1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54 * Register a new report for a device.
55 */
56
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)57 struct hid_report *hid_register_report(struct hid_device *device,
58 enum hid_report_type type, unsigned int id,
59 unsigned int application)
60 {
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84 INIT_LIST_HEAD(&report->field_entry_list);
85
86 return report;
87 }
88 EXPORT_SYMBOL_GPL(hid_register_report);
89
90 /*
91 * Register a new field for this report.
92 */
93
hid_register_field(struct hid_report * report,unsigned usages)94 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95 {
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->new_value = (s32 *)(field->value + usages);
114 field->usages_priorities = (s32 *)(field->new_value + usages);
115 field->report = report;
116
117 return field;
118 }
119
120 /*
121 * Open a collection. The type/usage is pushed on the stack.
122 */
123
open_collection(struct hid_parser * parser,unsigned type)124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126 struct hid_collection *collection;
127 unsigned usage;
128 int collection_index;
129
130 usage = parser->local.usage[0];
131
132 if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 unsigned int *collection_stack;
134 unsigned int new_size = parser->collection_stack_size +
135 HID_COLLECTION_STACK_SIZE;
136
137 collection_stack = krealloc(parser->collection_stack,
138 new_size * sizeof(unsigned int),
139 GFP_KERNEL);
140 if (!collection_stack)
141 return -ENOMEM;
142
143 parser->collection_stack = collection_stack;
144 parser->collection_stack_size = new_size;
145 }
146
147 if (parser->device->maxcollection == parser->device->collection_size) {
148 collection = kmalloc(
149 array3_size(sizeof(struct hid_collection),
150 parser->device->collection_size,
151 2),
152 GFP_KERNEL);
153 if (collection == NULL) {
154 hid_err(parser->device, "failed to reallocate collection array\n");
155 return -ENOMEM;
156 }
157 memcpy(collection, parser->device->collection,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 memset(collection + parser->device->collection_size, 0,
161 sizeof(struct hid_collection) *
162 parser->device->collection_size);
163 kfree(parser->device->collection);
164 parser->device->collection = collection;
165 parser->device->collection_size *= 2;
166 }
167
168 parser->collection_stack[parser->collection_stack_ptr++] =
169 parser->device->maxcollection;
170
171 collection_index = parser->device->maxcollection++;
172 collection = parser->device->collection + collection_index;
173 collection->type = type;
174 collection->usage = usage;
175 collection->level = parser->collection_stack_ptr - 1;
176 collection->parent_idx = (collection->level == 0) ? -1 :
177 parser->collection_stack[collection->level - 1];
178
179 if (type == HID_COLLECTION_APPLICATION)
180 parser->device->maxapplication++;
181
182 return 0;
183 }
184
185 /*
186 * Close a collection.
187 */
188
close_collection(struct hid_parser * parser)189 static int close_collection(struct hid_parser *parser)
190 {
191 if (!parser->collection_stack_ptr) {
192 hid_err(parser->device, "collection stack underflow\n");
193 return -EINVAL;
194 }
195 parser->collection_stack_ptr--;
196 return 0;
197 }
198
199 /*
200 * Climb up the stack, search for the specified collection type
201 * and return the usage.
202 */
203
hid_lookup_collection(struct hid_parser * parser,unsigned type)204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205 {
206 struct hid_collection *collection = parser->device->collection;
207 int n;
208
209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 unsigned index = parser->collection_stack[n];
211 if (collection[index].type == type)
212 return collection[index].usage;
213 }
214 return 0; /* we know nothing about this usage type */
215 }
216
217 /*
218 * Concatenate usage which defines 16 bits or less with the
219 * currently defined usage page to form a 32 bit usage
220 */
221
complete_usage(struct hid_parser * parser,unsigned int index)222 static void complete_usage(struct hid_parser *parser, unsigned int index)
223 {
224 parser->local.usage[index] &= 0xFFFF;
225 parser->local.usage[index] |=
226 (parser->global.usage_page & 0xFFFF) << 16;
227 }
228
229 /*
230 * Add a usage to the temporary parser table.
231 */
232
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)233 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
234 {
235 if (parser->local.usage_index >= HID_MAX_USAGES) {
236 hid_err(parser->device, "usage index exceeded\n");
237 return -1;
238 }
239 parser->local.usage[parser->local.usage_index] = usage;
240
241 /*
242 * If Usage item only includes usage id, concatenate it with
243 * currently defined usage page
244 */
245 if (size <= 2)
246 complete_usage(parser, parser->local.usage_index);
247
248 parser->local.usage_size[parser->local.usage_index] = size;
249 parser->local.collection_index[parser->local.usage_index] =
250 parser->collection_stack_ptr ?
251 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
252 parser->local.usage_index++;
253 return 0;
254 }
255
256 /*
257 * Register a new field for this report.
258 */
259
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)260 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
261 {
262 struct hid_report *report;
263 struct hid_field *field;
264 unsigned int usages;
265 unsigned int offset;
266 unsigned int i;
267 unsigned int application;
268
269 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
270
271 report = hid_register_report(parser->device, report_type,
272 parser->global.report_id, application);
273 if (!report) {
274 hid_err(parser->device, "hid_register_report failed\n");
275 return -1;
276 }
277
278 /* Handle both signed and unsigned cases properly */
279 if ((parser->global.logical_minimum < 0 &&
280 parser->global.logical_maximum <
281 parser->global.logical_minimum) ||
282 (parser->global.logical_minimum >= 0 &&
283 (__u32)parser->global.logical_maximum <
284 (__u32)parser->global.logical_minimum)) {
285 dbg_hid("logical range invalid 0x%x 0x%x\n",
286 parser->global.logical_minimum,
287 parser->global.logical_maximum);
288 return -1;
289 }
290
291 offset = report->size;
292 report->size += parser->global.report_size * parser->global.report_count;
293
294 /* Total size check: Allow for possible report index byte */
295 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
296 hid_err(parser->device, "report is too long\n");
297 return -1;
298 }
299
300 if (!parser->local.usage_index) /* Ignore padding fields */
301 return 0;
302
303 usages = max_t(unsigned, parser->local.usage_index,
304 parser->global.report_count);
305
306 field = hid_register_field(report, usages);
307 if (!field)
308 return 0;
309
310 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
311 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
312 field->application = application;
313
314 for (i = 0; i < usages; i++) {
315 unsigned j = i;
316 /* Duplicate the last usage we parsed if we have excess values */
317 if (i >= parser->local.usage_index)
318 j = parser->local.usage_index - 1;
319 field->usage[i].hid = parser->local.usage[j];
320 field->usage[i].collection_index =
321 parser->local.collection_index[j];
322 field->usage[i].usage_index = i;
323 field->usage[i].resolution_multiplier = 1;
324 }
325
326 field->maxusage = usages;
327 field->flags = flags;
328 field->report_offset = offset;
329 field->report_type = report_type;
330 field->report_size = parser->global.report_size;
331 field->report_count = parser->global.report_count;
332 field->logical_minimum = parser->global.logical_minimum;
333 field->logical_maximum = parser->global.logical_maximum;
334 field->physical_minimum = parser->global.physical_minimum;
335 field->physical_maximum = parser->global.physical_maximum;
336 field->unit_exponent = parser->global.unit_exponent;
337 field->unit = parser->global.unit;
338
339 return 0;
340 }
341
342 /*
343 * Read data value from item.
344 */
345
item_udata(struct hid_item * item)346 static u32 item_udata(struct hid_item *item)
347 {
348 switch (item->size) {
349 case 1: return item->data.u8;
350 case 2: return item->data.u16;
351 case 4: return item->data.u32;
352 }
353 return 0;
354 }
355
item_sdata(struct hid_item * item)356 static s32 item_sdata(struct hid_item *item)
357 {
358 switch (item->size) {
359 case 1: return item->data.s8;
360 case 2: return item->data.s16;
361 case 4: return item->data.s32;
362 }
363 return 0;
364 }
365
366 /*
367 * Process a global item.
368 */
369
hid_parser_global(struct hid_parser * parser,struct hid_item * item)370 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371 {
372 __s32 raw_value;
373 switch (item->tag) {
374 case HID_GLOBAL_ITEM_TAG_PUSH:
375
376 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
377 hid_err(parser->device, "global environment stack overflow\n");
378 return -1;
379 }
380
381 memcpy(parser->global_stack + parser->global_stack_ptr++,
382 &parser->global, sizeof(struct hid_global));
383 return 0;
384
385 case HID_GLOBAL_ITEM_TAG_POP:
386
387 if (!parser->global_stack_ptr) {
388 hid_err(parser->device, "global environment stack underflow\n");
389 return -1;
390 }
391
392 memcpy(&parser->global, parser->global_stack +
393 --parser->global_stack_ptr, sizeof(struct hid_global));
394 return 0;
395
396 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
397 parser->global.usage_page = item_udata(item);
398 return 0;
399
400 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
401 parser->global.logical_minimum = item_sdata(item);
402 return 0;
403
404 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
405 if (parser->global.logical_minimum < 0)
406 parser->global.logical_maximum = item_sdata(item);
407 else
408 parser->global.logical_maximum = item_udata(item);
409 return 0;
410
411 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
412 parser->global.physical_minimum = item_sdata(item);
413 return 0;
414
415 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
416 if (parser->global.physical_minimum < 0)
417 parser->global.physical_maximum = item_sdata(item);
418 else
419 parser->global.physical_maximum = item_udata(item);
420 return 0;
421
422 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
423 /* Many devices provide unit exponent as a two's complement
424 * nibble due to the common misunderstanding of HID
425 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
426 * both this and the standard encoding. */
427 raw_value = item_sdata(item);
428 if (!(raw_value & 0xfffffff0))
429 parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 else
431 parser->global.unit_exponent = raw_value;
432 return 0;
433
434 case HID_GLOBAL_ITEM_TAG_UNIT:
435 parser->global.unit = item_udata(item);
436 return 0;
437
438 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
439 parser->global.report_size = item_udata(item);
440 if (parser->global.report_size > 256) {
441 hid_err(parser->device, "invalid report_size %d\n",
442 parser->global.report_size);
443 return -1;
444 }
445 return 0;
446
447 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
448 parser->global.report_count = item_udata(item);
449 if (parser->global.report_count > HID_MAX_USAGES) {
450 hid_err(parser->device, "invalid report_count %d\n",
451 parser->global.report_count);
452 return -1;
453 }
454 return 0;
455
456 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
457 parser->global.report_id = item_udata(item);
458 if (parser->global.report_id == 0 ||
459 parser->global.report_id >= HID_MAX_IDS) {
460 hid_err(parser->device, "report_id %u is invalid\n",
461 parser->global.report_id);
462 return -1;
463 }
464 return 0;
465
466 default:
467 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
468 return -1;
469 }
470 }
471
472 /*
473 * Process a local item.
474 */
475
hid_parser_local(struct hid_parser * parser,struct hid_item * item)476 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477 {
478 __u32 data;
479 unsigned n;
480 __u32 count;
481
482 data = item_udata(item);
483
484 switch (item->tag) {
485 case HID_LOCAL_ITEM_TAG_DELIMITER:
486
487 if (data) {
488 /*
489 * We treat items before the first delimiter
490 * as global to all usage sets (branch 0).
491 * In the moment we process only these global
492 * items and the first delimiter set.
493 */
494 if (parser->local.delimiter_depth != 0) {
495 hid_err(parser->device, "nested delimiters\n");
496 return -1;
497 }
498 parser->local.delimiter_depth++;
499 parser->local.delimiter_branch++;
500 } else {
501 if (parser->local.delimiter_depth < 1) {
502 hid_err(parser->device, "bogus close delimiter\n");
503 return -1;
504 }
505 parser->local.delimiter_depth--;
506 }
507 return 0;
508
509 case HID_LOCAL_ITEM_TAG_USAGE:
510
511 if (parser->local.delimiter_branch > 1) {
512 dbg_hid("alternative usage ignored\n");
513 return 0;
514 }
515
516 return hid_add_usage(parser, data, item->size);
517
518 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519
520 if (parser->local.delimiter_branch > 1) {
521 dbg_hid("alternative usage ignored\n");
522 return 0;
523 }
524
525 parser->local.usage_minimum = data;
526 return 0;
527
528 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529
530 if (parser->local.delimiter_branch > 1) {
531 dbg_hid("alternative usage ignored\n");
532 return 0;
533 }
534
535 count = data - parser->local.usage_minimum;
536 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 /*
538 * We do not warn if the name is not set, we are
539 * actually pre-scanning the device.
540 */
541 if (dev_name(&parser->device->dev))
542 hid_warn(parser->device,
543 "ignoring exceeding usage max\n");
544 data = HID_MAX_USAGES - parser->local.usage_index +
545 parser->local.usage_minimum - 1;
546 if (data <= 0) {
547 hid_err(parser->device,
548 "no more usage index available\n");
549 return -1;
550 }
551 }
552
553 for (n = parser->local.usage_minimum; n <= data; n++)
554 if (hid_add_usage(parser, n, item->size)) {
555 dbg_hid("hid_add_usage failed\n");
556 return -1;
557 }
558 return 0;
559
560 default:
561
562 dbg_hid("unknown local item tag 0x%x\n", item->tag);
563 return 0;
564 }
565 return 0;
566 }
567
568 /*
569 * Concatenate Usage Pages into Usages where relevant:
570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
571 * concatenates the last declared Usage Page with a Usage to form a complete
572 * usage value."
573 */
574
hid_concatenate_last_usage_page(struct hid_parser * parser)575 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576 {
577 int i;
578 unsigned int usage_page;
579 unsigned int current_page;
580
581 if (!parser->local.usage_index)
582 return;
583
584 usage_page = parser->global.usage_page;
585
586 /*
587 * Concatenate usage page again only if last declared Usage Page
588 * has not been already used in previous usages concatenation
589 */
590 for (i = parser->local.usage_index - 1; i >= 0; i--) {
591 if (parser->local.usage_size[i] > 2)
592 /* Ignore extended usages */
593 continue;
594
595 current_page = parser->local.usage[i] >> 16;
596 if (current_page == usage_page)
597 break;
598
599 complete_usage(parser, i);
600 }
601 }
602
603 /*
604 * Process a main item.
605 */
606
hid_parser_main(struct hid_parser * parser,struct hid_item * item)607 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608 {
609 __u32 data;
610 int ret;
611
612 hid_concatenate_last_usage_page(parser);
613
614 data = item_udata(item);
615
616 switch (item->tag) {
617 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
618 ret = open_collection(parser, data & 0xff);
619 break;
620 case HID_MAIN_ITEM_TAG_END_COLLECTION:
621 ret = close_collection(parser);
622 break;
623 case HID_MAIN_ITEM_TAG_INPUT:
624 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_OUTPUT:
627 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 break;
629 case HID_MAIN_ITEM_TAG_FEATURE:
630 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
631 break;
632 default:
633 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
634 ret = 0;
635 }
636
637 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
638
639 return ret;
640 }
641
642 /*
643 * Process a reserved item.
644 */
645
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)646 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 {
648 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
649 return 0;
650 }
651
652 /*
653 * Free a report and all registered fields. The field->usage and
654 * field->value table's are allocated behind the field, so we need
655 * only to free(field) itself.
656 */
657
hid_free_report(struct hid_report * report)658 static void hid_free_report(struct hid_report *report)
659 {
660 unsigned n;
661
662 kfree(report->field_entries);
663
664 for (n = 0; n < report->maxfield; n++)
665 kfree(report->field[n]);
666 kfree(report);
667 }
668
669 /*
670 * Close report. This function returns the device
671 * state to the point prior to hid_open_report().
672 */
hid_close_report(struct hid_device * device)673 static void hid_close_report(struct hid_device *device)
674 {
675 unsigned i, j;
676
677 for (i = 0; i < HID_REPORT_TYPES; i++) {
678 struct hid_report_enum *report_enum = device->report_enum + i;
679
680 for (j = 0; j < HID_MAX_IDS; j++) {
681 struct hid_report *report = report_enum->report_id_hash[j];
682 if (report)
683 hid_free_report(report);
684 }
685 memset(report_enum, 0, sizeof(*report_enum));
686 INIT_LIST_HEAD(&report_enum->report_list);
687 }
688
689 kfree(device->rdesc);
690 device->rdesc = NULL;
691 device->rsize = 0;
692
693 kfree(device->collection);
694 device->collection = NULL;
695 device->collection_size = 0;
696 device->maxcollection = 0;
697 device->maxapplication = 0;
698
699 device->status &= ~HID_STAT_PARSED;
700 }
701
702 /*
703 * Free a device structure, all reports, and all fields.
704 */
705
hid_device_release(struct device * dev)706 static void hid_device_release(struct device *dev)
707 {
708 struct hid_device *hid = to_hid_device(dev);
709
710 hid_close_report(hid);
711 kfree(hid->dev_rdesc);
712 kfree(hid);
713 }
714
715 /*
716 * Fetch a report description item from the data stream. We support long
717 * items, though they are not used yet.
718 */
719
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)720 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
721 {
722 u8 b;
723
724 if ((end - start) <= 0)
725 return NULL;
726
727 b = *start++;
728
729 item->type = (b >> 2) & 3;
730 item->tag = (b >> 4) & 15;
731
732 if (item->tag == HID_ITEM_TAG_LONG) {
733
734 item->format = HID_ITEM_FORMAT_LONG;
735
736 if ((end - start) < 2)
737 return NULL;
738
739 item->size = *start++;
740 item->tag = *start++;
741
742 if ((end - start) < item->size)
743 return NULL;
744
745 item->data.longdata = start;
746 start += item->size;
747 return start;
748 }
749
750 item->format = HID_ITEM_FORMAT_SHORT;
751 item->size = b & 3;
752
753 switch (item->size) {
754 case 0:
755 return start;
756
757 case 1:
758 if ((end - start) < 1)
759 return NULL;
760 item->data.u8 = *start++;
761 return start;
762
763 case 2:
764 if ((end - start) < 2)
765 return NULL;
766 item->data.u16 = get_unaligned_le16(start);
767 start = (__u8 *)((__le16 *)start + 1);
768 return start;
769
770 case 3:
771 item->size++;
772 if ((end - start) < 4)
773 return NULL;
774 item->data.u32 = get_unaligned_le32(start);
775 start = (__u8 *)((__le32 *)start + 1);
776 return start;
777 }
778
779 return NULL;
780 }
781
hid_scan_input_usage(struct hid_parser * parser,u32 usage)782 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
783 {
784 struct hid_device *hid = parser->device;
785
786 if (usage == HID_DG_CONTACTID)
787 hid->group = HID_GROUP_MULTITOUCH;
788 }
789
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)790 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
791 {
792 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
793 parser->global.report_size == 8)
794 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795
796 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
797 parser->global.report_size == 8)
798 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799 }
800
hid_scan_collection(struct hid_parser * parser,unsigned type)801 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
802 {
803 struct hid_device *hid = parser->device;
804 int i;
805
806 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
807 type == HID_COLLECTION_PHYSICAL)
808 hid->group = HID_GROUP_SENSOR_HUB;
809
810 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 hid->group == HID_GROUP_MULTITOUCH)
813 hid->group = HID_GROUP_GENERIC;
814
815 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 for (i = 0; i < parser->local.usage_index; i++)
817 if (parser->local.usage[i] == HID_GD_POINTER)
818 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819
820 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822
823 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 for (i = 0; i < parser->local.usage_index; i++)
825 if (parser->local.usage[i] ==
826 (HID_UP_GOOGLEVENDOR | 0x0001))
827 parser->device->group =
828 HID_GROUP_VIVALDI;
829 }
830
hid_scan_main(struct hid_parser * parser,struct hid_item * item)831 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 {
833 __u32 data;
834 int i;
835
836 hid_concatenate_last_usage_page(parser);
837
838 data = item_udata(item);
839
840 switch (item->tag) {
841 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 hid_scan_collection(parser, data & 0xff);
843 break;
844 case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 break;
846 case HID_MAIN_ITEM_TAG_INPUT:
847 /* ignore constant inputs, they will be ignored by hid-input */
848 if (data & HID_MAIN_ITEM_CONSTANT)
849 break;
850 for (i = 0; i < parser->local.usage_index; i++)
851 hid_scan_input_usage(parser, parser->local.usage[i]);
852 break;
853 case HID_MAIN_ITEM_TAG_OUTPUT:
854 break;
855 case HID_MAIN_ITEM_TAG_FEATURE:
856 for (i = 0; i < parser->local.usage_index; i++)
857 hid_scan_feature_usage(parser, parser->local.usage[i]);
858 break;
859 }
860
861 /* Reset the local parser environment */
862 memset(&parser->local, 0, sizeof(parser->local));
863
864 return 0;
865 }
866
867 /*
868 * Scan a report descriptor before the device is added to the bus.
869 * Sets device groups and other properties that determine what driver
870 * to load.
871 */
hid_scan_report(struct hid_device * hid)872 static int hid_scan_report(struct hid_device *hid)
873 {
874 struct hid_parser *parser;
875 struct hid_item item;
876 __u8 *start = hid->dev_rdesc;
877 __u8 *end = start + hid->dev_rsize;
878 static int (*dispatch_type[])(struct hid_parser *parser,
879 struct hid_item *item) = {
880 hid_scan_main,
881 hid_parser_global,
882 hid_parser_local,
883 hid_parser_reserved
884 };
885
886 parser = vzalloc(sizeof(struct hid_parser));
887 if (!parser)
888 return -ENOMEM;
889
890 parser->device = hid;
891 hid->group = HID_GROUP_GENERIC;
892
893 /*
894 * The parsing is simpler than the one in hid_open_report() as we should
895 * be robust against hid errors. Those errors will be raised by
896 * hid_open_report() anyway.
897 */
898 while ((start = fetch_item(start, end, &item)) != NULL)
899 dispatch_type[item.type](parser, &item);
900
901 /*
902 * Handle special flags set during scanning.
903 */
904 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 (hid->group == HID_GROUP_MULTITOUCH))
906 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907
908 /*
909 * Vendor specific handlings
910 */
911 switch (hid->vendor) {
912 case USB_VENDOR_ID_WACOM:
913 hid->group = HID_GROUP_WACOM;
914 break;
915 case USB_VENDOR_ID_SYNAPTICS:
916 if (hid->group == HID_GROUP_GENERIC)
917 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 /*
920 * hid-rmi should take care of them,
921 * not hid-generic
922 */
923 hid->group = HID_GROUP_RMI;
924 break;
925 }
926
927 kfree(parser->collection_stack);
928 vfree(parser);
929 return 0;
930 }
931
932 /**
933 * hid_parse_report - parse device report
934 *
935 * @hid: hid device
936 * @start: report start
937 * @size: report size
938 *
939 * Allocate the device report as read by the bus driver. This function should
940 * only be called from parse() in ll drivers.
941 */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)942 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 {
944 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 if (!hid->dev_rdesc)
946 return -ENOMEM;
947 hid->dev_rsize = size;
948 return 0;
949 }
950 EXPORT_SYMBOL_GPL(hid_parse_report);
951
952 static const char * const hid_report_names[] = {
953 "HID_INPUT_REPORT",
954 "HID_OUTPUT_REPORT",
955 "HID_FEATURE_REPORT",
956 };
957 /**
958 * hid_validate_values - validate existing device report's value indexes
959 *
960 * @hid: hid device
961 * @type: which report type to examine
962 * @id: which report ID to examine (0 for first)
963 * @field_index: which report field to examine
964 * @report_counts: expected number of values
965 *
966 * Validate the number of values in a given field of a given report, after
967 * parsing.
968 */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)969 struct hid_report *hid_validate_values(struct hid_device *hid,
970 enum hid_report_type type, unsigned int id,
971 unsigned int field_index,
972 unsigned int report_counts)
973 {
974 struct hid_report *report;
975
976 if (type > HID_FEATURE_REPORT) {
977 hid_err(hid, "invalid HID report type %u\n", type);
978 return NULL;
979 }
980
981 if (id >= HID_MAX_IDS) {
982 hid_err(hid, "invalid HID report id %u\n", id);
983 return NULL;
984 }
985
986 /*
987 * Explicitly not using hid_get_report() here since it depends on
988 * ->numbered being checked, which may not always be the case when
989 * drivers go to access report values.
990 */
991 if (id == 0) {
992 /*
993 * Validating on id 0 means we should examine the first
994 * report in the list.
995 */
996 report = list_first_entry_or_null(
997 &hid->report_enum[type].report_list,
998 struct hid_report, list);
999 } else {
1000 report = hid->report_enum[type].report_id_hash[id];
1001 }
1002 if (!report) {
1003 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 return NULL;
1005 }
1006 if (report->maxfield <= field_index) {
1007 hid_err(hid, "not enough fields in %s %u\n",
1008 hid_report_names[type], id);
1009 return NULL;
1010 }
1011 if (report->field[field_index]->report_count < report_counts) {
1012 hid_err(hid, "not enough values in %s %u field %u\n",
1013 hid_report_names[type], id, field_index);
1014 return NULL;
1015 }
1016 return report;
1017 }
1018 EXPORT_SYMBOL_GPL(hid_validate_values);
1019
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1020 static int hid_calculate_multiplier(struct hid_device *hid,
1021 struct hid_field *multiplier)
1022 {
1023 int m;
1024 __s32 v = *multiplier->value;
1025 __s32 lmin = multiplier->logical_minimum;
1026 __s32 lmax = multiplier->logical_maximum;
1027 __s32 pmin = multiplier->physical_minimum;
1028 __s32 pmax = multiplier->physical_maximum;
1029
1030 /*
1031 * "Because OS implementations will generally divide the control's
1032 * reported count by the Effective Resolution Multiplier, designers
1033 * should take care not to establish a potential Effective
1034 * Resolution Multiplier of zero."
1035 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 */
1037 if (lmax - lmin == 0)
1038 return 1;
1039 /*
1040 * Handling the unit exponent is left as an exercise to whoever
1041 * finds a device where that exponent is not 0.
1042 */
1043 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 if (unlikely(multiplier->unit_exponent != 0)) {
1045 hid_warn(hid,
1046 "unsupported Resolution Multiplier unit exponent %d\n",
1047 multiplier->unit_exponent);
1048 }
1049
1050 /* There are no devices with an effective multiplier > 255 */
1051 if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 m = 1;
1054 }
1055
1056 return m;
1057 }
1058
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1059 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 struct hid_field *field,
1061 struct hid_collection *multiplier_collection,
1062 int effective_multiplier)
1063 {
1064 struct hid_collection *collection;
1065 struct hid_usage *usage;
1066 int i;
1067
1068 /*
1069 * If multiplier_collection is NULL, the multiplier applies
1070 * to all fields in the report.
1071 * Otherwise, it is the Logical Collection the multiplier applies to
1072 * but our field may be in a subcollection of that collection.
1073 */
1074 for (i = 0; i < field->maxusage; i++) {
1075 usage = &field->usage[i];
1076
1077 collection = &hid->collection[usage->collection_index];
1078 while (collection->parent_idx != -1 &&
1079 collection != multiplier_collection)
1080 collection = &hid->collection[collection->parent_idx];
1081
1082 if (collection->parent_idx != -1 ||
1083 multiplier_collection == NULL)
1084 usage->resolution_multiplier = effective_multiplier;
1085
1086 }
1087 }
1088
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1089 static void hid_apply_multiplier(struct hid_device *hid,
1090 struct hid_field *multiplier)
1091 {
1092 struct hid_report_enum *rep_enum;
1093 struct hid_report *rep;
1094 struct hid_field *field;
1095 struct hid_collection *multiplier_collection;
1096 int effective_multiplier;
1097 int i;
1098
1099 /*
1100 * "The Resolution Multiplier control must be contained in the same
1101 * Logical Collection as the control(s) to which it is to be applied.
1102 * If no Resolution Multiplier is defined, then the Resolution
1103 * Multiplier defaults to 1. If more than one control exists in a
1104 * Logical Collection, the Resolution Multiplier is associated with
1105 * all controls in the collection. If no Logical Collection is
1106 * defined, the Resolution Multiplier is associated with all
1107 * controls in the report."
1108 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 *
1110 * Thus, search from the current collection upwards until we find a
1111 * logical collection. Then search all fields for that same parent
1112 * collection. Those are the fields the multiplier applies to.
1113 *
1114 * If we have more than one multiplier, it will overwrite the
1115 * applicable fields later.
1116 */
1117 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 while (multiplier_collection->parent_idx != -1 &&
1119 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 for (i = 0; i < rep->maxfield; i++) {
1127 field = rep->field[i];
1128 hid_apply_multiplier_to_field(hid, field,
1129 multiplier_collection,
1130 effective_multiplier);
1131 }
1132 }
1133 }
1134
1135 /*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 * accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
hid_setup_resolution_multiplier(struct hid_device * hid)1158 void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 {
1160 struct hid_report_enum *rep_enum;
1161 struct hid_report *rep;
1162 struct hid_usage *usage;
1163 int i, j;
1164
1165 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 for (i = 0; i < rep->maxfield; i++) {
1168 /* Ignore if report count is out of bounds. */
1169 if (rep->field[i]->report_count < 1)
1170 continue;
1171
1172 for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 usage = &rep->field[i]->usage[j];
1174 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 hid_apply_multiplier(hid,
1176 rep->field[i]);
1177 }
1178 }
1179 }
1180 }
1181 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183 /**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
hid_open_report(struct hid_device * device)1195 int hid_open_report(struct hid_device *device)
1196 {
1197 struct hid_parser *parser;
1198 struct hid_item item;
1199 unsigned int size;
1200 __u8 *start;
1201 __u8 *buf;
1202 __u8 *end;
1203 __u8 *next;
1204 int ret;
1205 static int (*dispatch_type[])(struct hid_parser *parser,
1206 struct hid_item *item) = {
1207 hid_parser_main,
1208 hid_parser_global,
1209 hid_parser_local,
1210 hid_parser_reserved
1211 };
1212
1213 if (WARN_ON(device->status & HID_STAT_PARSED))
1214 return -EBUSY;
1215
1216 start = device->dev_rdesc;
1217 if (WARN_ON(!start))
1218 return -ENODEV;
1219 size = device->dev_rsize;
1220
1221 buf = kmemdup(start, size, GFP_KERNEL);
1222 if (buf == NULL)
1223 return -ENOMEM;
1224
1225 if (device->driver->report_fixup)
1226 start = device->driver->report_fixup(device, buf, &size);
1227 else
1228 start = buf;
1229
1230 start = kmemdup(start, size, GFP_KERNEL);
1231 kfree(buf);
1232 if (start == NULL)
1233 return -ENOMEM;
1234
1235 device->rdesc = start;
1236 device->rsize = size;
1237
1238 parser = vzalloc(sizeof(struct hid_parser));
1239 if (!parser) {
1240 ret = -ENOMEM;
1241 goto alloc_err;
1242 }
1243
1244 parser->device = device;
1245
1246 end = start + size;
1247
1248 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249 sizeof(struct hid_collection), GFP_KERNEL);
1250 if (!device->collection) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255
1256 ret = -EINVAL;
1257 while ((next = fetch_item(start, end, &item)) != NULL) {
1258 start = next;
1259
1260 if (item.format != HID_ITEM_FORMAT_SHORT) {
1261 hid_err(device, "unexpected long global item\n");
1262 goto err;
1263 }
1264
1265 if (dispatch_type[item.type](parser, &item)) {
1266 hid_err(device, "item %u %u %u %u parsing failed\n",
1267 item.format, (unsigned)item.size,
1268 (unsigned)item.type, (unsigned)item.tag);
1269 goto err;
1270 }
1271
1272 if (start == end) {
1273 if (parser->collection_stack_ptr) {
1274 hid_err(device, "unbalanced collection at end of report description\n");
1275 goto err;
1276 }
1277 if (parser->local.delimiter_depth) {
1278 hid_err(device, "unbalanced delimiter at end of report description\n");
1279 goto err;
1280 }
1281
1282 /*
1283 * fetch initial values in case the device's
1284 * default multiplier isn't the recommended 1
1285 */
1286 hid_setup_resolution_multiplier(device);
1287
1288 kfree(parser->collection_stack);
1289 vfree(parser);
1290 device->status |= HID_STAT_PARSED;
1291
1292 return 0;
1293 }
1294 }
1295
1296 hid_err(device, "item fetching failed at offset %u/%u\n",
1297 size - (unsigned int)(end - start), size);
1298 err:
1299 kfree(parser->collection_stack);
1300 alloc_err:
1301 vfree(parser);
1302 hid_close_report(device);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(hid_open_report);
1306
1307 /*
1308 * Convert a signed n-bit integer to signed 32-bit integer. Common
1309 * cases are done through the compiler, the screwed things has to be
1310 * done by hand.
1311 */
1312
snto32(__u32 value,unsigned n)1313 static s32 snto32(__u32 value, unsigned n)
1314 {
1315 if (!value || !n)
1316 return 0;
1317
1318 if (n > 32)
1319 n = 32;
1320
1321 switch (n) {
1322 case 8: return ((__s8)value);
1323 case 16: return ((__s16)value);
1324 case 32: return ((__s32)value);
1325 }
1326 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1327 }
1328
hid_snto32(__u32 value,unsigned n)1329 s32 hid_snto32(__u32 value, unsigned n)
1330 {
1331 return snto32(value, n);
1332 }
1333 EXPORT_SYMBOL_GPL(hid_snto32);
1334
1335 /*
1336 * Convert a signed 32-bit integer to a signed n-bit integer.
1337 */
1338
s32ton(__s32 value,unsigned n)1339 static u32 s32ton(__s32 value, unsigned n)
1340 {
1341 s32 a = value >> (n - 1);
1342 if (a && a != -1)
1343 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1344 return value & ((1 << n) - 1);
1345 }
1346
1347 /*
1348 * Extract/implement a data field from/to a little endian report (bit array).
1349 *
1350 * Code sort-of follows HID spec:
1351 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1352 *
1353 * While the USB HID spec allows unlimited length bit fields in "report
1354 * descriptors", most devices never use more than 16 bits.
1355 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1356 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1357 */
1358
__extract(u8 * report,unsigned offset,int n)1359 static u32 __extract(u8 *report, unsigned offset, int n)
1360 {
1361 unsigned int idx = offset / 8;
1362 unsigned int bit_nr = 0;
1363 unsigned int bit_shift = offset % 8;
1364 int bits_to_copy = 8 - bit_shift;
1365 u32 value = 0;
1366 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1367
1368 while (n > 0) {
1369 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1370 n -= bits_to_copy;
1371 bit_nr += bits_to_copy;
1372 bits_to_copy = 8;
1373 bit_shift = 0;
1374 idx++;
1375 }
1376
1377 return value & mask;
1378 }
1379
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1380 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1381 unsigned offset, unsigned n)
1382 {
1383 if (n > 32) {
1384 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1385 __func__, n, current->comm);
1386 n = 32;
1387 }
1388
1389 return __extract(report, offset, n);
1390 }
1391 EXPORT_SYMBOL_GPL(hid_field_extract);
1392
1393 /*
1394 * "implement" : set bits in a little endian bit stream.
1395 * Same concepts as "extract" (see comments above).
1396 * The data mangled in the bit stream remains in little endian
1397 * order the whole time. It make more sense to talk about
1398 * endianness of register values by considering a register
1399 * a "cached" copy of the little endian bit stream.
1400 */
1401
__implement(u8 * report,unsigned offset,int n,u32 value)1402 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1403 {
1404 unsigned int idx = offset / 8;
1405 unsigned int bit_shift = offset % 8;
1406 int bits_to_set = 8 - bit_shift;
1407
1408 while (n - bits_to_set >= 0) {
1409 report[idx] &= ~(0xff << bit_shift);
1410 report[idx] |= value << bit_shift;
1411 value >>= bits_to_set;
1412 n -= bits_to_set;
1413 bits_to_set = 8;
1414 bit_shift = 0;
1415 idx++;
1416 }
1417
1418 /* last nibble */
1419 if (n) {
1420 u8 bit_mask = ((1U << n) - 1);
1421 report[idx] &= ~(bit_mask << bit_shift);
1422 report[idx] |= value << bit_shift;
1423 }
1424 }
1425
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1426 static void implement(const struct hid_device *hid, u8 *report,
1427 unsigned offset, unsigned n, u32 value)
1428 {
1429 if (unlikely(n > 32)) {
1430 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1431 __func__, n, current->comm);
1432 n = 32;
1433 } else if (n < 32) {
1434 u32 m = (1U << n) - 1;
1435
1436 if (unlikely(value > m)) {
1437 hid_warn(hid,
1438 "%s() called with too large value %d (n: %d)! (%s)\n",
1439 __func__, value, n, current->comm);
1440 WARN_ON(1);
1441 value &= m;
1442 }
1443 }
1444
1445 __implement(report, offset, n, value);
1446 }
1447
1448 /*
1449 * Search an array for a value.
1450 */
1451
search(__s32 * array,__s32 value,unsigned n)1452 static int search(__s32 *array, __s32 value, unsigned n)
1453 {
1454 while (n--) {
1455 if (*array++ == value)
1456 return 0;
1457 }
1458 return -1;
1459 }
1460
1461 /**
1462 * hid_match_report - check if driver's raw_event should be called
1463 *
1464 * @hid: hid device
1465 * @report: hid report to match against
1466 *
1467 * compare hid->driver->report_table->report_type to report->type
1468 */
hid_match_report(struct hid_device * hid,struct hid_report * report)1469 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1470 {
1471 const struct hid_report_id *id = hid->driver->report_table;
1472
1473 if (!id) /* NULL means all */
1474 return 1;
1475
1476 for (; id->report_type != HID_TERMINATOR; id++)
1477 if (id->report_type == HID_ANY_ID ||
1478 id->report_type == report->type)
1479 return 1;
1480 return 0;
1481 }
1482
1483 /**
1484 * hid_match_usage - check if driver's event should be called
1485 *
1486 * @hid: hid device
1487 * @usage: usage to match against
1488 *
1489 * compare hid->driver->usage_table->usage_{type,code} to
1490 * usage->usage_{type,code}
1491 */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1492 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1493 {
1494 const struct hid_usage_id *id = hid->driver->usage_table;
1495
1496 if (!id) /* NULL means all */
1497 return 1;
1498
1499 for (; id->usage_type != HID_ANY_ID - 1; id++)
1500 if ((id->usage_hid == HID_ANY_ID ||
1501 id->usage_hid == usage->hid) &&
1502 (id->usage_type == HID_ANY_ID ||
1503 id->usage_type == usage->type) &&
1504 (id->usage_code == HID_ANY_ID ||
1505 id->usage_code == usage->code))
1506 return 1;
1507 return 0;
1508 }
1509
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1510 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1511 struct hid_usage *usage, __s32 value, int interrupt)
1512 {
1513 struct hid_driver *hdrv = hid->driver;
1514 int ret;
1515
1516 if (!list_empty(&hid->debug_list))
1517 hid_dump_input(hid, usage, value);
1518
1519 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1520 ret = hdrv->event(hid, field, usage, value);
1521 if (ret != 0) {
1522 if (ret < 0)
1523 hid_err(hid, "%s's event failed with %d\n",
1524 hdrv->name, ret);
1525 return;
1526 }
1527 }
1528
1529 if (hid->claimed & HID_CLAIMED_INPUT)
1530 hidinput_hid_event(hid, field, usage, value);
1531 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1532 hid->hiddev_hid_event(hid, field, usage, value);
1533 }
1534
1535 /*
1536 * Checks if the given value is valid within this field
1537 */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1538 static inline int hid_array_value_is_valid(struct hid_field *field,
1539 __s32 value)
1540 {
1541 __s32 min = field->logical_minimum;
1542
1543 /*
1544 * Value needs to be between logical min and max, and
1545 * (value - min) is used as an index in the usage array.
1546 * This array is of size field->maxusage
1547 */
1548 return value >= min &&
1549 value <= field->logical_maximum &&
1550 value - min < field->maxusage;
1551 }
1552
1553 /*
1554 * Fetch the field from the data. The field content is stored for next
1555 * report processing (we do differential reporting to the layer).
1556 */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1557 static void hid_input_fetch_field(struct hid_device *hid,
1558 struct hid_field *field,
1559 __u8 *data)
1560 {
1561 unsigned n;
1562 unsigned count = field->report_count;
1563 unsigned offset = field->report_offset;
1564 unsigned size = field->report_size;
1565 __s32 min = field->logical_minimum;
1566 __s32 *value;
1567
1568 value = field->new_value;
1569 memset(value, 0, count * sizeof(__s32));
1570 field->ignored = false;
1571
1572 for (n = 0; n < count; n++) {
1573
1574 value[n] = min < 0 ?
1575 snto32(hid_field_extract(hid, data, offset + n * size,
1576 size), size) :
1577 hid_field_extract(hid, data, offset + n * size, size);
1578
1579 /* Ignore report if ErrorRollOver */
1580 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1581 hid_array_value_is_valid(field, value[n]) &&
1582 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1583 field->ignored = true;
1584 return;
1585 }
1586 }
1587 }
1588
1589 /*
1590 * Process a received variable field.
1591 */
1592
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1593 static void hid_input_var_field(struct hid_device *hid,
1594 struct hid_field *field,
1595 int interrupt)
1596 {
1597 unsigned int count = field->report_count;
1598 __s32 *value = field->new_value;
1599 unsigned int n;
1600
1601 for (n = 0; n < count; n++)
1602 hid_process_event(hid,
1603 field,
1604 &field->usage[n],
1605 value[n],
1606 interrupt);
1607
1608 memcpy(field->value, value, count * sizeof(__s32));
1609 }
1610
1611 /*
1612 * Process a received array field. The field content is stored for
1613 * next report processing (we do differential reporting to the layer).
1614 */
1615
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1616 static void hid_input_array_field(struct hid_device *hid,
1617 struct hid_field *field,
1618 int interrupt)
1619 {
1620 unsigned int n;
1621 unsigned int count = field->report_count;
1622 __s32 min = field->logical_minimum;
1623 __s32 *value;
1624
1625 value = field->new_value;
1626
1627 /* ErrorRollOver */
1628 if (field->ignored)
1629 return;
1630
1631 for (n = 0; n < count; n++) {
1632 if (hid_array_value_is_valid(field, field->value[n]) &&
1633 search(value, field->value[n], count))
1634 hid_process_event(hid,
1635 field,
1636 &field->usage[field->value[n] - min],
1637 0,
1638 interrupt);
1639
1640 if (hid_array_value_is_valid(field, value[n]) &&
1641 search(field->value, value[n], count))
1642 hid_process_event(hid,
1643 field,
1644 &field->usage[value[n] - min],
1645 1,
1646 interrupt);
1647 }
1648
1649 memcpy(field->value, value, count * sizeof(__s32));
1650 }
1651
1652 /*
1653 * Analyse a received report, and fetch the data from it. The field
1654 * content is stored for next report processing (we do differential
1655 * reporting to the layer).
1656 */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1657 static void hid_process_report(struct hid_device *hid,
1658 struct hid_report *report,
1659 __u8 *data,
1660 int interrupt)
1661 {
1662 unsigned int a;
1663 struct hid_field_entry *entry;
1664 struct hid_field *field;
1665
1666 /* first retrieve all incoming values in data */
1667 for (a = 0; a < report->maxfield; a++)
1668 hid_input_fetch_field(hid, report->field[a], data);
1669
1670 if (!list_empty(&report->field_entry_list)) {
1671 /* INPUT_REPORT, we have a priority list of fields */
1672 list_for_each_entry(entry,
1673 &report->field_entry_list,
1674 list) {
1675 field = entry->field;
1676
1677 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1678 hid_process_event(hid,
1679 field,
1680 &field->usage[entry->index],
1681 field->new_value[entry->index],
1682 interrupt);
1683 else
1684 hid_input_array_field(hid, field, interrupt);
1685 }
1686
1687 /* we need to do the memcpy at the end for var items */
1688 for (a = 0; a < report->maxfield; a++) {
1689 field = report->field[a];
1690
1691 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1692 memcpy(field->value, field->new_value,
1693 field->report_count * sizeof(__s32));
1694 }
1695 } else {
1696 /* FEATURE_REPORT, regular processing */
1697 for (a = 0; a < report->maxfield; a++) {
1698 field = report->field[a];
1699
1700 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1701 hid_input_var_field(hid, field, interrupt);
1702 else
1703 hid_input_array_field(hid, field, interrupt);
1704 }
1705 }
1706 }
1707
1708 /*
1709 * Insert a given usage_index in a field in the list
1710 * of processed usages in the report.
1711 *
1712 * The elements of lower priority score are processed
1713 * first.
1714 */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1715 static void __hid_insert_field_entry(struct hid_device *hid,
1716 struct hid_report *report,
1717 struct hid_field_entry *entry,
1718 struct hid_field *field,
1719 unsigned int usage_index)
1720 {
1721 struct hid_field_entry *next;
1722
1723 entry->field = field;
1724 entry->index = usage_index;
1725 entry->priority = field->usages_priorities[usage_index];
1726
1727 /* insert the element at the correct position */
1728 list_for_each_entry(next,
1729 &report->field_entry_list,
1730 list) {
1731 /*
1732 * the priority of our element is strictly higher
1733 * than the next one, insert it before
1734 */
1735 if (entry->priority > next->priority) {
1736 list_add_tail(&entry->list, &next->list);
1737 return;
1738 }
1739 }
1740
1741 /* lowest priority score: insert at the end */
1742 list_add_tail(&entry->list, &report->field_entry_list);
1743 }
1744
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1745 static void hid_report_process_ordering(struct hid_device *hid,
1746 struct hid_report *report)
1747 {
1748 struct hid_field *field;
1749 struct hid_field_entry *entries;
1750 unsigned int a, u, usages;
1751 unsigned int count = 0;
1752
1753 /* count the number of individual fields in the report */
1754 for (a = 0; a < report->maxfield; a++) {
1755 field = report->field[a];
1756
1757 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1758 count += field->report_count;
1759 else
1760 count++;
1761 }
1762
1763 /* allocate the memory to process the fields */
1764 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1765 if (!entries)
1766 return;
1767
1768 report->field_entries = entries;
1769
1770 /*
1771 * walk through all fields in the report and
1772 * store them by priority order in report->field_entry_list
1773 *
1774 * - Var elements are individualized (field + usage_index)
1775 * - Arrays are taken as one, we can not chose an order for them
1776 */
1777 usages = 0;
1778 for (a = 0; a < report->maxfield; a++) {
1779 field = report->field[a];
1780
1781 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1782 for (u = 0; u < field->report_count; u++) {
1783 __hid_insert_field_entry(hid, report,
1784 &entries[usages],
1785 field, u);
1786 usages++;
1787 }
1788 } else {
1789 __hid_insert_field_entry(hid, report, &entries[usages],
1790 field, 0);
1791 usages++;
1792 }
1793 }
1794 }
1795
hid_process_ordering(struct hid_device * hid)1796 static void hid_process_ordering(struct hid_device *hid)
1797 {
1798 struct hid_report *report;
1799 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1800
1801 list_for_each_entry(report, &report_enum->report_list, list)
1802 hid_report_process_ordering(hid, report);
1803 }
1804
1805 /*
1806 * Output the field into the report.
1807 */
1808
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1809 static void hid_output_field(const struct hid_device *hid,
1810 struct hid_field *field, __u8 *data)
1811 {
1812 unsigned count = field->report_count;
1813 unsigned offset = field->report_offset;
1814 unsigned size = field->report_size;
1815 unsigned n;
1816
1817 for (n = 0; n < count; n++) {
1818 if (field->logical_minimum < 0) /* signed values */
1819 implement(hid, data, offset + n * size, size,
1820 s32ton(field->value[n], size));
1821 else /* unsigned values */
1822 implement(hid, data, offset + n * size, size,
1823 field->value[n]);
1824 }
1825 }
1826
1827 /*
1828 * Compute the size of a report.
1829 */
hid_compute_report_size(struct hid_report * report)1830 static size_t hid_compute_report_size(struct hid_report *report)
1831 {
1832 if (report->size)
1833 return ((report->size - 1) >> 3) + 1;
1834
1835 return 0;
1836 }
1837
1838 /*
1839 * Create a report. 'data' has to be allocated using
1840 * hid_alloc_report_buf() so that it has proper size.
1841 */
1842
hid_output_report(struct hid_report * report,__u8 * data)1843 void hid_output_report(struct hid_report *report, __u8 *data)
1844 {
1845 unsigned n;
1846
1847 if (report->id > 0)
1848 *data++ = report->id;
1849
1850 memset(data, 0, hid_compute_report_size(report));
1851 for (n = 0; n < report->maxfield; n++)
1852 hid_output_field(report->device, report->field[n], data);
1853 }
1854 EXPORT_SYMBOL_GPL(hid_output_report);
1855
1856 /*
1857 * Allocator for buffer that is going to be passed to hid_output_report()
1858 */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1859 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1860 {
1861 /*
1862 * 7 extra bytes are necessary to achieve proper functionality
1863 * of implement() working on 8 byte chunks
1864 */
1865
1866 u32 len = hid_report_len(report) + 7;
1867
1868 return kmalloc(len, flags);
1869 }
1870 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1871
1872 /*
1873 * Set a field value. The report this field belongs to has to be
1874 * created and transferred to the device, to set this value in the
1875 * device.
1876 */
1877
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1878 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1879 {
1880 unsigned size;
1881
1882 if (!field)
1883 return -1;
1884
1885 size = field->report_size;
1886
1887 hid_dump_input(field->report->device, field->usage + offset, value);
1888
1889 if (offset >= field->report_count) {
1890 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1891 offset, field->report_count);
1892 return -1;
1893 }
1894 if (field->logical_minimum < 0) {
1895 if (value != snto32(s32ton(value, size), size)) {
1896 hid_err(field->report->device, "value %d is out of range\n", value);
1897 return -1;
1898 }
1899 }
1900 field->value[offset] = value;
1901 return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(hid_set_field);
1904
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1905 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1906 const u8 *data)
1907 {
1908 struct hid_report *report;
1909 unsigned int n = 0; /* Normally report number is 0 */
1910
1911 /* Device uses numbered reports, data[0] is report number */
1912 if (report_enum->numbered)
1913 n = *data;
1914
1915 report = report_enum->report_id_hash[n];
1916 if (report == NULL)
1917 dbg_hid("undefined report_id %u received\n", n);
1918
1919 return report;
1920 }
1921
1922 /*
1923 * Implement a generic .request() callback, using .raw_request()
1924 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1925 */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1926 int __hid_request(struct hid_device *hid, struct hid_report *report,
1927 enum hid_class_request reqtype)
1928 {
1929 char *buf;
1930 int ret;
1931 u32 len;
1932
1933 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1934 if (!buf)
1935 return -ENOMEM;
1936
1937 len = hid_report_len(report);
1938
1939 if (reqtype == HID_REQ_SET_REPORT)
1940 hid_output_report(report, buf);
1941
1942 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1943 report->type, reqtype);
1944 if (ret < 0) {
1945 dbg_hid("unable to complete request: %d\n", ret);
1946 goto out;
1947 }
1948
1949 if (reqtype == HID_REQ_GET_REPORT)
1950 hid_input_report(hid, report->type, buf, ret, 0);
1951
1952 ret = 0;
1953
1954 out:
1955 kfree(buf);
1956 return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(__hid_request);
1959
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)1960 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1961 int interrupt)
1962 {
1963 struct hid_report_enum *report_enum = hid->report_enum + type;
1964 struct hid_report *report;
1965 struct hid_driver *hdrv;
1966 u32 rsize, csize = size;
1967 u8 *cdata = data;
1968 int ret = 0;
1969
1970 report = hid_get_report(report_enum, data);
1971 if (!report)
1972 goto out;
1973
1974 if (report_enum->numbered) {
1975 cdata++;
1976 csize--;
1977 }
1978
1979 rsize = hid_compute_report_size(report);
1980
1981 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1982 rsize = HID_MAX_BUFFER_SIZE - 1;
1983 else if (rsize > HID_MAX_BUFFER_SIZE)
1984 rsize = HID_MAX_BUFFER_SIZE;
1985
1986 if (csize < rsize) {
1987 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1988 csize, rsize);
1989 memset(cdata + csize, 0, rsize - csize);
1990 }
1991
1992 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1993 hid->hiddev_report_event(hid, report);
1994 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1995 ret = hidraw_report_event(hid, data, size);
1996 if (ret)
1997 goto out;
1998 }
1999
2000 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2001 hid_process_report(hid, report, cdata, interrupt);
2002 hdrv = hid->driver;
2003 if (hdrv && hdrv->report)
2004 hdrv->report(hid, report);
2005 }
2006
2007 if (hid->claimed & HID_CLAIMED_INPUT)
2008 hidinput_report_event(hid, report);
2009 out:
2010 return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2013
2014 /**
2015 * hid_input_report - report data from lower layer (usb, bt...)
2016 *
2017 * @hid: hid device
2018 * @type: HID report type (HID_*_REPORT)
2019 * @data: report contents
2020 * @size: size of data parameter
2021 * @interrupt: distinguish between interrupt and control transfers
2022 *
2023 * This is data entry for lower layers.
2024 */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2025 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2026 int interrupt)
2027 {
2028 struct hid_report_enum *report_enum;
2029 struct hid_driver *hdrv;
2030 struct hid_report *report;
2031 int ret = 0;
2032
2033 if (!hid)
2034 return -ENODEV;
2035
2036 if (down_trylock(&hid->driver_input_lock))
2037 return -EBUSY;
2038
2039 if (!hid->driver) {
2040 ret = -ENODEV;
2041 goto unlock;
2042 }
2043 report_enum = hid->report_enum + type;
2044 hdrv = hid->driver;
2045
2046 if (!size) {
2047 dbg_hid("empty report\n");
2048 ret = -1;
2049 goto unlock;
2050 }
2051
2052 /* Avoid unnecessary overhead if debugfs is disabled */
2053 if (!list_empty(&hid->debug_list))
2054 hid_dump_report(hid, type, data, size);
2055
2056 report = hid_get_report(report_enum, data);
2057
2058 if (!report) {
2059 ret = -1;
2060 goto unlock;
2061 }
2062
2063 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2064 ret = hdrv->raw_event(hid, report, data, size);
2065 if (ret < 0)
2066 goto unlock;
2067 }
2068
2069 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2070
2071 unlock:
2072 up(&hid->driver_input_lock);
2073 return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(hid_input_report);
2076
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2077 bool hid_match_one_id(const struct hid_device *hdev,
2078 const struct hid_device_id *id)
2079 {
2080 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2081 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2082 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2083 (id->product == HID_ANY_ID || id->product == hdev->product);
2084 }
2085
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2086 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2087 const struct hid_device_id *id)
2088 {
2089 for (; id->bus; id++)
2090 if (hid_match_one_id(hdev, id))
2091 return id;
2092
2093 return NULL;
2094 }
2095 EXPORT_SYMBOL_GPL(hid_match_id);
2096
2097 static const struct hid_device_id hid_hiddev_list[] = {
2098 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2099 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2100 { }
2101 };
2102
hid_hiddev(struct hid_device * hdev)2103 static bool hid_hiddev(struct hid_device *hdev)
2104 {
2105 return !!hid_match_id(hdev, hid_hiddev_list);
2106 }
2107
2108
2109 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)2110 read_report_descriptor(struct file *filp, struct kobject *kobj,
2111 struct bin_attribute *attr,
2112 char *buf, loff_t off, size_t count)
2113 {
2114 struct device *dev = kobj_to_dev(kobj);
2115 struct hid_device *hdev = to_hid_device(dev);
2116
2117 if (off >= hdev->rsize)
2118 return 0;
2119
2120 if (off + count > hdev->rsize)
2121 count = hdev->rsize - off;
2122
2123 memcpy(buf, hdev->rdesc + off, count);
2124
2125 return count;
2126 }
2127
2128 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)2129 show_country(struct device *dev, struct device_attribute *attr,
2130 char *buf)
2131 {
2132 struct hid_device *hdev = to_hid_device(dev);
2133
2134 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2135 }
2136
2137 static struct bin_attribute dev_bin_attr_report_desc = {
2138 .attr = { .name = "report_descriptor", .mode = 0444 },
2139 .read = read_report_descriptor,
2140 .size = HID_MAX_DESCRIPTOR_SIZE,
2141 };
2142
2143 static const struct device_attribute dev_attr_country = {
2144 .attr = { .name = "country", .mode = 0444 },
2145 .show = show_country,
2146 };
2147
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2148 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2149 {
2150 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2151 "Joystick", "Gamepad", "Keyboard", "Keypad",
2152 "Multi-Axis Controller"
2153 };
2154 const char *type, *bus;
2155 char buf[64] = "";
2156 unsigned int i;
2157 int len;
2158 int ret;
2159
2160 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2161 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2162 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2163 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2164 if (hdev->bus != BUS_USB)
2165 connect_mask &= ~HID_CONNECT_HIDDEV;
2166 if (hid_hiddev(hdev))
2167 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2168
2169 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2170 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2171 hdev->claimed |= HID_CLAIMED_INPUT;
2172
2173 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2174 !hdev->hiddev_connect(hdev,
2175 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2176 hdev->claimed |= HID_CLAIMED_HIDDEV;
2177 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2178 hdev->claimed |= HID_CLAIMED_HIDRAW;
2179
2180 if (connect_mask & HID_CONNECT_DRIVER)
2181 hdev->claimed |= HID_CLAIMED_DRIVER;
2182
2183 /* Drivers with the ->raw_event callback set are not required to connect
2184 * to any other listener. */
2185 if (!hdev->claimed && !hdev->driver->raw_event) {
2186 hid_err(hdev, "device has no listeners, quitting\n");
2187 return -ENODEV;
2188 }
2189
2190 hid_process_ordering(hdev);
2191
2192 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2193 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2194 hdev->ff_init(hdev);
2195
2196 len = 0;
2197 if (hdev->claimed & HID_CLAIMED_INPUT)
2198 len += sprintf(buf + len, "input");
2199 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2200 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2201 ((struct hiddev *)hdev->hiddev)->minor);
2202 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2203 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2204 ((struct hidraw *)hdev->hidraw)->minor);
2205
2206 type = "Device";
2207 for (i = 0; i < hdev->maxcollection; i++) {
2208 struct hid_collection *col = &hdev->collection[i];
2209 if (col->type == HID_COLLECTION_APPLICATION &&
2210 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2211 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2212 type = types[col->usage & 0xffff];
2213 break;
2214 }
2215 }
2216
2217 switch (hdev->bus) {
2218 case BUS_USB:
2219 bus = "USB";
2220 break;
2221 case BUS_BLUETOOTH:
2222 bus = "BLUETOOTH";
2223 break;
2224 case BUS_I2C:
2225 bus = "I2C";
2226 break;
2227 case BUS_VIRTUAL:
2228 bus = "VIRTUAL";
2229 break;
2230 case BUS_INTEL_ISHTP:
2231 case BUS_AMD_SFH:
2232 bus = "SENSOR HUB";
2233 break;
2234 default:
2235 bus = "<UNKNOWN>";
2236 }
2237
2238 ret = device_create_file(&hdev->dev, &dev_attr_country);
2239 if (ret)
2240 hid_warn(hdev,
2241 "can't create sysfs country code attribute err: %d\n", ret);
2242
2243 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2244 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2245 type, hdev->name, hdev->phys);
2246
2247 return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(hid_connect);
2250
hid_disconnect(struct hid_device * hdev)2251 void hid_disconnect(struct hid_device *hdev)
2252 {
2253 device_remove_file(&hdev->dev, &dev_attr_country);
2254 if (hdev->claimed & HID_CLAIMED_INPUT)
2255 hidinput_disconnect(hdev);
2256 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2257 hdev->hiddev_disconnect(hdev);
2258 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2259 hidraw_disconnect(hdev);
2260 hdev->claimed = 0;
2261 }
2262 EXPORT_SYMBOL_GPL(hid_disconnect);
2263
2264 /**
2265 * hid_hw_start - start underlying HW
2266 * @hdev: hid device
2267 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2268 *
2269 * Call this in probe function *after* hid_parse. This will setup HW
2270 * buffers and start the device (if not defeirred to device open).
2271 * hid_hw_stop must be called if this was successful.
2272 */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2273 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2274 {
2275 int error;
2276
2277 error = hdev->ll_driver->start(hdev);
2278 if (error)
2279 return error;
2280
2281 if (connect_mask) {
2282 error = hid_connect(hdev, connect_mask);
2283 if (error) {
2284 hdev->ll_driver->stop(hdev);
2285 return error;
2286 }
2287 }
2288
2289 return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(hid_hw_start);
2292
2293 /**
2294 * hid_hw_stop - stop underlying HW
2295 * @hdev: hid device
2296 *
2297 * This is usually called from remove function or from probe when something
2298 * failed and hid_hw_start was called already.
2299 */
hid_hw_stop(struct hid_device * hdev)2300 void hid_hw_stop(struct hid_device *hdev)
2301 {
2302 hid_disconnect(hdev);
2303 hdev->ll_driver->stop(hdev);
2304 }
2305 EXPORT_SYMBOL_GPL(hid_hw_stop);
2306
2307 /**
2308 * hid_hw_open - signal underlying HW to start delivering events
2309 * @hdev: hid device
2310 *
2311 * Tell underlying HW to start delivering events from the device.
2312 * This function should be called sometime after successful call
2313 * to hid_hw_start().
2314 */
hid_hw_open(struct hid_device * hdev)2315 int hid_hw_open(struct hid_device *hdev)
2316 {
2317 int ret;
2318
2319 ret = mutex_lock_killable(&hdev->ll_open_lock);
2320 if (ret)
2321 return ret;
2322
2323 if (!hdev->ll_open_count++) {
2324 ret = hdev->ll_driver->open(hdev);
2325 if (ret)
2326 hdev->ll_open_count--;
2327 }
2328
2329 mutex_unlock(&hdev->ll_open_lock);
2330 return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(hid_hw_open);
2333
2334 /**
2335 * hid_hw_close - signal underlaying HW to stop delivering events
2336 *
2337 * @hdev: hid device
2338 *
2339 * This function indicates that we are not interested in the events
2340 * from this device anymore. Delivery of events may or may not stop,
2341 * depending on the number of users still outstanding.
2342 */
hid_hw_close(struct hid_device * hdev)2343 void hid_hw_close(struct hid_device *hdev)
2344 {
2345 mutex_lock(&hdev->ll_open_lock);
2346 if (!--hdev->ll_open_count)
2347 hdev->ll_driver->close(hdev);
2348 mutex_unlock(&hdev->ll_open_lock);
2349 }
2350 EXPORT_SYMBOL_GPL(hid_hw_close);
2351
2352 /**
2353 * hid_hw_request - send report request to device
2354 *
2355 * @hdev: hid device
2356 * @report: report to send
2357 * @reqtype: hid request type
2358 */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2359 void hid_hw_request(struct hid_device *hdev,
2360 struct hid_report *report, enum hid_class_request reqtype)
2361 {
2362 if (hdev->ll_driver->request)
2363 return hdev->ll_driver->request(hdev, report, reqtype);
2364
2365 __hid_request(hdev, report, reqtype);
2366 }
2367 EXPORT_SYMBOL_GPL(hid_hw_request);
2368
2369 /**
2370 * hid_hw_raw_request - send report request to device
2371 *
2372 * @hdev: hid device
2373 * @reportnum: report ID
2374 * @buf: in/out data to transfer
2375 * @len: length of buf
2376 * @rtype: HID report type
2377 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2378 *
2379 * Return: count of data transferred, negative if error
2380 *
2381 * Same behavior as hid_hw_request, but with raw buffers instead.
2382 */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2383 int hid_hw_raw_request(struct hid_device *hdev,
2384 unsigned char reportnum, __u8 *buf,
2385 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2386 {
2387 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2388 return -EINVAL;
2389
2390 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2391 rtype, reqtype);
2392 }
2393 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2394
2395 /**
2396 * hid_hw_output_report - send output report to device
2397 *
2398 * @hdev: hid device
2399 * @buf: raw data to transfer
2400 * @len: length of buf
2401 *
2402 * Return: count of data transferred, negative if error
2403 */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2404 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2405 {
2406 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2407 return -EINVAL;
2408
2409 if (hdev->ll_driver->output_report)
2410 return hdev->ll_driver->output_report(hdev, buf, len);
2411
2412 return -ENOSYS;
2413 }
2414 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2415
2416 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2417 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2418 {
2419 if (hdev->driver && hdev->driver->suspend)
2420 return hdev->driver->suspend(hdev, state);
2421
2422 return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2425
hid_driver_reset_resume(struct hid_device * hdev)2426 int hid_driver_reset_resume(struct hid_device *hdev)
2427 {
2428 if (hdev->driver && hdev->driver->reset_resume)
2429 return hdev->driver->reset_resume(hdev);
2430
2431 return 0;
2432 }
2433 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2434
hid_driver_resume(struct hid_device * hdev)2435 int hid_driver_resume(struct hid_device *hdev)
2436 {
2437 if (hdev->driver && hdev->driver->resume)
2438 return hdev->driver->resume(hdev);
2439
2440 return 0;
2441 }
2442 EXPORT_SYMBOL_GPL(hid_driver_resume);
2443 #endif /* CONFIG_PM */
2444
2445 struct hid_dynid {
2446 struct list_head list;
2447 struct hid_device_id id;
2448 };
2449
2450 /**
2451 * new_id_store - add a new HID device ID to this driver and re-probe devices
2452 * @drv: target device driver
2453 * @buf: buffer for scanning device ID data
2454 * @count: input size
2455 *
2456 * Adds a new dynamic hid device ID to this driver,
2457 * and causes the driver to probe for all devices again.
2458 */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2459 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2460 size_t count)
2461 {
2462 struct hid_driver *hdrv = to_hid_driver(drv);
2463 struct hid_dynid *dynid;
2464 __u32 bus, vendor, product;
2465 unsigned long driver_data = 0;
2466 int ret;
2467
2468 ret = sscanf(buf, "%x %x %x %lx",
2469 &bus, &vendor, &product, &driver_data);
2470 if (ret < 3)
2471 return -EINVAL;
2472
2473 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2474 if (!dynid)
2475 return -ENOMEM;
2476
2477 dynid->id.bus = bus;
2478 dynid->id.group = HID_GROUP_ANY;
2479 dynid->id.vendor = vendor;
2480 dynid->id.product = product;
2481 dynid->id.driver_data = driver_data;
2482
2483 spin_lock(&hdrv->dyn_lock);
2484 list_add_tail(&dynid->list, &hdrv->dyn_list);
2485 spin_unlock(&hdrv->dyn_lock);
2486
2487 ret = driver_attach(&hdrv->driver);
2488
2489 return ret ? : count;
2490 }
2491 static DRIVER_ATTR_WO(new_id);
2492
2493 static struct attribute *hid_drv_attrs[] = {
2494 &driver_attr_new_id.attr,
2495 NULL,
2496 };
2497 ATTRIBUTE_GROUPS(hid_drv);
2498
hid_free_dynids(struct hid_driver * hdrv)2499 static void hid_free_dynids(struct hid_driver *hdrv)
2500 {
2501 struct hid_dynid *dynid, *n;
2502
2503 spin_lock(&hdrv->dyn_lock);
2504 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2505 list_del(&dynid->list);
2506 kfree(dynid);
2507 }
2508 spin_unlock(&hdrv->dyn_lock);
2509 }
2510
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2511 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2512 struct hid_driver *hdrv)
2513 {
2514 struct hid_dynid *dynid;
2515
2516 spin_lock(&hdrv->dyn_lock);
2517 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2518 if (hid_match_one_id(hdev, &dynid->id)) {
2519 spin_unlock(&hdrv->dyn_lock);
2520 return &dynid->id;
2521 }
2522 }
2523 spin_unlock(&hdrv->dyn_lock);
2524
2525 return hid_match_id(hdev, hdrv->id_table);
2526 }
2527 EXPORT_SYMBOL_GPL(hid_match_device);
2528
hid_bus_match(struct device * dev,struct device_driver * drv)2529 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2530 {
2531 struct hid_driver *hdrv = to_hid_driver(drv);
2532 struct hid_device *hdev = to_hid_device(dev);
2533
2534 return hid_match_device(hdev, hdrv) != NULL;
2535 }
2536
2537 /**
2538 * hid_compare_device_paths - check if both devices share the same path
2539 * @hdev_a: hid device
2540 * @hdev_b: hid device
2541 * @separator: char to use as separator
2542 *
2543 * Check if two devices share the same path up to the last occurrence of
2544 * the separator char. Both paths must exist (i.e., zero-length paths
2545 * don't match).
2546 */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2547 bool hid_compare_device_paths(struct hid_device *hdev_a,
2548 struct hid_device *hdev_b, char separator)
2549 {
2550 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2551 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2552
2553 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2554 return false;
2555
2556 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2557 }
2558 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2559
hid_device_probe(struct device * dev)2560 static int hid_device_probe(struct device *dev)
2561 {
2562 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2563 struct hid_device *hdev = to_hid_device(dev);
2564 const struct hid_device_id *id;
2565 int ret = 0;
2566
2567 if (down_interruptible(&hdev->driver_input_lock)) {
2568 ret = -EINTR;
2569 goto end;
2570 }
2571 hdev->io_started = false;
2572
2573 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2574
2575 if (!hdev->driver) {
2576 id = hid_match_device(hdev, hdrv);
2577 if (id == NULL) {
2578 ret = -ENODEV;
2579 goto unlock;
2580 }
2581
2582 if (hdrv->match) {
2583 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2584 ret = -ENODEV;
2585 goto unlock;
2586 }
2587 } else {
2588 /*
2589 * hid-generic implements .match(), so if
2590 * hid_ignore_special_drivers is set, we can safely
2591 * return.
2592 */
2593 if (hid_ignore_special_drivers) {
2594 ret = -ENODEV;
2595 goto unlock;
2596 }
2597 }
2598
2599 /* reset the quirks that has been previously set */
2600 hdev->quirks = hid_lookup_quirk(hdev);
2601 hdev->driver = hdrv;
2602 if (hdrv->probe) {
2603 ret = hdrv->probe(hdev, id);
2604 } else { /* default probe */
2605 ret = hid_open_report(hdev);
2606 if (!ret)
2607 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2608 }
2609 if (ret) {
2610 hid_close_report(hdev);
2611 hdev->driver = NULL;
2612 }
2613 }
2614 unlock:
2615 if (!hdev->io_started)
2616 up(&hdev->driver_input_lock);
2617 end:
2618 return ret;
2619 }
2620
hid_device_remove(struct device * dev)2621 static void hid_device_remove(struct device *dev)
2622 {
2623 struct hid_device *hdev = to_hid_device(dev);
2624 struct hid_driver *hdrv;
2625
2626 down(&hdev->driver_input_lock);
2627 hdev->io_started = false;
2628
2629 hdrv = hdev->driver;
2630 if (hdrv) {
2631 if (hdrv->remove)
2632 hdrv->remove(hdev);
2633 else /* default remove */
2634 hid_hw_stop(hdev);
2635 hid_close_report(hdev);
2636 hdev->driver = NULL;
2637 }
2638
2639 if (!hdev->io_started)
2640 up(&hdev->driver_input_lock);
2641 }
2642
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2643 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2644 char *buf)
2645 {
2646 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2647
2648 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2649 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2650 }
2651 static DEVICE_ATTR_RO(modalias);
2652
2653 static struct attribute *hid_dev_attrs[] = {
2654 &dev_attr_modalias.attr,
2655 NULL,
2656 };
2657 static struct bin_attribute *hid_dev_bin_attrs[] = {
2658 &dev_bin_attr_report_desc,
2659 NULL
2660 };
2661 static const struct attribute_group hid_dev_group = {
2662 .attrs = hid_dev_attrs,
2663 .bin_attrs = hid_dev_bin_attrs,
2664 };
2665 __ATTRIBUTE_GROUPS(hid_dev);
2666
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2667 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2668 {
2669 struct hid_device *hdev = to_hid_device(dev);
2670
2671 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2672 hdev->bus, hdev->vendor, hdev->product))
2673 return -ENOMEM;
2674
2675 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2676 return -ENOMEM;
2677
2678 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2679 return -ENOMEM;
2680
2681 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2682 return -ENOMEM;
2683
2684 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2685 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2686 return -ENOMEM;
2687
2688 return 0;
2689 }
2690
2691 struct bus_type hid_bus_type = {
2692 .name = "hid",
2693 .dev_groups = hid_dev_groups,
2694 .drv_groups = hid_drv_groups,
2695 .match = hid_bus_match,
2696 .probe = hid_device_probe,
2697 .remove = hid_device_remove,
2698 .uevent = hid_uevent,
2699 };
2700 EXPORT_SYMBOL(hid_bus_type);
2701
hid_add_device(struct hid_device * hdev)2702 int hid_add_device(struct hid_device *hdev)
2703 {
2704 static atomic_t id = ATOMIC_INIT(0);
2705 int ret;
2706
2707 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2708 return -EBUSY;
2709
2710 hdev->quirks = hid_lookup_quirk(hdev);
2711
2712 /* we need to kill them here, otherwise they will stay allocated to
2713 * wait for coming driver */
2714 if (hid_ignore(hdev))
2715 return -ENODEV;
2716
2717 /*
2718 * Check for the mandatory transport channel.
2719 */
2720 if (!hdev->ll_driver->raw_request) {
2721 hid_err(hdev, "transport driver missing .raw_request()\n");
2722 return -EINVAL;
2723 }
2724
2725 /*
2726 * Read the device report descriptor once and use as template
2727 * for the driver-specific modifications.
2728 */
2729 ret = hdev->ll_driver->parse(hdev);
2730 if (ret)
2731 return ret;
2732 if (!hdev->dev_rdesc)
2733 return -ENODEV;
2734
2735 /*
2736 * Scan generic devices for group information
2737 */
2738 if (hid_ignore_special_drivers) {
2739 hdev->group = HID_GROUP_GENERIC;
2740 } else if (!hdev->group &&
2741 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2742 ret = hid_scan_report(hdev);
2743 if (ret)
2744 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2745 }
2746
2747 hdev->id = atomic_inc_return(&id);
2748
2749 /* XXX hack, any other cleaner solution after the driver core
2750 * is converted to allow more than 20 bytes as the device name? */
2751 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2752 hdev->vendor, hdev->product, hdev->id);
2753
2754 hid_debug_register(hdev, dev_name(&hdev->dev));
2755 ret = device_add(&hdev->dev);
2756 if (!ret)
2757 hdev->status |= HID_STAT_ADDED;
2758 else
2759 hid_debug_unregister(hdev);
2760
2761 return ret;
2762 }
2763 EXPORT_SYMBOL_GPL(hid_add_device);
2764
2765 /**
2766 * hid_allocate_device - allocate new hid device descriptor
2767 *
2768 * Allocate and initialize hid device, so that hid_destroy_device might be
2769 * used to free it.
2770 *
2771 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2772 * error value.
2773 */
hid_allocate_device(void)2774 struct hid_device *hid_allocate_device(void)
2775 {
2776 struct hid_device *hdev;
2777 int ret = -ENOMEM;
2778
2779 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2780 if (hdev == NULL)
2781 return ERR_PTR(ret);
2782
2783 device_initialize(&hdev->dev);
2784 hdev->dev.release = hid_device_release;
2785 hdev->dev.bus = &hid_bus_type;
2786 device_enable_async_suspend(&hdev->dev);
2787
2788 hid_close_report(hdev);
2789
2790 init_waitqueue_head(&hdev->debug_wait);
2791 INIT_LIST_HEAD(&hdev->debug_list);
2792 spin_lock_init(&hdev->debug_list_lock);
2793 sema_init(&hdev->driver_input_lock, 1);
2794 mutex_init(&hdev->ll_open_lock);
2795
2796 return hdev;
2797 }
2798 EXPORT_SYMBOL_GPL(hid_allocate_device);
2799
hid_remove_device(struct hid_device * hdev)2800 static void hid_remove_device(struct hid_device *hdev)
2801 {
2802 if (hdev->status & HID_STAT_ADDED) {
2803 device_del(&hdev->dev);
2804 hid_debug_unregister(hdev);
2805 hdev->status &= ~HID_STAT_ADDED;
2806 }
2807 kfree(hdev->dev_rdesc);
2808 hdev->dev_rdesc = NULL;
2809 hdev->dev_rsize = 0;
2810 }
2811
2812 /**
2813 * hid_destroy_device - free previously allocated device
2814 *
2815 * @hdev: hid device
2816 *
2817 * If you allocate hid_device through hid_allocate_device, you should ever
2818 * free by this function.
2819 */
hid_destroy_device(struct hid_device * hdev)2820 void hid_destroy_device(struct hid_device *hdev)
2821 {
2822 hid_remove_device(hdev);
2823 put_device(&hdev->dev);
2824 }
2825 EXPORT_SYMBOL_GPL(hid_destroy_device);
2826
2827
__hid_bus_reprobe_drivers(struct device * dev,void * data)2828 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2829 {
2830 struct hid_driver *hdrv = data;
2831 struct hid_device *hdev = to_hid_device(dev);
2832
2833 if (hdev->driver == hdrv &&
2834 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2835 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2836 return device_reprobe(dev);
2837
2838 return 0;
2839 }
2840
__hid_bus_driver_added(struct device_driver * drv,void * data)2841 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2842 {
2843 struct hid_driver *hdrv = to_hid_driver(drv);
2844
2845 if (hdrv->match) {
2846 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2847 __hid_bus_reprobe_drivers);
2848 }
2849
2850 return 0;
2851 }
2852
__bus_removed_driver(struct device_driver * drv,void * data)2853 static int __bus_removed_driver(struct device_driver *drv, void *data)
2854 {
2855 return bus_rescan_devices(&hid_bus_type);
2856 }
2857
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2858 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2859 const char *mod_name)
2860 {
2861 int ret;
2862
2863 hdrv->driver.name = hdrv->name;
2864 hdrv->driver.bus = &hid_bus_type;
2865 hdrv->driver.owner = owner;
2866 hdrv->driver.mod_name = mod_name;
2867
2868 INIT_LIST_HEAD(&hdrv->dyn_list);
2869 spin_lock_init(&hdrv->dyn_lock);
2870
2871 ret = driver_register(&hdrv->driver);
2872
2873 if (ret == 0)
2874 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2875 __hid_bus_driver_added);
2876
2877 return ret;
2878 }
2879 EXPORT_SYMBOL_GPL(__hid_register_driver);
2880
hid_unregister_driver(struct hid_driver * hdrv)2881 void hid_unregister_driver(struct hid_driver *hdrv)
2882 {
2883 driver_unregister(&hdrv->driver);
2884 hid_free_dynids(hdrv);
2885
2886 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2887 }
2888 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2889
hid_check_keys_pressed(struct hid_device * hid)2890 int hid_check_keys_pressed(struct hid_device *hid)
2891 {
2892 struct hid_input *hidinput;
2893 int i;
2894
2895 if (!(hid->claimed & HID_CLAIMED_INPUT))
2896 return 0;
2897
2898 list_for_each_entry(hidinput, &hid->inputs, list) {
2899 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2900 if (hidinput->input->key[i])
2901 return 1;
2902 }
2903
2904 return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2907
hid_init(void)2908 static int __init hid_init(void)
2909 {
2910 int ret;
2911
2912 if (hid_debug)
2913 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2914 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2915
2916 ret = bus_register(&hid_bus_type);
2917 if (ret) {
2918 pr_err("can't register hid bus\n");
2919 goto err;
2920 }
2921
2922 ret = hidraw_init();
2923 if (ret)
2924 goto err_bus;
2925
2926 hid_debug_init();
2927
2928 return 0;
2929 err_bus:
2930 bus_unregister(&hid_bus_type);
2931 err:
2932 return ret;
2933 }
2934
hid_exit(void)2935 static void __exit hid_exit(void)
2936 {
2937 hid_debug_exit();
2938 hidraw_exit();
2939 bus_unregister(&hid_bus_type);
2940 hid_quirks_exit(HID_BUS_ANY);
2941 }
2942
2943 module_init(hid_init);
2944 module_exit(hid_exit);
2945
2946 MODULE_AUTHOR("Andreas Gal");
2947 MODULE_AUTHOR("Vojtech Pavlik");
2948 MODULE_AUTHOR("Jiri Kosina");
2949 MODULE_LICENSE("GPL");
2950