keep this variable to preserve the logic of the function.
675 * this way it would require less modifications when error will be
676 * added to DEV_ERR1
677 */
678 bool err_exists = false;
679
680 if (!(err_val & CPU_BOOT_ERR1_ENABLED))
681 return false;
682
683 if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
684 dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
685
686 if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
687 dev_err(hdev->dev,
688 "Device boot error - unknown ERR1 error 0x%08x\n",
689 err_val);
690 err_exists = true;
691 }
692
693 /* return error only if it's in the predefined mask */
694 if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
695 upper_32_bits(hdev->boot_error_status_mask)))
696 return true;
697
698 return false;
699 }
700
fw_read_errors(struct hl_device * hdev,u32 boot_err0_reg,u32 boot_err1_reg,u32 cpu_boot_dev_status0_reg,u32 cpu_boot_dev_status1_reg)701 static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
702 u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
703 u32 cpu_boot_dev_status1_reg)
704 {
705 u32 err_val, status_val;
706 bool err_exists = false;
707
708 /* Some of the firmware status codes are deprecated in newer f/w
709 * versions. In those versions, the errors are reported
710 * in different registers. Therefore, we need to check those
711 * registers and print the exact errors. Moreover, there
712 * may be multiple errors, so we need to report on each error
713 * separately. Some of the error codes might indicate a state
714 * that is not an error per-se, but it is an error in production
715 * environment
716 */
717 err_val = RREG32(boot_err0_reg);
718 status_val = RREG32(cpu_boot_dev_status0_reg);
719 err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
720
721 err_val = RREG32(boot_err1_reg);
722 status_val = RREG32(cpu_boot_dev_status1_reg);
723 err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
724
725 if (err_exists)
726 return -EIO;
727
728 return 0;
729 }
730
hl_fw_cpucp_info_get(struct hl_device * hdev,u32 sts_boot_dev_sts0_reg,u32 sts_boot_dev_sts1_reg,u32 boot_err0_reg,u32 boot_err1_reg)731 int hl_fw_cpucp_info_get(struct hl_device *hdev,
732 u32 sts_boot_dev_sts0_reg,
733 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
734 u32 boot_err1_reg)
735 {
736 struct asic_fixed_properties *prop = &hdev->asic_prop;
737 struct cpucp_packet pkt = {};
738 dma_addr_t cpucp_info_dma_addr;
739 void *cpucp_info_cpu_addr;
740 char *kernel_ver;
741 u64 result;
742 int rc;
743
744 cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
745 &cpucp_info_dma_addr);
746 if (!cpucp_info_cpu_addr) {
747 dev_err(hdev->dev,
748 "Failed to allocate DMA memory for CPU-CP info packet\n");
749 return -ENOMEM;
750 }
751
752 memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
753
754 pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
755 CPUCP_PKT_CTL_OPCODE_SHIFT);
756 pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
757 pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
758
759 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
760 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
761 if (rc) {
762 dev_err(hdev->dev,
763 "Failed to handle CPU-CP info pkt, error %d\n", rc);
764 goto out;
765 }
766
767 rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
768 sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
769 if (rc) {
770 dev_err(hdev->dev, "Errors in device boot\n");
771 goto out;
772 }
773
774 memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
775 sizeof(prop->cpucp_info));
776
777 rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
778 if (rc) {
779 dev_err(hdev->dev,
780 "Failed to build hwmon channel info, error %d\n", rc);
781 rc = -EFAULT;
782 goto out;
783 }
784
785 kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
786 if (kernel_ver) {
787 dev_info(hdev->dev, "Linux version %s", kernel_ver);
788 kfree(kernel_ver);
789 }
790
791 /* assume EQ code doesn't need to check eqe index */
792 hdev->event_queue.check_eqe_index = false;
793
794 /* Read FW application security bits again */
795 if (prop->fw_cpu_boot_dev_sts0_valid) {
796 prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
797 if (prop->fw_app_cpu_boot_dev_sts0 &
798 CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
799 hdev->event_queue.check_eqe_index = true;
800 }
801
802 if (prop->fw_cpu_boot_dev_sts1_valid)
803 prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
804
805 out:
806 hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
807
808 return rc;
809 }
810
hl_fw_send_msi_info_msg(struct hl_device * hdev)811 static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
812 {
813 struct cpucp_array_data_packet *pkt;
814 size_t total_pkt_size, data_size;
815 u64 result;
816 int rc;
817
818 /* skip sending this info for unsupported ASICs */
819 if (!hdev->asic_funcs->get_msi_info)
820 return 0;
821
822 data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
823 total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
824
825 /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
826 total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
827
828 /* total_pkt_size is casted to u16 later on */
829 if (total_pkt_size > USHRT_MAX) {
830 dev_err(hdev->dev, "CPUCP array data is too big\n");
831 return -EINVAL;
832 }
833
834 pkt = kzalloc(total_pkt_size, GFP_KERNEL);
835 if (!pkt)
836 return -ENOMEM;
837
838 pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
839
840 memset((void *) &pkt->data, 0xFF, data_size);
841 hdev->asic_funcs->get_msi_info(pkt->data);
842
843 pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
844 CPUCP_PKT_CTL_OPCODE_SHIFT);
845
846 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
847 total_pkt_size, 0, &result);
848
849 /*
850 * in case packet result is invalid it means that FW does not support
851 * this feature and will use default/hard coded MSI values. no reason
852 * to stop the boot
853 */
854 if (rc && result == cpucp_packet_invalid)
855 rc = 0;
856
857 if (rc)
858 dev_err(hdev->dev, "failed to send CPUCP array data\n");
859
860 kfree(pkt);
861
862 return rc;
863 }
864
hl_fw_cpucp_handshake(struct hl_device * hdev,u32 sts_boot_dev_sts0_reg,u32 sts_boot_dev_sts1_reg,u32 boot_err0_reg,u32 boot_err1_reg)865 int hl_fw_cpucp_handshake(struct hl_device *hdev,
866 u32 sts_boot_dev_sts0_reg,
867 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
868 u32 boot_err1_reg)
869 {
870 int rc;
871
872 rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
873 sts_boot_dev_sts1_reg, boot_err0_reg,
874 boot_err1_reg);
875 if (rc)
876 return rc;
877
878 return hl_fw_send_msi_info_msg(hdev);
879 }
880
hl_fw_get_eeprom_data(struct hl_device * hdev,void * data,size_t max_size)881 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
882 {
883 struct cpucp_packet pkt = {};
884 void *eeprom_info_cpu_addr;
885 dma_addr_t eeprom_info_dma_addr;
886 u64 result;
887 int rc;
888
889 eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
890 &eeprom_info_dma_addr);
891 if (!eeprom_info_cpu_addr) {
892 dev_err(hdev->dev,
893 "Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
894 return -ENOMEM;
895 }
896
897 memset(eeprom_info_cpu_addr, 0, max_size);
898
899 pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
900 CPUCP_PKT_CTL_OPCODE_SHIFT);
901 pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
902 pkt.data_max_size = cpu_to_le32(max_size);
903
904 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
905 HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
906
907 if (rc) {
908 dev_err(hdev->dev,
909 "Failed to handle CPU-CP EEPROM packet, error %d\n",
910 rc);
911 goto out;
912 }
913
914 /* result contains the actual size */
915 memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
916
917 out:
918 hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
919
920 return rc;
921 }
922
hl_fw_get_monitor_dump(struct hl_device * hdev,void * data)923 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
924 {
925 struct cpucp_monitor_dump *mon_dump_cpu_addr;
926 dma_addr_t mon_dump_dma_addr;
927 struct cpucp_packet pkt = {};
928 size_t data_size;
929 __le32 *src_ptr;
930 u32 *dst_ptr;
931 u64 result;
932 int i, rc;
933
934 data_size = sizeof(struct cpucp_monitor_dump);
935 mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
936 if (!mon_dump_cpu_addr) {
937 dev_err(hdev->dev,
938 "Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
939 return -ENOMEM;
940 }
941
942 memset(mon_dump_cpu_addr, 0, data_size);
943
944 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
945 pkt.addr = cpu_to_le64(mon_dump_dma_addr);
946 pkt.data_max_size = cpu_to_le32(data_size);
947
948 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
949 HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
950 if (rc) {
951 dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
952 goto out;
953 }
954
955 /* result contains the actual size */
956 src_ptr = (__le32 *) mon_dump_cpu_addr;
957 dst_ptr = data;
958 for (i = 0; i < (data_size / sizeof(u32)); i++) {
959 *dst_ptr = le32_to_cpu(*src_ptr);
960 src_ptr++;
961 dst_ptr++;
962 }
963
964 out:
965 hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
966
967 return rc;
968 }
969
hl_fw_cpucp_pci_counters_get(struct hl_device * hdev,struct hl_info_pci_counters * counters)970 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
971 struct hl_info_pci_counters *counters)
972 {
973 struct cpucp_packet pkt = {};
974 u64 result;
975 int rc;
976
977 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
978 CPUCP_PKT_CTL_OPCODE_SHIFT);
979
980 /* Fetch PCI rx counter */
981 pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
982 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
983 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
984 if (rc) {
985 dev_err(hdev->dev,
986 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
987 return rc;
988 }
989 counters->rx_throughput = result;
990
991 memset(&pkt, 0, sizeof(pkt));
992 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
993 CPUCP_PKT_CTL_OPCODE_SHIFT);
994
995 /* Fetch PCI tx counter */
996 pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
997 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
998 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
999 if (rc) {
1000 dev_err(hdev->dev,
1001 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1002 return rc;
1003 }
1004 counters->tx_throughput = result;
1005
1006 /* Fetch PCI replay counter */
1007 memset(&pkt, 0, sizeof(pkt));
1008 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
1009 CPUCP_PKT_CTL_OPCODE_SHIFT);
1010
1011 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1012 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1013 if (rc) {
1014 dev_err(hdev->dev,
1015 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1016 return rc;
1017 }
1018 counters->replay_cnt = (u32) result;
1019
1020 return rc;
1021 }
1022
hl_fw_cpucp_total_energy_get(struct hl_device * hdev,u64 * total_energy)1023 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
1024 {
1025 struct cpucp_packet pkt = {};
1026 u64 result;
1027 int rc;
1028
1029 pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
1030 CPUCP_PKT_CTL_OPCODE_SHIFT);
1031
1032 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1033 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1034 if (rc) {
1035 dev_err(hdev->dev,
1036 "Failed to handle CpuCP total energy pkt, error %d\n",
1037 rc);
1038 return rc;
1039 }
1040
1041 *total_energy = result;
1042
1043 return rc;
1044 }
1045
get_used_pll_index(struct hl_device * hdev,u32 input_pll_index,enum pll_index * pll_index)1046 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
1047 enum pll_index *pll_index)
1048 {
1049 struct asic_fixed_properties *prop = &hdev->asic_prop;
1050 u8 pll_byte, pll_bit_off;
1051 bool dynamic_pll;
1052 int fw_pll_idx;
1053
1054 dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
1055 CPU_BOOT_DEV_STS0_DYN_PLL_EN);
1056
1057 if (!dynamic_pll) {
1058 /*
1059 * in case we are working with legacy FW (each asic has unique
1060 * PLL numbering) use the driver based index as they are
1061 * aligned with fw legacy numbering
1062 */
1063 *pll_index = input_pll_index;
1064 return 0;
1065 }
1066
1067 /* retrieve a FW compatible PLL index based on
1068 * ASIC specific user request
1069 */
1070 fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
1071 if (fw_pll_idx < 0) {
1072 dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
1073 input_pll_index, fw_pll_idx);
1074 return -EINVAL;
1075 }
1076
1077 /* PLL map is a u8 array */
1078 pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
1079 pll_bit_off = fw_pll_idx & 0x7;
1080
1081 if (!(pll_byte & BIT(pll_bit_off))) {
1082 dev_err(hdev->dev, "PLL index %d is not supported\n",
1083 fw_pll_idx);
1084 return -EINVAL;
1085 }
1086
1087 *pll_index = fw_pll_idx;
1088
1089 return 0;
1090 }
1091
hl_fw_cpucp_pll_info_get(struct hl_device * hdev,u32 pll_index,u16 * pll_freq_arr)1092 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
1093 u16 *pll_freq_arr)
1094 {
1095 struct cpucp_packet pkt;
1096 enum pll_index used_pll_idx;
1097 u64 result;
1098 int rc;
1099
1100 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
1101 if (rc)
1102 return rc;
1103
1104 memset(&pkt, 0, sizeof(pkt));
1105
1106 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
1107 CPUCP_PKT_CTL_OPCODE_SHIFT);
1108 pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
1109
1110 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1111 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1112 if (rc) {
1113 dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
1114 return rc;
1115 }
1116
1117 pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
1118 pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
1119 pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
1120 pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
1121
1122 return 0;
1123 }
1124
hl_fw_cpucp_power_get(struct hl_device * hdev,u64 * power)1125 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
1126 {
1127 struct cpucp_packet pkt;
1128 u64 result;
1129 int rc;
1130
1131 memset(&pkt, 0, sizeof(pkt));
1132
1133 pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
1134 CPUCP_PKT_CTL_OPCODE_SHIFT);
1135 pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
1136
1137 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1138 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1139 if (rc) {
1140 dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
1141 return rc;
1142 }
1143
1144 *power = result;
1145
1146 return rc;
1147 }
1148
hl_fw_dram_replaced_row_get(struct hl_device * hdev,struct cpucp_hbm_row_info * info)1149 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
1150 struct cpucp_hbm_row_info *info)
1151 {
1152 struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
1153 dma_addr_t cpucp_repl_rows_info_dma_addr;
1154 struct cpucp_packet pkt = {};
1155 u64 result;
1156 int rc;
1157
1158 cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
1159 sizeof(struct cpucp_hbm_row_info),
1160 &cpucp_repl_rows_info_dma_addr);
1161 if (!cpucp_repl_rows_info_cpu_addr) {
1162 dev_err(hdev->dev,
1163 "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
1164 return -ENOMEM;
1165 }
1166
1167 memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
1168
1169 pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
1170 CPUCP_PKT_CTL_OPCODE_SHIFT);
1171 pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
1172 pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
1173
1174 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1175 HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1176 if (rc) {
1177 dev_err(hdev->dev,
1178 "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
1179 goto out;
1180 }
1181
1182 memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
1183
1184 out:
1185 hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
1186 cpucp_repl_rows_info_cpu_addr);
1187
1188 return rc;
1189 }
1190
hl_fw_dram_pending_row_get(struct hl_device * hdev,u32 * pend_rows_num)1191 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
1192 {
1193 struct cpucp_packet pkt;
1194 u64 result;
1195 int rc;
1196
1197 memset(&pkt, 0, sizeof(pkt));
1198
1199 pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
1200
1201 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
1202 if (rc) {
1203 dev_err(hdev->dev,
1204 "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
1205 goto out;
1206 }
1207
1208 *pend_rows_num = (u32) result;
1209 out:
1210 return rc;
1211 }
1212
hl_fw_cpucp_engine_core_asid_set(struct hl_device * hdev,u32 asid)1213 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
1214 {
1215 struct cpucp_packet pkt;
1216 int rc;
1217
1218 memset(&pkt, 0, sizeof(pkt));
1219
1220 pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
1221 pkt.value = cpu_to_le64(asid);
1222
1223 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1224 HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
1225 if (rc)
1226 dev_err(hdev->dev,
1227 "Failed on ASID configuration request for engine core, error %d\n",
1228 rc);
1229
1230 return rc;
1231 }
1232
hl_fw_ask_hard_reset_without_linux(struct hl_device * hdev)1233 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
1234 {
1235 struct static_fw_load_mgr *static_loader =
1236 &hdev->fw_loader.static_loader;
1237 int rc;
1238
1239 if (hdev->asic_prop.dynamic_fw_load) {
1240 rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1241 COMMS_RST_DEV, 0, false,
1242 hdev->fw_loader.cpu_timeout);
1243 if (rc)
1244 dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
1245 } else {
1246 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
1247 }
1248 }
1249
hl_fw_ask_halt_machine_without_linux(struct hl_device * hdev)1250 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
1251 {
1252 struct static_fw_load_mgr *static_loader =
1253 &hdev->fw_loader.static_loader;
1254 int rc;
1255
1256 if (hdev->device_cpu_is_halted)
1257 return;
1258
1259 /* Stop device CPU to make sure nothing bad happens */
1260 if (hdev->asic_prop.dynamic_fw_load) {
1261 rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1262 COMMS_GOTO_WFE, 0, true,
1263 hdev->fw_loader.cpu_timeout);
1264 if (rc)
1265 dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
1266 } else {
1267 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
1268 msleep(static_loader->cpu_reset_wait_msec);
1269
1270 /* Must clear this register in order to prevent preboot
1271 * from reading WFE after reboot
1272 */
1273 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
1274 }
1275
1276 hdev->device_cpu_is_halted = true;
1277 }
1278
detect_cpu_boot_status(struct hl_device * hdev,u32 status)1279 static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
1280 {
1281 /* Some of the status codes below are deprecated in newer f/w
1282 * versions but we keep them here for backward compatibility
1283 */
1284 switch (status) {
1285 case CPU_BOOT_STATUS_NA:
1286 dev_err(hdev->dev,
1287 "Device boot progress - BTL/ROM did NOT run\n");
1288 break;
1289 case CPU_BOOT_STATUS_IN_WFE:
1290 dev_err(hdev->dev,
1291 "Device boot progress - Stuck inside WFE loop\n");
1292 break;
1293 case CPU_BOOT_STATUS_IN_BTL:
1294 dev_err(hdev->dev,
1295 "Device boot progress - Stuck in BTL\n");
1296 break;
1297 case CPU_BOOT_STATUS_IN_PREBOOT:
1298 dev_err(hdev->dev,
1299 "Device boot progress - Stuck in Preboot\n");
1300 break;
1301 case CPU_BOOT_STATUS_IN_SPL:
1302 dev_err(hdev->dev,
1303 "Device boot progress - Stuck in SPL\n");
1304 break;
1305 case CPU_BOOT_STATUS_IN_UBOOT:
1306 dev_err(hdev->dev,
1307 "Device boot progress - Stuck in u-boot\n");
1308 break;
1309 case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
1310 dev_err(hdev->dev,
1311 "Device boot progress - DRAM initialization failed\n");
1312 break;
1313 case CPU_BOOT_STATUS_UBOOT_NOT_READY:
1314 dev_err(hdev->dev,
1315 "Device boot progress - Cannot boot\n");
1316 break;
1317 case CPU_BOOT_STATUS_TS_INIT_FAIL:
1318 dev_err(hdev->dev,
1319 "Device boot progress - Thermal Sensor initialization failed\n");
1320 break;
1321 case CPU_BOOT_STATUS_SECURITY_READY:
1322 dev_err(hdev->dev,
1323 "Device boot progress - Stuck in preboot after security initialization\n");
1324 break;
1325 default:
1326 dev_err(hdev->dev,
1327 "Device boot progress - Invalid status code %d\n",
1328 status);
1329 break;
1330 }
1331 }
1332
hl_fw_wait_preboot_ready(struct hl_device * hdev)1333 static int hl_fw_wait_preboot_ready(struct hl_device *hdev)
1334 {
1335 struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
1336 u32 status;
1337 int rc;
1338
1339 /* Need to check two possible scenarios:
1340 *
1341 * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
1342 * the preboot is waiting for the boot fit
1343 *
1344 * All other status values - for older firmwares where the uboot was
1345 * loaded from the FLASH
1346 */
1347 rc = hl_poll_timeout(
1348 hdev,
1349 pre_fw_load->cpu_boot_status_reg,
1350 status,
1351 (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
1352 (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
1353 (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
1354 hdev->fw_poll_interval_usec,
1355 pre_fw_load->wait_for_preboot_timeout);
1356
1357 if (rc) {
1358 dev_err(hdev->dev, "CPU boot ready status timeout\n");
1359 detect_cpu_boot_status(hdev, status);
1360
1361 /* If we read all FF, then something is totally wrong, no point
1362 * of reading specific errors
1363 */
1364 if (status != -1)
1365 fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
1366 pre_fw_load->boot_err1_reg,
1367 pre_fw_load->sts_boot_dev_sts0_reg,
1368 pre_fw_load->sts_boot_dev_sts1_reg);
1369 return -EIO;
1370 }
1371
1372 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
1373
1374 return 0;
1375 }
1376
hl_fw_read_preboot_caps(struct hl_device * hdev)1377 static int hl_fw_read_preboot_caps(struct hl_device *hdev)
1378 {
1379 struct pre_fw_load_props *pre_fw_load;
1380 struct asic_fixed_properties *prop;
1381 u32 reg_val;
1382 int rc;
1383
1384 prop = &hdev->asic_prop;
1385 pre_fw_load = &hdev->fw_loader.pre_fw_load;
1386
1387 rc = hl_fw_wait_preboot_ready(hdev);
1388 if (rc)
1389 return rc;
1390
1391 /*
1392 * the registers DEV_STS* contain FW capabilities/features.
1393 * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
1394 * is set.
1395 * In the first read of this register we store the value of this
1396 * register ONLY if the register is enabled (which will be propagated
1397 * to next stages) and also mark the register as valid.
1398 * In case it is not enabled the stored value will be left 0- all
1399 * caps/features are off
1400 */
1401 reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
1402 if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
1403 prop->fw_cpu_boot_dev_sts0_valid = true;
1404 prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
1405 }
1406
1407 reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
1408 if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
1409 prop->fw_cpu_boot_dev_sts1_valid = true;
1410 prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
1411 }
1412
1413 prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
1414 CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
1415
1416 /* initialize FW loader once we know what load protocol is used */
1417 hdev->asic_funcs->init_firmware_loader(hdev);
1418
1419 dev_dbg(hdev->dev, "Attempting %s FW load\n",
1420 prop->dynamic_fw_load ? "dynamic" : "legacy");
1421 return 0;
1422 }
1423
hl_fw_static_read_device_fw_version(struct hl_device * hdev,enum hl_fw_component fwc)1424 static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
1425 enum hl_fw_component fwc)
1426 {
1427 struct asic_fixed_properties *prop = &hdev->asic_prop;
1428 struct fw_load_mgr *fw_loader = &hdev->fw_loader;
1429 struct static_fw_load_mgr *static_loader;
1430 char *dest, *boot_ver, *preboot_ver;
1431 u32 ver_off, limit;
1432 const char *name;
1433 char btl_ver[32];
1434
1435 static_loader = &hdev->fw_loader.static_loader;
1436
1437 switch (fwc) {
1438 case FW_COMP_BOOT_FIT:
1439 ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
1440 dest = prop->uboot_ver;
1441 name = "Boot-fit";
1442 limit = static_loader->boot_fit_version_max_off;
1443 break;
1444 case FW_COMP_PREBOOT:
1445 ver_off = RREG32(static_loader->preboot_version_offset_reg);
1446 dest = prop->preboot_ver;
1447 name = "Preboot";
1448 limit = static_loader->preboot_version_max_off;
1449 break;
1450 default:
1451 dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
1452 return -EIO;
1453 }
1454
1455 ver_off &= static_loader->sram_offset_mask;
1456
1457 if (ver_off < limit) {
1458 memcpy_fromio(dest,
1459 hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
1460 VERSION_MAX_LEN);
1461 } else {
1462 dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
1463 name, ver_off);
1464 strscpy(dest, "unavailable", VERSION_MAX_LEN);
1465 return -EIO;
1466 }
1467
1468 if (fwc == FW_COMP_BOOT_FIT) {
1469 boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
1470 if (boot_ver) {
1471 dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
1472 kfree(boot_ver);
1473 }
1474 } else if (fwc == FW_COMP_PREBOOT) {
1475 preboot_ver = strnstr(prop->preboot_ver, "Preboot",
1476 VERSION_MAX_LEN);
1477 if (preboot_ver && preboot_ver != prop->preboot_ver) {
1478 strscpy(btl_ver, prop->preboot_ver,
1479 min((int) (preboot_ver - prop->preboot_ver),
1480 31));
1481 dev_info(hdev->dev, "%s\n", btl_ver);
1482 }
1483
1484 preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
1485 if (preboot_ver) {
1486 dev_info(hdev->dev, "preboot version %s\n",
1487 preboot_ver);
1488 kfree(preboot_ver);
1489 }
1490 }
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * hl_fw_preboot_update_state - update internal data structures during
1497 * handshake with preboot
1498 *
1499 *
1500 * @hdev: pointer to the habanalabs device structure
1501 *
1502 * @return 0 on success, otherwise non-zero error code
1503 */
hl_fw_preboot_update_state(struct hl_device * hdev)1504 static void hl_fw_preboot_update_state(struct hl_device *hdev)
1505 {
1506 struct asic_fixed_properties *prop = &hdev->asic_prop;
1507 u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
1508
1509 cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
1510 cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
1511
1512 /* We read boot_dev_sts registers multiple times during boot:
1513 * 1. preboot - a. Check whether the security status bits are valid
1514 * b. Check whether fw security is enabled
1515 * c. Check whether hard reset is done by preboot
1516 * 2. boot cpu - a. Fetch boot cpu security status
1517 * b. Check whether hard reset is done by boot cpu
1518 * 3. FW application - a. Fetch fw application security status
1519 * b. Check whether hard reset is done by fw app
1520 */
1521 prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
1522
1523 prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
1524
1525 dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
1526 cpu_boot_dev_sts0);
1527
1528 dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
1529 cpu_boot_dev_sts1);
1530
1531 dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
1532 prop->hard_reset_done_by_fw ? "enabled" : "disabled");
1533
1534 dev_dbg(hdev->dev, "firmware-level security is %s\n",
1535 prop->fw_security_enabled ? "enabled" : "disabled");
1536
1537 dev_dbg(hdev->dev, "GIC controller is %s\n",
1538 prop->gic_interrupts_enable ? "enabled" : "disabled");
1539 }
1540
hl_fw_static_read_preboot_status(struct hl_device * hdev)1541 static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
1542 {
1543 int rc;
1544
1545 rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
1546 if (rc)
1547 return rc;
1548
1549 return 0;
1550 }
1551
hl_fw_read_preboot_status(struct hl_device * hdev)1552 int hl_fw_read_preboot_status(struct hl_device *hdev)
1553 {
1554 int rc;
1555
1556 if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
1557 return 0;
1558
1559 /* get FW pre-load parameters */
1560 hdev->asic_funcs->init_firmware_preload_params(hdev);
1561
1562 /*
1563 * In order to determine boot method (static VS dynamic) we need to
1564 * read the boot caps register
1565 */
1566 rc = hl_fw_read_preboot_caps(hdev);
1567 if (rc)
1568 return rc;
1569
1570 hl_fw_preboot_update_state(hdev);
1571
1572 /* no need to read preboot status in dynamic load */
1573 if (hdev->asic_prop.dynamic_fw_load)
1574 return 0;
1575
1576 return hl_fw_static_read_preboot_status(hdev);
1577 }
1578
1579 /* associate string with COMM status */
1580 static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
1581 [COMMS_STS_NOOP] = "NOOP",
1582 [COMMS_STS_ACK] = "ACK",
1583 [COMMS_STS_OK] = "OK",
1584 [COMMS_STS_ERR] = "ERR",
1585 [COMMS_STS_VALID_ERR] = "VALID_ERR",
1586 [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
1587 };
1588
1589 /**
1590 * hl_fw_dynamic_report_error_status - report error status
1591 *
1592 * @hdev: pointer to the habanalabs device structure
1593 * @status: value of FW status register
1594 * @expected_status: the expected status
1595 */
hl_fw_dynamic_report_error_status(struct hl_device * hdev,u32 status,enum comms_sts expected_status)1596 static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
1597 u32 status,
1598 enum comms_sts expected_status)
1599 {
1600 enum comms_sts comm_status =
1601 FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1602
1603 if (comm_status < COMMS_STS_INVLD_LAST)
1604 dev_err(hdev->dev, "Device status %s, expected status: %s\n",
1605 hl_dynamic_fw_status_str[comm_status],
1606 hl_dynamic_fw_status_str[expected_status]);
1607 else
1608 dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
1609 comm_status,
1610 hl_dynamic_fw_status_str[expected_status]);
1611 }
1612
1613 /**
1614 * hl_fw_dynamic_send_cmd - send LKD to FW cmd
1615 *
1616 * @hdev: pointer to the habanalabs device structure
1617 * @fw_loader: managing structure for loading device's FW
1618 * @cmd: LKD to FW cmd code
1619 * @size: size of next FW component to be loaded (0 if not necessary)
1620 *
1621 * LDK to FW exact command layout is defined at struct comms_command.
1622 * note: the size argument is used only when the next FW component should be
1623 * loaded, otherwise it shall be 0. the size is used by the FW in later
1624 * protocol stages and when sending only indicating the amount of memory
1625 * to be allocated by the FW to receive the next boot component.
1626 */
hl_fw_dynamic_send_cmd(struct hl_device * hdev,struct fw_load_mgr * fw_loader,enum comms_cmd cmd,unsigned int size)1627 static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
1628 struct fw_load_mgr *fw_loader,
1629 enum comms_cmd cmd, unsigned int size)
1630 {
1631 struct cpu_dyn_regs *dyn_regs;
1632 u32 val;
1633
1634 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1635
1636 val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
1637 val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
1638
1639 WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
1640 }
1641
1642 /**
1643 * hl_fw_dynamic_extract_fw_response - update the FW response
1644 *
1645 * @hdev: pointer to the habanalabs device structure
1646 * @fw_loader: managing structure for loading device's FW
1647 * @response: FW response
1648 * @status: the status read from CPU status register
1649 *
1650 * @return 0 on success, otherwise non-zero error code
1651 */
hl_fw_dynamic_extract_fw_response(struct hl_device * hdev,struct fw_load_mgr * fw_loader,struct fw_response * response,u32 status)1652 static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
1653 struct fw_load_mgr *fw_loader,
1654 struct fw_response *response,
1655 u32 status)
1656 {
1657 response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1658 response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
1659 COMMS_STATUS_OFFSET_ALIGN_SHIFT;
1660 response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
1661
1662 if ((response->ram_type != COMMS_SRAM) &&
1663 (response->ram_type != COMMS_DRAM)) {
1664 dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
1665 response->ram_type);
1666 return -EIO;
1667 }
1668
1669 return 0;
1670 }
1671
1672 /**
1673 * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
1674 *
1675 * @hdev: pointer to the habanalabs device structure
1676 * @fw_loader: managing structure for loading device's FW
1677 * @expected_status: expected status to wait for
1678 * @timeout: timeout for status wait
1679 *
1680 * @return 0 on success, otherwise non-zero error code
1681 *
1682 * waiting for status from FW include polling the FW status register until
1683 * expected status is received or timeout occurs (whatever occurs first).
1684 */
hl_fw_dynamic_wait_for_status(struct hl_device * hdev,struct fw_load_mgr * fw_loader,enum comms_sts expected_status,u32 timeout)1685 static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
1686 struct fw_load_mgr *fw_loader,
1687 enum comms_sts expected_status,
1688 u32 timeout)
1689 {
1690 struct cpu_dyn_regs *dyn_regs;
1691 u32 status;
1692 int rc;
1693
1694 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1695
1696 /* Wait for expected status */
1697 rc = hl_poll_timeout(
1698 hdev,
1699 le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
1700 status,
1701 FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
1702 hdev->fw_comms_poll_interval_usec,
1703 timeout);
1704
1705 if (rc) {
1706 hl_fw_dynamic_report_error_status(hdev, status,
1707 expected_status);
1708 return -EIO;
1709 }
1710
1711 /*
1712 * skip storing FW response for NOOP to preserve the actual desired
1713 * FW status
1714 */
1715 if (expected_status == COMMS_STS_NOOP)
1716 return 0;
1717
1718 rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
1719 &fw_loader->dynamic_loader.response,
1720 status);
1721 return rc;
1722 }
1723
1724 /**
1725 * hl_fw_dynamic_send_clear_cmd - send clear command to FW
1726 *
1727 * @hdev: pointer to the habanalabs device structure
1728 * @fw_loader: managing structure for loading device's FW
1729 *
1730 * @return 0 on success, otherwise non-zero error code
1731 *
1732 * after command cycle between LKD to FW CPU (i.e. LKD got an expected status
1733 * from FW) we need to clear the CPU status register in order to avoid garbage
1734 * between command cycles.
1735 * This is done by sending clear command and polling the CPU to LKD status
1736 * register to hold the status NOOP
1737 */
hl_fw_dynamic_send_clear_cmd(struct hl_device * hdev,struct fw_load_mgr * fw_loader)1738 static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
1739 struct fw_load_mgr *fw_loader)
1740 {
1741 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
1742
1743 return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
1744 fw_loader->cpu_timeout);
1745 }
1746
1747 /**
1748 * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
1749 *
1750 * @hdev: pointer to the habanalabs device structure
1751 * @fw_loader: managing structure for loading device's FW
1752 * @cmd: LKD to FW cmd code
1753 * @size: size of next FW component to be loaded (0 if not necessary)
1754 * @wait_ok: if true also wait for OK response from FW
1755 * @timeout: timeout for status wait
1756 *
1757 * @return 0 on success, otherwise non-zero error code
1758 *
1759 * brief:
1760 * when sending protocol command we have the following steps:
1761 * - send clear (clear command and verify clear status register)
1762 * - send the actual protocol command
1763 * - wait for ACK on the protocol command
1764 * - send clear
1765 * - send NOOP
1766 * if, in addition, the specific protocol command should wait for OK then:
1767 * - wait for OK
1768 * - send clear
1769 * - send NOOP
1770 *
1771 * NOTES:
1772 * send clear: this is necessary in order to clear the status register to avoid
1773 * leftovers between command
1774 * NOOP command: necessary to avoid loop on the clear command by the FW
1775 */
hl_fw_dynamic_send_protocol_cmd(struct hl_device * hdev,struct fw_load_mgr * fw_loader,enum comms_cmd cmd,unsigned int size,bool wait_ok,u32 timeout)1776 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
1777 struct fw_load_mgr *fw_loader,
1778 enum comms_cmd cmd, unsigned int size,
1779 bool wait_ok, u32 timeout)
1780 {
1781 int rc;
1782
1783 /* first send clear command to clean former commands */
1784 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1785
1786 /* send the actual command */
1787 hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
1788
1789 /* wait for ACK for the command */
1790 rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
1791 timeout);
1792 if (rc)
1793 return rc;
1794
1795 /* clear command to prepare for NOOP command */
1796 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1797 if (rc)
1798 return rc;
1799
1800 /* send the actual NOOP command */
1801 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
1802
1803 if (!wait_ok)
1804 return 0;
1805
1806 rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
1807 timeout);
1808 if (rc)
1809 return rc;
1810
1811 /* clear command to prepare for NOOP command */
1812 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1813 if (rc)
1814 return rc;
1815
1816 /* send the actual NOOP command */
1817 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
1818
1819 return 0;
1820 }
1821
1822 /**
1823 * hl_fw_compat_crc32 - CRC compatible with FW
1824 *
1825 * @data: pointer to the data
1826 * @size: size of the data
1827 *
1828 * @return the CRC32 result
1829 *
1830 * NOTE: kernel's CRC32 differs from standard CRC32 calculation.
1831 * in order to be aligned we need to flip the bits of both the input
1832 * initial CRC and kernel's CRC32 result.
1833 * in addition both sides use initial CRC of 0,
1834 */
hl_fw_compat_crc32(u8 * data,size_t size)1835 static u32 hl_fw_compat_crc32(u8 *data, size_t size)
1836 {
1837 return ~crc32_le(~((u32)0), data, size);
1838 }
1839
1840 /**
1841 * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
1842 * transfer (image or descriptor) between
1843 * host and FW
1844 *
1845 * @hdev: pointer to the habanalabs device structure
1846 * @addr: device address of memory transfer
1847 * @size: memory transfer size
1848 * @region: PCI memory region
1849 *
1850 * @return 0 on success, otherwise non-zero error code
1851 */
hl_fw_dynamic_validate_memory_bound(struct hl_device * hdev,u64 addr,size_t size,struct pci_mem_region * region)1852 static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
1853 u64 addr, size_t size,
1854 struct pci_mem_region *region)
1855 {
1856 u64 end_addr;
1857
1858 /* now make sure that the memory transfer is within region's bounds */
1859 end_addr = addr + size;
1860 if (end_addr >= region->region_base + region->region_size) {
1861 dev_err(hdev->dev,
1862 "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
1863 end_addr);
1864 return -EIO;
1865 }
1866
1867 /*
1868 * now make sure memory transfer is within predefined BAR bounds.
1869 * this is to make sure we do not need to set the bar (e.g. for DRAM
1870 * memory transfers)
1871 */
1872 if (end_addr >= region->region_base - region->offset_in_bar +
1873 region->bar_size) {
1874 dev_err(hdev->dev,
1875 "FW image beyond PCI BAR bounds\n");
1876 return -EIO;
1877 }
1878
1879 return 0;
1880 }
1881
1882 /**
1883 * hl_fw_dynamic_validate_descriptor - validate FW descriptor
1884 *
1885 * @hdev: pointer to the habanalabs device structure
1886 * @fw_loader: managing structure for loading device's FW
1887 * @fw_desc: the descriptor form FW
1888 *
1889 * @return 0 on success, otherwise non-zero error code
1890 */
hl_fw_dynamic_validate_descriptor(struct hl_device * hdev,struct fw_load_mgr * fw_loader,struct lkd_fw_comms_desc * fw_desc)1891 static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
1892 struct fw_load_mgr *fw_loader,
1893 struct lkd_fw_comms_desc *fw_desc)
1894 {
1895 struct pci_mem_region *region;
1896 enum pci_region region_id;
1897 size_t data_size;
1898 u32 data_crc32;
1899 u8 *data_ptr;
1900 u64 addr;
1901 int rc;
1902
1903 if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
1904 dev_warn(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
1905 fw_desc->header.magic);
1906
1907 if (fw_desc->header.version != HL_COMMS_DESC_VER)
1908 dev_warn(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
1909 fw_desc->header.version);
1910
1911 /*
1912 * Calc CRC32 of data without header. use the size of the descriptor
1913 * reported by firmware, without calculating it ourself, to allow adding
1914 * more fields to the lkd_fw_comms_desc structure.
1915 * note that no alignment/stride address issues here as all structures
1916 * are 64 bit padded.
1917 */
1918 data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
1919 data_size = le16_to_cpu(fw_desc->header.size);
1920
1921 data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
1922 if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
1923 dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
1924 data_crc32, fw_desc->header.crc32);
1925 return -EIO;
1926 }
1927
1928 /* find memory region to which to copy the image */
1929 addr = le64_to_cpu(fw_desc->img_addr);
1930 region_id = hl_get_pci_memory_region(hdev, addr);
1931 if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
1932 dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
1933 return -EIO;
1934 }
1935
1936 region = &hdev->pci_mem_region[region_id];
1937
1938 /* store the region for the copy stage */
1939 fw_loader->dynamic_loader.image_region = region;
1940
1941 /*
1942 * here we know that the start address is valid, now make sure that the
1943 * image is within region's bounds
1944 */
1945 rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
1946 fw_loader->dynamic_loader.fw_image_size,
1947 region);
1948 if (rc) {
1949 dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
1950 return rc;
1951 }
1952
1953 /* here we can mark the descriptor as valid as the content has been validated */
1954 fw_loader->dynamic_loader.fw_desc_valid = true;
1955
1956 return 0;
1957 }
1958
hl_fw_dynamic_validate_response(struct hl_device * hdev,struct fw_response * response,struct pci_mem_region * region)1959 static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
1960 struct fw_response *response,
1961 struct pci_mem_region *region)
1962 {
1963 u64 device_addr;
1964 int rc;
1965
1966 device_addr = region->region_base + response->ram_offset;
1967
1968 /*
1969 * validate that the descriptor is within region's bounds
1970 * Note that as the start address was supplied according to the RAM
1971 * type- testing only the end address is enough
1972 */
1973 rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
1974 sizeof(struct lkd_fw_comms_desc),
1975 region);
1976 return rc;
1977 }
1978
1979 /**
1980 * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
1981 *
1982 * @hdev: pointer to the habanalabs device structure
1983 * @fw_loader: managing structure for loading device's FW
1984 *
1985 * @return 0 on success, otherwise non-zero error code
1986 */
hl_fw_dynamic_read_and_validate_descriptor(struct hl_device * hdev,struct fw_load_mgr * fw_loader)1987 static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
1988 struct fw_load_mgr *fw_loader)
1989 {
1990 struct lkd_fw_comms_desc *fw_desc;
1991 struct pci_mem_region *region;
1992 struct fw_response *response;
1993 enum pci_region region_id;
1994 void __iomem *src;
1995 int rc;
1996
1997 fw_desc = &fw_loader->dynamic_loader.comm_desc;
1998 response = &fw_loader->dynamic_loader.response;
1999
2000 region_id = (response->ram_type == COMMS_SRAM) ?
2001 PCI_REGION_SRAM : PCI_REGION_DRAM;
2002
2003 region = &hdev->pci_mem_region[region_id];
2004
2005 rc = hl_fw_dynamic_validate_response(hdev, response, region);
2006 if (rc) {
2007 dev_err(hdev->dev,
2008 "invalid mem transfer request for FW descriptor\n");
2009 return rc;
2010 }
2011
2012 /*
2013 * extract address to copy the descriptor from
2014 * in addition, as the descriptor value is going to be over-ridden by new data- we mark it
2015 * as invalid.
2016 * it will be marked again as valid once validated
2017 */
2018 fw_loader->dynamic_loader.fw_desc_valid = false;
2019 src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2020 response->ram_offset;
2021 memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
2022
2023 return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc);
2024 }
2025
2026 /**
2027 * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
2028 *
2029 * @hdev: pointer to the habanalabs device structure
2030 * @fw_loader: managing structure for loading device's FW
2031 * @next_image_size: size to allocate for next FW component
2032 *
2033 * @return 0 on success, otherwise non-zero error code
2034 */
hl_fw_dynamic_request_descriptor(struct hl_device * hdev,struct fw_load_mgr * fw_loader,size_t next_image_size)2035 static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
2036 struct fw_load_mgr *fw_loader,
2037 size_t next_image_size)
2038 {
2039 int rc;
2040
2041 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
2042 next_image_size, true,
2043 fw_loader->cpu_timeout);
2044 if (rc)
2045 return rc;
2046
2047 return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
2048 }
2049
2050 /**
2051 * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
2052 *
2053 * @hdev: pointer to the habanalabs device structure
2054 * @fwc: the firmware component
2055 * @fw_version: fw component's version string
2056 */
hl_fw_dynamic_read_device_fw_version(struct hl_device * hdev,enum hl_fw_component fwc,const char * fw_version)2057 static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
2058 enum hl_fw_component fwc,
2059 const char *fw_version)
2060 {
2061 struct asic_fixed_properties *prop = &hdev->asic_prop;
2062 char *preboot_ver, *boot_ver;
2063 char btl_ver[32];
2064
2065 switch (fwc) {
2066 case FW_COMP_BOOT_FIT:
2067 strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
2068 boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
2069 if (boot_ver) {
2070 dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
2071 kfree(boot_ver);
2072 }
2073
2074 break;
2075 case FW_COMP_PREBOOT:
2076 strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
2077 preboot_ver = strnstr(prop->preboot_ver, "Preboot",
2078 VERSION_MAX_LEN);
2079 if (preboot_ver && preboot_ver != prop->preboot_ver) {
2080 strscpy(btl_ver, prop->preboot_ver,
2081 min((int) (preboot_ver - prop->preboot_ver), 31));
2082 dev_info(hdev->dev, "%s\n", btl_ver);
2083 }
2084
2085 preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
2086 if (preboot_ver) {
2087 int rc;
2088
2089 dev_info(hdev->dev, "preboot version %s\n", preboot_ver);
2090
2091 /* This function takes care of freeing preboot_ver */
2092 rc = extract_fw_sub_versions(hdev, preboot_ver);
2093 if (rc)
2094 return rc;
2095 }
2096
2097 break;
2098 default:
2099 dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
2100 return -EINVAL;
2101 }
2102
2103 return 0;
2104 }
2105
2106 /**
2107 * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
2108 *
2109 * @hdev: pointer to the habanalabs device structure
2110 * @fw: fw descriptor
2111 * @fw_loader: managing structure for loading device's FW
2112 */
hl_fw_dynamic_copy_image(struct hl_device * hdev,const struct firmware * fw,struct fw_load_mgr * fw_loader)2113 static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
2114 const struct firmware *fw,
2115 struct fw_load_mgr *fw_loader)
2116 {
2117 struct lkd_fw_comms_desc *fw_desc;
2118 struct pci_mem_region *region;
2119 void __iomem *dest;
2120 u64 addr;
2121 int rc;
2122
2123 fw_desc = &fw_loader->dynamic_loader.comm_desc;
2124 addr = le64_to_cpu(fw_desc->img_addr);
2125
2126 /* find memory region to which to copy the image */
2127 region = fw_loader->dynamic_loader.image_region;
2128
2129 dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2130 (addr - region->region_base);
2131
2132 rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
2133 fw_loader->boot_fit_img.src_off,
2134 fw_loader->boot_fit_img.copy_size);
2135
2136 return rc;
2137 }
2138
2139 /**
2140 * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
2141 *
2142 * @hdev: pointer to the habanalabs device structure
2143 * @msg: message
2144 * @fw_loader: managing structure for loading device's FW
2145 */
hl_fw_dynamic_copy_msg(struct hl_device * hdev,struct lkd_msg_comms * msg,struct fw_load_mgr * fw_loader)2146 static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
2147 struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
2148 {
2149 struct lkd_fw_comms_desc *fw_desc;
2150 struct pci_mem_region *region;
2151 void __iomem *dest;
2152 u64 addr;
2153 int rc;
2154
2155 fw_desc = &fw_loader->dynamic_loader.comm_desc;
2156 addr = le64_to_cpu(fw_desc->img_addr);
2157
2158 /* find memory region to which to copy the image */
2159 region = fw_loader->dynamic_loader.image_region;
2160
2161 dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2162 (addr - region->region_base);
2163
2164 rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
2165
2166 return rc;
2167 }
2168
2169 /**
2170 * hl_fw_boot_fit_update_state - update internal data structures after boot-fit
2171 * is loaded
2172 *
2173 * @hdev: pointer to the habanalabs device structure
2174 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2175 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2176 *
2177 * @return 0 on success, otherwise non-zero error code
2178 */
hl_fw_boot_fit_update_state(struct hl_device * hdev,u32 cpu_boot_dev_sts0_reg,u32 cpu_boot_dev_sts1_reg)2179 static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
2180 u32 cpu_boot_dev_sts0_reg,
2181 u32 cpu_boot_dev_sts1_reg)
2182 {
2183 struct asic_fixed_properties *prop = &hdev->asic_prop;
2184
2185 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
2186
2187 /* Read boot_cpu status bits */
2188 if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
2189 prop->fw_bootfit_cpu_boot_dev_sts0 =
2190 RREG32(cpu_boot_dev_sts0_reg);
2191
2192 prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
2193 CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2194
2195 dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
2196 prop->fw_bootfit_cpu_boot_dev_sts0);
2197 }
2198
2199 if (prop->fw_cpu_boot_dev_sts1_valid) {
2200 prop->fw_bootfit_cpu_boot_dev_sts1 =
2201 RREG32(cpu_boot_dev_sts1_reg);
2202
2203 dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
2204 prop->fw_bootfit_cpu_boot_dev_sts1);
2205 }
2206
2207 dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
2208 prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2209 }
2210
hl_fw_dynamic_update_linux_interrupt_if(struct hl_device * hdev)2211 static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
2212 {
2213 struct cpu_dyn_regs *dyn_regs =
2214 &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
2215
2216 /* Check whether all 3 interrupt interfaces are set, if not use a
2217 * single interface
2218 */
2219 if (!hdev->asic_prop.gic_interrupts_enable &&
2220 !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
2221 CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
2222 dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
2223 dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
2224
2225 dev_warn(hdev->dev,
2226 "Using a single interrupt interface towards cpucp");
2227 }
2228 }
2229 /**
2230 * hl_fw_dynamic_load_image - load FW image using dynamic protocol
2231 *
2232 * @hdev: pointer to the habanalabs device structure
2233 * @fw_loader: managing structure for loading device's FW
2234 * @load_fwc: the FW component to be loaded
2235 * @img_ld_timeout: image load timeout
2236 *
2237 * @return 0 on success, otherwise non-zero error code
2238 */
hl_fw_dynamic_load_image(struct hl_device * hdev,struct fw_load_mgr * fw_loader,enum hl_fw_component load_fwc,u32 img_ld_timeout)2239 static int hl_fw_dynamic_load_image(struct hl_device *hdev,
2240 struct fw_load_mgr *fw_loader,
2241 enum hl_fw_component load_fwc,
2242 u32 img_ld_timeout)
2243 {
2244 enum hl_fw_component cur_fwc;
2245 const struct firmware *fw;
2246 char *fw_name;
2247 int rc = 0;
2248
2249 /*
2250 * when loading image we have one of 2 scenarios:
2251 * 1. current FW component is preboot and we want to load boot-fit
2252 * 2. current FW component is boot-fit and we want to load linux
2253 */
2254 if (load_fwc == FW_COMP_BOOT_FIT) {
2255 cur_fwc = FW_COMP_PREBOOT;
2256 fw_name = fw_loader->boot_fit_img.image_name;
2257 } else {
2258 cur_fwc = FW_COMP_BOOT_FIT;
2259 fw_name = fw_loader->linux_img.image_name;
2260 }
2261
2262 /* request FW in order to communicate to FW the size to be allocated */
2263 rc = hl_request_fw(hdev, &fw, fw_name);
2264 if (rc)
2265 return rc;
2266
2267 /* store the image size for future validation */
2268 fw_loader->dynamic_loader.fw_image_size = fw->size;
2269
2270 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
2271 if (rc)
2272 goto release_fw;
2273
2274 /* read preboot version */
2275 rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
2276 fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2277 if (rc)
2278 goto release_fw;
2279
2280 /* update state according to boot stage */
2281 if (cur_fwc == FW_COMP_BOOT_FIT) {
2282 struct cpu_dyn_regs *dyn_regs;
2283
2284 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
2285 hl_fw_boot_fit_update_state(hdev,
2286 le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2287 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2288 }
2289
2290 /* copy boot fit to space allocated by FW */
2291 rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
2292 if (rc)
2293 goto release_fw;
2294
2295 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2296 0, true,
2297 fw_loader->cpu_timeout);
2298 if (rc)
2299 goto release_fw;
2300
2301 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2302 0, false,
2303 img_ld_timeout);
2304
2305 release_fw:
2306 hl_release_firmware(fw);
2307 return rc;
2308 }
2309
hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device * hdev,struct fw_load_mgr * fw_loader)2310 static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
2311 struct fw_load_mgr *fw_loader)
2312 {
2313 struct dynamic_fw_load_mgr *dyn_loader;
2314 u32 status;
2315 int rc;
2316
2317 dyn_loader = &fw_loader->dynamic_loader;
2318
2319 /*
2320 * Make sure CPU boot-loader is running
2321 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2322 * yet there is a debug scenario in which we loading uboot (without Linux)
2323 * which at later stage is relocated to DRAM. In this case we expect
2324 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2325 * poll flags
2326 */
2327 rc = hl_poll_timeout(
2328 hdev,
2329 le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2330 status,
2331 (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2332 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2333 hdev->fw_poll_interval_usec,
2334 dyn_loader->wait_for_bl_timeout);
2335 if (rc) {
2336 dev_err(hdev->dev, "failed to wait for boot\n");
2337 return rc;
2338 }
2339
2340 dev_dbg(hdev->dev, "uboot status = %d\n", status);
2341 return 0;
2342 }
2343
hl_fw_dynamic_wait_for_linux_active(struct hl_device * hdev,struct fw_load_mgr * fw_loader)2344 static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
2345 struct fw_load_mgr *fw_loader)
2346 {
2347 struct dynamic_fw_load_mgr *dyn_loader;
2348 u32 status;
2349 int rc;
2350
2351 dyn_loader = &fw_loader->dynamic_loader;
2352
2353 /* Make sure CPU linux is running */
2354
2355 rc = hl_poll_timeout(
2356 hdev,
2357 le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2358 status,
2359 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2360 hdev->fw_poll_interval_usec,
2361 fw_loader->cpu_timeout);
2362 if (rc) {
2363 dev_err(hdev->dev, "failed to wait for Linux\n");
2364 return rc;
2365 }
2366
2367 dev_dbg(hdev->dev, "Boot status = %d\n", status);
2368 return 0;
2369 }
2370
2371 /**
2372 * hl_fw_linux_update_state - update internal data structures after Linux
2373 * is loaded.
2374 * Note: Linux initialization is comprised mainly
2375 * of two stages - loading kernel (SRAM_AVAIL)
2376 * & loading ARMCP.
2377 * Therefore reading boot device status in any of
2378 * these stages might result in different values.
2379 *
2380 * @hdev: pointer to the habanalabs device structure
2381 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2382 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2383 *
2384 * @return 0 on success, otherwise non-zero error code
2385 */
hl_fw_linux_update_state(struct hl_device * hdev,u32 cpu_boot_dev_sts0_reg,u32 cpu_boot_dev_sts1_reg)2386 static void hl_fw_linux_update_state(struct hl_device *hdev,
2387 u32 cpu_boot_dev_sts0_reg,
2388 u32 cpu_boot_dev_sts1_reg)
2389 {
2390 struct asic_fixed_properties *prop = &hdev->asic_prop;
2391
2392 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
2393
2394 /* Read FW application security bits */
2395 if (prop->fw_cpu_boot_dev_sts0_valid) {
2396 prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
2397
2398 prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
2399 CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2400
2401 if (prop->fw_app_cpu_boot_dev_sts0 &
2402 CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
2403 prop->gic_interrupts_enable = false;
2404
2405 dev_dbg(hdev->dev,
2406 "Firmware application CPU status0 %#x\n",
2407 prop->fw_app_cpu_boot_dev_sts0);
2408
2409 dev_dbg(hdev->dev, "GIC controller is %s\n",
2410 prop->gic_interrupts_enable ?
2411 "enabled" : "disabled");
2412 }
2413
2414 if (prop->fw_cpu_boot_dev_sts1_valid) {
2415 prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
2416
2417 dev_dbg(hdev->dev,
2418 "Firmware application CPU status1 %#x\n",
2419 prop->fw_app_cpu_boot_dev_sts1);
2420 }
2421
2422 dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
2423 prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2424
2425 dev_info(hdev->dev, "Successfully loaded firmware to device\n");
2426 }
2427
2428 /**
2429 * hl_fw_dynamic_send_msg - send a COMMS message with attached data
2430 *
2431 * @hdev: pointer to the habanalabs device structure
2432 * @fw_loader: managing structure for loading device's FW
2433 * @msg_type: message type
2434 * @data: data to be sent
2435 *
2436 * @return 0 on success, otherwise non-zero error code
2437 */
hl_fw_dynamic_send_msg(struct hl_device * hdev,struct fw_load_mgr * fw_loader,u8 msg_type,void * data)2438 static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
2439 struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
2440 {
2441 struct lkd_msg_comms msg;
2442 int rc;
2443
2444 memset(&msg, 0, sizeof(msg));
2445
2446 /* create message to be sent */
2447 msg.header.type = msg_type;
2448 msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header));
2449 msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
2450
2451 switch (msg_type) {
2452 case HL_COMMS_RESET_CAUSE_TYPE:
2453 msg.reset_cause = *(__u8 *) data;
2454 break;
2455
2456 default:
2457 dev_err(hdev->dev,
2458 "Send COMMS message - invalid message type %u\n",
2459 msg_type);
2460 return -EINVAL;
2461 }
2462
2463 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
2464 sizeof(struct lkd_msg_comms));
2465 if (rc)
2466 return rc;
2467
2468 /* copy message to space allocated by FW */
2469 rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader);
2470 if (rc)
2471 return rc;
2472
2473 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2474 0, true,
2475 fw_loader->cpu_timeout);
2476 if (rc)
2477 return rc;
2478
2479 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2480 0, true,
2481 fw_loader->cpu_timeout);
2482 if (rc)
2483 return rc;
2484
2485 return 0;
2486 }
2487
2488 /**
2489 * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
2490 *
2491 * @hdev: pointer to the habanalabs device structure
2492 * @fw_loader: managing structure for loading device's FW
2493 *
2494 * @return 0 on success, otherwise non-zero error code
2495 *
2496 * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
2497 * the communication is done using registers:
2498 * - LKD command register
2499 * - FW status register
2500 * the protocol is race free. this goal is achieved by splitting the requests
2501 * and response to known synchronization points between the LKD and the FW.
2502 * each response to LKD request is known and bound to a predefined timeout.
2503 * in case of timeout expiration without the desired status from FW- the
2504 * protocol (and hence the boot) will fail.
2505 */
hl_fw_dynamic_init_cpu(struct hl_device * hdev,struct fw_load_mgr * fw_loader)2506 static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
2507 struct fw_load_mgr *fw_loader)
2508 {
2509 struct cpu_dyn_regs *dyn_regs;
2510 int rc;
2511
2512 dev_info(hdev->dev,
2513 "Loading %sfirmware to device, may take some time...\n",
2514 hdev->asic_prop.fw_security_enabled ? "secured " : "");
2515
2516 /* initialize FW descriptor as invalid */
2517 fw_loader->dynamic_loader.fw_desc_valid = false;
2518
2519 /*
2520 * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
2521 * It will be updated from FW after hl_fw_dynamic_request_descriptor().
2522 */
2523 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
2524
2525 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
2526 0, true,
2527 fw_loader->cpu_timeout);
2528 if (rc)
2529 goto protocol_err;
2530
2531 if (hdev->reset_info.curr_reset_cause) {
2532 rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
2533 HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
2534 if (rc)
2535 goto protocol_err;
2536
2537 /* Clear current reset cause */
2538 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
2539 }
2540
2541 if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
2542 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
2543 if (rc)
2544 goto protocol_err;
2545
2546 /* read preboot version */
2547 return hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
2548 fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2549 }
2550
2551 /* load boot fit to FW */
2552 rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
2553 fw_loader->boot_fit_timeout);
2554 if (rc) {
2555 dev_err(hdev->dev, "failed to load boot fit\n");
2556 goto protocol_err;
2557 }
2558
2559 /*
2560 * when testing FW load (without Linux) on PLDM we don't want to
2561 * wait until boot fit is active as it may take several hours.
2562 * instead, we load the bootfit and let it do all initialization in
2563 * the background.
2564 */
2565 if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
2566 return 0;
2567
2568 rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
2569 if (rc)
2570 goto protocol_err;
2571
2572 /* Enable DRAM scrambling before Linux boot and after successful
2573 * UBoot
2574 */
2575 hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
2576
2577 if (!(hdev->fw_components & FW_TYPE_LINUX)) {
2578 dev_info(hdev->dev, "Skip loading Linux F/W\n");
2579 return 0;
2580 }
2581
2582 if (fw_loader->skip_bmc) {
2583 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
2584 COMMS_SKIP_BMC, 0,
2585 true,
2586 fw_loader->cpu_timeout);
2587 if (rc) {
2588 dev_err(hdev->dev, "failed to load boot fit\n");
2589 goto protocol_err;
2590 }
2591 }
2592
2593 /* load Linux image to FW */
2594 rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
2595 fw_loader->cpu_timeout);
2596 if (rc) {
2597 dev_err(hdev->dev, "failed to load Linux\n");
2598 goto protocol_err;
2599 }
2600
2601 rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
2602 if (rc)
2603 goto protocol_err;
2604
2605 hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2606 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2607
2608 hl_fw_dynamic_update_linux_interrupt_if(hdev);
2609
2610 return 0;
2611
2612 protocol_err:
2613 if (fw_loader->dynamic_loader.fw_desc_valid)
2614 fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
2615 le32_to_cpu(dyn_regs->cpu_boot_err1),
2616 le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2617 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2618 return rc;
2619 }
2620
2621 /**
2622 * hl_fw_static_init_cpu - initialize the device CPU using static protocol
2623 *
2624 * @hdev: pointer to the habanalabs device structure
2625 * @fw_loader: managing structure for loading device's FW
2626 *
2627 * @return 0 on success, otherwise non-zero error code
2628 */
hl_fw_static_init_cpu(struct hl_device * hdev,struct fw_load_mgr * fw_loader)2629 static int hl_fw_static_init_cpu(struct hl_device *hdev,
2630 struct fw_load_mgr *fw_loader)
2631 {
2632 u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
2633 u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
2634 struct static_fw_load_mgr *static_loader;
2635 u32 cpu_boot_status_reg;
2636 int rc;
2637
2638 if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
2639 return 0;
2640
2641 /* init common loader parameters */
2642 cpu_timeout = fw_loader->cpu_timeout;
2643
2644 /* init static loader parameters */
2645 static_loader = &fw_loader->static_loader;
2646 cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
2647 msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
2648 cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
2649 cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
2650 cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
2651
2652 dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
2653 cpu_timeout / USEC_PER_SEC);
2654
2655 /* Wait for boot FIT request */
2656 rc = hl_poll_timeout(
2657 hdev,
2658 cpu_boot_status_reg,
2659 status,
2660 status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
2661 hdev->fw_poll_interval_usec,
2662 fw_loader->boot_fit_timeout);
2663
2664 if (rc) {
2665 dev_dbg(hdev->dev,
2666 "No boot fit request received, resuming boot\n");
2667 } else {
2668 rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
2669 if (rc)
2670 goto out;
2671
2672 /* Clear device CPU message status */
2673 WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
2674
2675 /* Signal device CPU that boot loader is ready */
2676 WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
2677
2678 /* Poll for CPU device ack */
2679 rc = hl_poll_timeout(
2680 hdev,
2681 cpu_msg_status_reg,
2682 status,
2683 status == CPU_MSG_OK,
2684 hdev->fw_poll_interval_usec,
2685 fw_loader->boot_fit_timeout);
2686
2687 if (rc) {
2688 dev_err(hdev->dev,
2689 "Timeout waiting for boot fit load ack\n");
2690 goto out;
2691 }
2692
2693 /* Clear message */
2694 WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2695 }
2696
2697 /*
2698 * Make sure CPU boot-loader is running
2699 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2700 * yet there is a debug scenario in which we loading uboot (without Linux)
2701 * which at later stage is relocated to DRAM. In this case we expect
2702 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2703 * poll flags
2704 */
2705 rc = hl_poll_timeout(
2706 hdev,
2707 cpu_boot_status_reg,
2708 status,
2709 (status == CPU_BOOT_STATUS_DRAM_RDY) ||
2710 (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
2711 (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2712 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2713 hdev->fw_poll_interval_usec,
2714 cpu_timeout);
2715
2716 dev_dbg(hdev->dev, "uboot status = %d\n", status);
2717
2718 /* Read U-Boot version now in case we will later fail */
2719 hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
2720
2721 /* update state according to boot stage */
2722 hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
2723 cpu_boot_dev_status1_reg);
2724
2725 if (rc) {
2726 detect_cpu_boot_status(hdev, status);
2727 rc = -EIO;
2728 goto out;
2729 }
2730
2731 /* Enable DRAM scrambling before Linux boot and after successful
2732 * UBoot
2733 */
2734 hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
2735
2736 if (!(hdev->fw_components & FW_TYPE_LINUX)) {
2737 dev_info(hdev->dev, "Skip loading Linux F/W\n");
2738 rc = 0;
2739 goto out;
2740 }
2741
2742 if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
2743 rc = 0;
2744 goto out;
2745 }
2746
2747 dev_info(hdev->dev,
2748 "Loading firmware to device, may take some time...\n");
2749
2750 rc = hdev->asic_funcs->load_firmware_to_device(hdev);
2751 if (rc)
2752 goto out;
2753
2754 if (fw_loader->skip_bmc) {
2755 WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
2756
2757 rc = hl_poll_timeout(
2758 hdev,
2759 cpu_boot_status_reg,
2760 status,
2761 (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
2762 hdev->fw_poll_interval_usec,
2763 cpu_timeout);
2764
2765 if (rc) {
2766 dev_err(hdev->dev,
2767 "Failed to get ACK on skipping BMC, %d\n",
2768 status);
2769 WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2770 rc = -EIO;
2771 goto out;
2772 }
2773 }
2774
2775 WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
2776
2777 rc = hl_poll_timeout(
2778 hdev,
2779 cpu_boot_status_reg,
2780 status,
2781 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2782 hdev->fw_poll_interval_usec,
2783 cpu_timeout);
2784
2785 /* Clear message */
2786 WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2787
2788 if (rc) {
2789 if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
2790 dev_err(hdev->dev,
2791 "Device reports FIT image is corrupted\n");
2792 else
2793 dev_err(hdev->dev,
2794 "Failed to load firmware to device, %d\n",
2795 status);
2796
2797 rc = -EIO;
2798 goto out;
2799 }
2800
2801 rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
2802 fw_loader->static_loader.boot_err1_reg,
2803 cpu_boot_dev_status0_reg,
2804 cpu_boot_dev_status1_reg);
2805 if (rc)
2806 return rc;
2807
2808 hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
2809 cpu_boot_dev_status1_reg);
2810
2811 return 0;
2812
2813 out:
2814 fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
2815 fw_loader->static_loader.boot_err1_reg,
2816 cpu_boot_dev_status0_reg,
2817 cpu_boot_dev_status1_reg);
2818
2819 return rc;
2820 }
2821
2822 /**
2823 * hl_fw_init_cpu - initialize the device CPU
2824 *
2825 * @hdev: pointer to the habanalabs device structure
2826 *
2827 * @return 0 on success, otherwise non-zero error code
2828 *
2829 * perform necessary initializations for device's CPU. takes into account if
2830 * init protocol is static or dynamic.
2831 */
hl_fw_init_cpu(struct hl_device * hdev)2832 int hl_fw_init_cpu(struct hl_device *hdev)
2833 {
2834 struct asic_fixed_properties *prop = &hdev->asic_prop;
2835 struct fw_load_mgr *fw_loader = &hdev->fw_loader;
2836
2837 return prop->dynamic_fw_load ?
2838 hl_fw_dynamic_init_cpu(hdev, fw_loader) :
2839 hl_fw_static_init_cpu(hdev, fw_loader);
2840 }
2841
hl_fw_set_pll_profile(struct hl_device * hdev)2842 void hl_fw_set_pll_profile(struct hl_device *hdev)
2843 {
2844 hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
2845 hdev->asic_prop.max_freq_value);
2846 }
2847
hl_fw_get_clk_rate(struct hl_device * hdev,u32 * cur_clk,u32 * max_clk)2848 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
2849 {
2850 long value;
2851
2852 if (!hl_device_operational(hdev, NULL))
2853 return -ENODEV;
2854
2855 if (!hdev->pdev) {
2856 *cur_clk = 0;
2857 *max_clk = 0;
2858 return 0;
2859 }
2860
2861 value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
2862
2863 if (value < 0) {
2864 dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
2865 return value;
2866 }
2867
2868 *max_clk = (value / 1000 / 1000);
2869
2870 value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
2871
2872 if (value < 0) {
2873 dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
2874 return value;
2875 }
2876
2877 *cur_clk = (value / 1000 / 1000);
2878
2879 return 0;
2880 }
2881
hl_fw_get_frequency(struct hl_device * hdev,u32 pll_index,bool curr)2882 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
2883 {
2884 struct cpucp_packet pkt;
2885 u32 used_pll_idx;
2886 u64 result;
2887 int rc;
2888
2889 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
2890 if (rc)
2891 return rc;
2892
2893 memset(&pkt, 0, sizeof(pkt));
2894
2895 if (curr)
2896 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
2897 CPUCP_PKT_CTL_OPCODE_SHIFT);
2898 else
2899 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
2900
2901 pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
2902
2903 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
2904
2905 if (rc) {
2906 dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
2907 used_pll_idx, rc);
2908 return rc;
2909 }
2910
2911 return (long) result;
2912 }
2913
hl_fw_set_frequency(struct hl_device * hdev,u32 pll_index,u64 freq)2914 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
2915 {
2916 struct cpucp_packet pkt;
2917 u32 used_pll_idx;
2918 int rc;
2919
2920 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
2921 if (rc)
2922 return;
2923
2924 memset(&pkt, 0, sizeof(pkt));
2925
2926 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
2927 pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
2928 pkt.value = cpu_to_le64(freq);
2929
2930 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
2931
2932 if (rc)
2933 dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
2934 used_pll_idx, rc);
2935 }
2936
hl_fw_get_max_power(struct hl_device * hdev)2937 long hl_fw_get_max_power(struct hl_device *hdev)
2938 {
2939 struct cpucp_packet pkt;
2940 u64 result;
2941 int rc;
2942
2943 memset(&pkt, 0, sizeof(pkt));
2944
2945 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
2946
2947 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
2948
2949 if (rc) {
2950 dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
2951 return rc;
2952 }
2953
2954 return result;
2955 }
2956
hl_fw_set_max_power(struct hl_device * hdev)2957 void hl_fw_set_max_power(struct hl_device *hdev)
2958 {
2959 struct cpucp_packet pkt;
2960 int rc;
2961
2962 /* TODO: remove this after simulator supports this packet */
2963 if (!hdev->pdev)
2964 return;
2965
2966 memset(&pkt, 0, sizeof(pkt));
2967
2968 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
2969 pkt.value = cpu_to_le64(hdev->max_power);
2970
2971 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
2972
2973 if (rc)
2974 dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
2975 }
2976
hl_fw_get_sec_attest_data(struct hl_device * hdev,u32 packet_id,void * data,u32 size,u32 nonce,u32 timeout)2977 static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
2978 u32 nonce, u32 timeout)
2979 {
2980 struct cpucp_packet pkt = {};
2981 dma_addr_t req_dma_addr;
2982 void *req_cpu_addr;
2983 int rc;
2984
2985 req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
2986 if (!req_cpu_addr) {
2987 dev_err(hdev->dev,
2988 "Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
2989 return -ENOMEM;
2990 }
2991
2992 memset(data, 0, size);
2993
2994 pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
2995 pkt.addr = cpu_to_le64(req_dma_addr);
2996 pkt.data_max_size = cpu_to_le32(size);
2997 pkt.nonce = cpu_to_le32(nonce);
2998
2999 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
3000 timeout, NULL);
3001 if (rc) {
3002 dev_err(hdev->dev,
3003 "Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
3004 goto out;
3005 }
3006
3007 memcpy(data, req_cpu_addr, size);
3008
3009 out:
3010 hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
3011
3012 return rc;
3013 }
3014
hl_fw_get_sec_attest_info(struct hl_device * hdev,struct cpucp_sec_attest_info * sec_attest_info,u32 nonce)3015 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3016 u32 nonce)
3017 {
3018 return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
3019 sizeof(struct cpucp_sec_attest_info), nonce,
3020 HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
3021 }
3022