1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/rwsem.h>
13 #include <linux/completion.h>
14 #include <linux/cpumask.h>
15 #include <linux/uprobes.h>
16 #include <linux/rcupdate.h>
17 #include <linux/page-flags-layout.h>
18 #include <linux/workqueue.h>
19 #include <linux/seqlock.h>
20 
21 #include <asm/mmu.h>
22 
23 #ifndef AT_VECTOR_SIZE_ARCH
24 #define AT_VECTOR_SIZE_ARCH 0
25 #endif
26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27 
28 #define INIT_PASID	0
29 
30 struct address_space;
31 struct mem_cgroup;
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * If you allocate the page using alloc_pages(), you can use some of the
41  * space in struct page for your own purposes.  The five words in the main
42  * union are available, except for bit 0 of the first word which must be
43  * kept clear.  Many users use this word to store a pointer to an object
44  * which is guaranteed to be aligned.  If you use the same storage as
45  * page->mapping, you must restore it to NULL before freeing the page.
46  *
47  * If your page will not be mapped to userspace, you can also use the four
48  * bytes in the mapcount union, but you must call page_mapcount_reset()
49  * before freeing it.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61  * That requires that freelist & counters in struct slab be adjacent and
62  * double-word aligned. Because struct slab currently just reinterprets the
63  * bits of struct page, we align all struct pages to double-word boundaries,
64  * and ensure that 'freelist' is aligned within struct slab.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			/**
84 			 * @lru: Pageout list, eg. active_list protected by
85 			 * lruvec->lru_lock.  Sometimes used as a generic list
86 			 * by the page owner.
87 			 */
88 			union {
89 				struct list_head lru;
90 				/* Or, for the Unevictable "LRU list" slot */
91 				struct {
92 					/* Always even, to negate PageTail */
93 					void *__filler;
94 					/* Count page's or folio's mlocks */
95 					unsigned int mlock_count;
96 				};
97 			};
98 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
99 			struct address_space *mapping;
100 			pgoff_t index;		/* Our offset within mapping. */
101 			/**
102 			 * @private: Mapping-private opaque data.
103 			 * Usually used for buffer_heads if PagePrivate.
104 			 * Used for swp_entry_t if PageSwapCache.
105 			 * Indicates order in the buddy system if PageBuddy.
106 			 */
107 			unsigned long private;
108 		};
109 		struct {	/* page_pool used by netstack */
110 			/**
111 			 * @pp_magic: magic value to avoid recycling non
112 			 * page_pool allocated pages.
113 			 */
114 			unsigned long pp_magic;
115 			struct page_pool *pp;
116 			unsigned long _pp_mapping_pad;
117 			unsigned long dma_addr;
118 			union {
119 				/**
120 				 * dma_addr_upper: might require a 64-bit
121 				 * value on 32-bit architectures.
122 				 */
123 				unsigned long dma_addr_upper;
124 				/**
125 				 * For frag page support, not supported in
126 				 * 32-bit architectures with 64-bit DMA.
127 				 */
128 				atomic_long_t pp_frag_count;
129 			};
130 		};
131 		struct {	/* Tail pages of compound page */
132 			unsigned long compound_head;	/* Bit zero is set */
133 
134 			/* First tail page only */
135 			unsigned char compound_dtor;
136 			unsigned char compound_order;
137 			atomic_t compound_mapcount;
138 			atomic_t compound_pincount;
139 #ifdef CONFIG_64BIT
140 			unsigned int compound_nr; /* 1 << compound_order */
141 #endif
142 		};
143 		struct {	/* Second tail page of compound page */
144 			unsigned long _compound_pad_1;	/* compound_head */
145 			unsigned long _compound_pad_2;
146 			/* For both global and memcg */
147 			struct list_head deferred_list;
148 		};
149 		struct {	/* Page table pages */
150 			unsigned long _pt_pad_1;	/* compound_head */
151 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
152 			unsigned long _pt_pad_2;	/* mapping */
153 			union {
154 				struct mm_struct *pt_mm; /* x86 pgds only */
155 				atomic_t pt_frag_refcount; /* powerpc */
156 			};
157 #if ALLOC_SPLIT_PTLOCKS
158 			spinlock_t *ptl;
159 #else
160 			spinlock_t ptl;
161 #endif
162 		};
163 		struct {	/* ZONE_DEVICE pages */
164 			/** @pgmap: Points to the hosting device page map. */
165 			struct dev_pagemap *pgmap;
166 			void *zone_device_data;
167 			/*
168 			 * ZONE_DEVICE private pages are counted as being
169 			 * mapped so the next 3 words hold the mapping, index,
170 			 * and private fields from the source anonymous or
171 			 * page cache page while the page is migrated to device
172 			 * private memory.
173 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
174 			 * use the mapping, index, and private fields when
175 			 * pmem backed DAX files are mapped.
176 			 */
177 		};
178 
179 		/** @rcu_head: You can use this to free a page by RCU. */
180 		struct rcu_head rcu_head;
181 	};
182 
183 	union {		/* This union is 4 bytes in size. */
184 		/*
185 		 * If the page can be mapped to userspace, encodes the number
186 		 * of times this page is referenced by a page table.
187 		 */
188 		atomic_t _mapcount;
189 
190 		/*
191 		 * If the page is neither PageSlab nor mappable to userspace,
192 		 * the value stored here may help determine what this page
193 		 * is used for.  See page-flags.h for a list of page types
194 		 * which are currently stored here.
195 		 */
196 		unsigned int page_type;
197 	};
198 
199 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
200 	atomic_t _refcount;
201 
202 #ifdef CONFIG_MEMCG
203 	unsigned long memcg_data;
204 #endif
205 
206 	/*
207 	 * On machines where all RAM is mapped into kernel address space,
208 	 * we can simply calculate the virtual address. On machines with
209 	 * highmem some memory is mapped into kernel virtual memory
210 	 * dynamically, so we need a place to store that address.
211 	 * Note that this field could be 16 bits on x86 ... ;)
212 	 *
213 	 * Architectures with slow multiplication can define
214 	 * WANT_PAGE_VIRTUAL in asm/page.h
215 	 */
216 #if defined(WANT_PAGE_VIRTUAL)
217 	void *virtual;			/* Kernel virtual address (NULL if
218 					   not kmapped, ie. highmem) */
219 #endif /* WANT_PAGE_VIRTUAL */
220 
221 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
222 	int _last_cpupid;
223 #endif
224 } _struct_page_alignment;
225 
226 /**
227  * struct folio - Represents a contiguous set of bytes.
228  * @flags: Identical to the page flags.
229  * @lru: Least Recently Used list; tracks how recently this folio was used.
230  * @mlock_count: Number of times this folio has been pinned by mlock().
231  * @mapping: The file this page belongs to, or refers to the anon_vma for
232  *    anonymous memory.
233  * @index: Offset within the file, in units of pages.  For anonymous memory,
234  *    this is the index from the beginning of the mmap.
235  * @private: Filesystem per-folio data (see folio_attach_private()).
236  *    Used for swp_entry_t if folio_test_swapcache().
237  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
238  *    find out how many times this folio is mapped by userspace.
239  * @_refcount: Do not access this member directly.  Use folio_ref_count()
240  *    to find how many references there are to this folio.
241  * @memcg_data: Memory Control Group data.
242  *
243  * A folio is a physically, virtually and logically contiguous set
244  * of bytes.  It is a power-of-two in size, and it is aligned to that
245  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
246  * in the page cache, it is at a file offset which is a multiple of that
247  * power-of-two.  It may be mapped into userspace at an address which is
248  * at an arbitrary page offset, but its kernel virtual address is aligned
249  * to its size.
250  */
251 struct folio {
252 	/* private: don't document the anon union */
253 	union {
254 		struct {
255 	/* public: */
256 			unsigned long flags;
257 			union {
258 				struct list_head lru;
259 	/* private: avoid cluttering the output */
260 				struct {
261 					void *__filler;
262 	/* public: */
263 					unsigned int mlock_count;
264 	/* private: */
265 				};
266 	/* public: */
267 			};
268 			struct address_space *mapping;
269 			pgoff_t index;
270 			void *private;
271 			atomic_t _mapcount;
272 			atomic_t _refcount;
273 #ifdef CONFIG_MEMCG
274 			unsigned long memcg_data;
275 #endif
276 	/* private: the union with struct page is transitional */
277 		};
278 		struct page page;
279 	};
280 };
281 
282 static_assert(sizeof(struct page) == sizeof(struct folio));
283 #define FOLIO_MATCH(pg, fl)						\
284 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
285 FOLIO_MATCH(flags, flags);
286 FOLIO_MATCH(lru, lru);
287 FOLIO_MATCH(mapping, mapping);
288 FOLIO_MATCH(compound_head, lru);
289 FOLIO_MATCH(index, index);
290 FOLIO_MATCH(private, private);
291 FOLIO_MATCH(_mapcount, _mapcount);
292 FOLIO_MATCH(_refcount, _refcount);
293 #ifdef CONFIG_MEMCG
294 FOLIO_MATCH(memcg_data, memcg_data);
295 #endif
296 #undef FOLIO_MATCH
297 
folio_mapcount_ptr(struct folio * folio)298 static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
299 {
300 	struct page *tail = &folio->page + 1;
301 	return &tail->compound_mapcount;
302 }
303 
compound_mapcount_ptr(struct page * page)304 static inline atomic_t *compound_mapcount_ptr(struct page *page)
305 {
306 	return &page[1].compound_mapcount;
307 }
308 
compound_pincount_ptr(struct page * page)309 static inline atomic_t *compound_pincount_ptr(struct page *page)
310 {
311 	return &page[1].compound_pincount;
312 }
313 
314 /*
315  * Used for sizing the vmemmap region on some architectures
316  */
317 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
318 
319 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
320 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
321 
322 /*
323  * page_private can be used on tail pages.  However, PagePrivate is only
324  * checked by the VM on the head page.  So page_private on the tail pages
325  * should be used for data that's ancillary to the head page (eg attaching
326  * buffer heads to tail pages after attaching buffer heads to the head page)
327  */
328 #define page_private(page)		((page)->private)
329 
set_page_private(struct page * page,unsigned long private)330 static inline void set_page_private(struct page *page, unsigned long private)
331 {
332 	page->private = private;
333 }
334 
folio_get_private(struct folio * folio)335 static inline void *folio_get_private(struct folio *folio)
336 {
337 	return folio->private;
338 }
339 
340 struct page_frag_cache {
341 	void * va;
342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
343 	__u16 offset;
344 	__u16 size;
345 #else
346 	__u32 offset;
347 #endif
348 	/* we maintain a pagecount bias, so that we dont dirty cache line
349 	 * containing page->_refcount every time we allocate a fragment.
350 	 */
351 	unsigned int		pagecnt_bias;
352 	bool pfmemalloc;
353 };
354 
355 typedef unsigned long vm_flags_t;
356 
357 /*
358  * A region containing a mapping of a non-memory backed file under NOMMU
359  * conditions.  These are held in a global tree and are pinned by the VMAs that
360  * map parts of them.
361  */
362 struct vm_region {
363 	struct rb_node	vm_rb;		/* link in global region tree */
364 	vm_flags_t	vm_flags;	/* VMA vm_flags */
365 	unsigned long	vm_start;	/* start address of region */
366 	unsigned long	vm_end;		/* region initialised to here */
367 	unsigned long	vm_top;		/* region allocated to here */
368 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
369 	struct file	*vm_file;	/* the backing file or NULL */
370 
371 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
372 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
373 						* this region */
374 };
375 
376 #ifdef CONFIG_USERFAULTFD
377 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
378 struct vm_userfaultfd_ctx {
379 	struct userfaultfd_ctx *ctx;
380 };
381 #else /* CONFIG_USERFAULTFD */
382 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
383 struct vm_userfaultfd_ctx {};
384 #endif /* CONFIG_USERFAULTFD */
385 
386 struct anon_vma_name {
387 	struct kref kref;
388 	/* The name needs to be at the end because it is dynamically sized. */
389 	char name[];
390 };
391 
392 /*
393  * This struct describes a virtual memory area. There is one of these
394  * per VM-area/task. A VM area is any part of the process virtual memory
395  * space that has a special rule for the page-fault handlers (ie a shared
396  * library, the executable area etc).
397  */
398 struct vm_area_struct {
399 	/* The first cache line has the info for VMA tree walking. */
400 
401 	unsigned long vm_start;		/* Our start address within vm_mm. */
402 	unsigned long vm_end;		/* The first byte after our end address
403 					   within vm_mm. */
404 
405 	/* linked list of VM areas per task, sorted by address */
406 	struct vm_area_struct *vm_next, *vm_prev;
407 
408 	struct rb_node vm_rb;
409 
410 	/*
411 	 * Largest free memory gap in bytes to the left of this VMA.
412 	 * Either between this VMA and vma->vm_prev, or between one of the
413 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
414 	 * get_unmapped_area find a free area of the right size.
415 	 */
416 	unsigned long rb_subtree_gap;
417 
418 	/* Second cache line starts here. */
419 
420 	struct mm_struct *vm_mm;	/* The address space we belong to. */
421 
422 	/*
423 	 * Access permissions of this VMA.
424 	 * See vmf_insert_mixed_prot() for discussion.
425 	 */
426 	pgprot_t vm_page_prot;
427 	unsigned long vm_flags;		/* Flags, see mm.h. */
428 
429 	/*
430 	 * For areas with an address space and backing store,
431 	 * linkage into the address_space->i_mmap interval tree.
432 	 *
433 	 * For private anonymous mappings, a pointer to a null terminated string
434 	 * containing the name given to the vma, or NULL if unnamed.
435 	 */
436 
437 	union {
438 		struct {
439 			struct rb_node rb;
440 			unsigned long rb_subtree_last;
441 		} shared;
442 		/*
443 		 * Serialized by mmap_sem. Never use directly because it is
444 		 * valid only when vm_file is NULL. Use anon_vma_name instead.
445 		 */
446 		struct anon_vma_name *anon_name;
447 	};
448 
449 	/*
450 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
451 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
452 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
453 	 * or brk vma (with NULL file) can only be in an anon_vma list.
454 	 */
455 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
456 					  * page_table_lock */
457 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
458 
459 	/* Function pointers to deal with this struct. */
460 	const struct vm_operations_struct *vm_ops;
461 
462 	/* Information about our backing store: */
463 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
464 					   units */
465 	struct file * vm_file;		/* File we map to (can be NULL). */
466 	void * vm_private_data;		/* was vm_pte (shared mem) */
467 
468 #ifdef CONFIG_SWAP
469 	atomic_long_t swap_readahead_info;
470 #endif
471 #ifndef CONFIG_MMU
472 	struct vm_region *vm_region;	/* NOMMU mapping region */
473 #endif
474 #ifdef CONFIG_NUMA
475 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
476 #endif
477 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
478 } __randomize_layout;
479 
480 struct kioctx_table;
481 struct mm_struct {
482 	struct {
483 		struct vm_area_struct *mmap;		/* list of VMAs */
484 		struct rb_root mm_rb;
485 		u64 vmacache_seqnum;                   /* per-thread vmacache */
486 #ifdef CONFIG_MMU
487 		unsigned long (*get_unmapped_area) (struct file *filp,
488 				unsigned long addr, unsigned long len,
489 				unsigned long pgoff, unsigned long flags);
490 #endif
491 		unsigned long mmap_base;	/* base of mmap area */
492 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
493 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
494 		/* Base addresses for compatible mmap() */
495 		unsigned long mmap_compat_base;
496 		unsigned long mmap_compat_legacy_base;
497 #endif
498 		unsigned long task_size;	/* size of task vm space */
499 		unsigned long highest_vm_end;	/* highest vma end address */
500 		pgd_t * pgd;
501 
502 #ifdef CONFIG_MEMBARRIER
503 		/**
504 		 * @membarrier_state: Flags controlling membarrier behavior.
505 		 *
506 		 * This field is close to @pgd to hopefully fit in the same
507 		 * cache-line, which needs to be touched by switch_mm().
508 		 */
509 		atomic_t membarrier_state;
510 #endif
511 
512 		/**
513 		 * @mm_users: The number of users including userspace.
514 		 *
515 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
516 		 * drops to 0 (i.e. when the task exits and there are no other
517 		 * temporary reference holders), we also release a reference on
518 		 * @mm_count (which may then free the &struct mm_struct if
519 		 * @mm_count also drops to 0).
520 		 */
521 		atomic_t mm_users;
522 
523 		/**
524 		 * @mm_count: The number of references to &struct mm_struct
525 		 * (@mm_users count as 1).
526 		 *
527 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
528 		 * &struct mm_struct is freed.
529 		 */
530 		atomic_t mm_count;
531 
532 #ifdef CONFIG_MMU
533 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
534 #endif
535 		int map_count;			/* number of VMAs */
536 
537 		spinlock_t page_table_lock; /* Protects page tables and some
538 					     * counters
539 					     */
540 		/*
541 		 * With some kernel config, the current mmap_lock's offset
542 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
543 		 * its two hot fields 'count' and 'owner' sit in 2 different
544 		 * cachelines,  and when mmap_lock is highly contended, both
545 		 * of the 2 fields will be accessed frequently, current layout
546 		 * will help to reduce cache bouncing.
547 		 *
548 		 * So please be careful with adding new fields before
549 		 * mmap_lock, which can easily push the 2 fields into one
550 		 * cacheline.
551 		 */
552 		struct rw_semaphore mmap_lock;
553 
554 		struct list_head mmlist; /* List of maybe swapped mm's.	These
555 					  * are globally strung together off
556 					  * init_mm.mmlist, and are protected
557 					  * by mmlist_lock
558 					  */
559 
560 
561 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
562 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
563 
564 		unsigned long total_vm;	   /* Total pages mapped */
565 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
566 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
567 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
568 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
569 		unsigned long stack_vm;	   /* VM_STACK */
570 		unsigned long def_flags;
571 
572 		/**
573 		 * @write_protect_seq: Locked when any thread is write
574 		 * protecting pages mapped by this mm to enforce a later COW,
575 		 * for instance during page table copying for fork().
576 		 */
577 		seqcount_t write_protect_seq;
578 
579 		spinlock_t arg_lock; /* protect the below fields */
580 
581 		unsigned long start_code, end_code, start_data, end_data;
582 		unsigned long start_brk, brk, start_stack;
583 		unsigned long arg_start, arg_end, env_start, env_end;
584 
585 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
586 
587 		/*
588 		 * Special counters, in some configurations protected by the
589 		 * page_table_lock, in other configurations by being atomic.
590 		 */
591 		struct mm_rss_stat rss_stat;
592 
593 		struct linux_binfmt *binfmt;
594 
595 		/* Architecture-specific MM context */
596 		mm_context_t context;
597 
598 		unsigned long flags; /* Must use atomic bitops to access */
599 
600 #ifdef CONFIG_AIO
601 		spinlock_t			ioctx_lock;
602 		struct kioctx_table __rcu	*ioctx_table;
603 #endif
604 #ifdef CONFIG_MEMCG
605 		/*
606 		 * "owner" points to a task that is regarded as the canonical
607 		 * user/owner of this mm. All of the following must be true in
608 		 * order for it to be changed:
609 		 *
610 		 * current == mm->owner
611 		 * current->mm != mm
612 		 * new_owner->mm == mm
613 		 * new_owner->alloc_lock is held
614 		 */
615 		struct task_struct __rcu *owner;
616 #endif
617 		struct user_namespace *user_ns;
618 
619 		/* store ref to file /proc/<pid>/exe symlink points to */
620 		struct file __rcu *exe_file;
621 #ifdef CONFIG_MMU_NOTIFIER
622 		struct mmu_notifier_subscriptions *notifier_subscriptions;
623 #endif
624 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
625 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
626 #endif
627 #ifdef CONFIG_NUMA_BALANCING
628 		/*
629 		 * numa_next_scan is the next time that the PTEs will be marked
630 		 * pte_numa. NUMA hinting faults will gather statistics and
631 		 * migrate pages to new nodes if necessary.
632 		 */
633 		unsigned long numa_next_scan;
634 
635 		/* Restart point for scanning and setting pte_numa */
636 		unsigned long numa_scan_offset;
637 
638 		/* numa_scan_seq prevents two threads setting pte_numa */
639 		int numa_scan_seq;
640 #endif
641 		/*
642 		 * An operation with batched TLB flushing is going on. Anything
643 		 * that can move process memory needs to flush the TLB when
644 		 * moving a PROT_NONE or PROT_NUMA mapped page.
645 		 */
646 		atomic_t tlb_flush_pending;
647 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
648 		/* See flush_tlb_batched_pending() */
649 		atomic_t tlb_flush_batched;
650 #endif
651 		struct uprobes_state uprobes_state;
652 #ifdef CONFIG_PREEMPT_RT
653 		struct rcu_head delayed_drop;
654 #endif
655 #ifdef CONFIG_HUGETLB_PAGE
656 		atomic_long_t hugetlb_usage;
657 #endif
658 		struct work_struct async_put_work;
659 
660 #ifdef CONFIG_IOMMU_SVA
661 		u32 pasid;
662 #endif
663 #ifdef CONFIG_KSM
664 		/*
665 		 * Represent how many pages of this process are involved in KSM
666 		 * merging.
667 		 */
668 		unsigned long ksm_merging_pages;
669 #endif
670 	} __randomize_layout;
671 
672 	/*
673 	 * The mm_cpumask needs to be at the end of mm_struct, because it
674 	 * is dynamically sized based on nr_cpu_ids.
675 	 */
676 	unsigned long cpu_bitmap[];
677 };
678 
679 extern struct mm_struct init_mm;
680 
681 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)682 static inline void mm_init_cpumask(struct mm_struct *mm)
683 {
684 	unsigned long cpu_bitmap = (unsigned long)mm;
685 
686 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
687 	cpumask_clear((struct cpumask *)cpu_bitmap);
688 }
689 
690 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)691 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
692 {
693 	return (struct cpumask *)&mm->cpu_bitmap;
694 }
695 
696 struct mmu_gather;
697 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
698 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
699 extern void tlb_finish_mmu(struct mmu_gather *tlb);
700 
701 struct vm_fault;
702 
703 /**
704  * typedef vm_fault_t - Return type for page fault handlers.
705  *
706  * Page fault handlers return a bitmask of %VM_FAULT values.
707  */
708 typedef __bitwise unsigned int vm_fault_t;
709 
710 /**
711  * enum vm_fault_reason - Page fault handlers return a bitmask of
712  * these values to tell the core VM what happened when handling the
713  * fault. Used to decide whether a process gets delivered SIGBUS or
714  * just gets major/minor fault counters bumped up.
715  *
716  * @VM_FAULT_OOM:		Out Of Memory
717  * @VM_FAULT_SIGBUS:		Bad access
718  * @VM_FAULT_MAJOR:		Page read from storage
719  * @VM_FAULT_WRITE:		Special case for get_user_pages
720  * @VM_FAULT_HWPOISON:		Hit poisoned small page
721  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
722  *				in upper bits
723  * @VM_FAULT_SIGSEGV:		segmentation fault
724  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
725  * @VM_FAULT_LOCKED:		->fault locked the returned page
726  * @VM_FAULT_RETRY:		->fault blocked, must retry
727  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
728  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
729  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
730  *				fsync() to complete (for synchronous page faults
731  *				in DAX)
732  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
733  *
734  */
735 enum vm_fault_reason {
736 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
737 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
738 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
739 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
740 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
741 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
742 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
743 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
744 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
745 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
746 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
747 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
748 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
749 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
750 };
751 
752 /* Encode hstate index for a hwpoisoned large page */
753 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
754 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
755 
756 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
757 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
758 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
759 
760 #define VM_FAULT_RESULT_TRACE \
761 	{ VM_FAULT_OOM,                 "OOM" },	\
762 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
763 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
764 	{ VM_FAULT_WRITE,               "WRITE" },	\
765 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
766 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
767 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
768 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
769 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
770 	{ VM_FAULT_RETRY,               "RETRY" },	\
771 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
772 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
773 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
774 
775 struct vm_special_mapping {
776 	const char *name;	/* The name, e.g. "[vdso]". */
777 
778 	/*
779 	 * If .fault is not provided, this points to a
780 	 * NULL-terminated array of pages that back the special mapping.
781 	 *
782 	 * This must not be NULL unless .fault is provided.
783 	 */
784 	struct page **pages;
785 
786 	/*
787 	 * If non-NULL, then this is called to resolve page faults
788 	 * on the special mapping.  If used, .pages is not checked.
789 	 */
790 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
791 				struct vm_area_struct *vma,
792 				struct vm_fault *vmf);
793 
794 	int (*mremap)(const struct vm_special_mapping *sm,
795 		     struct vm_area_struct *new_vma);
796 };
797 
798 enum tlb_flush_reason {
799 	TLB_FLUSH_ON_TASK_SWITCH,
800 	TLB_REMOTE_SHOOTDOWN,
801 	TLB_LOCAL_SHOOTDOWN,
802 	TLB_LOCAL_MM_SHOOTDOWN,
803 	TLB_REMOTE_SEND_IPI,
804 	NR_TLB_FLUSH_REASONS,
805 };
806 
807  /*
808   * A swap entry has to fit into a "unsigned long", as the entry is hidden
809   * in the "index" field of the swapper address space.
810   */
811 typedef struct {
812 	unsigned long val;
813 } swp_entry_t;
814 
815 /**
816  * enum fault_flag - Fault flag definitions.
817  * @FAULT_FLAG_WRITE: Fault was a write fault.
818  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
819  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
820  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
821  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
822  * @FAULT_FLAG_TRIED: The fault has been tried once.
823  * @FAULT_FLAG_USER: The fault originated in userspace.
824  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
825  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
826  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
827  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to unshare (and mark
828  *                      exclusive) a possibly shared anonymous page that is
829  *                      mapped R/O.
830  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
831  *                        We should only access orig_pte if this flag set.
832  *
833  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
834  * whether we would allow page faults to retry by specifying these two
835  * fault flags correctly.  Currently there can be three legal combinations:
836  *
837  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
838  *                              this is the first try
839  *
840  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
841  *                              we've already tried at least once
842  *
843  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
844  *
845  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
846  * be used.  Note that page faults can be allowed to retry for multiple times,
847  * in which case we'll have an initial fault with flags (a) then later on
848  * continuous faults with flags (b).  We should always try to detect pending
849  * signals before a retry to make sure the continuous page faults can still be
850  * interrupted if necessary.
851  *
852  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
853  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
854  * no existing R/O-mapped anonymous page is encountered.
855  */
856 enum fault_flag {
857 	FAULT_FLAG_WRITE =		1 << 0,
858 	FAULT_FLAG_MKWRITE =		1 << 1,
859 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
860 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
861 	FAULT_FLAG_KILLABLE =		1 << 4,
862 	FAULT_FLAG_TRIED = 		1 << 5,
863 	FAULT_FLAG_USER =		1 << 6,
864 	FAULT_FLAG_REMOTE =		1 << 7,
865 	FAULT_FLAG_INSTRUCTION =	1 << 8,
866 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
867 	FAULT_FLAG_UNSHARE =		1 << 10,
868 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
869 };
870 
871 typedef unsigned int __bitwise zap_flags_t;
872 
873 #endif /* _LINUX_MM_TYPES_H */
874