1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * HID Sensors Driver
4 * Copyright (c) 2012, Intel Corporation.
5 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/time.h>
9 #include <linux/units.h>
10
11 #include <linux/hid-sensor-hub.h>
12 #include <linux/iio/iio.h>
13
14 static struct {
15 u32 usage_id;
16 int unit; /* 0 for default others from HID sensor spec */
17 int scale_val0; /* scale, whole number */
18 int scale_val1; /* scale, fraction in nanos */
19 } unit_conversion[] = {
20 {HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
21 {HID_USAGE_SENSOR_ACCEL_3D,
22 HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
23 {HID_USAGE_SENSOR_ACCEL_3D,
24 HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
25
26 {HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
27 {HID_USAGE_SENSOR_GRAVITY_VECTOR,
28 HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
29 {HID_USAGE_SENSOR_GRAVITY_VECTOR,
30 HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
31
32 {HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
33 {HID_USAGE_SENSOR_GYRO_3D,
34 HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
35 {HID_USAGE_SENSOR_GYRO_3D,
36 HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
37
38 {HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
39 {HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
40
41 {HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
42 {HID_USAGE_SENSOR_INCLINOMETER_3D,
43 HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
44 {HID_USAGE_SENSOR_INCLINOMETER_3D,
45 HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
46
47 {HID_USAGE_SENSOR_ALS, 0, 1, 0},
48 {HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
49
50 {HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
51 {HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
52
53 {HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
54 {HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
55 1000000, 0},
56
57 {HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
58
59 {HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
60
61 {HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
62
63 {HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
64 {HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
65
66 {HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
67 {HID_USAGE_SENSOR_HINGE, 0, 0, 17453293},
68 {HID_USAGE_SENSOR_HINGE, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
69 };
70
simple_div(int dividend,int divisor,int * whole,int * micro_frac)71 static void simple_div(int dividend, int divisor, int *whole,
72 int *micro_frac)
73 {
74 int rem;
75 int exp = 0;
76
77 *micro_frac = 0;
78 if (divisor == 0) {
79 *whole = 0;
80 return;
81 }
82 *whole = dividend/divisor;
83 rem = dividend % divisor;
84 if (rem) {
85 while (rem <= divisor) {
86 rem *= 10;
87 exp++;
88 }
89 *micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
90 }
91 }
92
split_micro_fraction(unsigned int no,int exp,int * val1,int * val2)93 static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
94 {
95 int divisor = int_pow(10, exp);
96
97 *val1 = no / divisor;
98 *val2 = no % divisor * int_pow(10, 6 - exp);
99 }
100
101 /*
102 VTF format uses exponent and variable size format.
103 For example if the size is 2 bytes
104 0x0067 with VTF16E14 format -> +1.03
105 To convert just change to 0x67 to decimal and use two decimal as E14 stands
106 for 10^-2.
107 Negative numbers are 2's complement
108 */
convert_from_vtf_format(u32 value,int size,int exp,int * val1,int * val2)109 static void convert_from_vtf_format(u32 value, int size, int exp,
110 int *val1, int *val2)
111 {
112 int sign = 1;
113
114 if (value & BIT(size*8 - 1)) {
115 value = ((1LL << (size * 8)) - value);
116 sign = -1;
117 }
118 exp = hid_sensor_convert_exponent(exp);
119 if (exp >= 0) {
120 *val1 = sign * value * int_pow(10, exp);
121 *val2 = 0;
122 } else {
123 split_micro_fraction(value, -exp, val1, val2);
124 if (*val1)
125 *val1 = sign * (*val1);
126 else
127 *val2 = sign * (*val2);
128 }
129 }
130
convert_to_vtf_format(int size,int exp,int val1,int val2)131 static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
132 {
133 int divisor;
134 u32 value;
135 int sign = 1;
136
137 if (val1 < 0 || val2 < 0)
138 sign = -1;
139 exp = hid_sensor_convert_exponent(exp);
140 if (exp < 0) {
141 divisor = int_pow(10, 6 + exp);
142 value = abs(val1) * int_pow(10, -exp);
143 value += abs(val2) / divisor;
144 } else {
145 divisor = int_pow(10, exp);
146 value = abs(val1) / divisor;
147 }
148 if (sign < 0)
149 value = ((1LL << (size * 8)) - value);
150
151 return value;
152 }
153
hid_sensor_read_poll_value(struct hid_sensor_common * st)154 s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
155 {
156 s32 value = 0;
157 int ret;
158
159 ret = sensor_hub_get_feature(st->hsdev,
160 st->poll.report_id,
161 st->poll.index, sizeof(value), &value);
162
163 if (ret < 0 || value < 0) {
164 return -EINVAL;
165 } else {
166 if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
167 value = value * 1000;
168 }
169
170 return value;
171 }
172 EXPORT_SYMBOL_NS(hid_sensor_read_poll_value, IIO_HID_ATTRIBUTES);
173
hid_sensor_read_samp_freq_value(struct hid_sensor_common * st,int * val1,int * val2)174 int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
175 int *val1, int *val2)
176 {
177 s32 value;
178 int ret;
179
180 ret = sensor_hub_get_feature(st->hsdev,
181 st->poll.report_id,
182 st->poll.index, sizeof(value), &value);
183 if (ret < 0 || value < 0) {
184 *val1 = *val2 = 0;
185 return -EINVAL;
186 } else {
187 if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
188 simple_div(1000, value, val1, val2);
189 else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
190 simple_div(1, value, val1, val2);
191 else {
192 *val1 = *val2 = 0;
193 return -EINVAL;
194 }
195 }
196
197 return IIO_VAL_INT_PLUS_MICRO;
198 }
199 EXPORT_SYMBOL_NS(hid_sensor_read_samp_freq_value, IIO_HID);
200
hid_sensor_write_samp_freq_value(struct hid_sensor_common * st,int val1,int val2)201 int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
202 int val1, int val2)
203 {
204 s32 value;
205 int ret;
206
207 if (val1 < 0 || val2 < 0)
208 return -EINVAL;
209
210 value = val1 * HZ_PER_MHZ + val2;
211 if (value) {
212 if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
213 value = NSEC_PER_SEC / value;
214 else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
215 value = USEC_PER_SEC / value;
216 else
217 value = 0;
218 }
219 ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
220 st->poll.index, sizeof(value), &value);
221 if (ret < 0 || value < 0)
222 return -EINVAL;
223
224 ret = sensor_hub_get_feature(st->hsdev,
225 st->poll.report_id,
226 st->poll.index, sizeof(value), &value);
227 if (ret < 0 || value < 0)
228 return -EINVAL;
229
230 st->poll_interval = value;
231
232 return 0;
233 }
234 EXPORT_SYMBOL_NS(hid_sensor_write_samp_freq_value, IIO_HID);
235
hid_sensor_read_raw_hyst_value(struct hid_sensor_common * st,int * val1,int * val2)236 int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
237 int *val1, int *val2)
238 {
239 s32 value;
240 int ret;
241
242 ret = sensor_hub_get_feature(st->hsdev,
243 st->sensitivity.report_id,
244 st->sensitivity.index, sizeof(value),
245 &value);
246 if (ret < 0 || value < 0) {
247 *val1 = *val2 = 0;
248 return -EINVAL;
249 } else {
250 convert_from_vtf_format(value, st->sensitivity.size,
251 st->sensitivity.unit_expo,
252 val1, val2);
253 }
254
255 return IIO_VAL_INT_PLUS_MICRO;
256 }
257 EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_value, IIO_HID);
258
hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common * st,int * val1,int * val2)259 int hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common *st, int *val1,
260 int *val2)
261 {
262 s32 value;
263 int ret;
264
265 ret = sensor_hub_get_feature(st->hsdev,
266 st->sensitivity_rel.report_id,
267 st->sensitivity_rel.index, sizeof(value),
268 &value);
269 if (ret < 0 || value < 0) {
270 *val1 = *val2 = 0;
271 return -EINVAL;
272 }
273
274 convert_from_vtf_format(value, st->sensitivity_rel.size,
275 st->sensitivity_rel.unit_expo, val1, val2);
276
277 return IIO_VAL_INT_PLUS_MICRO;
278 }
279 EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_rel_value, IIO_HID);
280
281
hid_sensor_write_raw_hyst_value(struct hid_sensor_common * st,int val1,int val2)282 int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
283 int val1, int val2)
284 {
285 s32 value;
286 int ret;
287
288 if (val1 < 0 || val2 < 0)
289 return -EINVAL;
290
291 value = convert_to_vtf_format(st->sensitivity.size,
292 st->sensitivity.unit_expo,
293 val1, val2);
294 ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
295 st->sensitivity.index, sizeof(value),
296 &value);
297 if (ret < 0 || value < 0)
298 return -EINVAL;
299
300 ret = sensor_hub_get_feature(st->hsdev,
301 st->sensitivity.report_id,
302 st->sensitivity.index, sizeof(value),
303 &value);
304 if (ret < 0 || value < 0)
305 return -EINVAL;
306
307 st->raw_hystersis = value;
308
309 return 0;
310 }
311 EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_value, IIO_HID);
312
hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common * st,int val1,int val2)313 int hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common *st,
314 int val1, int val2)
315 {
316 s32 value;
317 int ret;
318
319 if (val1 < 0 || val2 < 0)
320 return -EINVAL;
321
322 value = convert_to_vtf_format(st->sensitivity_rel.size,
323 st->sensitivity_rel.unit_expo,
324 val1, val2);
325 ret = sensor_hub_set_feature(st->hsdev, st->sensitivity_rel.report_id,
326 st->sensitivity_rel.index, sizeof(value),
327 &value);
328 if (ret < 0 || value < 0)
329 return -EINVAL;
330
331 ret = sensor_hub_get_feature(st->hsdev,
332 st->sensitivity_rel.report_id,
333 st->sensitivity_rel.index, sizeof(value),
334 &value);
335 if (ret < 0 || value < 0)
336 return -EINVAL;
337
338 st->raw_hystersis = value;
339
340 return 0;
341 }
342 EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_rel_value, IIO_HID);
343
344 /*
345 * This fuction applies the unit exponent to the scale.
346 * For example:
347 * 9.806650000 ->exp:2-> val0[980]val1[665000000]
348 * 9.000806000 ->exp:2-> val0[900]val1[80600000]
349 * 0.174535293 ->exp:2-> val0[17]val1[453529300]
350 * 1.001745329 ->exp:0-> val0[1]val1[1745329]
351 * 1.001745329 ->exp:2-> val0[100]val1[174532900]
352 * 1.001745329 ->exp:4-> val0[10017]val1[453290000]
353 * 9.806650000 ->exp:-2-> val0[0]val1[98066500]
354 */
adjust_exponent_nano(int * val0,int * val1,int scale0,int scale1,int exp)355 static void adjust_exponent_nano(int *val0, int *val1, int scale0,
356 int scale1, int exp)
357 {
358 int divisor;
359 int i;
360 int x;
361 int res;
362 int rem;
363
364 if (exp > 0) {
365 *val0 = scale0 * int_pow(10, exp);
366 res = 0;
367 if (exp > 9) {
368 *val1 = 0;
369 return;
370 }
371 for (i = 0; i < exp; ++i) {
372 divisor = int_pow(10, 8 - i);
373 x = scale1 / divisor;
374 res += int_pow(10, exp - 1 - i) * x;
375 scale1 = scale1 % divisor;
376 }
377 *val0 += res;
378 *val1 = scale1 * int_pow(10, exp);
379 } else if (exp < 0) {
380 exp = abs(exp);
381 if (exp > 9) {
382 *val0 = *val1 = 0;
383 return;
384 }
385 divisor = int_pow(10, exp);
386 *val0 = scale0 / divisor;
387 rem = scale0 % divisor;
388 res = 0;
389 for (i = 0; i < (9 - exp); ++i) {
390 divisor = int_pow(10, 8 - i);
391 x = scale1 / divisor;
392 res += int_pow(10, 8 - exp - i) * x;
393 scale1 = scale1 % divisor;
394 }
395 *val1 = rem * int_pow(10, 9 - exp) + res;
396 } else {
397 *val0 = scale0;
398 *val1 = scale1;
399 }
400 }
401
hid_sensor_format_scale(u32 usage_id,struct hid_sensor_hub_attribute_info * attr_info,int * val0,int * val1)402 int hid_sensor_format_scale(u32 usage_id,
403 struct hid_sensor_hub_attribute_info *attr_info,
404 int *val0, int *val1)
405 {
406 int i;
407 int exp;
408
409 *val0 = 1;
410 *val1 = 0;
411
412 for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
413 if (unit_conversion[i].usage_id == usage_id &&
414 unit_conversion[i].unit == attr_info->units) {
415 exp = hid_sensor_convert_exponent(
416 attr_info->unit_expo);
417 adjust_exponent_nano(val0, val1,
418 unit_conversion[i].scale_val0,
419 unit_conversion[i].scale_val1, exp);
420 break;
421 }
422 }
423
424 return IIO_VAL_INT_PLUS_NANO;
425 }
426 EXPORT_SYMBOL_NS(hid_sensor_format_scale, IIO_HID);
427
hid_sensor_convert_timestamp(struct hid_sensor_common * st,int64_t raw_value)428 int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
429 int64_t raw_value)
430 {
431 return st->timestamp_ns_scale * raw_value;
432 }
433 EXPORT_SYMBOL_NS(hid_sensor_convert_timestamp, IIO_HID);
434
435 static
hid_sensor_get_reporting_interval(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st)436 int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
437 u32 usage_id,
438 struct hid_sensor_common *st)
439 {
440 sensor_hub_input_get_attribute_info(hsdev,
441 HID_FEATURE_REPORT, usage_id,
442 HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
443 &st->poll);
444 /* Default unit of measure is milliseconds */
445 if (st->poll.units == 0)
446 st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
447
448 st->poll_interval = -1;
449
450 return 0;
451
452 }
453
hid_sensor_get_report_latency_info(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st)454 static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
455 u32 usage_id,
456 struct hid_sensor_common *st)
457 {
458 sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
459 usage_id,
460 HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
461 &st->report_latency);
462
463 hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
464 st->report_latency.index, st->report_latency.report_id);
465 }
466
hid_sensor_get_report_latency(struct hid_sensor_common * st)467 int hid_sensor_get_report_latency(struct hid_sensor_common *st)
468 {
469 int ret;
470 int value;
471
472 ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
473 st->report_latency.index, sizeof(value),
474 &value);
475 if (ret < 0)
476 return ret;
477
478 return value;
479 }
480 EXPORT_SYMBOL_NS(hid_sensor_get_report_latency, IIO_HID_ATTRIBUTES);
481
hid_sensor_set_report_latency(struct hid_sensor_common * st,int latency_ms)482 int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
483 {
484 return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
485 st->report_latency.index,
486 sizeof(latency_ms), &latency_ms);
487 }
488 EXPORT_SYMBOL_NS(hid_sensor_set_report_latency, IIO_HID_ATTRIBUTES);
489
hid_sensor_batch_mode_supported(struct hid_sensor_common * st)490 bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
491 {
492 return st->report_latency.index > 0 && st->report_latency.report_id > 0;
493 }
494 EXPORT_SYMBOL_NS(hid_sensor_batch_mode_supported, IIO_HID_ATTRIBUTES);
495
hid_sensor_parse_common_attributes(struct hid_sensor_hub_device * hsdev,u32 usage_id,struct hid_sensor_common * st,const u32 * sensitivity_addresses,u32 sensitivity_addresses_len)496 int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
497 u32 usage_id,
498 struct hid_sensor_common *st,
499 const u32 *sensitivity_addresses,
500 u32 sensitivity_addresses_len)
501 {
502
503 struct hid_sensor_hub_attribute_info timestamp;
504 s32 value;
505 int ret;
506 int i;
507
508 hid_sensor_get_reporting_interval(hsdev, usage_id, st);
509
510 sensor_hub_input_get_attribute_info(hsdev,
511 HID_FEATURE_REPORT, usage_id,
512 HID_USAGE_SENSOR_PROP_REPORT_STATE,
513 &st->report_state);
514
515 sensor_hub_input_get_attribute_info(hsdev,
516 HID_FEATURE_REPORT, usage_id,
517 HID_USAGE_SENSOR_PROY_POWER_STATE,
518 &st->power_state);
519
520 st->power_state.logical_minimum = 1;
521 st->report_state.logical_minimum = 1;
522
523 sensor_hub_input_get_attribute_info(hsdev,
524 HID_FEATURE_REPORT, usage_id,
525 HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
526 &st->sensitivity);
527
528 sensor_hub_input_get_attribute_info(hsdev,
529 HID_FEATURE_REPORT, usage_id,
530 HID_USAGE_SENSOR_PROP_SENSITIVITY_REL_PCT,
531 &st->sensitivity_rel);
532 /*
533 * Set Sensitivity field ids, when there is no individual modifier, will
534 * check absolute sensitivity and relative sensitivity of data field
535 */
536 for (i = 0; i < sensitivity_addresses_len; i++) {
537 if (st->sensitivity.index < 0)
538 sensor_hub_input_get_attribute_info(
539 hsdev, HID_FEATURE_REPORT, usage_id,
540 HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
541 sensitivity_addresses[i],
542 &st->sensitivity);
543
544 if (st->sensitivity_rel.index < 0)
545 sensor_hub_input_get_attribute_info(
546 hsdev, HID_FEATURE_REPORT, usage_id,
547 HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT |
548 sensitivity_addresses[i],
549 &st->sensitivity_rel);
550 }
551
552 st->raw_hystersis = -1;
553
554 sensor_hub_input_get_attribute_info(hsdev,
555 HID_INPUT_REPORT, usage_id,
556 HID_USAGE_SENSOR_TIME_TIMESTAMP,
557 ×tamp);
558 if (timestamp.index >= 0 && timestamp.report_id) {
559 int val0, val1;
560
561 hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
562 ×tamp, &val0, &val1);
563 st->timestamp_ns_scale = val0;
564 } else
565 st->timestamp_ns_scale = 1000000000;
566
567 hid_sensor_get_report_latency_info(hsdev, usage_id, st);
568
569 hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
570 st->poll.index, st->poll.report_id,
571 st->report_state.index, st->report_state.report_id,
572 st->power_state.index, st->power_state.report_id,
573 st->sensitivity.index, st->sensitivity.report_id,
574 timestamp.index, timestamp.report_id);
575
576 ret = sensor_hub_get_feature(hsdev,
577 st->power_state.report_id,
578 st->power_state.index, sizeof(value), &value);
579 if (ret < 0)
580 return ret;
581 if (value < 0)
582 return -EINVAL;
583
584 return 0;
585 }
586 EXPORT_SYMBOL_NS(hid_sensor_parse_common_attributes, IIO_HID);
587
588 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
589 MODULE_DESCRIPTION("HID Sensor common attribute processing");
590 MODULE_LICENSE("GPL");
591