1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2000-2001 Vojtech Pavlik
4 * Copyright (c) 2006-2010 Jiri Kosina
5 *
6 * HID to Linux Input mapping
7 */
8
9 /*
10 *
11 * Should you need to contact me, the author, you can do so either by
12 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
13 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
14 */
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kernel.h>
19
20 #include <linux/hid.h>
21 #include <linux/hid-debug.h>
22
23 #include "hid-ids.h"
24
25 #define unk KEY_UNKNOWN
26
27 static const unsigned char hid_keyboard[256] = {
28 0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38,
29 50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44, 2, 3,
30 4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 14, 15, 57, 12, 13, 26,
31 27, 43, 43, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64,
32 65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106,
33 105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71,
34 72, 73, 82, 83, 86,127,116,117,183,184,185,186,187,188,189,190,
35 191,192,193,194,134,138,130,132,128,129,131,137,133,135,136,113,
36 115,114,unk,unk,unk,121,unk, 89, 93,124, 92, 94, 95,unk,unk,unk,
37 122,123, 90, 91, 85,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk,
38 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
39 unk,unk,unk,unk,unk,unk,179,180,unk,unk,unk,unk,unk,unk,unk,unk,
40 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
41 unk,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk,unk,unk,unk,unk,
42 29, 42, 56,125, 97, 54,100,126,164,166,165,163,161,115,114,113,
43 150,158,159,128,136,177,178,176,142,152,173,140,unk,unk,unk,unk
44 };
45
46 static const struct {
47 __s32 x;
48 __s32 y;
49 } hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}};
50
51 struct usage_priority {
52 __u32 usage; /* the HID usage associated */
53 bool global; /* we assume all usages to be slotted,
54 * unless global
55 */
56 unsigned int slot_overwrite; /* for globals: allows to set the usage
57 * before or after the slots
58 */
59 };
60
61 /*
62 * hid-input will convert this list into priorities:
63 * the first element will have the highest priority
64 * (the length of the following array) and the last
65 * element the lowest (1).
66 *
67 * hid-input will then shift the priority by 8 bits to leave some space
68 * in case drivers want to interleave other fields.
69 *
70 * To accommodate slotted devices, the slot priority is
71 * defined in the next 8 bits (defined by 0xff - slot).
72 *
73 * If drivers want to add fields before those, hid-input will
74 * leave out the first 8 bits of the priority value.
75 *
76 * This still leaves us 65535 individual priority values.
77 */
78 static const struct usage_priority hidinput_usages_priorities[] = {
79 { /* Eraser (eraser touching) must always come before tipswitch */
80 .usage = HID_DG_ERASER,
81 },
82 { /* Invert must always come before In Range */
83 .usage = HID_DG_INVERT,
84 },
85 { /* Is the tip of the tool touching? */
86 .usage = HID_DG_TIPSWITCH,
87 },
88 { /* Tip Pressure might emulate tip switch */
89 .usage = HID_DG_TIPPRESSURE,
90 },
91 { /* In Range needs to come after the other tool states */
92 .usage = HID_DG_INRANGE,
93 },
94 };
95
96 #define map_abs(c) hid_map_usage(hidinput, usage, &bit, &max, EV_ABS, (c))
97 #define map_rel(c) hid_map_usage(hidinput, usage, &bit, &max, EV_REL, (c))
98 #define map_key(c) hid_map_usage(hidinput, usage, &bit, &max, EV_KEY, (c))
99 #define map_led(c) hid_map_usage(hidinput, usage, &bit, &max, EV_LED, (c))
100 #define map_msc(c) hid_map_usage(hidinput, usage, &bit, &max, EV_MSC, (c))
101
102 #define map_abs_clear(c) hid_map_usage_clear(hidinput, usage, &bit, \
103 &max, EV_ABS, (c))
104 #define map_key_clear(c) hid_map_usage_clear(hidinput, usage, &bit, \
105 &max, EV_KEY, (c))
106
match_scancode(struct hid_usage * usage,unsigned int cur_idx,unsigned int scancode)107 static bool match_scancode(struct hid_usage *usage,
108 unsigned int cur_idx, unsigned int scancode)
109 {
110 return (usage->hid & (HID_USAGE_PAGE | HID_USAGE)) == scancode;
111 }
112
match_keycode(struct hid_usage * usage,unsigned int cur_idx,unsigned int keycode)113 static bool match_keycode(struct hid_usage *usage,
114 unsigned int cur_idx, unsigned int keycode)
115 {
116 /*
117 * We should exclude unmapped usages when doing lookup by keycode.
118 */
119 return (usage->type == EV_KEY && usage->code == keycode);
120 }
121
match_index(struct hid_usage * usage,unsigned int cur_idx,unsigned int idx)122 static bool match_index(struct hid_usage *usage,
123 unsigned int cur_idx, unsigned int idx)
124 {
125 return cur_idx == idx;
126 }
127
128 typedef bool (*hid_usage_cmp_t)(struct hid_usage *usage,
129 unsigned int cur_idx, unsigned int val);
130
hidinput_find_key(struct hid_device * hid,hid_usage_cmp_t match,unsigned int value,unsigned int * usage_idx)131 static struct hid_usage *hidinput_find_key(struct hid_device *hid,
132 hid_usage_cmp_t match,
133 unsigned int value,
134 unsigned int *usage_idx)
135 {
136 unsigned int i, j, k, cur_idx = 0;
137 struct hid_report *report;
138 struct hid_usage *usage;
139
140 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
141 list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
142 for (i = 0; i < report->maxfield; i++) {
143 for (j = 0; j < report->field[i]->maxusage; j++) {
144 usage = report->field[i]->usage + j;
145 if (usage->type == EV_KEY || usage->type == 0) {
146 if (match(usage, cur_idx, value)) {
147 if (usage_idx)
148 *usage_idx = cur_idx;
149 return usage;
150 }
151 cur_idx++;
152 }
153 }
154 }
155 }
156 }
157 return NULL;
158 }
159
hidinput_locate_usage(struct hid_device * hid,const struct input_keymap_entry * ke,unsigned int * index)160 static struct hid_usage *hidinput_locate_usage(struct hid_device *hid,
161 const struct input_keymap_entry *ke,
162 unsigned int *index)
163 {
164 struct hid_usage *usage;
165 unsigned int scancode;
166
167 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
168 usage = hidinput_find_key(hid, match_index, ke->index, index);
169 else if (input_scancode_to_scalar(ke, &scancode) == 0)
170 usage = hidinput_find_key(hid, match_scancode, scancode, index);
171 else
172 usage = NULL;
173
174 return usage;
175 }
176
hidinput_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)177 static int hidinput_getkeycode(struct input_dev *dev,
178 struct input_keymap_entry *ke)
179 {
180 struct hid_device *hid = input_get_drvdata(dev);
181 struct hid_usage *usage;
182 unsigned int scancode, index;
183
184 usage = hidinput_locate_usage(hid, ke, &index);
185 if (usage) {
186 ke->keycode = usage->type == EV_KEY ?
187 usage->code : KEY_RESERVED;
188 ke->index = index;
189 scancode = usage->hid & (HID_USAGE_PAGE | HID_USAGE);
190 ke->len = sizeof(scancode);
191 memcpy(ke->scancode, &scancode, sizeof(scancode));
192 return 0;
193 }
194
195 return -EINVAL;
196 }
197
hidinput_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)198 static int hidinput_setkeycode(struct input_dev *dev,
199 const struct input_keymap_entry *ke,
200 unsigned int *old_keycode)
201 {
202 struct hid_device *hid = input_get_drvdata(dev);
203 struct hid_usage *usage;
204
205 usage = hidinput_locate_usage(hid, ke, NULL);
206 if (usage) {
207 *old_keycode = usage->type == EV_KEY ?
208 usage->code : KEY_RESERVED;
209 usage->type = EV_KEY;
210 usage->code = ke->keycode;
211
212 clear_bit(*old_keycode, dev->keybit);
213 set_bit(usage->code, dev->keybit);
214 dbg_hid("Assigned keycode %d to HID usage code %x\n",
215 usage->code, usage->hid);
216
217 /*
218 * Set the keybit for the old keycode if the old keycode is used
219 * by another key
220 */
221 if (hidinput_find_key(hid, match_keycode, *old_keycode, NULL))
222 set_bit(*old_keycode, dev->keybit);
223
224 return 0;
225 }
226
227 return -EINVAL;
228 }
229
230
231 /**
232 * hidinput_calc_abs_res - calculate an absolute axis resolution
233 * @field: the HID report field to calculate resolution for
234 * @code: axis code
235 *
236 * The formula is:
237 * (logical_maximum - logical_minimum)
238 * resolution = ----------------------------------------------------------
239 * (physical_maximum - physical_minimum) * 10 ^ unit_exponent
240 *
241 * as seen in the HID specification v1.11 6.2.2.7 Global Items.
242 *
243 * Only exponent 1 length units are processed. Centimeters and inches are
244 * converted to millimeters. Degrees are converted to radians.
245 */
hidinput_calc_abs_res(const struct hid_field * field,__u16 code)246 __s32 hidinput_calc_abs_res(const struct hid_field *field, __u16 code)
247 {
248 __s32 unit_exponent = field->unit_exponent;
249 __s32 logical_extents = field->logical_maximum -
250 field->logical_minimum;
251 __s32 physical_extents = field->physical_maximum -
252 field->physical_minimum;
253 __s32 prev;
254
255 /* Check if the extents are sane */
256 if (logical_extents <= 0 || physical_extents <= 0)
257 return 0;
258
259 /*
260 * Verify and convert units.
261 * See HID specification v1.11 6.2.2.7 Global Items for unit decoding
262 */
263 switch (code) {
264 case ABS_X:
265 case ABS_Y:
266 case ABS_Z:
267 case ABS_MT_POSITION_X:
268 case ABS_MT_POSITION_Y:
269 case ABS_MT_TOOL_X:
270 case ABS_MT_TOOL_Y:
271 case ABS_MT_TOUCH_MAJOR:
272 case ABS_MT_TOUCH_MINOR:
273 if (field->unit == 0x11) { /* If centimeters */
274 /* Convert to millimeters */
275 unit_exponent += 1;
276 } else if (field->unit == 0x13) { /* If inches */
277 /* Convert to millimeters */
278 prev = physical_extents;
279 physical_extents *= 254;
280 if (physical_extents < prev)
281 return 0;
282 unit_exponent -= 1;
283 } else {
284 return 0;
285 }
286 break;
287
288 case ABS_RX:
289 case ABS_RY:
290 case ABS_RZ:
291 case ABS_WHEEL:
292 case ABS_TILT_X:
293 case ABS_TILT_Y:
294 if (field->unit == 0x14) { /* If degrees */
295 /* Convert to radians */
296 prev = logical_extents;
297 logical_extents *= 573;
298 if (logical_extents < prev)
299 return 0;
300 unit_exponent += 1;
301 } else if (field->unit != 0x12) { /* If not radians */
302 return 0;
303 }
304 break;
305
306 default:
307 return 0;
308 }
309
310 /* Apply negative unit exponent */
311 for (; unit_exponent < 0; unit_exponent++) {
312 prev = logical_extents;
313 logical_extents *= 10;
314 if (logical_extents < prev)
315 return 0;
316 }
317 /* Apply positive unit exponent */
318 for (; unit_exponent > 0; unit_exponent--) {
319 prev = physical_extents;
320 physical_extents *= 10;
321 if (physical_extents < prev)
322 return 0;
323 }
324
325 /* Calculate resolution */
326 return DIV_ROUND_CLOSEST(logical_extents, physical_extents);
327 }
328 EXPORT_SYMBOL_GPL(hidinput_calc_abs_res);
329
330 #ifdef CONFIG_HID_BATTERY_STRENGTH
331 static enum power_supply_property hidinput_battery_props[] = {
332 POWER_SUPPLY_PROP_PRESENT,
333 POWER_SUPPLY_PROP_ONLINE,
334 POWER_SUPPLY_PROP_CAPACITY,
335 POWER_SUPPLY_PROP_MODEL_NAME,
336 POWER_SUPPLY_PROP_STATUS,
337 POWER_SUPPLY_PROP_SCOPE,
338 };
339
340 #define HID_BATTERY_QUIRK_PERCENT (1 << 0) /* always reports percent */
341 #define HID_BATTERY_QUIRK_FEATURE (1 << 1) /* ask for feature report */
342 #define HID_BATTERY_QUIRK_IGNORE (1 << 2) /* completely ignore the battery */
343
344 static const struct hid_device_id hid_battery_quirks[] = {
345 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
346 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO),
347 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
348 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
349 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI),
350 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
351 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
352 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI),
353 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
354 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
355 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO),
356 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
357 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
358 USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI),
359 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
360 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM,
361 USB_DEVICE_ID_ELECOM_BM084),
362 HID_BATTERY_QUIRK_IGNORE },
363 { HID_USB_DEVICE(USB_VENDOR_ID_SYMBOL,
364 USB_DEVICE_ID_SYMBOL_SCANNER_3),
365 HID_BATTERY_QUIRK_IGNORE },
366 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ASUSTEK,
367 USB_DEVICE_ID_ASUSTEK_T100CHI_KEYBOARD),
368 HID_BATTERY_QUIRK_IGNORE },
369 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
370 USB_DEVICE_ID_LOGITECH_DINOVO_EDGE_KBD),
371 HID_BATTERY_QUIRK_IGNORE },
372 { HID_USB_DEVICE(USB_VENDOR_ID_ELAN, USB_DEVICE_ID_ASUS_UX550_TOUCHSCREEN),
373 HID_BATTERY_QUIRK_IGNORE },
374 { HID_USB_DEVICE(USB_VENDOR_ID_ELAN, USB_DEVICE_ID_ASUS_UX550VE_TOUCHSCREEN),
375 HID_BATTERY_QUIRK_IGNORE },
376 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_ENVY_X360_15),
377 HID_BATTERY_QUIRK_IGNORE },
378 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_ENVY_X360_15T_DR100),
379 HID_BATTERY_QUIRK_IGNORE },
380 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_SPECTRE_X360_15),
381 HID_BATTERY_QUIRK_IGNORE },
382 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_SURFACE_GO_TOUCHSCREEN),
383 HID_BATTERY_QUIRK_IGNORE },
384 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_SURFACE_GO2_TOUCHSCREEN),
385 HID_BATTERY_QUIRK_IGNORE },
386 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_LENOVO_YOGA_C630_TOUCHSCREEN),
387 HID_BATTERY_QUIRK_IGNORE },
388 {}
389 };
390
find_battery_quirk(struct hid_device * hdev)391 static unsigned find_battery_quirk(struct hid_device *hdev)
392 {
393 unsigned quirks = 0;
394 const struct hid_device_id *match;
395
396 match = hid_match_id(hdev, hid_battery_quirks);
397 if (match != NULL)
398 quirks = match->driver_data;
399
400 return quirks;
401 }
402
hidinput_scale_battery_capacity(struct hid_device * dev,int value)403 static int hidinput_scale_battery_capacity(struct hid_device *dev,
404 int value)
405 {
406 if (dev->battery_min < dev->battery_max &&
407 value >= dev->battery_min && value <= dev->battery_max)
408 value = ((value - dev->battery_min) * 100) /
409 (dev->battery_max - dev->battery_min);
410
411 return value;
412 }
413
hidinput_query_battery_capacity(struct hid_device * dev)414 static int hidinput_query_battery_capacity(struct hid_device *dev)
415 {
416 u8 *buf;
417 int ret;
418
419 buf = kmalloc(4, GFP_KERNEL);
420 if (!buf)
421 return -ENOMEM;
422
423 ret = hid_hw_raw_request(dev, dev->battery_report_id, buf, 4,
424 dev->battery_report_type, HID_REQ_GET_REPORT);
425 if (ret < 2) {
426 kfree(buf);
427 return -ENODATA;
428 }
429
430 ret = hidinput_scale_battery_capacity(dev, buf[1]);
431 kfree(buf);
432 return ret;
433 }
434
hidinput_get_battery_property(struct power_supply * psy,enum power_supply_property prop,union power_supply_propval * val)435 static int hidinput_get_battery_property(struct power_supply *psy,
436 enum power_supply_property prop,
437 union power_supply_propval *val)
438 {
439 struct hid_device *dev = power_supply_get_drvdata(psy);
440 int value;
441 int ret = 0;
442
443 switch (prop) {
444 case POWER_SUPPLY_PROP_PRESENT:
445 case POWER_SUPPLY_PROP_ONLINE:
446 val->intval = 1;
447 break;
448
449 case POWER_SUPPLY_PROP_CAPACITY:
450 if (dev->battery_status != HID_BATTERY_REPORTED &&
451 !dev->battery_avoid_query) {
452 value = hidinput_query_battery_capacity(dev);
453 if (value < 0)
454 return value;
455 } else {
456 value = dev->battery_capacity;
457 }
458
459 val->intval = value;
460 break;
461
462 case POWER_SUPPLY_PROP_MODEL_NAME:
463 val->strval = dev->name;
464 break;
465
466 case POWER_SUPPLY_PROP_STATUS:
467 if (dev->battery_status != HID_BATTERY_REPORTED &&
468 !dev->battery_avoid_query) {
469 value = hidinput_query_battery_capacity(dev);
470 if (value < 0)
471 return value;
472
473 dev->battery_capacity = value;
474 dev->battery_status = HID_BATTERY_QUERIED;
475 }
476
477 if (dev->battery_status == HID_BATTERY_UNKNOWN)
478 val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
479 else
480 val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
481 break;
482
483 case POWER_SUPPLY_PROP_SCOPE:
484 val->intval = POWER_SUPPLY_SCOPE_DEVICE;
485 break;
486
487 default:
488 ret = -EINVAL;
489 break;
490 }
491
492 return ret;
493 }
494
hidinput_setup_battery(struct hid_device * dev,unsigned report_type,struct hid_field * field,bool is_percentage)495 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type,
496 struct hid_field *field, bool is_percentage)
497 {
498 struct power_supply_desc *psy_desc;
499 struct power_supply_config psy_cfg = { .drv_data = dev, };
500 unsigned quirks;
501 s32 min, max;
502 int error;
503
504 if (dev->battery)
505 return 0; /* already initialized? */
506
507 quirks = find_battery_quirk(dev);
508
509 hid_dbg(dev, "device %x:%x:%x %d quirks %d\n",
510 dev->bus, dev->vendor, dev->product, dev->version, quirks);
511
512 if (quirks & HID_BATTERY_QUIRK_IGNORE)
513 return 0;
514
515 psy_desc = kzalloc(sizeof(*psy_desc), GFP_KERNEL);
516 if (!psy_desc)
517 return -ENOMEM;
518
519 psy_desc->name = kasprintf(GFP_KERNEL, "hid-%s-battery",
520 strlen(dev->uniq) ?
521 dev->uniq : dev_name(&dev->dev));
522 if (!psy_desc->name) {
523 error = -ENOMEM;
524 goto err_free_mem;
525 }
526
527 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
528 psy_desc->properties = hidinput_battery_props;
529 psy_desc->num_properties = ARRAY_SIZE(hidinput_battery_props);
530 psy_desc->use_for_apm = 0;
531 psy_desc->get_property = hidinput_get_battery_property;
532
533 min = field->logical_minimum;
534 max = field->logical_maximum;
535
536 if (is_percentage || (quirks & HID_BATTERY_QUIRK_PERCENT)) {
537 min = 0;
538 max = 100;
539 }
540
541 if (quirks & HID_BATTERY_QUIRK_FEATURE)
542 report_type = HID_FEATURE_REPORT;
543
544 dev->battery_min = min;
545 dev->battery_max = max;
546 dev->battery_report_type = report_type;
547 dev->battery_report_id = field->report->id;
548
549 /*
550 * Stylus is normally not connected to the device and thus we
551 * can't query the device and get meaningful battery strength.
552 * We have to wait for the device to report it on its own.
553 */
554 dev->battery_avoid_query = report_type == HID_INPUT_REPORT &&
555 field->physical == HID_DG_STYLUS;
556
557 dev->battery = power_supply_register(&dev->dev, psy_desc, &psy_cfg);
558 if (IS_ERR(dev->battery)) {
559 error = PTR_ERR(dev->battery);
560 hid_warn(dev, "can't register power supply: %d\n", error);
561 goto err_free_name;
562 }
563
564 power_supply_powers(dev->battery, &dev->dev);
565 return 0;
566
567 err_free_name:
568 kfree(psy_desc->name);
569 err_free_mem:
570 kfree(psy_desc);
571 dev->battery = NULL;
572 return error;
573 }
574
hidinput_cleanup_battery(struct hid_device * dev)575 static void hidinput_cleanup_battery(struct hid_device *dev)
576 {
577 const struct power_supply_desc *psy_desc;
578
579 if (!dev->battery)
580 return;
581
582 psy_desc = dev->battery->desc;
583 power_supply_unregister(dev->battery);
584 kfree(psy_desc->name);
585 kfree(psy_desc);
586 dev->battery = NULL;
587 }
588
hidinput_update_battery(struct hid_device * dev,int value)589 static void hidinput_update_battery(struct hid_device *dev, int value)
590 {
591 int capacity;
592
593 if (!dev->battery)
594 return;
595
596 if (value == 0 || value < dev->battery_min || value > dev->battery_max)
597 return;
598
599 capacity = hidinput_scale_battery_capacity(dev, value);
600
601 if (dev->battery_status != HID_BATTERY_REPORTED ||
602 capacity != dev->battery_capacity ||
603 ktime_after(ktime_get_coarse(), dev->battery_ratelimit_time)) {
604 dev->battery_capacity = capacity;
605 dev->battery_status = HID_BATTERY_REPORTED;
606 dev->battery_ratelimit_time =
607 ktime_add_ms(ktime_get_coarse(), 30 * 1000);
608 power_supply_changed(dev->battery);
609 }
610 }
611 #else /* !CONFIG_HID_BATTERY_STRENGTH */
hidinput_setup_battery(struct hid_device * dev,unsigned report_type,struct hid_field * field,bool is_percentage)612 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type,
613 struct hid_field *field, bool is_percentage)
614 {
615 return 0;
616 }
617
hidinput_cleanup_battery(struct hid_device * dev)618 static void hidinput_cleanup_battery(struct hid_device *dev)
619 {
620 }
621
hidinput_update_battery(struct hid_device * dev,int value)622 static void hidinput_update_battery(struct hid_device *dev, int value)
623 {
624 }
625 #endif /* CONFIG_HID_BATTERY_STRENGTH */
626
hidinput_field_in_collection(struct hid_device * device,struct hid_field * field,unsigned int type,unsigned int usage)627 static bool hidinput_field_in_collection(struct hid_device *device, struct hid_field *field,
628 unsigned int type, unsigned int usage)
629 {
630 struct hid_collection *collection;
631
632 collection = &device->collection[field->usage->collection_index];
633
634 return collection->type == type && collection->usage == usage;
635 }
636
hidinput_configure_usage(struct hid_input * hidinput,struct hid_field * field,struct hid_usage * usage,unsigned int usage_index)637 static void hidinput_configure_usage(struct hid_input *hidinput, struct hid_field *field,
638 struct hid_usage *usage, unsigned int usage_index)
639 {
640 struct input_dev *input = hidinput->input;
641 struct hid_device *device = input_get_drvdata(input);
642 const struct usage_priority *usage_priority = NULL;
643 int max = 0, code;
644 unsigned int i = 0;
645 unsigned long *bit = NULL;
646
647 field->hidinput = hidinput;
648
649 if (field->flags & HID_MAIN_ITEM_CONSTANT)
650 goto ignore;
651
652 /* Ignore if report count is out of bounds. */
653 if (field->report_count < 1)
654 goto ignore;
655
656 /* only LED usages are supported in output fields */
657 if (field->report_type == HID_OUTPUT_REPORT &&
658 (usage->hid & HID_USAGE_PAGE) != HID_UP_LED) {
659 goto ignore;
660 }
661
662 /* assign a priority based on the static list declared here */
663 for (i = 0; i < ARRAY_SIZE(hidinput_usages_priorities); i++) {
664 if (usage->hid == hidinput_usages_priorities[i].usage) {
665 usage_priority = &hidinput_usages_priorities[i];
666
667 field->usages_priorities[usage_index] =
668 (ARRAY_SIZE(hidinput_usages_priorities) - i) << 8;
669 break;
670 }
671 }
672
673 /*
674 * For slotted devices, we need to also add the slot index
675 * in the priority.
676 */
677 if (usage_priority && usage_priority->global)
678 field->usages_priorities[usage_index] |=
679 usage_priority->slot_overwrite;
680 else
681 field->usages_priorities[usage_index] |=
682 (0xff - field->slot_idx) << 16;
683
684 if (device->driver->input_mapping) {
685 int ret = device->driver->input_mapping(device, hidinput, field,
686 usage, &bit, &max);
687 if (ret > 0)
688 goto mapped;
689 if (ret < 0)
690 goto ignore;
691 }
692
693 switch (usage->hid & HID_USAGE_PAGE) {
694 case HID_UP_UNDEFINED:
695 goto ignore;
696
697 case HID_UP_KEYBOARD:
698 set_bit(EV_REP, input->evbit);
699
700 if ((usage->hid & HID_USAGE) < 256) {
701 if (!hid_keyboard[usage->hid & HID_USAGE]) goto ignore;
702 map_key_clear(hid_keyboard[usage->hid & HID_USAGE]);
703 } else
704 map_key(KEY_UNKNOWN);
705
706 break;
707
708 case HID_UP_BUTTON:
709 code = ((usage->hid - 1) & HID_USAGE);
710
711 switch (field->application) {
712 case HID_GD_MOUSE:
713 case HID_GD_POINTER: code += BTN_MOUSE; break;
714 case HID_GD_JOYSTICK:
715 if (code <= 0xf)
716 code += BTN_JOYSTICK;
717 else
718 code += BTN_TRIGGER_HAPPY - 0x10;
719 break;
720 case HID_GD_GAMEPAD:
721 if (code <= 0xf)
722 code += BTN_GAMEPAD;
723 else
724 code += BTN_TRIGGER_HAPPY - 0x10;
725 break;
726 case HID_CP_CONSUMER_CONTROL:
727 if (hidinput_field_in_collection(device, field,
728 HID_COLLECTION_NAMED_ARRAY,
729 HID_CP_PROGRAMMABLEBUTTONS)) {
730 if (code <= 0x1d)
731 code += KEY_MACRO1;
732 else
733 code += BTN_TRIGGER_HAPPY - 0x1e;
734 break;
735 }
736 fallthrough;
737 default:
738 switch (field->physical) {
739 case HID_GD_MOUSE:
740 case HID_GD_POINTER: code += BTN_MOUSE; break;
741 case HID_GD_JOYSTICK: code += BTN_JOYSTICK; break;
742 case HID_GD_GAMEPAD: code += BTN_GAMEPAD; break;
743 default: code += BTN_MISC;
744 }
745 }
746
747 map_key(code);
748 break;
749
750 case HID_UP_SIMULATION:
751 switch (usage->hid & 0xffff) {
752 case 0xba: map_abs(ABS_RUDDER); break;
753 case 0xbb: map_abs(ABS_THROTTLE); break;
754 case 0xc4: map_abs(ABS_GAS); break;
755 case 0xc5: map_abs(ABS_BRAKE); break;
756 case 0xc8: map_abs(ABS_WHEEL); break;
757 default: goto ignore;
758 }
759 break;
760
761 case HID_UP_GENDESK:
762 if ((usage->hid & 0xf0) == 0x80) { /* SystemControl */
763 switch (usage->hid & 0xf) {
764 case 0x1: map_key_clear(KEY_POWER); break;
765 case 0x2: map_key_clear(KEY_SLEEP); break;
766 case 0x3: map_key_clear(KEY_WAKEUP); break;
767 case 0x4: map_key_clear(KEY_CONTEXT_MENU); break;
768 case 0x5: map_key_clear(KEY_MENU); break;
769 case 0x6: map_key_clear(KEY_PROG1); break;
770 case 0x7: map_key_clear(KEY_HELP); break;
771 case 0x8: map_key_clear(KEY_EXIT); break;
772 case 0x9: map_key_clear(KEY_SELECT); break;
773 case 0xa: map_key_clear(KEY_RIGHT); break;
774 case 0xb: map_key_clear(KEY_LEFT); break;
775 case 0xc: map_key_clear(KEY_UP); break;
776 case 0xd: map_key_clear(KEY_DOWN); break;
777 case 0xe: map_key_clear(KEY_POWER2); break;
778 case 0xf: map_key_clear(KEY_RESTART); break;
779 default: goto unknown;
780 }
781 break;
782 }
783
784 if ((usage->hid & 0xf0) == 0xb0) { /* SC - Display */
785 switch (usage->hid & 0xf) {
786 case 0x05: map_key_clear(KEY_SWITCHVIDEOMODE); break;
787 default: goto ignore;
788 }
789 break;
790 }
791
792 /*
793 * Some lazy vendors declare 255 usages for System Control,
794 * leading to the creation of ABS_X|Y axis and too many others.
795 * It wouldn't be a problem if joydev doesn't consider the
796 * device as a joystick then.
797 */
798 if (field->application == HID_GD_SYSTEM_CONTROL)
799 goto ignore;
800
801 if ((usage->hid & 0xf0) == 0x90) { /* D-pad */
802 switch (usage->hid) {
803 case HID_GD_UP: usage->hat_dir = 1; break;
804 case HID_GD_DOWN: usage->hat_dir = 5; break;
805 case HID_GD_RIGHT: usage->hat_dir = 3; break;
806 case HID_GD_LEFT: usage->hat_dir = 7; break;
807 default: goto unknown;
808 }
809 if (field->dpad) {
810 map_abs(field->dpad);
811 goto ignore;
812 }
813 map_abs(ABS_HAT0X);
814 break;
815 }
816
817 switch (usage->hid) {
818 /* These usage IDs map directly to the usage codes. */
819 case HID_GD_X: case HID_GD_Y: case HID_GD_Z:
820 case HID_GD_RX: case HID_GD_RY: case HID_GD_RZ:
821 if (field->flags & HID_MAIN_ITEM_RELATIVE)
822 map_rel(usage->hid & 0xf);
823 else
824 map_abs_clear(usage->hid & 0xf);
825 break;
826
827 case HID_GD_WHEEL:
828 if (field->flags & HID_MAIN_ITEM_RELATIVE) {
829 set_bit(REL_WHEEL, input->relbit);
830 map_rel(REL_WHEEL_HI_RES);
831 } else {
832 map_abs(usage->hid & 0xf);
833 }
834 break;
835 case HID_GD_SLIDER: case HID_GD_DIAL:
836 if (field->flags & HID_MAIN_ITEM_RELATIVE)
837 map_rel(usage->hid & 0xf);
838 else
839 map_abs(usage->hid & 0xf);
840 break;
841
842 case HID_GD_HATSWITCH:
843 usage->hat_min = field->logical_minimum;
844 usage->hat_max = field->logical_maximum;
845 map_abs(ABS_HAT0X);
846 break;
847
848 case HID_GD_START: map_key_clear(BTN_START); break;
849 case HID_GD_SELECT: map_key_clear(BTN_SELECT); break;
850
851 case HID_GD_RFKILL_BTN:
852 /* MS wireless radio ctl extension, also check CA */
853 if (field->application == HID_GD_WIRELESS_RADIO_CTLS) {
854 map_key_clear(KEY_RFKILL);
855 /* We need to simulate the btn release */
856 field->flags |= HID_MAIN_ITEM_RELATIVE;
857 break;
858 }
859 goto unknown;
860
861 default: goto unknown;
862 }
863
864 break;
865
866 case HID_UP_LED:
867 switch (usage->hid & 0xffff) { /* HID-Value: */
868 case 0x01: map_led (LED_NUML); break; /* "Num Lock" */
869 case 0x02: map_led (LED_CAPSL); break; /* "Caps Lock" */
870 case 0x03: map_led (LED_SCROLLL); break; /* "Scroll Lock" */
871 case 0x04: map_led (LED_COMPOSE); break; /* "Compose" */
872 case 0x05: map_led (LED_KANA); break; /* "Kana" */
873 case 0x27: map_led (LED_SLEEP); break; /* "Stand-By" */
874 case 0x4c: map_led (LED_SUSPEND); break; /* "System Suspend" */
875 case 0x09: map_led (LED_MUTE); break; /* "Mute" */
876 case 0x4b: map_led (LED_MISC); break; /* "Generic Indicator" */
877 case 0x19: map_led (LED_MAIL); break; /* "Message Waiting" */
878 case 0x4d: map_led (LED_CHARGING); break; /* "External Power Connected" */
879
880 default: goto ignore;
881 }
882 break;
883
884 case HID_UP_DIGITIZER:
885 if ((field->application & 0xff) == 0x01) /* Digitizer */
886 __set_bit(INPUT_PROP_POINTER, input->propbit);
887 else if ((field->application & 0xff) == 0x02) /* Pen */
888 __set_bit(INPUT_PROP_DIRECT, input->propbit);
889
890 switch (usage->hid & 0xff) {
891 case 0x00: /* Undefined */
892 goto ignore;
893
894 case 0x30: /* TipPressure */
895 if (!test_bit(BTN_TOUCH, input->keybit)) {
896 device->quirks |= HID_QUIRK_NOTOUCH;
897 set_bit(EV_KEY, input->evbit);
898 set_bit(BTN_TOUCH, input->keybit);
899 }
900 map_abs_clear(ABS_PRESSURE);
901 break;
902
903 case 0x32: /* InRange */
904 switch (field->physical) {
905 case HID_DG_PUCK:
906 map_key(BTN_TOOL_MOUSE);
907 break;
908 case HID_DG_FINGER:
909 map_key(BTN_TOOL_FINGER);
910 break;
911 default:
912 /*
913 * If the physical is not given,
914 * rely on the application.
915 */
916 if (!field->physical) {
917 switch (field->application) {
918 case HID_DG_TOUCHSCREEN:
919 case HID_DG_TOUCHPAD:
920 map_key_clear(BTN_TOOL_FINGER);
921 break;
922 default:
923 map_key_clear(BTN_TOOL_PEN);
924 }
925 } else {
926 map_key(BTN_TOOL_PEN);
927 }
928 break;
929 }
930 break;
931
932 case 0x3b: /* Battery Strength */
933 hidinput_setup_battery(device, HID_INPUT_REPORT, field, false);
934 usage->type = EV_PWR;
935 return;
936
937 case 0x3c: /* Invert */
938 map_key_clear(BTN_TOOL_RUBBER);
939 break;
940
941 case 0x3d: /* X Tilt */
942 map_abs_clear(ABS_TILT_X);
943 break;
944
945 case 0x3e: /* Y Tilt */
946 map_abs_clear(ABS_TILT_Y);
947 break;
948
949 case 0x33: /* Touch */
950 case 0x42: /* TipSwitch */
951 case 0x43: /* TipSwitch2 */
952 device->quirks &= ~HID_QUIRK_NOTOUCH;
953 map_key_clear(BTN_TOUCH);
954 break;
955
956 case 0x44: /* BarrelSwitch */
957 map_key_clear(BTN_STYLUS);
958 break;
959
960 case 0x45: /* ERASER */
961 /*
962 * This event is reported when eraser tip touches the surface.
963 * Actual eraser (BTN_TOOL_RUBBER) is set by Invert usage when
964 * tool gets in proximity.
965 */
966 map_key_clear(BTN_TOUCH);
967 break;
968
969 case 0x46: /* TabletPick */
970 case 0x5a: /* SecondaryBarrelSwitch */
971 map_key_clear(BTN_STYLUS2);
972 break;
973
974 case 0x5b: /* TransducerSerialNumber */
975 case 0x6e: /* TransducerSerialNumber2 */
976 map_msc(MSC_SERIAL);
977 break;
978
979 default: goto unknown;
980 }
981 break;
982
983 case HID_UP_TELEPHONY:
984 switch (usage->hid & HID_USAGE) {
985 case 0x2f: map_key_clear(KEY_MICMUTE); break;
986 case 0xb0: map_key_clear(KEY_NUMERIC_0); break;
987 case 0xb1: map_key_clear(KEY_NUMERIC_1); break;
988 case 0xb2: map_key_clear(KEY_NUMERIC_2); break;
989 case 0xb3: map_key_clear(KEY_NUMERIC_3); break;
990 case 0xb4: map_key_clear(KEY_NUMERIC_4); break;
991 case 0xb5: map_key_clear(KEY_NUMERIC_5); break;
992 case 0xb6: map_key_clear(KEY_NUMERIC_6); break;
993 case 0xb7: map_key_clear(KEY_NUMERIC_7); break;
994 case 0xb8: map_key_clear(KEY_NUMERIC_8); break;
995 case 0xb9: map_key_clear(KEY_NUMERIC_9); break;
996 case 0xba: map_key_clear(KEY_NUMERIC_STAR); break;
997 case 0xbb: map_key_clear(KEY_NUMERIC_POUND); break;
998 case 0xbc: map_key_clear(KEY_NUMERIC_A); break;
999 case 0xbd: map_key_clear(KEY_NUMERIC_B); break;
1000 case 0xbe: map_key_clear(KEY_NUMERIC_C); break;
1001 case 0xbf: map_key_clear(KEY_NUMERIC_D); break;
1002 default: goto ignore;
1003 }
1004 break;
1005
1006 case HID_UP_CONSUMER: /* USB HUT v1.12, pages 75-84 */
1007 switch (usage->hid & HID_USAGE) {
1008 case 0x000: goto ignore;
1009 case 0x030: map_key_clear(KEY_POWER); break;
1010 case 0x031: map_key_clear(KEY_RESTART); break;
1011 case 0x032: map_key_clear(KEY_SLEEP); break;
1012 case 0x034: map_key_clear(KEY_SLEEP); break;
1013 case 0x035: map_key_clear(KEY_KBDILLUMTOGGLE); break;
1014 case 0x036: map_key_clear(BTN_MISC); break;
1015
1016 case 0x040: map_key_clear(KEY_MENU); break; /* Menu */
1017 case 0x041: map_key_clear(KEY_SELECT); break; /* Menu Pick */
1018 case 0x042: map_key_clear(KEY_UP); break; /* Menu Up */
1019 case 0x043: map_key_clear(KEY_DOWN); break; /* Menu Down */
1020 case 0x044: map_key_clear(KEY_LEFT); break; /* Menu Left */
1021 case 0x045: map_key_clear(KEY_RIGHT); break; /* Menu Right */
1022 case 0x046: map_key_clear(KEY_ESC); break; /* Menu Escape */
1023 case 0x047: map_key_clear(KEY_KPPLUS); break; /* Menu Value Increase */
1024 case 0x048: map_key_clear(KEY_KPMINUS); break; /* Menu Value Decrease */
1025
1026 case 0x060: map_key_clear(KEY_INFO); break; /* Data On Screen */
1027 case 0x061: map_key_clear(KEY_SUBTITLE); break; /* Closed Caption */
1028 case 0x063: map_key_clear(KEY_VCR); break; /* VCR/TV */
1029 case 0x065: map_key_clear(KEY_CAMERA); break; /* Snapshot */
1030 case 0x069: map_key_clear(KEY_RED); break;
1031 case 0x06a: map_key_clear(KEY_GREEN); break;
1032 case 0x06b: map_key_clear(KEY_BLUE); break;
1033 case 0x06c: map_key_clear(KEY_YELLOW); break;
1034 case 0x06d: map_key_clear(KEY_ASPECT_RATIO); break;
1035
1036 case 0x06f: map_key_clear(KEY_BRIGHTNESSUP); break;
1037 case 0x070: map_key_clear(KEY_BRIGHTNESSDOWN); break;
1038 case 0x072: map_key_clear(KEY_BRIGHTNESS_TOGGLE); break;
1039 case 0x073: map_key_clear(KEY_BRIGHTNESS_MIN); break;
1040 case 0x074: map_key_clear(KEY_BRIGHTNESS_MAX); break;
1041 case 0x075: map_key_clear(KEY_BRIGHTNESS_AUTO); break;
1042
1043 case 0x079: map_key_clear(KEY_KBDILLUMUP); break;
1044 case 0x07a: map_key_clear(KEY_KBDILLUMDOWN); break;
1045 case 0x07c: map_key_clear(KEY_KBDILLUMTOGGLE); break;
1046
1047 case 0x082: map_key_clear(KEY_VIDEO_NEXT); break;
1048 case 0x083: map_key_clear(KEY_LAST); break;
1049 case 0x084: map_key_clear(KEY_ENTER); break;
1050 case 0x088: map_key_clear(KEY_PC); break;
1051 case 0x089: map_key_clear(KEY_TV); break;
1052 case 0x08a: map_key_clear(KEY_WWW); break;
1053 case 0x08b: map_key_clear(KEY_DVD); break;
1054 case 0x08c: map_key_clear(KEY_PHONE); break;
1055 case 0x08d: map_key_clear(KEY_PROGRAM); break;
1056 case 0x08e: map_key_clear(KEY_VIDEOPHONE); break;
1057 case 0x08f: map_key_clear(KEY_GAMES); break;
1058 case 0x090: map_key_clear(KEY_MEMO); break;
1059 case 0x091: map_key_clear(KEY_CD); break;
1060 case 0x092: map_key_clear(KEY_VCR); break;
1061 case 0x093: map_key_clear(KEY_TUNER); break;
1062 case 0x094: map_key_clear(KEY_EXIT); break;
1063 case 0x095: map_key_clear(KEY_HELP); break;
1064 case 0x096: map_key_clear(KEY_TAPE); break;
1065 case 0x097: map_key_clear(KEY_TV2); break;
1066 case 0x098: map_key_clear(KEY_SAT); break;
1067 case 0x09a: map_key_clear(KEY_PVR); break;
1068
1069 case 0x09c: map_key_clear(KEY_CHANNELUP); break;
1070 case 0x09d: map_key_clear(KEY_CHANNELDOWN); break;
1071 case 0x0a0: map_key_clear(KEY_VCR2); break;
1072
1073 case 0x0b0: map_key_clear(KEY_PLAY); break;
1074 case 0x0b1: map_key_clear(KEY_PAUSE); break;
1075 case 0x0b2: map_key_clear(KEY_RECORD); break;
1076 case 0x0b3: map_key_clear(KEY_FASTFORWARD); break;
1077 case 0x0b4: map_key_clear(KEY_REWIND); break;
1078 case 0x0b5: map_key_clear(KEY_NEXTSONG); break;
1079 case 0x0b6: map_key_clear(KEY_PREVIOUSSONG); break;
1080 case 0x0b7: map_key_clear(KEY_STOPCD); break;
1081 case 0x0b8: map_key_clear(KEY_EJECTCD); break;
1082 case 0x0bc: map_key_clear(KEY_MEDIA_REPEAT); break;
1083 case 0x0b9: map_key_clear(KEY_SHUFFLE); break;
1084 case 0x0bf: map_key_clear(KEY_SLOW); break;
1085
1086 case 0x0cd: map_key_clear(KEY_PLAYPAUSE); break;
1087 case 0x0cf: map_key_clear(KEY_VOICECOMMAND); break;
1088
1089 case 0x0d8: map_key_clear(KEY_DICTATE); break;
1090 case 0x0d9: map_key_clear(KEY_EMOJI_PICKER); break;
1091
1092 case 0x0e0: map_abs_clear(ABS_VOLUME); break;
1093 case 0x0e2: map_key_clear(KEY_MUTE); break;
1094 case 0x0e5: map_key_clear(KEY_BASSBOOST); break;
1095 case 0x0e9: map_key_clear(KEY_VOLUMEUP); break;
1096 case 0x0ea: map_key_clear(KEY_VOLUMEDOWN); break;
1097 case 0x0f5: map_key_clear(KEY_SLOW); break;
1098
1099 case 0x181: map_key_clear(KEY_BUTTONCONFIG); break;
1100 case 0x182: map_key_clear(KEY_BOOKMARKS); break;
1101 case 0x183: map_key_clear(KEY_CONFIG); break;
1102 case 0x184: map_key_clear(KEY_WORDPROCESSOR); break;
1103 case 0x185: map_key_clear(KEY_EDITOR); break;
1104 case 0x186: map_key_clear(KEY_SPREADSHEET); break;
1105 case 0x187: map_key_clear(KEY_GRAPHICSEDITOR); break;
1106 case 0x188: map_key_clear(KEY_PRESENTATION); break;
1107 case 0x189: map_key_clear(KEY_DATABASE); break;
1108 case 0x18a: map_key_clear(KEY_MAIL); break;
1109 case 0x18b: map_key_clear(KEY_NEWS); break;
1110 case 0x18c: map_key_clear(KEY_VOICEMAIL); break;
1111 case 0x18d: map_key_clear(KEY_ADDRESSBOOK); break;
1112 case 0x18e: map_key_clear(KEY_CALENDAR); break;
1113 case 0x18f: map_key_clear(KEY_TASKMANAGER); break;
1114 case 0x190: map_key_clear(KEY_JOURNAL); break;
1115 case 0x191: map_key_clear(KEY_FINANCE); break;
1116 case 0x192: map_key_clear(KEY_CALC); break;
1117 case 0x193: map_key_clear(KEY_PLAYER); break;
1118 case 0x194: map_key_clear(KEY_FILE); break;
1119 case 0x196: map_key_clear(KEY_WWW); break;
1120 case 0x199: map_key_clear(KEY_CHAT); break;
1121 case 0x19c: map_key_clear(KEY_LOGOFF); break;
1122 case 0x19e: map_key_clear(KEY_COFFEE); break;
1123 case 0x19f: map_key_clear(KEY_CONTROLPANEL); break;
1124 case 0x1a2: map_key_clear(KEY_APPSELECT); break;
1125 case 0x1a3: map_key_clear(KEY_NEXT); break;
1126 case 0x1a4: map_key_clear(KEY_PREVIOUS); break;
1127 case 0x1a6: map_key_clear(KEY_HELP); break;
1128 case 0x1a7: map_key_clear(KEY_DOCUMENTS); break;
1129 case 0x1ab: map_key_clear(KEY_SPELLCHECK); break;
1130 case 0x1ae: map_key_clear(KEY_KEYBOARD); break;
1131 case 0x1b1: map_key_clear(KEY_SCREENSAVER); break;
1132 case 0x1b4: map_key_clear(KEY_FILE); break;
1133 case 0x1b6: map_key_clear(KEY_IMAGES); break;
1134 case 0x1b7: map_key_clear(KEY_AUDIO); break;
1135 case 0x1b8: map_key_clear(KEY_VIDEO); break;
1136 case 0x1bc: map_key_clear(KEY_MESSENGER); break;
1137 case 0x1bd: map_key_clear(KEY_INFO); break;
1138 case 0x1cb: map_key_clear(KEY_ASSISTANT); break;
1139 case 0x201: map_key_clear(KEY_NEW); break;
1140 case 0x202: map_key_clear(KEY_OPEN); break;
1141 case 0x203: map_key_clear(KEY_CLOSE); break;
1142 case 0x204: map_key_clear(KEY_EXIT); break;
1143 case 0x207: map_key_clear(KEY_SAVE); break;
1144 case 0x208: map_key_clear(KEY_PRINT); break;
1145 case 0x209: map_key_clear(KEY_PROPS); break;
1146 case 0x21a: map_key_clear(KEY_UNDO); break;
1147 case 0x21b: map_key_clear(KEY_COPY); break;
1148 case 0x21c: map_key_clear(KEY_CUT); break;
1149 case 0x21d: map_key_clear(KEY_PASTE); break;
1150 case 0x21f: map_key_clear(KEY_FIND); break;
1151 case 0x221: map_key_clear(KEY_SEARCH); break;
1152 case 0x222: map_key_clear(KEY_GOTO); break;
1153 case 0x223: map_key_clear(KEY_HOMEPAGE); break;
1154 case 0x224: map_key_clear(KEY_BACK); break;
1155 case 0x225: map_key_clear(KEY_FORWARD); break;
1156 case 0x226: map_key_clear(KEY_STOP); break;
1157 case 0x227: map_key_clear(KEY_REFRESH); break;
1158 case 0x22a: map_key_clear(KEY_BOOKMARKS); break;
1159 case 0x22d: map_key_clear(KEY_ZOOMIN); break;
1160 case 0x22e: map_key_clear(KEY_ZOOMOUT); break;
1161 case 0x22f: map_key_clear(KEY_ZOOMRESET); break;
1162 case 0x232: map_key_clear(KEY_FULL_SCREEN); break;
1163 case 0x233: map_key_clear(KEY_SCROLLUP); break;
1164 case 0x234: map_key_clear(KEY_SCROLLDOWN); break;
1165 case 0x238: /* AC Pan */
1166 set_bit(REL_HWHEEL, input->relbit);
1167 map_rel(REL_HWHEEL_HI_RES);
1168 break;
1169 case 0x23d: map_key_clear(KEY_EDIT); break;
1170 case 0x25f: map_key_clear(KEY_CANCEL); break;
1171 case 0x269: map_key_clear(KEY_INSERT); break;
1172 case 0x26a: map_key_clear(KEY_DELETE); break;
1173 case 0x279: map_key_clear(KEY_REDO); break;
1174
1175 case 0x289: map_key_clear(KEY_REPLY); break;
1176 case 0x28b: map_key_clear(KEY_FORWARDMAIL); break;
1177 case 0x28c: map_key_clear(KEY_SEND); break;
1178
1179 case 0x29d: map_key_clear(KEY_KBD_LAYOUT_NEXT); break;
1180
1181 case 0x2a2: map_key_clear(KEY_ALL_APPLICATIONS); break;
1182
1183 case 0x2c7: map_key_clear(KEY_KBDINPUTASSIST_PREV); break;
1184 case 0x2c8: map_key_clear(KEY_KBDINPUTASSIST_NEXT); break;
1185 case 0x2c9: map_key_clear(KEY_KBDINPUTASSIST_PREVGROUP); break;
1186 case 0x2ca: map_key_clear(KEY_KBDINPUTASSIST_NEXTGROUP); break;
1187 case 0x2cb: map_key_clear(KEY_KBDINPUTASSIST_ACCEPT); break;
1188 case 0x2cc: map_key_clear(KEY_KBDINPUTASSIST_CANCEL); break;
1189
1190 case 0x29f: map_key_clear(KEY_SCALE); break;
1191
1192 default: map_key_clear(KEY_UNKNOWN);
1193 }
1194 break;
1195
1196 case HID_UP_GENDEVCTRLS:
1197 switch (usage->hid) {
1198 case HID_DC_BATTERYSTRENGTH:
1199 hidinput_setup_battery(device, HID_INPUT_REPORT, field, false);
1200 usage->type = EV_PWR;
1201 return;
1202 }
1203 goto unknown;
1204
1205 case HID_UP_BATTERY:
1206 switch (usage->hid) {
1207 case HID_BAT_ABSOLUTESTATEOFCHARGE:
1208 hidinput_setup_battery(device, HID_INPUT_REPORT, field, true);
1209 usage->type = EV_PWR;
1210 return;
1211 }
1212 goto unknown;
1213
1214 case HID_UP_HPVENDOR: /* Reported on a Dutch layout HP5308 */
1215 set_bit(EV_REP, input->evbit);
1216 switch (usage->hid & HID_USAGE) {
1217 case 0x021: map_key_clear(KEY_PRINT); break;
1218 case 0x070: map_key_clear(KEY_HP); break;
1219 case 0x071: map_key_clear(KEY_CAMERA); break;
1220 case 0x072: map_key_clear(KEY_SOUND); break;
1221 case 0x073: map_key_clear(KEY_QUESTION); break;
1222 case 0x080: map_key_clear(KEY_EMAIL); break;
1223 case 0x081: map_key_clear(KEY_CHAT); break;
1224 case 0x082: map_key_clear(KEY_SEARCH); break;
1225 case 0x083: map_key_clear(KEY_CONNECT); break;
1226 case 0x084: map_key_clear(KEY_FINANCE); break;
1227 case 0x085: map_key_clear(KEY_SPORT); break;
1228 case 0x086: map_key_clear(KEY_SHOP); break;
1229 default: goto ignore;
1230 }
1231 break;
1232
1233 case HID_UP_HPVENDOR2:
1234 set_bit(EV_REP, input->evbit);
1235 switch (usage->hid & HID_USAGE) {
1236 case 0x001: map_key_clear(KEY_MICMUTE); break;
1237 case 0x003: map_key_clear(KEY_BRIGHTNESSDOWN); break;
1238 case 0x004: map_key_clear(KEY_BRIGHTNESSUP); break;
1239 default: goto ignore;
1240 }
1241 break;
1242
1243 case HID_UP_MSVENDOR:
1244 goto ignore;
1245
1246 case HID_UP_CUSTOM: /* Reported on Logitech and Apple USB keyboards */
1247 set_bit(EV_REP, input->evbit);
1248 goto ignore;
1249
1250 case HID_UP_LOGIVENDOR:
1251 /* intentional fallback */
1252 case HID_UP_LOGIVENDOR2:
1253 /* intentional fallback */
1254 case HID_UP_LOGIVENDOR3:
1255 goto ignore;
1256
1257 case HID_UP_PID:
1258 switch (usage->hid & HID_USAGE) {
1259 case 0xa4: map_key_clear(BTN_DEAD); break;
1260 default: goto ignore;
1261 }
1262 break;
1263
1264 default:
1265 unknown:
1266 if (field->report_size == 1) {
1267 if (field->report->type == HID_OUTPUT_REPORT) {
1268 map_led(LED_MISC);
1269 break;
1270 }
1271 map_key(BTN_MISC);
1272 break;
1273 }
1274 if (field->flags & HID_MAIN_ITEM_RELATIVE) {
1275 map_rel(REL_MISC);
1276 break;
1277 }
1278 map_abs(ABS_MISC);
1279 break;
1280 }
1281
1282 mapped:
1283 /* Mapping failed, bail out */
1284 if (!bit)
1285 return;
1286
1287 if (device->driver->input_mapped &&
1288 device->driver->input_mapped(device, hidinput, field, usage,
1289 &bit, &max) < 0) {
1290 /*
1291 * The driver indicated that no further generic handling
1292 * of the usage is desired.
1293 */
1294 return;
1295 }
1296
1297 set_bit(usage->type, input->evbit);
1298
1299 /*
1300 * This part is *really* controversial:
1301 * - HID aims at being generic so we should do our best to export
1302 * all incoming events
1303 * - HID describes what events are, so there is no reason for ABS_X
1304 * to be mapped to ABS_Y
1305 * - HID is using *_MISC+N as a default value, but nothing prevents
1306 * *_MISC+N to overwrite a legitimate even, which confuses userspace
1307 * (for instance ABS_MISC + 7 is ABS_MT_SLOT, which has a different
1308 * processing)
1309 *
1310 * If devices still want to use this (at their own risk), they will
1311 * have to use the quirk HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE, but
1312 * the default should be a reliable mapping.
1313 */
1314 while (usage->code <= max && test_and_set_bit(usage->code, bit)) {
1315 if (device->quirks & HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE) {
1316 usage->code = find_next_zero_bit(bit,
1317 max + 1,
1318 usage->code);
1319 } else {
1320 device->status |= HID_STAT_DUP_DETECTED;
1321 goto ignore;
1322 }
1323 }
1324
1325 if (usage->code > max)
1326 goto ignore;
1327
1328 if (usage->type == EV_ABS) {
1329
1330 int a = field->logical_minimum;
1331 int b = field->logical_maximum;
1332
1333 if ((device->quirks & HID_QUIRK_BADPAD) && (usage->code == ABS_X || usage->code == ABS_Y)) {
1334 a = field->logical_minimum = 0;
1335 b = field->logical_maximum = 255;
1336 }
1337
1338 if (field->application == HID_GD_GAMEPAD || field->application == HID_GD_JOYSTICK)
1339 input_set_abs_params(input, usage->code, a, b, (b - a) >> 8, (b - a) >> 4);
1340 else input_set_abs_params(input, usage->code, a, b, 0, 0);
1341
1342 input_abs_set_res(input, usage->code,
1343 hidinput_calc_abs_res(field, usage->code));
1344
1345 /* use a larger default input buffer for MT devices */
1346 if (usage->code == ABS_MT_POSITION_X && input->hint_events_per_packet == 0)
1347 input_set_events_per_packet(input, 60);
1348 }
1349
1350 if (usage->type == EV_ABS &&
1351 (usage->hat_min < usage->hat_max || usage->hat_dir)) {
1352 int i;
1353 for (i = usage->code; i < usage->code + 2 && i <= max; i++) {
1354 input_set_abs_params(input, i, -1, 1, 0, 0);
1355 set_bit(i, input->absbit);
1356 }
1357 if (usage->hat_dir && !field->dpad)
1358 field->dpad = usage->code;
1359 }
1360
1361 /* for those devices which produce Consumer volume usage as relative,
1362 * we emulate pressing volumeup/volumedown appropriate number of times
1363 * in hidinput_hid_event()
1364 */
1365 if ((usage->type == EV_ABS) && (field->flags & HID_MAIN_ITEM_RELATIVE) &&
1366 (usage->code == ABS_VOLUME)) {
1367 set_bit(KEY_VOLUMEUP, input->keybit);
1368 set_bit(KEY_VOLUMEDOWN, input->keybit);
1369 }
1370
1371 if (usage->type == EV_KEY) {
1372 set_bit(EV_MSC, input->evbit);
1373 set_bit(MSC_SCAN, input->mscbit);
1374 }
1375
1376 return;
1377
1378 ignore:
1379 usage->type = 0;
1380 usage->code = 0;
1381 }
1382
hidinput_handle_scroll(struct hid_usage * usage,struct input_dev * input,__s32 value)1383 static void hidinput_handle_scroll(struct hid_usage *usage,
1384 struct input_dev *input,
1385 __s32 value)
1386 {
1387 int code;
1388 int hi_res, lo_res;
1389
1390 if (value == 0)
1391 return;
1392
1393 if (usage->code == REL_WHEEL_HI_RES)
1394 code = REL_WHEEL;
1395 else
1396 code = REL_HWHEEL;
1397
1398 /*
1399 * Windows reports one wheel click as value 120. Where a high-res
1400 * scroll wheel is present, a fraction of 120 is reported instead.
1401 * Our REL_WHEEL_HI_RES axis does the same because all HW must
1402 * adhere to the 120 expectation.
1403 */
1404 hi_res = value * 120/usage->resolution_multiplier;
1405
1406 usage->wheel_accumulated += hi_res;
1407 lo_res = usage->wheel_accumulated/120;
1408 if (lo_res)
1409 usage->wheel_accumulated -= lo_res * 120;
1410
1411 input_event(input, EV_REL, code, lo_res);
1412 input_event(input, EV_REL, usage->code, hi_res);
1413 }
1414
hid_report_release_tool(struct hid_report * report,struct input_dev * input,unsigned int tool)1415 static void hid_report_release_tool(struct hid_report *report, struct input_dev *input,
1416 unsigned int tool)
1417 {
1418 /* if the given tool is not currently reported, ignore */
1419 if (!test_bit(tool, input->key))
1420 return;
1421
1422 /*
1423 * if the given tool was previously set, release it,
1424 * release any TOUCH and send an EV_SYN
1425 */
1426 input_event(input, EV_KEY, BTN_TOUCH, 0);
1427 input_event(input, EV_KEY, tool, 0);
1428 input_event(input, EV_SYN, SYN_REPORT, 0);
1429
1430 report->tool = 0;
1431 }
1432
hid_report_set_tool(struct hid_report * report,struct input_dev * input,unsigned int new_tool)1433 static void hid_report_set_tool(struct hid_report *report, struct input_dev *input,
1434 unsigned int new_tool)
1435 {
1436 if (report->tool != new_tool)
1437 hid_report_release_tool(report, input, report->tool);
1438
1439 input_event(input, EV_KEY, new_tool, 1);
1440 report->tool = new_tool;
1441 }
1442
hidinput_hid_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value)1443 void hidinput_hid_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
1444 {
1445 struct input_dev *input;
1446 struct hid_report *report = field->report;
1447 unsigned *quirks = &hid->quirks;
1448
1449 if (!usage->type)
1450 return;
1451
1452 if (usage->type == EV_PWR) {
1453 hidinput_update_battery(hid, value);
1454 return;
1455 }
1456
1457 if (!field->hidinput)
1458 return;
1459
1460 input = field->hidinput->input;
1461
1462 if (usage->hat_min < usage->hat_max || usage->hat_dir) {
1463 int hat_dir = usage->hat_dir;
1464 if (!hat_dir)
1465 hat_dir = (value - usage->hat_min) * 8 / (usage->hat_max - usage->hat_min + 1) + 1;
1466 if (hat_dir < 0 || hat_dir > 8) hat_dir = 0;
1467 input_event(input, usage->type, usage->code , hid_hat_to_axis[hat_dir].x);
1468 input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[hat_dir].y);
1469 return;
1470 }
1471
1472 /*
1473 * Ignore out-of-range values as per HID specification,
1474 * section 5.10 and 6.2.25, when NULL state bit is present.
1475 * When it's not, clamp the value to match Microsoft's input
1476 * driver as mentioned in "Required HID usages for digitizers":
1477 * https://msdn.microsoft.com/en-us/library/windows/hardware/dn672278(v=vs.85).asp
1478 *
1479 * The logical_minimum < logical_maximum check is done so that we
1480 * don't unintentionally discard values sent by devices which
1481 * don't specify logical min and max.
1482 */
1483 if ((field->flags & HID_MAIN_ITEM_VARIABLE) &&
1484 field->logical_minimum < field->logical_maximum) {
1485 if (field->flags & HID_MAIN_ITEM_NULL_STATE &&
1486 (value < field->logical_minimum ||
1487 value > field->logical_maximum)) {
1488 dbg_hid("Ignoring out-of-range value %x\n", value);
1489 return;
1490 }
1491 value = clamp(value,
1492 field->logical_minimum,
1493 field->logical_maximum);
1494 }
1495
1496 switch (usage->hid) {
1497 case HID_DG_ERASER:
1498 report->tool_active |= !!value;
1499
1500 /*
1501 * if eraser is set, we must enforce BTN_TOOL_RUBBER
1502 * to accommodate for devices not following the spec.
1503 */
1504 if (value)
1505 hid_report_set_tool(report, input, BTN_TOOL_RUBBER);
1506 else if (report->tool != BTN_TOOL_RUBBER)
1507 /* value is off, tool is not rubber, ignore */
1508 return;
1509
1510 /* let hid-input set BTN_TOUCH */
1511 break;
1512
1513 case HID_DG_INVERT:
1514 report->tool_active |= !!value;
1515
1516 /*
1517 * If invert is set, we store BTN_TOOL_RUBBER.
1518 */
1519 if (value)
1520 hid_report_set_tool(report, input, BTN_TOOL_RUBBER);
1521 else if (!report->tool_active)
1522 /* tool_active not set means Invert and Eraser are not set */
1523 hid_report_release_tool(report, input, BTN_TOOL_RUBBER);
1524
1525 /* no further processing */
1526 return;
1527
1528 case HID_DG_INRANGE:
1529 report->tool_active |= !!value;
1530
1531 if (report->tool_active) {
1532 /*
1533 * if tool is not set but is marked as active,
1534 * assume ours
1535 */
1536 if (!report->tool)
1537 report->tool = usage->code;
1538
1539 /* drivers may have changed the value behind our back, resend it */
1540 hid_report_set_tool(report, input, report->tool);
1541 } else {
1542 hid_report_release_tool(report, input, usage->code);
1543 }
1544
1545 /* reset tool_active for the next event */
1546 report->tool_active = false;
1547
1548 /* no further processing */
1549 return;
1550
1551 case HID_DG_TIPSWITCH:
1552 report->tool_active |= !!value;
1553
1554 /* if tool is set to RUBBER we should ignore the current value */
1555 if (report->tool == BTN_TOOL_RUBBER)
1556 return;
1557
1558 break;
1559
1560 case HID_DG_TIPPRESSURE:
1561 if (*quirks & HID_QUIRK_NOTOUCH) {
1562 int a = field->logical_minimum;
1563 int b = field->logical_maximum;
1564
1565 if (value > a + ((b - a) >> 3)) {
1566 input_event(input, EV_KEY, BTN_TOUCH, 1);
1567 report->tool_active = true;
1568 }
1569 }
1570 break;
1571
1572 case HID_UP_PID | 0x83UL: /* Simultaneous Effects Max */
1573 dbg_hid("Maximum Effects - %d\n",value);
1574 return;
1575
1576 case HID_UP_PID | 0x7fUL:
1577 dbg_hid("PID Pool Report\n");
1578 return;
1579 }
1580
1581 switch (usage->type) {
1582 case EV_KEY:
1583 if (usage->code == 0) /* Key 0 is "unassigned", not KEY_UNKNOWN */
1584 return;
1585 break;
1586
1587 case EV_REL:
1588 if (usage->code == REL_WHEEL_HI_RES ||
1589 usage->code == REL_HWHEEL_HI_RES) {
1590 hidinput_handle_scroll(usage, input, value);
1591 return;
1592 }
1593 break;
1594
1595 case EV_ABS:
1596 if ((field->flags & HID_MAIN_ITEM_RELATIVE) &&
1597 usage->code == ABS_VOLUME) {
1598 int count = abs(value);
1599 int direction = value > 0 ? KEY_VOLUMEUP : KEY_VOLUMEDOWN;
1600 int i;
1601
1602 for (i = 0; i < count; i++) {
1603 input_event(input, EV_KEY, direction, 1);
1604 input_sync(input);
1605 input_event(input, EV_KEY, direction, 0);
1606 input_sync(input);
1607 }
1608 return;
1609
1610 } else if (((*quirks & HID_QUIRK_X_INVERT) && usage->code == ABS_X) ||
1611 ((*quirks & HID_QUIRK_Y_INVERT) && usage->code == ABS_Y))
1612 value = field->logical_maximum - value;
1613 break;
1614 }
1615
1616 /*
1617 * Ignore reports for absolute data if the data didn't change. This is
1618 * not only an optimization but also fixes 'dead' key reports. Some
1619 * RollOver implementations for localized keys (like BACKSLASH/PIPE; HID
1620 * 0x31 and 0x32) report multiple keys, even though a localized keyboard
1621 * can only have one of them physically available. The 'dead' keys
1622 * report constant 0. As all map to the same keycode, they'd confuse
1623 * the input layer. If we filter the 'dead' keys on the HID level, we
1624 * skip the keycode translation and only forward real events.
1625 */
1626 if (!(field->flags & (HID_MAIN_ITEM_RELATIVE |
1627 HID_MAIN_ITEM_BUFFERED_BYTE)) &&
1628 (field->flags & HID_MAIN_ITEM_VARIABLE) &&
1629 usage->usage_index < field->maxusage &&
1630 value == field->value[usage->usage_index])
1631 return;
1632
1633 /* report the usage code as scancode if the key status has changed */
1634 if (usage->type == EV_KEY &&
1635 (!test_bit(usage->code, input->key)) == value)
1636 input_event(input, EV_MSC, MSC_SCAN, usage->hid);
1637
1638 input_event(input, usage->type, usage->code, value);
1639
1640 if ((field->flags & HID_MAIN_ITEM_RELATIVE) &&
1641 usage->type == EV_KEY && value) {
1642 input_sync(input);
1643 input_event(input, usage->type, usage->code, 0);
1644 }
1645 }
1646
hidinput_report_event(struct hid_device * hid,struct hid_report * report)1647 void hidinput_report_event(struct hid_device *hid, struct hid_report *report)
1648 {
1649 struct hid_input *hidinput;
1650
1651 if (hid->quirks & HID_QUIRK_NO_INPUT_SYNC)
1652 return;
1653
1654 list_for_each_entry(hidinput, &hid->inputs, list)
1655 input_sync(hidinput->input);
1656 }
1657 EXPORT_SYMBOL_GPL(hidinput_report_event);
1658
hidinput_find_field(struct hid_device * hid,unsigned int type,unsigned int code,struct hid_field ** field)1659 static int hidinput_find_field(struct hid_device *hid, unsigned int type,
1660 unsigned int code, struct hid_field **field)
1661 {
1662 struct hid_report *report;
1663 int i, j;
1664
1665 list_for_each_entry(report, &hid->report_enum[HID_OUTPUT_REPORT].report_list, list) {
1666 for (i = 0; i < report->maxfield; i++) {
1667 *field = report->field[i];
1668 for (j = 0; j < (*field)->maxusage; j++)
1669 if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
1670 return j;
1671 }
1672 }
1673 return -1;
1674 }
1675
hidinput_get_led_field(struct hid_device * hid)1676 struct hid_field *hidinput_get_led_field(struct hid_device *hid)
1677 {
1678 struct hid_report *report;
1679 struct hid_field *field;
1680 int i, j;
1681
1682 list_for_each_entry(report,
1683 &hid->report_enum[HID_OUTPUT_REPORT].report_list,
1684 list) {
1685 for (i = 0; i < report->maxfield; i++) {
1686 field = report->field[i];
1687 for (j = 0; j < field->maxusage; j++)
1688 if (field->usage[j].type == EV_LED)
1689 return field;
1690 }
1691 }
1692 return NULL;
1693 }
1694 EXPORT_SYMBOL_GPL(hidinput_get_led_field);
1695
hidinput_count_leds(struct hid_device * hid)1696 unsigned int hidinput_count_leds(struct hid_device *hid)
1697 {
1698 struct hid_report *report;
1699 struct hid_field *field;
1700 int i, j;
1701 unsigned int count = 0;
1702
1703 list_for_each_entry(report,
1704 &hid->report_enum[HID_OUTPUT_REPORT].report_list,
1705 list) {
1706 for (i = 0; i < report->maxfield; i++) {
1707 field = report->field[i];
1708 for (j = 0; j < field->maxusage; j++)
1709 if (field->usage[j].type == EV_LED &&
1710 field->value[j])
1711 count += 1;
1712 }
1713 }
1714 return count;
1715 }
1716 EXPORT_SYMBOL_GPL(hidinput_count_leds);
1717
hidinput_led_worker(struct work_struct * work)1718 static void hidinput_led_worker(struct work_struct *work)
1719 {
1720 struct hid_device *hid = container_of(work, struct hid_device,
1721 led_work);
1722 struct hid_field *field;
1723 struct hid_report *report;
1724 int ret;
1725 u32 len;
1726 __u8 *buf;
1727
1728 field = hidinput_get_led_field(hid);
1729 if (!field)
1730 return;
1731
1732 /*
1733 * field->report is accessed unlocked regarding HID core. So there might
1734 * be another incoming SET-LED request from user-space, which changes
1735 * the LED state while we assemble our outgoing buffer. However, this
1736 * doesn't matter as hid_output_report() correctly converts it into a
1737 * boolean value no matter what information is currently set on the LED
1738 * field (even garbage). So the remote device will always get a valid
1739 * request.
1740 * And in case we send a wrong value, a next led worker is spawned
1741 * for every SET-LED request so the following worker will send the
1742 * correct value, guaranteed!
1743 */
1744
1745 report = field->report;
1746
1747 /* use custom SET_REPORT request if possible (asynchronous) */
1748 if (hid->ll_driver->request)
1749 return hid->ll_driver->request(hid, report, HID_REQ_SET_REPORT);
1750
1751 /* fall back to generic raw-output-report */
1752 len = hid_report_len(report);
1753 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1754 if (!buf)
1755 return;
1756
1757 hid_output_report(report, buf);
1758 /* synchronous output report */
1759 ret = hid_hw_output_report(hid, buf, len);
1760 if (ret == -ENOSYS)
1761 hid_hw_raw_request(hid, report->id, buf, len, HID_OUTPUT_REPORT,
1762 HID_REQ_SET_REPORT);
1763 kfree(buf);
1764 }
1765
hidinput_input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)1766 static int hidinput_input_event(struct input_dev *dev, unsigned int type,
1767 unsigned int code, int value)
1768 {
1769 struct hid_device *hid = input_get_drvdata(dev);
1770 struct hid_field *field;
1771 int offset;
1772
1773 if (type == EV_FF)
1774 return input_ff_event(dev, type, code, value);
1775
1776 if (type != EV_LED)
1777 return -1;
1778
1779 if ((offset = hidinput_find_field(hid, type, code, &field)) == -1) {
1780 hid_warn(dev, "event field not found\n");
1781 return -1;
1782 }
1783
1784 hid_set_field(field, offset, value);
1785
1786 schedule_work(&hid->led_work);
1787 return 0;
1788 }
1789
hidinput_open(struct input_dev * dev)1790 static int hidinput_open(struct input_dev *dev)
1791 {
1792 struct hid_device *hid = input_get_drvdata(dev);
1793
1794 return hid_hw_open(hid);
1795 }
1796
hidinput_close(struct input_dev * dev)1797 static void hidinput_close(struct input_dev *dev)
1798 {
1799 struct hid_device *hid = input_get_drvdata(dev);
1800
1801 hid_hw_close(hid);
1802 }
1803
__hidinput_change_resolution_multipliers(struct hid_device * hid,struct hid_report * report,bool use_logical_max)1804 static bool __hidinput_change_resolution_multipliers(struct hid_device *hid,
1805 struct hid_report *report, bool use_logical_max)
1806 {
1807 struct hid_usage *usage;
1808 bool update_needed = false;
1809 bool get_report_completed = false;
1810 int i, j;
1811
1812 if (report->maxfield == 0)
1813 return false;
1814
1815 for (i = 0; i < report->maxfield; i++) {
1816 __s32 value = use_logical_max ?
1817 report->field[i]->logical_maximum :
1818 report->field[i]->logical_minimum;
1819
1820 /* There is no good reason for a Resolution
1821 * Multiplier to have a count other than 1.
1822 * Ignore that case.
1823 */
1824 if (report->field[i]->report_count != 1)
1825 continue;
1826
1827 for (j = 0; j < report->field[i]->maxusage; j++) {
1828 usage = &report->field[i]->usage[j];
1829
1830 if (usage->hid != HID_GD_RESOLUTION_MULTIPLIER)
1831 continue;
1832
1833 /*
1834 * If we have more than one feature within this
1835 * report we need to fill in the bits from the
1836 * others before we can overwrite the ones for the
1837 * Resolution Multiplier.
1838 *
1839 * But if we're not allowed to read from the device,
1840 * we just bail. Such a device should not exist
1841 * anyway.
1842 */
1843 if (!get_report_completed && report->maxfield > 1) {
1844 if (hid->quirks & HID_QUIRK_NO_INIT_REPORTS)
1845 return update_needed;
1846
1847 hid_hw_request(hid, report, HID_REQ_GET_REPORT);
1848 hid_hw_wait(hid);
1849 get_report_completed = true;
1850 }
1851
1852 report->field[i]->value[j] = value;
1853 update_needed = true;
1854 }
1855 }
1856
1857 return update_needed;
1858 }
1859
hidinput_change_resolution_multipliers(struct hid_device * hid)1860 static void hidinput_change_resolution_multipliers(struct hid_device *hid)
1861 {
1862 struct hid_report_enum *rep_enum;
1863 struct hid_report *rep;
1864 int ret;
1865
1866 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1867 list_for_each_entry(rep, &rep_enum->report_list, list) {
1868 bool update_needed = __hidinput_change_resolution_multipliers(hid,
1869 rep, true);
1870
1871 if (update_needed) {
1872 ret = __hid_request(hid, rep, HID_REQ_SET_REPORT);
1873 if (ret) {
1874 __hidinput_change_resolution_multipliers(hid,
1875 rep, false);
1876 return;
1877 }
1878 }
1879 }
1880
1881 /* refresh our structs */
1882 hid_setup_resolution_multiplier(hid);
1883 }
1884
report_features(struct hid_device * hid)1885 static void report_features(struct hid_device *hid)
1886 {
1887 struct hid_driver *drv = hid->driver;
1888 struct hid_report_enum *rep_enum;
1889 struct hid_report *rep;
1890 struct hid_usage *usage;
1891 int i, j;
1892
1893 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1894 list_for_each_entry(rep, &rep_enum->report_list, list)
1895 for (i = 0; i < rep->maxfield; i++) {
1896 /* Ignore if report count is out of bounds. */
1897 if (rep->field[i]->report_count < 1)
1898 continue;
1899
1900 for (j = 0; j < rep->field[i]->maxusage; j++) {
1901 usage = &rep->field[i]->usage[j];
1902
1903 /* Verify if Battery Strength feature is available */
1904 if (usage->hid == HID_DC_BATTERYSTRENGTH)
1905 hidinput_setup_battery(hid, HID_FEATURE_REPORT,
1906 rep->field[i], false);
1907
1908 if (drv->feature_mapping)
1909 drv->feature_mapping(hid, rep->field[i], usage);
1910 }
1911 }
1912 }
1913
hidinput_allocate(struct hid_device * hid,unsigned int application)1914 static struct hid_input *hidinput_allocate(struct hid_device *hid,
1915 unsigned int application)
1916 {
1917 struct hid_input *hidinput = kzalloc(sizeof(*hidinput), GFP_KERNEL);
1918 struct input_dev *input_dev = input_allocate_device();
1919 const char *suffix = NULL;
1920 size_t suffix_len, name_len;
1921
1922 if (!hidinput || !input_dev)
1923 goto fail;
1924
1925 if ((hid->quirks & HID_QUIRK_INPUT_PER_APP) &&
1926 hid->maxapplication > 1) {
1927 switch (application) {
1928 case HID_GD_KEYBOARD:
1929 suffix = "Keyboard";
1930 break;
1931 case HID_GD_KEYPAD:
1932 suffix = "Keypad";
1933 break;
1934 case HID_GD_MOUSE:
1935 suffix = "Mouse";
1936 break;
1937 case HID_DG_PEN:
1938 /*
1939 * yes, there is an issue here:
1940 * DG_PEN -> "Stylus"
1941 * DG_STYLUS -> "Pen"
1942 * But changing this now means users with config snippets
1943 * will have to change it and the test suite will not be happy.
1944 */
1945 suffix = "Stylus";
1946 break;
1947 case HID_DG_STYLUS:
1948 suffix = "Pen";
1949 break;
1950 case HID_DG_TOUCHSCREEN:
1951 suffix = "Touchscreen";
1952 break;
1953 case HID_DG_TOUCHPAD:
1954 suffix = "Touchpad";
1955 break;
1956 case HID_GD_SYSTEM_CONTROL:
1957 suffix = "System Control";
1958 break;
1959 case HID_CP_CONSUMER_CONTROL:
1960 suffix = "Consumer Control";
1961 break;
1962 case HID_GD_WIRELESS_RADIO_CTLS:
1963 suffix = "Wireless Radio Control";
1964 break;
1965 case HID_GD_SYSTEM_MULTIAXIS:
1966 suffix = "System Multi Axis";
1967 break;
1968 default:
1969 break;
1970 }
1971 }
1972
1973 if (suffix) {
1974 name_len = strlen(hid->name);
1975 suffix_len = strlen(suffix);
1976 if ((name_len < suffix_len) ||
1977 strcmp(hid->name + name_len - suffix_len, suffix)) {
1978 hidinput->name = kasprintf(GFP_KERNEL, "%s %s",
1979 hid->name, suffix);
1980 if (!hidinput->name)
1981 goto fail;
1982 }
1983 }
1984
1985 input_set_drvdata(input_dev, hid);
1986 input_dev->event = hidinput_input_event;
1987 input_dev->open = hidinput_open;
1988 input_dev->close = hidinput_close;
1989 input_dev->setkeycode = hidinput_setkeycode;
1990 input_dev->getkeycode = hidinput_getkeycode;
1991
1992 input_dev->name = hidinput->name ? hidinput->name : hid->name;
1993 input_dev->phys = hid->phys;
1994 input_dev->uniq = hid->uniq;
1995 input_dev->id.bustype = hid->bus;
1996 input_dev->id.vendor = hid->vendor;
1997 input_dev->id.product = hid->product;
1998 input_dev->id.version = hid->version;
1999 input_dev->dev.parent = &hid->dev;
2000
2001 hidinput->input = input_dev;
2002 hidinput->application = application;
2003 list_add_tail(&hidinput->list, &hid->inputs);
2004
2005 INIT_LIST_HEAD(&hidinput->reports);
2006
2007 return hidinput;
2008
2009 fail:
2010 kfree(hidinput);
2011 input_free_device(input_dev);
2012 hid_err(hid, "Out of memory during hid input probe\n");
2013 return NULL;
2014 }
2015
hidinput_has_been_populated(struct hid_input * hidinput)2016 static bool hidinput_has_been_populated(struct hid_input *hidinput)
2017 {
2018 int i;
2019 unsigned long r = 0;
2020
2021 for (i = 0; i < BITS_TO_LONGS(EV_CNT); i++)
2022 r |= hidinput->input->evbit[i];
2023
2024 for (i = 0; i < BITS_TO_LONGS(KEY_CNT); i++)
2025 r |= hidinput->input->keybit[i];
2026
2027 for (i = 0; i < BITS_TO_LONGS(REL_CNT); i++)
2028 r |= hidinput->input->relbit[i];
2029
2030 for (i = 0; i < BITS_TO_LONGS(ABS_CNT); i++)
2031 r |= hidinput->input->absbit[i];
2032
2033 for (i = 0; i < BITS_TO_LONGS(MSC_CNT); i++)
2034 r |= hidinput->input->mscbit[i];
2035
2036 for (i = 0; i < BITS_TO_LONGS(LED_CNT); i++)
2037 r |= hidinput->input->ledbit[i];
2038
2039 for (i = 0; i < BITS_TO_LONGS(SND_CNT); i++)
2040 r |= hidinput->input->sndbit[i];
2041
2042 for (i = 0; i < BITS_TO_LONGS(FF_CNT); i++)
2043 r |= hidinput->input->ffbit[i];
2044
2045 for (i = 0; i < BITS_TO_LONGS(SW_CNT); i++)
2046 r |= hidinput->input->swbit[i];
2047
2048 return !!r;
2049 }
2050
hidinput_cleanup_hidinput(struct hid_device * hid,struct hid_input * hidinput)2051 static void hidinput_cleanup_hidinput(struct hid_device *hid,
2052 struct hid_input *hidinput)
2053 {
2054 struct hid_report *report;
2055 int i, k;
2056
2057 list_del(&hidinput->list);
2058 input_free_device(hidinput->input);
2059 kfree(hidinput->name);
2060
2061 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
2062 if (k == HID_OUTPUT_REPORT &&
2063 hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS)
2064 continue;
2065
2066 list_for_each_entry(report, &hid->report_enum[k].report_list,
2067 list) {
2068
2069 for (i = 0; i < report->maxfield; i++)
2070 if (report->field[i]->hidinput == hidinput)
2071 report->field[i]->hidinput = NULL;
2072 }
2073 }
2074
2075 kfree(hidinput);
2076 }
2077
hidinput_match(struct hid_report * report)2078 static struct hid_input *hidinput_match(struct hid_report *report)
2079 {
2080 struct hid_device *hid = report->device;
2081 struct hid_input *hidinput;
2082
2083 list_for_each_entry(hidinput, &hid->inputs, list) {
2084 if (hidinput->report &&
2085 hidinput->report->id == report->id)
2086 return hidinput;
2087 }
2088
2089 return NULL;
2090 }
2091
hidinput_match_application(struct hid_report * report)2092 static struct hid_input *hidinput_match_application(struct hid_report *report)
2093 {
2094 struct hid_device *hid = report->device;
2095 struct hid_input *hidinput;
2096
2097 list_for_each_entry(hidinput, &hid->inputs, list) {
2098 if (hidinput->application == report->application)
2099 return hidinput;
2100
2101 /*
2102 * Keep SystemControl and ConsumerControl applications together
2103 * with the main keyboard, if present.
2104 */
2105 if ((report->application == HID_GD_SYSTEM_CONTROL ||
2106 report->application == HID_CP_CONSUMER_CONTROL) &&
2107 hidinput->application == HID_GD_KEYBOARD) {
2108 return hidinput;
2109 }
2110 }
2111
2112 return NULL;
2113 }
2114
hidinput_configure_usages(struct hid_input * hidinput,struct hid_report * report)2115 static inline void hidinput_configure_usages(struct hid_input *hidinput,
2116 struct hid_report *report)
2117 {
2118 int i, j, k;
2119 int first_field_index = 0;
2120 int slot_collection_index = -1;
2121 int prev_collection_index = -1;
2122 unsigned int slot_idx = 0;
2123 struct hid_field *field;
2124
2125 /*
2126 * First tag all the fields that are part of a slot,
2127 * a slot needs to have one Contact ID in the collection
2128 */
2129 for (i = 0; i < report->maxfield; i++) {
2130 field = report->field[i];
2131
2132 /* ignore fields without usage */
2133 if (field->maxusage < 1)
2134 continue;
2135
2136 /*
2137 * janitoring when collection_index changes
2138 */
2139 if (prev_collection_index != field->usage->collection_index) {
2140 prev_collection_index = field->usage->collection_index;
2141 first_field_index = i;
2142 }
2143
2144 /*
2145 * if we already found a Contact ID in the collection,
2146 * tag and continue to the next.
2147 */
2148 if (slot_collection_index == field->usage->collection_index) {
2149 field->slot_idx = slot_idx;
2150 continue;
2151 }
2152
2153 /* check if the current field has Contact ID */
2154 for (j = 0; j < field->maxusage; j++) {
2155 if (field->usage[j].hid == HID_DG_CONTACTID) {
2156 slot_collection_index = field->usage->collection_index;
2157 slot_idx++;
2158
2159 /*
2160 * mark all previous fields and this one in the
2161 * current collection to be slotted.
2162 */
2163 for (k = first_field_index; k <= i; k++)
2164 report->field[k]->slot_idx = slot_idx;
2165 break;
2166 }
2167 }
2168 }
2169
2170 for (i = 0; i < report->maxfield; i++)
2171 for (j = 0; j < report->field[i]->maxusage; j++)
2172 hidinput_configure_usage(hidinput, report->field[i],
2173 report->field[i]->usage + j,
2174 j);
2175 }
2176
2177 /*
2178 * Register the input device; print a message.
2179 * Configure the input layer interface
2180 * Read all reports and initialize the absolute field values.
2181 */
2182
hidinput_connect(struct hid_device * hid,unsigned int force)2183 int hidinput_connect(struct hid_device *hid, unsigned int force)
2184 {
2185 struct hid_driver *drv = hid->driver;
2186 struct hid_report *report;
2187 struct hid_input *next, *hidinput = NULL;
2188 unsigned int application;
2189 int i, k;
2190
2191 INIT_LIST_HEAD(&hid->inputs);
2192 INIT_WORK(&hid->led_work, hidinput_led_worker);
2193
2194 hid->status &= ~HID_STAT_DUP_DETECTED;
2195
2196 if (!force) {
2197 for (i = 0; i < hid->maxcollection; i++) {
2198 struct hid_collection *col = &hid->collection[i];
2199 if (col->type == HID_COLLECTION_APPLICATION ||
2200 col->type == HID_COLLECTION_PHYSICAL)
2201 if (IS_INPUT_APPLICATION(col->usage))
2202 break;
2203 }
2204
2205 if (i == hid->maxcollection)
2206 return -1;
2207 }
2208
2209 report_features(hid);
2210
2211 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
2212 if (k == HID_OUTPUT_REPORT &&
2213 hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS)
2214 continue;
2215
2216 list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
2217
2218 if (!report->maxfield)
2219 continue;
2220
2221 application = report->application;
2222
2223 /*
2224 * Find the previous hidinput report attached
2225 * to this report id.
2226 */
2227 if (hid->quirks & HID_QUIRK_MULTI_INPUT)
2228 hidinput = hidinput_match(report);
2229 else if (hid->maxapplication > 1 &&
2230 (hid->quirks & HID_QUIRK_INPUT_PER_APP))
2231 hidinput = hidinput_match_application(report);
2232
2233 if (!hidinput) {
2234 hidinput = hidinput_allocate(hid, application);
2235 if (!hidinput)
2236 goto out_unwind;
2237 }
2238
2239 hidinput_configure_usages(hidinput, report);
2240
2241 if (hid->quirks & HID_QUIRK_MULTI_INPUT)
2242 hidinput->report = report;
2243
2244 list_add_tail(&report->hidinput_list,
2245 &hidinput->reports);
2246 }
2247 }
2248
2249 hidinput_change_resolution_multipliers(hid);
2250
2251 list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
2252 if (drv->input_configured &&
2253 drv->input_configured(hid, hidinput))
2254 goto out_unwind;
2255
2256 if (!hidinput_has_been_populated(hidinput)) {
2257 /* no need to register an input device not populated */
2258 hidinput_cleanup_hidinput(hid, hidinput);
2259 continue;
2260 }
2261
2262 if (input_register_device(hidinput->input))
2263 goto out_unwind;
2264 hidinput->registered = true;
2265 }
2266
2267 if (list_empty(&hid->inputs)) {
2268 hid_err(hid, "No inputs registered, leaving\n");
2269 goto out_unwind;
2270 }
2271
2272 if (hid->status & HID_STAT_DUP_DETECTED)
2273 hid_dbg(hid,
2274 "Some usages could not be mapped, please use HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE if this is legitimate.\n");
2275
2276 return 0;
2277
2278 out_unwind:
2279 /* unwind the ones we already registered */
2280 hidinput_disconnect(hid);
2281
2282 return -1;
2283 }
2284 EXPORT_SYMBOL_GPL(hidinput_connect);
2285
hidinput_disconnect(struct hid_device * hid)2286 void hidinput_disconnect(struct hid_device *hid)
2287 {
2288 struct hid_input *hidinput, *next;
2289
2290 hidinput_cleanup_battery(hid);
2291
2292 list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
2293 list_del(&hidinput->list);
2294 if (hidinput->registered)
2295 input_unregister_device(hidinput->input);
2296 else
2297 input_free_device(hidinput->input);
2298 kfree(hidinput->name);
2299 kfree(hidinput);
2300 }
2301
2302 /* led_work is spawned by input_dev callbacks, but doesn't access the
2303 * parent input_dev at all. Once all input devices are removed, we
2304 * know that led_work will never get restarted, so we can cancel it
2305 * synchronously and are safe. */
2306 cancel_work_sync(&hid->led_work);
2307 }
2308 EXPORT_SYMBOL_GPL(hidinput_disconnect);
2309