1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54 * Register a new report for a device.
55 */
56
hid_register_report(struct hid_device * device,unsigned int type,unsigned int id,unsigned int application)57 struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60 {
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84 INIT_LIST_HEAD(&report->field_entry_list);
85
86 return report;
87 }
88 EXPORT_SYMBOL_GPL(hid_register_report);
89
90 /*
91 * Register a new field for this report.
92 */
93
hid_register_field(struct hid_report * report,unsigned usages)94 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95 {
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->new_value = (s32 *)(field->value + usages);
114 field->usages_priorities = (s32 *)(field->new_value + usages);
115 field->report = report;
116
117 return field;
118 }
119
120 /*
121 * Open a collection. The type/usage is pushed on the stack.
122 */
123
open_collection(struct hid_parser * parser,unsigned type)124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126 struct hid_collection *collection;
127 unsigned usage;
128 int collection_index;
129
130 usage = parser->local.usage[0];
131
132 if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 unsigned int *collection_stack;
134 unsigned int new_size = parser->collection_stack_size +
135 HID_COLLECTION_STACK_SIZE;
136
137 collection_stack = krealloc(parser->collection_stack,
138 new_size * sizeof(unsigned int),
139 GFP_KERNEL);
140 if (!collection_stack)
141 return -ENOMEM;
142
143 parser->collection_stack = collection_stack;
144 parser->collection_stack_size = new_size;
145 }
146
147 if (parser->device->maxcollection == parser->device->collection_size) {
148 collection = kmalloc(
149 array3_size(sizeof(struct hid_collection),
150 parser->device->collection_size,
151 2),
152 GFP_KERNEL);
153 if (collection == NULL) {
154 hid_err(parser->device, "failed to reallocate collection array\n");
155 return -ENOMEM;
156 }
157 memcpy(collection, parser->device->collection,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 memset(collection + parser->device->collection_size, 0,
161 sizeof(struct hid_collection) *
162 parser->device->collection_size);
163 kfree(parser->device->collection);
164 parser->device->collection = collection;
165 parser->device->collection_size *= 2;
166 }
167
168 parser->collection_stack[parser->collection_stack_ptr++] =
169 parser->device->maxcollection;
170
171 collection_index = parser->device->maxcollection++;
172 collection = parser->device->collection + collection_index;
173 collection->type = type;
174 collection->usage = usage;
175 collection->level = parser->collection_stack_ptr - 1;
176 collection->parent_idx = (collection->level == 0) ? -1 :
177 parser->collection_stack[collection->level - 1];
178
179 if (type == HID_COLLECTION_APPLICATION)
180 parser->device->maxapplication++;
181
182 return 0;
183 }
184
185 /*
186 * Close a collection.
187 */
188
close_collection(struct hid_parser * parser)189 static int close_collection(struct hid_parser *parser)
190 {
191 if (!parser->collection_stack_ptr) {
192 hid_err(parser->device, "collection stack underflow\n");
193 return -EINVAL;
194 }
195 parser->collection_stack_ptr--;
196 return 0;
197 }
198
199 /*
200 * Climb up the stack, search for the specified collection type
201 * and return the usage.
202 */
203
hid_lookup_collection(struct hid_parser * parser,unsigned type)204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205 {
206 struct hid_collection *collection = parser->device->collection;
207 int n;
208
209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 unsigned index = parser->collection_stack[n];
211 if (collection[index].type == type)
212 return collection[index].usage;
213 }
214 return 0; /* we know nothing about this usage type */
215 }
216
217 /*
218 * Concatenate usage which defines 16 bits or less with the
219 * currently defined usage page to form a 32 bit usage
220 */
221
complete_usage(struct hid_parser * parser,unsigned int index)222 static void complete_usage(struct hid_parser *parser, unsigned int index)
223 {
224 parser->local.usage[index] &= 0xFFFF;
225 parser->local.usage[index] |=
226 (parser->global.usage_page & 0xFFFF) << 16;
227 }
228
229 /*
230 * Add a usage to the temporary parser table.
231 */
232
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)233 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
234 {
235 if (parser->local.usage_index >= HID_MAX_USAGES) {
236 hid_err(parser->device, "usage index exceeded\n");
237 return -1;
238 }
239 parser->local.usage[parser->local.usage_index] = usage;
240
241 /*
242 * If Usage item only includes usage id, concatenate it with
243 * currently defined usage page
244 */
245 if (size <= 2)
246 complete_usage(parser, parser->local.usage_index);
247
248 parser->local.usage_size[parser->local.usage_index] = size;
249 parser->local.collection_index[parser->local.usage_index] =
250 parser->collection_stack_ptr ?
251 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
252 parser->local.usage_index++;
253 return 0;
254 }
255
256 /*
257 * Register a new field for this report.
258 */
259
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)260 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
261 {
262 struct hid_report *report;
263 struct hid_field *field;
264 unsigned int usages;
265 unsigned int offset;
266 unsigned int i;
267 unsigned int application;
268
269 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
270
271 report = hid_register_report(parser->device, report_type,
272 parser->global.report_id, application);
273 if (!report) {
274 hid_err(parser->device, "hid_register_report failed\n");
275 return -1;
276 }
277
278 /* Handle both signed and unsigned cases properly */
279 if ((parser->global.logical_minimum < 0 &&
280 parser->global.logical_maximum <
281 parser->global.logical_minimum) ||
282 (parser->global.logical_minimum >= 0 &&
283 (__u32)parser->global.logical_maximum <
284 (__u32)parser->global.logical_minimum)) {
285 dbg_hid("logical range invalid 0x%x 0x%x\n",
286 parser->global.logical_minimum,
287 parser->global.logical_maximum);
288 return -1;
289 }
290
291 offset = report->size;
292 report->size += parser->global.report_size * parser->global.report_count;
293
294 /* Total size check: Allow for possible report index byte */
295 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
296 hid_err(parser->device, "report is too long\n");
297 return -1;
298 }
299
300 if (!parser->local.usage_index) /* Ignore padding fields */
301 return 0;
302
303 usages = max_t(unsigned, parser->local.usage_index,
304 parser->global.report_count);
305
306 field = hid_register_field(report, usages);
307 if (!field)
308 return 0;
309
310 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
311 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
312 field->application = application;
313
314 for (i = 0; i < usages; i++) {
315 unsigned j = i;
316 /* Duplicate the last usage we parsed if we have excess values */
317 if (i >= parser->local.usage_index)
318 j = parser->local.usage_index - 1;
319 field->usage[i].hid = parser->local.usage[j];
320 field->usage[i].collection_index =
321 parser->local.collection_index[j];
322 field->usage[i].usage_index = i;
323 field->usage[i].resolution_multiplier = 1;
324 }
325
326 field->maxusage = usages;
327 field->flags = flags;
328 field->report_offset = offset;
329 field->report_type = report_type;
330 field->report_size = parser->global.report_size;
331 field->report_count = parser->global.report_count;
332 field->logical_minimum = parser->global.logical_minimum;
333 field->logical_maximum = parser->global.logical_maximum;
334 field->physical_minimum = parser->global.physical_minimum;
335 field->physical_maximum = parser->global.physical_maximum;
336 field->unit_exponent = parser->global.unit_exponent;
337 field->unit = parser->global.unit;
338
339 return 0;
340 }
341
342 /*
343 * Read data value from item.
344 */
345
item_udata(struct hid_item * item)346 static u32 item_udata(struct hid_item *item)
347 {
348 switch (item->size) {
349 case 1: return item->data.u8;
350 case 2: return item->data.u16;
351 case 4: return item->data.u32;
352 }
353 return 0;
354 }
355
item_sdata(struct hid_item * item)356 static s32 item_sdata(struct hid_item *item)
357 {
358 switch (item->size) {
359 case 1: return item->data.s8;
360 case 2: return item->data.s16;
361 case 4: return item->data.s32;
362 }
363 return 0;
364 }
365
366 /*
367 * Process a global item.
368 */
369
hid_parser_global(struct hid_parser * parser,struct hid_item * item)370 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371 {
372 __s32 raw_value;
373 switch (item->tag) {
374 case HID_GLOBAL_ITEM_TAG_PUSH:
375
376 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
377 hid_err(parser->device, "global environment stack overflow\n");
378 return -1;
379 }
380
381 memcpy(parser->global_stack + parser->global_stack_ptr++,
382 &parser->global, sizeof(struct hid_global));
383 return 0;
384
385 case HID_GLOBAL_ITEM_TAG_POP:
386
387 if (!parser->global_stack_ptr) {
388 hid_err(parser->device, "global environment stack underflow\n");
389 return -1;
390 }
391
392 memcpy(&parser->global, parser->global_stack +
393 --parser->global_stack_ptr, sizeof(struct hid_global));
394 return 0;
395
396 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
397 parser->global.usage_page = item_udata(item);
398 return 0;
399
400 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
401 parser->global.logical_minimum = item_sdata(item);
402 return 0;
403
404 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
405 if (parser->global.logical_minimum < 0)
406 parser->global.logical_maximum = item_sdata(item);
407 else
408 parser->global.logical_maximum = item_udata(item);
409 return 0;
410
411 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
412 parser->global.physical_minimum = item_sdata(item);
413 return 0;
414
415 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
416 if (parser->global.physical_minimum < 0)
417 parser->global.physical_maximum = item_sdata(item);
418 else
419 parser->global.physical_maximum = item_udata(item);
420 return 0;
421
422 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
423 /* Many devices provide unit exponent as a two's complement
424 * nibble due to the common misunderstanding of HID
425 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
426 * both this and the standard encoding. */
427 raw_value = item_sdata(item);
428 if (!(raw_value & 0xfffffff0))
429 parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 else
431 parser->global.unit_exponent = raw_value;
432 return 0;
433
434 case HID_GLOBAL_ITEM_TAG_UNIT:
435 parser->global.unit = item_udata(item);
436 return 0;
437
438 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
439 parser->global.report_size = item_udata(item);
440 if (parser->global.report_size > 256) {
441 hid_err(parser->device, "invalid report_size %d\n",
442 parser->global.report_size);
443 return -1;
444 }
445 return 0;
446
447 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
448 parser->global.report_count = item_udata(item);
449 if (parser->global.report_count > HID_MAX_USAGES) {
450 hid_err(parser->device, "invalid report_count %d\n",
451 parser->global.report_count);
452 return -1;
453 }
454 return 0;
455
456 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
457 parser->global.report_id = item_udata(item);
458 if (parser->global.report_id == 0 ||
459 parser->global.report_id >= HID_MAX_IDS) {
460 hid_err(parser->device, "report_id %u is invalid\n",
461 parser->global.report_id);
462 return -1;
463 }
464 return 0;
465
466 default:
467 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
468 return -1;
469 }
470 }
471
472 /*
473 * Process a local item.
474 */
475
hid_parser_local(struct hid_parser * parser,struct hid_item * item)476 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477 {
478 __u32 data;
479 unsigned n;
480 __u32 count;
481
482 data = item_udata(item);
483
484 switch (item->tag) {
485 case HID_LOCAL_ITEM_TAG_DELIMITER:
486
487 if (data) {
488 /*
489 * We treat items before the first delimiter
490 * as global to all usage sets (branch 0).
491 * In the moment we process only these global
492 * items and the first delimiter set.
493 */
494 if (parser->local.delimiter_depth != 0) {
495 hid_err(parser->device, "nested delimiters\n");
496 return -1;
497 }
498 parser->local.delimiter_depth++;
499 parser->local.delimiter_branch++;
500 } else {
501 if (parser->local.delimiter_depth < 1) {
502 hid_err(parser->device, "bogus close delimiter\n");
503 return -1;
504 }
505 parser->local.delimiter_depth--;
506 }
507 return 0;
508
509 case HID_LOCAL_ITEM_TAG_USAGE:
510
511 if (parser->local.delimiter_branch > 1) {
512 dbg_hid("alternative usage ignored\n");
513 return 0;
514 }
515
516 return hid_add_usage(parser, data, item->size);
517
518 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519
520 if (parser->local.delimiter_branch > 1) {
521 dbg_hid("alternative usage ignored\n");
522 return 0;
523 }
524
525 parser->local.usage_minimum = data;
526 return 0;
527
528 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529
530 if (parser->local.delimiter_branch > 1) {
531 dbg_hid("alternative usage ignored\n");
532 return 0;
533 }
534
535 count = data - parser->local.usage_minimum;
536 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 /*
538 * We do not warn if the name is not set, we are
539 * actually pre-scanning the device.
540 */
541 if (dev_name(&parser->device->dev))
542 hid_warn(parser->device,
543 "ignoring exceeding usage max\n");
544 data = HID_MAX_USAGES - parser->local.usage_index +
545 parser->local.usage_minimum - 1;
546 if (data <= 0) {
547 hid_err(parser->device,
548 "no more usage index available\n");
549 return -1;
550 }
551 }
552
553 for (n = parser->local.usage_minimum; n <= data; n++)
554 if (hid_add_usage(parser, n, item->size)) {
555 dbg_hid("hid_add_usage failed\n");
556 return -1;
557 }
558 return 0;
559
560 default:
561
562 dbg_hid("unknown local item tag 0x%x\n", item->tag);
563 return 0;
564 }
565 return 0;
566 }
567
568 /*
569 * Concatenate Usage Pages into Usages where relevant:
570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
571 * concatenates the last declared Usage Page with a Usage to form a complete
572 * usage value."
573 */
574
hid_concatenate_last_usage_page(struct hid_parser * parser)575 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576 {
577 int i;
578 unsigned int usage_page;
579 unsigned int current_page;
580
581 if (!parser->local.usage_index)
582 return;
583
584 usage_page = parser->global.usage_page;
585
586 /*
587 * Concatenate usage page again only if last declared Usage Page
588 * has not been already used in previous usages concatenation
589 */
590 for (i = parser->local.usage_index - 1; i >= 0; i--) {
591 if (parser->local.usage_size[i] > 2)
592 /* Ignore extended usages */
593 continue;
594
595 current_page = parser->local.usage[i] >> 16;
596 if (current_page == usage_page)
597 break;
598
599 complete_usage(parser, i);
600 }
601 }
602
603 /*
604 * Process a main item.
605 */
606
hid_parser_main(struct hid_parser * parser,struct hid_item * item)607 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608 {
609 __u32 data;
610 int ret;
611
612 hid_concatenate_last_usage_page(parser);
613
614 data = item_udata(item);
615
616 switch (item->tag) {
617 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
618 ret = open_collection(parser, data & 0xff);
619 break;
620 case HID_MAIN_ITEM_TAG_END_COLLECTION:
621 ret = close_collection(parser);
622 break;
623 case HID_MAIN_ITEM_TAG_INPUT:
624 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_OUTPUT:
627 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 break;
629 case HID_MAIN_ITEM_TAG_FEATURE:
630 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
631 break;
632 default:
633 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
634 ret = 0;
635 }
636
637 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
638
639 return ret;
640 }
641
642 /*
643 * Process a reserved item.
644 */
645
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)646 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 {
648 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
649 return 0;
650 }
651
652 /*
653 * Free a report and all registered fields. The field->usage and
654 * field->value table's are allocated behind the field, so we need
655 * only to free(field) itself.
656 */
657
hid_free_report(struct hid_report * report)658 static void hid_free_report(struct hid_report *report)
659 {
660 unsigned n;
661
662 kfree(report->field_entries);
663
664 for (n = 0; n < report->maxfield; n++)
665 kfree(report->field[n]);
666 kfree(report);
667 }
668
669 /*
670 * Close report. This function returns the device
671 * state to the point prior to hid_open_report().
672 */
hid_close_report(struct hid_device * device)673 static void hid_close_report(struct hid_device *device)
674 {
675 unsigned i, j;
676
677 for (i = 0; i < HID_REPORT_TYPES; i++) {
678 struct hid_report_enum *report_enum = device->report_enum + i;
679
680 for (j = 0; j < HID_MAX_IDS; j++) {
681 struct hid_report *report = report_enum->report_id_hash[j];
682 if (report)
683 hid_free_report(report);
684 }
685 memset(report_enum, 0, sizeof(*report_enum));
686 INIT_LIST_HEAD(&report_enum->report_list);
687 }
688
689 kfree(device->rdesc);
690 device->rdesc = NULL;
691 device->rsize = 0;
692
693 kfree(device->collection);
694 device->collection = NULL;
695 device->collection_size = 0;
696 device->maxcollection = 0;
697 device->maxapplication = 0;
698
699 device->status &= ~HID_STAT_PARSED;
700 }
701
702 /*
703 * Free a device structure, all reports, and all fields.
704 */
705
hid_device_release(struct device * dev)706 static void hid_device_release(struct device *dev)
707 {
708 struct hid_device *hid = to_hid_device(dev);
709
710 hid_close_report(hid);
711 kfree(hid->dev_rdesc);
712 kfree(hid);
713 }
714
715 /*
716 * Fetch a report description item from the data stream. We support long
717 * items, though they are not used yet.
718 */
719
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)720 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
721 {
722 u8 b;
723
724 if ((end - start) <= 0)
725 return NULL;
726
727 b = *start++;
728
729 item->type = (b >> 2) & 3;
730 item->tag = (b >> 4) & 15;
731
732 if (item->tag == HID_ITEM_TAG_LONG) {
733
734 item->format = HID_ITEM_FORMAT_LONG;
735
736 if ((end - start) < 2)
737 return NULL;
738
739 item->size = *start++;
740 item->tag = *start++;
741
742 if ((end - start) < item->size)
743 return NULL;
744
745 item->data.longdata = start;
746 start += item->size;
747 return start;
748 }
749
750 item->format = HID_ITEM_FORMAT_SHORT;
751 item->size = b & 3;
752
753 switch (item->size) {
754 case 0:
755 return start;
756
757 case 1:
758 if ((end - start) < 1)
759 return NULL;
760 item->data.u8 = *start++;
761 return start;
762
763 case 2:
764 if ((end - start) < 2)
765 return NULL;
766 item->data.u16 = get_unaligned_le16(start);
767 start = (__u8 *)((__le16 *)start + 1);
768 return start;
769
770 case 3:
771 item->size++;
772 if ((end - start) < 4)
773 return NULL;
774 item->data.u32 = get_unaligned_le32(start);
775 start = (__u8 *)((__le32 *)start + 1);
776 return start;
777 }
778
779 return NULL;
780 }
781
hid_scan_input_usage(struct hid_parser * parser,u32 usage)782 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
783 {
784 struct hid_device *hid = parser->device;
785
786 if (usage == HID_DG_CONTACTID)
787 hid->group = HID_GROUP_MULTITOUCH;
788 }
789
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)790 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
791 {
792 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
793 parser->global.report_size == 8)
794 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795
796 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
797 parser->global.report_size == 8)
798 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799 }
800
hid_scan_collection(struct hid_parser * parser,unsigned type)801 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
802 {
803 struct hid_device *hid = parser->device;
804 int i;
805
806 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
807 type == HID_COLLECTION_PHYSICAL)
808 hid->group = HID_GROUP_SENSOR_HUB;
809
810 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 hid->group == HID_GROUP_MULTITOUCH)
813 hid->group = HID_GROUP_GENERIC;
814
815 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 for (i = 0; i < parser->local.usage_index; i++)
817 if (parser->local.usage[i] == HID_GD_POINTER)
818 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819
820 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822
823 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 for (i = 0; i < parser->local.usage_index; i++)
825 if (parser->local.usage[i] ==
826 (HID_UP_GOOGLEVENDOR | 0x0001))
827 parser->device->group =
828 HID_GROUP_VIVALDI;
829 }
830
hid_scan_main(struct hid_parser * parser,struct hid_item * item)831 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 {
833 __u32 data;
834 int i;
835
836 hid_concatenate_last_usage_page(parser);
837
838 data = item_udata(item);
839
840 switch (item->tag) {
841 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 hid_scan_collection(parser, data & 0xff);
843 break;
844 case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 break;
846 case HID_MAIN_ITEM_TAG_INPUT:
847 /* ignore constant inputs, they will be ignored by hid-input */
848 if (data & HID_MAIN_ITEM_CONSTANT)
849 break;
850 for (i = 0; i < parser->local.usage_index; i++)
851 hid_scan_input_usage(parser, parser->local.usage[i]);
852 break;
853 case HID_MAIN_ITEM_TAG_OUTPUT:
854 break;
855 case HID_MAIN_ITEM_TAG_FEATURE:
856 for (i = 0; i < parser->local.usage_index; i++)
857 hid_scan_feature_usage(parser, parser->local.usage[i]);
858 break;
859 }
860
861 /* Reset the local parser environment */
862 memset(&parser->local, 0, sizeof(parser->local));
863
864 return 0;
865 }
866
867 /*
868 * Scan a report descriptor before the device is added to the bus.
869 * Sets device groups and other properties that determine what driver
870 * to load.
871 */
hid_scan_report(struct hid_device * hid)872 static int hid_scan_report(struct hid_device *hid)
873 {
874 struct hid_parser *parser;
875 struct hid_item item;
876 __u8 *start = hid->dev_rdesc;
877 __u8 *end = start + hid->dev_rsize;
878 static int (*dispatch_type[])(struct hid_parser *parser,
879 struct hid_item *item) = {
880 hid_scan_main,
881 hid_parser_global,
882 hid_parser_local,
883 hid_parser_reserved
884 };
885
886 parser = vzalloc(sizeof(struct hid_parser));
887 if (!parser)
888 return -ENOMEM;
889
890 parser->device = hid;
891 hid->group = HID_GROUP_GENERIC;
892
893 /*
894 * The parsing is simpler than the one in hid_open_report() as we should
895 * be robust against hid errors. Those errors will be raised by
896 * hid_open_report() anyway.
897 */
898 while ((start = fetch_item(start, end, &item)) != NULL)
899 dispatch_type[item.type](parser, &item);
900
901 /*
902 * Handle special flags set during scanning.
903 */
904 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 (hid->group == HID_GROUP_MULTITOUCH))
906 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907
908 /*
909 * Vendor specific handlings
910 */
911 switch (hid->vendor) {
912 case USB_VENDOR_ID_WACOM:
913 hid->group = HID_GROUP_WACOM;
914 break;
915 case USB_VENDOR_ID_SYNAPTICS:
916 if (hid->group == HID_GROUP_GENERIC)
917 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 /*
920 * hid-rmi should take care of them,
921 * not hid-generic
922 */
923 hid->group = HID_GROUP_RMI;
924 break;
925 }
926
927 kfree(parser->collection_stack);
928 vfree(parser);
929 return 0;
930 }
931
932 /**
933 * hid_parse_report - parse device report
934 *
935 * @hid: hid device
936 * @start: report start
937 * @size: report size
938 *
939 * Allocate the device report as read by the bus driver. This function should
940 * only be called from parse() in ll drivers.
941 */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)942 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 {
944 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 if (!hid->dev_rdesc)
946 return -ENOMEM;
947 hid->dev_rsize = size;
948 return 0;
949 }
950 EXPORT_SYMBOL_GPL(hid_parse_report);
951
952 static const char * const hid_report_names[] = {
953 "HID_INPUT_REPORT",
954 "HID_OUTPUT_REPORT",
955 "HID_FEATURE_REPORT",
956 };
957 /**
958 * hid_validate_values - validate existing device report's value indexes
959 *
960 * @hid: hid device
961 * @type: which report type to examine
962 * @id: which report ID to examine (0 for first)
963 * @field_index: which report field to examine
964 * @report_counts: expected number of values
965 *
966 * Validate the number of values in a given field of a given report, after
967 * parsing.
968 */
hid_validate_values(struct hid_device * hid,unsigned int type,unsigned int id,unsigned int field_index,unsigned int report_counts)969 struct hid_report *hid_validate_values(struct hid_device *hid,
970 unsigned int type, unsigned int id,
971 unsigned int field_index,
972 unsigned int report_counts)
973 {
974 struct hid_report *report;
975
976 if (type > HID_FEATURE_REPORT) {
977 hid_err(hid, "invalid HID report type %u\n", type);
978 return NULL;
979 }
980
981 if (id >= HID_MAX_IDS) {
982 hid_err(hid, "invalid HID report id %u\n", id);
983 return NULL;
984 }
985
986 /*
987 * Explicitly not using hid_get_report() here since it depends on
988 * ->numbered being checked, which may not always be the case when
989 * drivers go to access report values.
990 */
991 if (id == 0) {
992 /*
993 * Validating on id 0 means we should examine the first
994 * report in the list.
995 */
996 report = list_entry(
997 hid->report_enum[type].report_list.next,
998 struct hid_report, list);
999 } else {
1000 report = hid->report_enum[type].report_id_hash[id];
1001 }
1002 if (!report) {
1003 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 return NULL;
1005 }
1006 if (report->maxfield <= field_index) {
1007 hid_err(hid, "not enough fields in %s %u\n",
1008 hid_report_names[type], id);
1009 return NULL;
1010 }
1011 if (report->field[field_index]->report_count < report_counts) {
1012 hid_err(hid, "not enough values in %s %u field %u\n",
1013 hid_report_names[type], id, field_index);
1014 return NULL;
1015 }
1016 return report;
1017 }
1018 EXPORT_SYMBOL_GPL(hid_validate_values);
1019
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1020 static int hid_calculate_multiplier(struct hid_device *hid,
1021 struct hid_field *multiplier)
1022 {
1023 int m;
1024 __s32 v = *multiplier->value;
1025 __s32 lmin = multiplier->logical_minimum;
1026 __s32 lmax = multiplier->logical_maximum;
1027 __s32 pmin = multiplier->physical_minimum;
1028 __s32 pmax = multiplier->physical_maximum;
1029
1030 /*
1031 * "Because OS implementations will generally divide the control's
1032 * reported count by the Effective Resolution Multiplier, designers
1033 * should take care not to establish a potential Effective
1034 * Resolution Multiplier of zero."
1035 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 */
1037 if (lmax - lmin == 0)
1038 return 1;
1039 /*
1040 * Handling the unit exponent is left as an exercise to whoever
1041 * finds a device where that exponent is not 0.
1042 */
1043 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 if (unlikely(multiplier->unit_exponent != 0)) {
1045 hid_warn(hid,
1046 "unsupported Resolution Multiplier unit exponent %d\n",
1047 multiplier->unit_exponent);
1048 }
1049
1050 /* There are no devices with an effective multiplier > 255 */
1051 if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 m = 1;
1054 }
1055
1056 return m;
1057 }
1058
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1059 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 struct hid_field *field,
1061 struct hid_collection *multiplier_collection,
1062 int effective_multiplier)
1063 {
1064 struct hid_collection *collection;
1065 struct hid_usage *usage;
1066 int i;
1067
1068 /*
1069 * If multiplier_collection is NULL, the multiplier applies
1070 * to all fields in the report.
1071 * Otherwise, it is the Logical Collection the multiplier applies to
1072 * but our field may be in a subcollection of that collection.
1073 */
1074 for (i = 0; i < field->maxusage; i++) {
1075 usage = &field->usage[i];
1076
1077 collection = &hid->collection[usage->collection_index];
1078 while (collection->parent_idx != -1 &&
1079 collection != multiplier_collection)
1080 collection = &hid->collection[collection->parent_idx];
1081
1082 if (collection->parent_idx != -1 ||
1083 multiplier_collection == NULL)
1084 usage->resolution_multiplier = effective_multiplier;
1085
1086 }
1087 }
1088
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1089 static void hid_apply_multiplier(struct hid_device *hid,
1090 struct hid_field *multiplier)
1091 {
1092 struct hid_report_enum *rep_enum;
1093 struct hid_report *rep;
1094 struct hid_field *field;
1095 struct hid_collection *multiplier_collection;
1096 int effective_multiplier;
1097 int i;
1098
1099 /*
1100 * "The Resolution Multiplier control must be contained in the same
1101 * Logical Collection as the control(s) to which it is to be applied.
1102 * If no Resolution Multiplier is defined, then the Resolution
1103 * Multiplier defaults to 1. If more than one control exists in a
1104 * Logical Collection, the Resolution Multiplier is associated with
1105 * all controls in the collection. If no Logical Collection is
1106 * defined, the Resolution Multiplier is associated with all
1107 * controls in the report."
1108 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 *
1110 * Thus, search from the current collection upwards until we find a
1111 * logical collection. Then search all fields for that same parent
1112 * collection. Those are the fields the multiplier applies to.
1113 *
1114 * If we have more than one multiplier, it will overwrite the
1115 * applicable fields later.
1116 */
1117 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 while (multiplier_collection->parent_idx != -1 &&
1119 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 for (i = 0; i < rep->maxfield; i++) {
1127 field = rep->field[i];
1128 hid_apply_multiplier_to_field(hid, field,
1129 multiplier_collection,
1130 effective_multiplier);
1131 }
1132 }
1133 }
1134
1135 /*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 * accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
hid_setup_resolution_multiplier(struct hid_device * hid)1158 void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 {
1160 struct hid_report_enum *rep_enum;
1161 struct hid_report *rep;
1162 struct hid_usage *usage;
1163 int i, j;
1164
1165 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 for (i = 0; i < rep->maxfield; i++) {
1168 /* Ignore if report count is out of bounds. */
1169 if (rep->field[i]->report_count < 1)
1170 continue;
1171
1172 for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 usage = &rep->field[i]->usage[j];
1174 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 hid_apply_multiplier(hid,
1176 rep->field[i]);
1177 }
1178 }
1179 }
1180 }
1181 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183 /**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
hid_open_report(struct hid_device * device)1195 int hid_open_report(struct hid_device *device)
1196 {
1197 struct hid_parser *parser;
1198 struct hid_item item;
1199 unsigned int size;
1200 __u8 *start;
1201 __u8 *buf;
1202 __u8 *end;
1203 __u8 *next;
1204 int ret;
1205 static int (*dispatch_type[])(struct hid_parser *parser,
1206 struct hid_item *item) = {
1207 hid_parser_main,
1208 hid_parser_global,
1209 hid_parser_local,
1210 hid_parser_reserved
1211 };
1212
1213 if (WARN_ON(device->status & HID_STAT_PARSED))
1214 return -EBUSY;
1215
1216 start = device->dev_rdesc;
1217 if (WARN_ON(!start))
1218 return -ENODEV;
1219 size = device->dev_rsize;
1220
1221 buf = kmemdup(start, size, GFP_KERNEL);
1222 if (buf == NULL)
1223 return -ENOMEM;
1224
1225 if (device->driver->report_fixup)
1226 start = device->driver->report_fixup(device, buf, &size);
1227 else
1228 start = buf;
1229
1230 start = kmemdup(start, size, GFP_KERNEL);
1231 kfree(buf);
1232 if (start == NULL)
1233 return -ENOMEM;
1234
1235 device->rdesc = start;
1236 device->rsize = size;
1237
1238 parser = vzalloc(sizeof(struct hid_parser));
1239 if (!parser) {
1240 ret = -ENOMEM;
1241 goto alloc_err;
1242 }
1243
1244 parser->device = device;
1245
1246 end = start + size;
1247
1248 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249 sizeof(struct hid_collection), GFP_KERNEL);
1250 if (!device->collection) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255
1256 ret = -EINVAL;
1257 while ((next = fetch_item(start, end, &item)) != NULL) {
1258 start = next;
1259
1260 if (item.format != HID_ITEM_FORMAT_SHORT) {
1261 hid_err(device, "unexpected long global item\n");
1262 goto err;
1263 }
1264
1265 if (dispatch_type[item.type](parser, &item)) {
1266 hid_err(device, "item %u %u %u %u parsing failed\n",
1267 item.format, (unsigned)item.size,
1268 (unsigned)item.type, (unsigned)item.tag);
1269 goto err;
1270 }
1271
1272 if (start == end) {
1273 if (parser->collection_stack_ptr) {
1274 hid_err(device, "unbalanced collection at end of report description\n");
1275 goto err;
1276 }
1277 if (parser->local.delimiter_depth) {
1278 hid_err(device, "unbalanced delimiter at end of report description\n");
1279 goto err;
1280 }
1281
1282 /*
1283 * fetch initial values in case the device's
1284 * default multiplier isn't the recommended 1
1285 */
1286 hid_setup_resolution_multiplier(device);
1287
1288 kfree(parser->collection_stack);
1289 vfree(parser);
1290 device->status |= HID_STAT_PARSED;
1291
1292 return 0;
1293 }
1294 }
1295
1296 hid_err(device, "item fetching failed at offset %u/%u\n",
1297 size - (unsigned int)(end - start), size);
1298 err:
1299 kfree(parser->collection_stack);
1300 alloc_err:
1301 vfree(parser);
1302 hid_close_report(device);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(hid_open_report);
1306
1307 /*
1308 * Convert a signed n-bit integer to signed 32-bit integer. Common
1309 * cases are done through the compiler, the screwed things has to be
1310 * done by hand.
1311 */
1312
snto32(__u32 value,unsigned n)1313 static s32 snto32(__u32 value, unsigned n)
1314 {
1315 if (!value || !n)
1316 return 0;
1317
1318 switch (n) {
1319 case 8: return ((__s8)value);
1320 case 16: return ((__s16)value);
1321 case 32: return ((__s32)value);
1322 }
1323 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1324 }
1325
hid_snto32(__u32 value,unsigned n)1326 s32 hid_snto32(__u32 value, unsigned n)
1327 {
1328 return snto32(value, n);
1329 }
1330 EXPORT_SYMBOL_GPL(hid_snto32);
1331
1332 /*
1333 * Convert a signed 32-bit integer to a signed n-bit integer.
1334 */
1335
s32ton(__s32 value,unsigned n)1336 static u32 s32ton(__s32 value, unsigned n)
1337 {
1338 s32 a = value >> (n - 1);
1339 if (a && a != -1)
1340 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1341 return value & ((1 << n) - 1);
1342 }
1343
1344 /*
1345 * Extract/implement a data field from/to a little endian report (bit array).
1346 *
1347 * Code sort-of follows HID spec:
1348 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1349 *
1350 * While the USB HID spec allows unlimited length bit fields in "report
1351 * descriptors", most devices never use more than 16 bits.
1352 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1353 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1354 */
1355
__extract(u8 * report,unsigned offset,int n)1356 static u32 __extract(u8 *report, unsigned offset, int n)
1357 {
1358 unsigned int idx = offset / 8;
1359 unsigned int bit_nr = 0;
1360 unsigned int bit_shift = offset % 8;
1361 int bits_to_copy = 8 - bit_shift;
1362 u32 value = 0;
1363 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1364
1365 while (n > 0) {
1366 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1367 n -= bits_to_copy;
1368 bit_nr += bits_to_copy;
1369 bits_to_copy = 8;
1370 bit_shift = 0;
1371 idx++;
1372 }
1373
1374 return value & mask;
1375 }
1376
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1377 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1378 unsigned offset, unsigned n)
1379 {
1380 if (n > 32) {
1381 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1382 __func__, n, current->comm);
1383 n = 32;
1384 }
1385
1386 return __extract(report, offset, n);
1387 }
1388 EXPORT_SYMBOL_GPL(hid_field_extract);
1389
1390 /*
1391 * "implement" : set bits in a little endian bit stream.
1392 * Same concepts as "extract" (see comments above).
1393 * The data mangled in the bit stream remains in little endian
1394 * order the whole time. It make more sense to talk about
1395 * endianness of register values by considering a register
1396 * a "cached" copy of the little endian bit stream.
1397 */
1398
__implement(u8 * report,unsigned offset,int n,u32 value)1399 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1400 {
1401 unsigned int idx = offset / 8;
1402 unsigned int bit_shift = offset % 8;
1403 int bits_to_set = 8 - bit_shift;
1404
1405 while (n - bits_to_set >= 0) {
1406 report[idx] &= ~(0xff << bit_shift);
1407 report[idx] |= value << bit_shift;
1408 value >>= bits_to_set;
1409 n -= bits_to_set;
1410 bits_to_set = 8;
1411 bit_shift = 0;
1412 idx++;
1413 }
1414
1415 /* last nibble */
1416 if (n) {
1417 u8 bit_mask = ((1U << n) - 1);
1418 report[idx] &= ~(bit_mask << bit_shift);
1419 report[idx] |= value << bit_shift;
1420 }
1421 }
1422
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1423 static void implement(const struct hid_device *hid, u8 *report,
1424 unsigned offset, unsigned n, u32 value)
1425 {
1426 if (unlikely(n > 32)) {
1427 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1428 __func__, n, current->comm);
1429 n = 32;
1430 } else if (n < 32) {
1431 u32 m = (1U << n) - 1;
1432
1433 if (unlikely(value > m)) {
1434 hid_warn(hid,
1435 "%s() called with too large value %d (n: %d)! (%s)\n",
1436 __func__, value, n, current->comm);
1437 WARN_ON(1);
1438 value &= m;
1439 }
1440 }
1441
1442 __implement(report, offset, n, value);
1443 }
1444
1445 /*
1446 * Search an array for a value.
1447 */
1448
search(__s32 * array,__s32 value,unsigned n)1449 static int search(__s32 *array, __s32 value, unsigned n)
1450 {
1451 while (n--) {
1452 if (*array++ == value)
1453 return 0;
1454 }
1455 return -1;
1456 }
1457
1458 /**
1459 * hid_match_report - check if driver's raw_event should be called
1460 *
1461 * @hid: hid device
1462 * @report: hid report to match against
1463 *
1464 * compare hid->driver->report_table->report_type to report->type
1465 */
hid_match_report(struct hid_device * hid,struct hid_report * report)1466 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1467 {
1468 const struct hid_report_id *id = hid->driver->report_table;
1469
1470 if (!id) /* NULL means all */
1471 return 1;
1472
1473 for (; id->report_type != HID_TERMINATOR; id++)
1474 if (id->report_type == HID_ANY_ID ||
1475 id->report_type == report->type)
1476 return 1;
1477 return 0;
1478 }
1479
1480 /**
1481 * hid_match_usage - check if driver's event should be called
1482 *
1483 * @hid: hid device
1484 * @usage: usage to match against
1485 *
1486 * compare hid->driver->usage_table->usage_{type,code} to
1487 * usage->usage_{type,code}
1488 */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1489 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1490 {
1491 const struct hid_usage_id *id = hid->driver->usage_table;
1492
1493 if (!id) /* NULL means all */
1494 return 1;
1495
1496 for (; id->usage_type != HID_ANY_ID - 1; id++)
1497 if ((id->usage_hid == HID_ANY_ID ||
1498 id->usage_hid == usage->hid) &&
1499 (id->usage_type == HID_ANY_ID ||
1500 id->usage_type == usage->type) &&
1501 (id->usage_code == HID_ANY_ID ||
1502 id->usage_code == usage->code))
1503 return 1;
1504 return 0;
1505 }
1506
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1507 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1508 struct hid_usage *usage, __s32 value, int interrupt)
1509 {
1510 struct hid_driver *hdrv = hid->driver;
1511 int ret;
1512
1513 if (!list_empty(&hid->debug_list))
1514 hid_dump_input(hid, usage, value);
1515
1516 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1517 ret = hdrv->event(hid, field, usage, value);
1518 if (ret != 0) {
1519 if (ret < 0)
1520 hid_err(hid, "%s's event failed with %d\n",
1521 hdrv->name, ret);
1522 return;
1523 }
1524 }
1525
1526 if (hid->claimed & HID_CLAIMED_INPUT)
1527 hidinput_hid_event(hid, field, usage, value);
1528 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1529 hid->hiddev_hid_event(hid, field, usage, value);
1530 }
1531
1532 /*
1533 * Checks if the given value is valid within this field
1534 */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1535 static inline int hid_array_value_is_valid(struct hid_field *field,
1536 __s32 value)
1537 {
1538 __s32 min = field->logical_minimum;
1539
1540 /*
1541 * Value needs to be between logical min and max, and
1542 * (value - min) is used as an index in the usage array.
1543 * This array is of size field->maxusage
1544 */
1545 return value >= min &&
1546 value <= field->logical_maximum &&
1547 value - min < field->maxusage;
1548 }
1549
1550 /*
1551 * Fetch the field from the data. The field content is stored for next
1552 * report processing (we do differential reporting to the layer).
1553 */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1554 static void hid_input_fetch_field(struct hid_device *hid,
1555 struct hid_field *field,
1556 __u8 *data)
1557 {
1558 unsigned n;
1559 unsigned count = field->report_count;
1560 unsigned offset = field->report_offset;
1561 unsigned size = field->report_size;
1562 __s32 min = field->logical_minimum;
1563 __s32 *value;
1564
1565 value = field->new_value;
1566 memset(value, 0, count * sizeof(__s32));
1567 field->ignored = false;
1568
1569 for (n = 0; n < count; n++) {
1570
1571 value[n] = min < 0 ?
1572 snto32(hid_field_extract(hid, data, offset + n * size,
1573 size), size) :
1574 hid_field_extract(hid, data, offset + n * size, size);
1575
1576 /* Ignore report if ErrorRollOver */
1577 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1578 hid_array_value_is_valid(field, value[n]) &&
1579 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1580 field->ignored = true;
1581 return;
1582 }
1583 }
1584 }
1585
1586 /*
1587 * Process a received variable field.
1588 */
1589
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1590 static void hid_input_var_field(struct hid_device *hid,
1591 struct hid_field *field,
1592 int interrupt)
1593 {
1594 unsigned int count = field->report_count;
1595 __s32 *value = field->new_value;
1596 unsigned int n;
1597
1598 for (n = 0; n < count; n++)
1599 hid_process_event(hid,
1600 field,
1601 &field->usage[n],
1602 value[n],
1603 interrupt);
1604
1605 memcpy(field->value, value, count * sizeof(__s32));
1606 }
1607
1608 /*
1609 * Process a received array field. The field content is stored for
1610 * next report processing (we do differential reporting to the layer).
1611 */
1612
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1613 static void hid_input_array_field(struct hid_device *hid,
1614 struct hid_field *field,
1615 int interrupt)
1616 {
1617 unsigned int n;
1618 unsigned int count = field->report_count;
1619 __s32 min = field->logical_minimum;
1620 __s32 *value;
1621
1622 value = field->new_value;
1623
1624 /* ErrorRollOver */
1625 if (field->ignored)
1626 return;
1627
1628 for (n = 0; n < count; n++) {
1629 if (hid_array_value_is_valid(field, field->value[n]) &&
1630 search(value, field->value[n], count))
1631 hid_process_event(hid,
1632 field,
1633 &field->usage[field->value[n] - min],
1634 0,
1635 interrupt);
1636
1637 if (hid_array_value_is_valid(field, value[n]) &&
1638 search(field->value, value[n], count))
1639 hid_process_event(hid,
1640 field,
1641 &field->usage[value[n] - min],
1642 1,
1643 interrupt);
1644 }
1645
1646 memcpy(field->value, value, count * sizeof(__s32));
1647 }
1648
1649 /*
1650 * Analyse a received report, and fetch the data from it. The field
1651 * content is stored for next report processing (we do differential
1652 * reporting to the layer).
1653 */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1654 static void hid_process_report(struct hid_device *hid,
1655 struct hid_report *report,
1656 __u8 *data,
1657 int interrupt)
1658 {
1659 unsigned int a;
1660 struct hid_field_entry *entry;
1661 struct hid_field *field;
1662
1663 /* first retrieve all incoming values in data */
1664 for (a = 0; a < report->maxfield; a++)
1665 hid_input_fetch_field(hid, field = report->field[a], data);
1666
1667 if (!list_empty(&report->field_entry_list)) {
1668 /* INPUT_REPORT, we have a priority list of fields */
1669 list_for_each_entry(entry,
1670 &report->field_entry_list,
1671 list) {
1672 field = entry->field;
1673
1674 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1675 hid_process_event(hid,
1676 field,
1677 &field->usage[entry->index],
1678 field->new_value[entry->index],
1679 interrupt);
1680 else
1681 hid_input_array_field(hid, field, interrupt);
1682 }
1683
1684 /* we need to do the memcpy at the end for var items */
1685 for (a = 0; a < report->maxfield; a++) {
1686 field = report->field[a];
1687
1688 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689 memcpy(field->value, field->new_value,
1690 field->report_count * sizeof(__s32));
1691 }
1692 } else {
1693 /* FEATURE_REPORT, regular processing */
1694 for (a = 0; a < report->maxfield; a++) {
1695 field = report->field[a];
1696
1697 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1698 hid_input_var_field(hid, field, interrupt);
1699 else
1700 hid_input_array_field(hid, field, interrupt);
1701 }
1702 }
1703 }
1704
1705 /*
1706 * Insert a given usage_index in a field in the list
1707 * of processed usages in the report.
1708 *
1709 * The elements of lower priority score are processed
1710 * first.
1711 */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1712 static void __hid_insert_field_entry(struct hid_device *hid,
1713 struct hid_report *report,
1714 struct hid_field_entry *entry,
1715 struct hid_field *field,
1716 unsigned int usage_index)
1717 {
1718 struct hid_field_entry *next;
1719
1720 entry->field = field;
1721 entry->index = usage_index;
1722 entry->priority = field->usages_priorities[usage_index];
1723
1724 /* insert the element at the correct position */
1725 list_for_each_entry(next,
1726 &report->field_entry_list,
1727 list) {
1728 /*
1729 * the priority of our element is strictly higher
1730 * than the next one, insert it before
1731 */
1732 if (entry->priority > next->priority) {
1733 list_add_tail(&entry->list, &next->list);
1734 return;
1735 }
1736 }
1737
1738 /* lowest priority score: insert at the end */
1739 list_add_tail(&entry->list, &report->field_entry_list);
1740 }
1741
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1742 static void hid_report_process_ordering(struct hid_device *hid,
1743 struct hid_report *report)
1744 {
1745 struct hid_field *field;
1746 struct hid_field_entry *entries;
1747 unsigned int a, u, usages;
1748 unsigned int count = 0;
1749
1750 /* count the number of individual fields in the report */
1751 for (a = 0; a < report->maxfield; a++) {
1752 field = report->field[a];
1753
1754 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1755 count += field->report_count;
1756 else
1757 count++;
1758 }
1759
1760 /* allocate the memory to process the fields */
1761 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1762 if (!entries)
1763 return;
1764
1765 report->field_entries = entries;
1766
1767 /*
1768 * walk through all fields in the report and
1769 * store them by priority order in report->field_entry_list
1770 *
1771 * - Var elements are individualized (field + usage_index)
1772 * - Arrays are taken as one, we can not chose an order for them
1773 */
1774 usages = 0;
1775 for (a = 0; a < report->maxfield; a++) {
1776 field = report->field[a];
1777
1778 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1779 for (u = 0; u < field->report_count; u++) {
1780 __hid_insert_field_entry(hid, report,
1781 &entries[usages],
1782 field, u);
1783 usages++;
1784 }
1785 } else {
1786 __hid_insert_field_entry(hid, report, &entries[usages],
1787 field, 0);
1788 usages++;
1789 }
1790 }
1791 }
1792
hid_process_ordering(struct hid_device * hid)1793 static void hid_process_ordering(struct hid_device *hid)
1794 {
1795 struct hid_report *report;
1796 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1797
1798 list_for_each_entry(report, &report_enum->report_list, list)
1799 hid_report_process_ordering(hid, report);
1800 }
1801
1802 /*
1803 * Output the field into the report.
1804 */
1805
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1806 static void hid_output_field(const struct hid_device *hid,
1807 struct hid_field *field, __u8 *data)
1808 {
1809 unsigned count = field->report_count;
1810 unsigned offset = field->report_offset;
1811 unsigned size = field->report_size;
1812 unsigned n;
1813
1814 for (n = 0; n < count; n++) {
1815 if (field->logical_minimum < 0) /* signed values */
1816 implement(hid, data, offset + n * size, size,
1817 s32ton(field->value[n], size));
1818 else /* unsigned values */
1819 implement(hid, data, offset + n * size, size,
1820 field->value[n]);
1821 }
1822 }
1823
1824 /*
1825 * Compute the size of a report.
1826 */
hid_compute_report_size(struct hid_report * report)1827 static size_t hid_compute_report_size(struct hid_report *report)
1828 {
1829 if (report->size)
1830 return ((report->size - 1) >> 3) + 1;
1831
1832 return 0;
1833 }
1834
1835 /*
1836 * Create a report. 'data' has to be allocated using
1837 * hid_alloc_report_buf() so that it has proper size.
1838 */
1839
hid_output_report(struct hid_report * report,__u8 * data)1840 void hid_output_report(struct hid_report *report, __u8 *data)
1841 {
1842 unsigned n;
1843
1844 if (report->id > 0)
1845 *data++ = report->id;
1846
1847 memset(data, 0, hid_compute_report_size(report));
1848 for (n = 0; n < report->maxfield; n++)
1849 hid_output_field(report->device, report->field[n], data);
1850 }
1851 EXPORT_SYMBOL_GPL(hid_output_report);
1852
1853 /*
1854 * Allocator for buffer that is going to be passed to hid_output_report()
1855 */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1856 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1857 {
1858 /*
1859 * 7 extra bytes are necessary to achieve proper functionality
1860 * of implement() working on 8 byte chunks
1861 */
1862
1863 u32 len = hid_report_len(report) + 7;
1864
1865 return kmalloc(len, flags);
1866 }
1867 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1868
1869 /*
1870 * Set a field value. The report this field belongs to has to be
1871 * created and transferred to the device, to set this value in the
1872 * device.
1873 */
1874
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1875 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1876 {
1877 unsigned size;
1878
1879 if (!field)
1880 return -1;
1881
1882 size = field->report_size;
1883
1884 hid_dump_input(field->report->device, field->usage + offset, value);
1885
1886 if (offset >= field->report_count) {
1887 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1888 offset, field->report_count);
1889 return -1;
1890 }
1891 if (field->logical_minimum < 0) {
1892 if (value != snto32(s32ton(value, size), size)) {
1893 hid_err(field->report->device, "value %d is out of range\n", value);
1894 return -1;
1895 }
1896 }
1897 field->value[offset] = value;
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(hid_set_field);
1901
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1902 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1903 const u8 *data)
1904 {
1905 struct hid_report *report;
1906 unsigned int n = 0; /* Normally report number is 0 */
1907
1908 /* Device uses numbered reports, data[0] is report number */
1909 if (report_enum->numbered)
1910 n = *data;
1911
1912 report = report_enum->report_id_hash[n];
1913 if (report == NULL)
1914 dbg_hid("undefined report_id %u received\n", n);
1915
1916 return report;
1917 }
1918
1919 /*
1920 * Implement a generic .request() callback, using .raw_request()
1921 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1922 */
__hid_request(struct hid_device * hid,struct hid_report * report,int reqtype)1923 int __hid_request(struct hid_device *hid, struct hid_report *report,
1924 int reqtype)
1925 {
1926 char *buf;
1927 int ret;
1928 u32 len;
1929
1930 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1931 if (!buf)
1932 return -ENOMEM;
1933
1934 len = hid_report_len(report);
1935
1936 if (reqtype == HID_REQ_SET_REPORT)
1937 hid_output_report(report, buf);
1938
1939 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1940 report->type, reqtype);
1941 if (ret < 0) {
1942 dbg_hid("unable to complete request: %d\n", ret);
1943 goto out;
1944 }
1945
1946 if (reqtype == HID_REQ_GET_REPORT)
1947 hid_input_report(hid, report->type, buf, ret, 0);
1948
1949 ret = 0;
1950
1951 out:
1952 kfree(buf);
1953 return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(__hid_request);
1956
hid_report_raw_event(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1957 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1958 int interrupt)
1959 {
1960 struct hid_report_enum *report_enum = hid->report_enum + type;
1961 struct hid_report *report;
1962 struct hid_driver *hdrv;
1963 u32 rsize, csize = size;
1964 u8 *cdata = data;
1965 int ret = 0;
1966
1967 report = hid_get_report(report_enum, data);
1968 if (!report)
1969 goto out;
1970
1971 if (report_enum->numbered) {
1972 cdata++;
1973 csize--;
1974 }
1975
1976 rsize = hid_compute_report_size(report);
1977
1978 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1979 rsize = HID_MAX_BUFFER_SIZE - 1;
1980 else if (rsize > HID_MAX_BUFFER_SIZE)
1981 rsize = HID_MAX_BUFFER_SIZE;
1982
1983 if (csize < rsize) {
1984 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1985 csize, rsize);
1986 memset(cdata + csize, 0, rsize - csize);
1987 }
1988
1989 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1990 hid->hiddev_report_event(hid, report);
1991 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1992 ret = hidraw_report_event(hid, data, size);
1993 if (ret)
1994 goto out;
1995 }
1996
1997 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1998 hid_process_report(hid, report, cdata, interrupt);
1999 hdrv = hid->driver;
2000 if (hdrv && hdrv->report)
2001 hdrv->report(hid, report);
2002 }
2003
2004 if (hid->claimed & HID_CLAIMED_INPUT)
2005 hidinput_report_event(hid, report);
2006 out:
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2010
2011 /**
2012 * hid_input_report - report data from lower layer (usb, bt...)
2013 *
2014 * @hid: hid device
2015 * @type: HID report type (HID_*_REPORT)
2016 * @data: report contents
2017 * @size: size of data parameter
2018 * @interrupt: distinguish between interrupt and control transfers
2019 *
2020 * This is data entry for lower layers.
2021 */
hid_input_report(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)2022 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
2023 {
2024 struct hid_report_enum *report_enum;
2025 struct hid_driver *hdrv;
2026 struct hid_report *report;
2027 int ret = 0;
2028
2029 if (!hid)
2030 return -ENODEV;
2031
2032 if (down_trylock(&hid->driver_input_lock))
2033 return -EBUSY;
2034
2035 if (!hid->driver) {
2036 ret = -ENODEV;
2037 goto unlock;
2038 }
2039 report_enum = hid->report_enum + type;
2040 hdrv = hid->driver;
2041
2042 if (!size) {
2043 dbg_hid("empty report\n");
2044 ret = -1;
2045 goto unlock;
2046 }
2047
2048 /* Avoid unnecessary overhead if debugfs is disabled */
2049 if (!list_empty(&hid->debug_list))
2050 hid_dump_report(hid, type, data, size);
2051
2052 report = hid_get_report(report_enum, data);
2053
2054 if (!report) {
2055 ret = -1;
2056 goto unlock;
2057 }
2058
2059 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2060 ret = hdrv->raw_event(hid, report, data, size);
2061 if (ret < 0)
2062 goto unlock;
2063 }
2064
2065 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2066
2067 unlock:
2068 up(&hid->driver_input_lock);
2069 return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(hid_input_report);
2072
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2073 bool hid_match_one_id(const struct hid_device *hdev,
2074 const struct hid_device_id *id)
2075 {
2076 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2077 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2078 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2079 (id->product == HID_ANY_ID || id->product == hdev->product);
2080 }
2081
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2082 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2083 const struct hid_device_id *id)
2084 {
2085 for (; id->bus; id++)
2086 if (hid_match_one_id(hdev, id))
2087 return id;
2088
2089 return NULL;
2090 }
2091
2092 static const struct hid_device_id hid_hiddev_list[] = {
2093 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2094 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2095 { }
2096 };
2097
hid_hiddev(struct hid_device * hdev)2098 static bool hid_hiddev(struct hid_device *hdev)
2099 {
2100 return !!hid_match_id(hdev, hid_hiddev_list);
2101 }
2102
2103
2104 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)2105 read_report_descriptor(struct file *filp, struct kobject *kobj,
2106 struct bin_attribute *attr,
2107 char *buf, loff_t off, size_t count)
2108 {
2109 struct device *dev = kobj_to_dev(kobj);
2110 struct hid_device *hdev = to_hid_device(dev);
2111
2112 if (off >= hdev->rsize)
2113 return 0;
2114
2115 if (off + count > hdev->rsize)
2116 count = hdev->rsize - off;
2117
2118 memcpy(buf, hdev->rdesc + off, count);
2119
2120 return count;
2121 }
2122
2123 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)2124 show_country(struct device *dev, struct device_attribute *attr,
2125 char *buf)
2126 {
2127 struct hid_device *hdev = to_hid_device(dev);
2128
2129 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2130 }
2131
2132 static struct bin_attribute dev_bin_attr_report_desc = {
2133 .attr = { .name = "report_descriptor", .mode = 0444 },
2134 .read = read_report_descriptor,
2135 .size = HID_MAX_DESCRIPTOR_SIZE,
2136 };
2137
2138 static const struct device_attribute dev_attr_country = {
2139 .attr = { .name = "country", .mode = 0444 },
2140 .show = show_country,
2141 };
2142
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2143 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2144 {
2145 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2146 "Joystick", "Gamepad", "Keyboard", "Keypad",
2147 "Multi-Axis Controller"
2148 };
2149 const char *type, *bus;
2150 char buf[64] = "";
2151 unsigned int i;
2152 int len;
2153 int ret;
2154
2155 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2156 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2157 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2158 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2159 if (hdev->bus != BUS_USB)
2160 connect_mask &= ~HID_CONNECT_HIDDEV;
2161 if (hid_hiddev(hdev))
2162 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2163
2164 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2165 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2166 hdev->claimed |= HID_CLAIMED_INPUT;
2167
2168 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2169 !hdev->hiddev_connect(hdev,
2170 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2171 hdev->claimed |= HID_CLAIMED_HIDDEV;
2172 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2173 hdev->claimed |= HID_CLAIMED_HIDRAW;
2174
2175 if (connect_mask & HID_CONNECT_DRIVER)
2176 hdev->claimed |= HID_CLAIMED_DRIVER;
2177
2178 /* Drivers with the ->raw_event callback set are not required to connect
2179 * to any other listener. */
2180 if (!hdev->claimed && !hdev->driver->raw_event) {
2181 hid_err(hdev, "device has no listeners, quitting\n");
2182 return -ENODEV;
2183 }
2184
2185 hid_process_ordering(hdev);
2186
2187 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2188 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2189 hdev->ff_init(hdev);
2190
2191 len = 0;
2192 if (hdev->claimed & HID_CLAIMED_INPUT)
2193 len += sprintf(buf + len, "input");
2194 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2195 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2196 ((struct hiddev *)hdev->hiddev)->minor);
2197 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2198 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2199 ((struct hidraw *)hdev->hidraw)->minor);
2200
2201 type = "Device";
2202 for (i = 0; i < hdev->maxcollection; i++) {
2203 struct hid_collection *col = &hdev->collection[i];
2204 if (col->type == HID_COLLECTION_APPLICATION &&
2205 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2206 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2207 type = types[col->usage & 0xffff];
2208 break;
2209 }
2210 }
2211
2212 switch (hdev->bus) {
2213 case BUS_USB:
2214 bus = "USB";
2215 break;
2216 case BUS_BLUETOOTH:
2217 bus = "BLUETOOTH";
2218 break;
2219 case BUS_I2C:
2220 bus = "I2C";
2221 break;
2222 case BUS_VIRTUAL:
2223 bus = "VIRTUAL";
2224 break;
2225 case BUS_INTEL_ISHTP:
2226 case BUS_AMD_SFH:
2227 bus = "SENSOR HUB";
2228 break;
2229 default:
2230 bus = "<UNKNOWN>";
2231 }
2232
2233 ret = device_create_file(&hdev->dev, &dev_attr_country);
2234 if (ret)
2235 hid_warn(hdev,
2236 "can't create sysfs country code attribute err: %d\n", ret);
2237
2238 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2239 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2240 type, hdev->name, hdev->phys);
2241
2242 return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(hid_connect);
2245
hid_disconnect(struct hid_device * hdev)2246 void hid_disconnect(struct hid_device *hdev)
2247 {
2248 device_remove_file(&hdev->dev, &dev_attr_country);
2249 if (hdev->claimed & HID_CLAIMED_INPUT)
2250 hidinput_disconnect(hdev);
2251 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2252 hdev->hiddev_disconnect(hdev);
2253 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2254 hidraw_disconnect(hdev);
2255 hdev->claimed = 0;
2256 }
2257 EXPORT_SYMBOL_GPL(hid_disconnect);
2258
2259 /**
2260 * hid_hw_start - start underlying HW
2261 * @hdev: hid device
2262 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2263 *
2264 * Call this in probe function *after* hid_parse. This will setup HW
2265 * buffers and start the device (if not defeirred to device open).
2266 * hid_hw_stop must be called if this was successful.
2267 */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2268 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2269 {
2270 int error;
2271
2272 error = hdev->ll_driver->start(hdev);
2273 if (error)
2274 return error;
2275
2276 if (connect_mask) {
2277 error = hid_connect(hdev, connect_mask);
2278 if (error) {
2279 hdev->ll_driver->stop(hdev);
2280 return error;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286 EXPORT_SYMBOL_GPL(hid_hw_start);
2287
2288 /**
2289 * hid_hw_stop - stop underlying HW
2290 * @hdev: hid device
2291 *
2292 * This is usually called from remove function or from probe when something
2293 * failed and hid_hw_start was called already.
2294 */
hid_hw_stop(struct hid_device * hdev)2295 void hid_hw_stop(struct hid_device *hdev)
2296 {
2297 hid_disconnect(hdev);
2298 hdev->ll_driver->stop(hdev);
2299 }
2300 EXPORT_SYMBOL_GPL(hid_hw_stop);
2301
2302 /**
2303 * hid_hw_open - signal underlying HW to start delivering events
2304 * @hdev: hid device
2305 *
2306 * Tell underlying HW to start delivering events from the device.
2307 * This function should be called sometime after successful call
2308 * to hid_hw_start().
2309 */
hid_hw_open(struct hid_device * hdev)2310 int hid_hw_open(struct hid_device *hdev)
2311 {
2312 int ret;
2313
2314 ret = mutex_lock_killable(&hdev->ll_open_lock);
2315 if (ret)
2316 return ret;
2317
2318 if (!hdev->ll_open_count++) {
2319 ret = hdev->ll_driver->open(hdev);
2320 if (ret)
2321 hdev->ll_open_count--;
2322 }
2323
2324 mutex_unlock(&hdev->ll_open_lock);
2325 return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(hid_hw_open);
2328
2329 /**
2330 * hid_hw_close - signal underlaying HW to stop delivering events
2331 *
2332 * @hdev: hid device
2333 *
2334 * This function indicates that we are not interested in the events
2335 * from this device anymore. Delivery of events may or may not stop,
2336 * depending on the number of users still outstanding.
2337 */
hid_hw_close(struct hid_device * hdev)2338 void hid_hw_close(struct hid_device *hdev)
2339 {
2340 mutex_lock(&hdev->ll_open_lock);
2341 if (!--hdev->ll_open_count)
2342 hdev->ll_driver->close(hdev);
2343 mutex_unlock(&hdev->ll_open_lock);
2344 }
2345 EXPORT_SYMBOL_GPL(hid_hw_close);
2346
2347 /**
2348 * hid_hw_request - send report request to device
2349 *
2350 * @hdev: hid device
2351 * @report: report to send
2352 * @reqtype: hid request type
2353 */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,int reqtype)2354 void hid_hw_request(struct hid_device *hdev,
2355 struct hid_report *report, int reqtype)
2356 {
2357 if (hdev->ll_driver->request)
2358 return hdev->ll_driver->request(hdev, report, reqtype);
2359
2360 __hid_request(hdev, report, reqtype);
2361 }
2362 EXPORT_SYMBOL_GPL(hid_hw_request);
2363
2364 /**
2365 * hid_hw_raw_request - send report request to device
2366 *
2367 * @hdev: hid device
2368 * @reportnum: report ID
2369 * @buf: in/out data to transfer
2370 * @len: length of buf
2371 * @rtype: HID report type
2372 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2373 *
2374 * Return: count of data transferred, negative if error
2375 *
2376 * Same behavior as hid_hw_request, but with raw buffers instead.
2377 */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,unsigned char rtype,int reqtype)2378 int hid_hw_raw_request(struct hid_device *hdev,
2379 unsigned char reportnum, __u8 *buf,
2380 size_t len, unsigned char rtype, int reqtype)
2381 {
2382 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2383 return -EINVAL;
2384
2385 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2386 rtype, reqtype);
2387 }
2388 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2389
2390 /**
2391 * hid_hw_output_report - send output report to device
2392 *
2393 * @hdev: hid device
2394 * @buf: raw data to transfer
2395 * @len: length of buf
2396 *
2397 * Return: count of data transferred, negative if error
2398 */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2399 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2400 {
2401 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2402 return -EINVAL;
2403
2404 if (hdev->ll_driver->output_report)
2405 return hdev->ll_driver->output_report(hdev, buf, len);
2406
2407 return -ENOSYS;
2408 }
2409 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2410
2411 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2412 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2413 {
2414 if (hdev->driver && hdev->driver->suspend)
2415 return hdev->driver->suspend(hdev, state);
2416
2417 return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2420
hid_driver_reset_resume(struct hid_device * hdev)2421 int hid_driver_reset_resume(struct hid_device *hdev)
2422 {
2423 if (hdev->driver && hdev->driver->reset_resume)
2424 return hdev->driver->reset_resume(hdev);
2425
2426 return 0;
2427 }
2428 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2429
hid_driver_resume(struct hid_device * hdev)2430 int hid_driver_resume(struct hid_device *hdev)
2431 {
2432 if (hdev->driver && hdev->driver->resume)
2433 return hdev->driver->resume(hdev);
2434
2435 return 0;
2436 }
2437 EXPORT_SYMBOL_GPL(hid_driver_resume);
2438 #endif /* CONFIG_PM */
2439
2440 struct hid_dynid {
2441 struct list_head list;
2442 struct hid_device_id id;
2443 };
2444
2445 /**
2446 * new_id_store - add a new HID device ID to this driver and re-probe devices
2447 * @drv: target device driver
2448 * @buf: buffer for scanning device ID data
2449 * @count: input size
2450 *
2451 * Adds a new dynamic hid device ID to this driver,
2452 * and causes the driver to probe for all devices again.
2453 */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2454 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2455 size_t count)
2456 {
2457 struct hid_driver *hdrv = to_hid_driver(drv);
2458 struct hid_dynid *dynid;
2459 __u32 bus, vendor, product;
2460 unsigned long driver_data = 0;
2461 int ret;
2462
2463 ret = sscanf(buf, "%x %x %x %lx",
2464 &bus, &vendor, &product, &driver_data);
2465 if (ret < 3)
2466 return -EINVAL;
2467
2468 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2469 if (!dynid)
2470 return -ENOMEM;
2471
2472 dynid->id.bus = bus;
2473 dynid->id.group = HID_GROUP_ANY;
2474 dynid->id.vendor = vendor;
2475 dynid->id.product = product;
2476 dynid->id.driver_data = driver_data;
2477
2478 spin_lock(&hdrv->dyn_lock);
2479 list_add_tail(&dynid->list, &hdrv->dyn_list);
2480 spin_unlock(&hdrv->dyn_lock);
2481
2482 ret = driver_attach(&hdrv->driver);
2483
2484 return ret ? : count;
2485 }
2486 static DRIVER_ATTR_WO(new_id);
2487
2488 static struct attribute *hid_drv_attrs[] = {
2489 &driver_attr_new_id.attr,
2490 NULL,
2491 };
2492 ATTRIBUTE_GROUPS(hid_drv);
2493
hid_free_dynids(struct hid_driver * hdrv)2494 static void hid_free_dynids(struct hid_driver *hdrv)
2495 {
2496 struct hid_dynid *dynid, *n;
2497
2498 spin_lock(&hdrv->dyn_lock);
2499 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2500 list_del(&dynid->list);
2501 kfree(dynid);
2502 }
2503 spin_unlock(&hdrv->dyn_lock);
2504 }
2505
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2506 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2507 struct hid_driver *hdrv)
2508 {
2509 struct hid_dynid *dynid;
2510
2511 spin_lock(&hdrv->dyn_lock);
2512 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2513 if (hid_match_one_id(hdev, &dynid->id)) {
2514 spin_unlock(&hdrv->dyn_lock);
2515 return &dynid->id;
2516 }
2517 }
2518 spin_unlock(&hdrv->dyn_lock);
2519
2520 return hid_match_id(hdev, hdrv->id_table);
2521 }
2522 EXPORT_SYMBOL_GPL(hid_match_device);
2523
hid_bus_match(struct device * dev,struct device_driver * drv)2524 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2525 {
2526 struct hid_driver *hdrv = to_hid_driver(drv);
2527 struct hid_device *hdev = to_hid_device(dev);
2528
2529 return hid_match_device(hdev, hdrv) != NULL;
2530 }
2531
2532 /**
2533 * hid_compare_device_paths - check if both devices share the same path
2534 * @hdev_a: hid device
2535 * @hdev_b: hid device
2536 * @separator: char to use as separator
2537 *
2538 * Check if two devices share the same path up to the last occurrence of
2539 * the separator char. Both paths must exist (i.e., zero-length paths
2540 * don't match).
2541 */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2542 bool hid_compare_device_paths(struct hid_device *hdev_a,
2543 struct hid_device *hdev_b, char separator)
2544 {
2545 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2546 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2547
2548 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2549 return false;
2550
2551 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2552 }
2553 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2554
hid_device_probe(struct device * dev)2555 static int hid_device_probe(struct device *dev)
2556 {
2557 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2558 struct hid_device *hdev = to_hid_device(dev);
2559 const struct hid_device_id *id;
2560 int ret = 0;
2561
2562 if (down_interruptible(&hdev->driver_input_lock)) {
2563 ret = -EINTR;
2564 goto end;
2565 }
2566 hdev->io_started = false;
2567
2568 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2569
2570 if (!hdev->driver) {
2571 id = hid_match_device(hdev, hdrv);
2572 if (id == NULL) {
2573 ret = -ENODEV;
2574 goto unlock;
2575 }
2576
2577 if (hdrv->match) {
2578 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2579 ret = -ENODEV;
2580 goto unlock;
2581 }
2582 } else {
2583 /*
2584 * hid-generic implements .match(), so if
2585 * hid_ignore_special_drivers is set, we can safely
2586 * return.
2587 */
2588 if (hid_ignore_special_drivers) {
2589 ret = -ENODEV;
2590 goto unlock;
2591 }
2592 }
2593
2594 /* reset the quirks that has been previously set */
2595 hdev->quirks = hid_lookup_quirk(hdev);
2596 hdev->driver = hdrv;
2597 if (hdrv->probe) {
2598 ret = hdrv->probe(hdev, id);
2599 } else { /* default probe */
2600 ret = hid_open_report(hdev);
2601 if (!ret)
2602 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2603 }
2604 if (ret) {
2605 hid_close_report(hdev);
2606 hdev->driver = NULL;
2607 }
2608 }
2609 unlock:
2610 if (!hdev->io_started)
2611 up(&hdev->driver_input_lock);
2612 end:
2613 return ret;
2614 }
2615
hid_device_remove(struct device * dev)2616 static void hid_device_remove(struct device *dev)
2617 {
2618 struct hid_device *hdev = to_hid_device(dev);
2619 struct hid_driver *hdrv;
2620
2621 down(&hdev->driver_input_lock);
2622 hdev->io_started = false;
2623
2624 hdrv = hdev->driver;
2625 if (hdrv) {
2626 if (hdrv->remove)
2627 hdrv->remove(hdev);
2628 else /* default remove */
2629 hid_hw_stop(hdev);
2630 hid_close_report(hdev);
2631 hdev->driver = NULL;
2632 }
2633
2634 if (!hdev->io_started)
2635 up(&hdev->driver_input_lock);
2636 }
2637
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2638 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2639 char *buf)
2640 {
2641 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2642
2643 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2644 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2645 }
2646 static DEVICE_ATTR_RO(modalias);
2647
2648 static struct attribute *hid_dev_attrs[] = {
2649 &dev_attr_modalias.attr,
2650 NULL,
2651 };
2652 static struct bin_attribute *hid_dev_bin_attrs[] = {
2653 &dev_bin_attr_report_desc,
2654 NULL
2655 };
2656 static const struct attribute_group hid_dev_group = {
2657 .attrs = hid_dev_attrs,
2658 .bin_attrs = hid_dev_bin_attrs,
2659 };
2660 __ATTRIBUTE_GROUPS(hid_dev);
2661
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2662 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2663 {
2664 struct hid_device *hdev = to_hid_device(dev);
2665
2666 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2667 hdev->bus, hdev->vendor, hdev->product))
2668 return -ENOMEM;
2669
2670 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2671 return -ENOMEM;
2672
2673 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2674 return -ENOMEM;
2675
2676 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2677 return -ENOMEM;
2678
2679 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2680 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2681 return -ENOMEM;
2682
2683 return 0;
2684 }
2685
2686 struct bus_type hid_bus_type = {
2687 .name = "hid",
2688 .dev_groups = hid_dev_groups,
2689 .drv_groups = hid_drv_groups,
2690 .match = hid_bus_match,
2691 .probe = hid_device_probe,
2692 .remove = hid_device_remove,
2693 .uevent = hid_uevent,
2694 };
2695 EXPORT_SYMBOL(hid_bus_type);
2696
hid_add_device(struct hid_device * hdev)2697 int hid_add_device(struct hid_device *hdev)
2698 {
2699 static atomic_t id = ATOMIC_INIT(0);
2700 int ret;
2701
2702 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2703 return -EBUSY;
2704
2705 hdev->quirks = hid_lookup_quirk(hdev);
2706
2707 /* we need to kill them here, otherwise they will stay allocated to
2708 * wait for coming driver */
2709 if (hid_ignore(hdev))
2710 return -ENODEV;
2711
2712 /*
2713 * Check for the mandatory transport channel.
2714 */
2715 if (!hdev->ll_driver->raw_request) {
2716 hid_err(hdev, "transport driver missing .raw_request()\n");
2717 return -EINVAL;
2718 }
2719
2720 /*
2721 * Read the device report descriptor once and use as template
2722 * for the driver-specific modifications.
2723 */
2724 ret = hdev->ll_driver->parse(hdev);
2725 if (ret)
2726 return ret;
2727 if (!hdev->dev_rdesc)
2728 return -ENODEV;
2729
2730 /*
2731 * Scan generic devices for group information
2732 */
2733 if (hid_ignore_special_drivers) {
2734 hdev->group = HID_GROUP_GENERIC;
2735 } else if (!hdev->group &&
2736 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2737 ret = hid_scan_report(hdev);
2738 if (ret)
2739 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2740 }
2741
2742 /* XXX hack, any other cleaner solution after the driver core
2743 * is converted to allow more than 20 bytes as the device name? */
2744 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2745 hdev->vendor, hdev->product, atomic_inc_return(&id));
2746
2747 hid_debug_register(hdev, dev_name(&hdev->dev));
2748 ret = device_add(&hdev->dev);
2749 if (!ret)
2750 hdev->status |= HID_STAT_ADDED;
2751 else
2752 hid_debug_unregister(hdev);
2753
2754 return ret;
2755 }
2756 EXPORT_SYMBOL_GPL(hid_add_device);
2757
2758 /**
2759 * hid_allocate_device - allocate new hid device descriptor
2760 *
2761 * Allocate and initialize hid device, so that hid_destroy_device might be
2762 * used to free it.
2763 *
2764 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2765 * error value.
2766 */
hid_allocate_device(void)2767 struct hid_device *hid_allocate_device(void)
2768 {
2769 struct hid_device *hdev;
2770 int ret = -ENOMEM;
2771
2772 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2773 if (hdev == NULL)
2774 return ERR_PTR(ret);
2775
2776 device_initialize(&hdev->dev);
2777 hdev->dev.release = hid_device_release;
2778 hdev->dev.bus = &hid_bus_type;
2779 device_enable_async_suspend(&hdev->dev);
2780
2781 hid_close_report(hdev);
2782
2783 init_waitqueue_head(&hdev->debug_wait);
2784 INIT_LIST_HEAD(&hdev->debug_list);
2785 spin_lock_init(&hdev->debug_list_lock);
2786 sema_init(&hdev->driver_input_lock, 1);
2787 mutex_init(&hdev->ll_open_lock);
2788
2789 return hdev;
2790 }
2791 EXPORT_SYMBOL_GPL(hid_allocate_device);
2792
hid_remove_device(struct hid_device * hdev)2793 static void hid_remove_device(struct hid_device *hdev)
2794 {
2795 if (hdev->status & HID_STAT_ADDED) {
2796 device_del(&hdev->dev);
2797 hid_debug_unregister(hdev);
2798 hdev->status &= ~HID_STAT_ADDED;
2799 }
2800 kfree(hdev->dev_rdesc);
2801 hdev->dev_rdesc = NULL;
2802 hdev->dev_rsize = 0;
2803 }
2804
2805 /**
2806 * hid_destroy_device - free previously allocated device
2807 *
2808 * @hdev: hid device
2809 *
2810 * If you allocate hid_device through hid_allocate_device, you should ever
2811 * free by this function.
2812 */
hid_destroy_device(struct hid_device * hdev)2813 void hid_destroy_device(struct hid_device *hdev)
2814 {
2815 hid_remove_device(hdev);
2816 put_device(&hdev->dev);
2817 }
2818 EXPORT_SYMBOL_GPL(hid_destroy_device);
2819
2820
__hid_bus_reprobe_drivers(struct device * dev,void * data)2821 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2822 {
2823 struct hid_driver *hdrv = data;
2824 struct hid_device *hdev = to_hid_device(dev);
2825
2826 if (hdev->driver == hdrv &&
2827 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2828 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2829 return device_reprobe(dev);
2830
2831 return 0;
2832 }
2833
__hid_bus_driver_added(struct device_driver * drv,void * data)2834 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2835 {
2836 struct hid_driver *hdrv = to_hid_driver(drv);
2837
2838 if (hdrv->match) {
2839 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2840 __hid_bus_reprobe_drivers);
2841 }
2842
2843 return 0;
2844 }
2845
__bus_removed_driver(struct device_driver * drv,void * data)2846 static int __bus_removed_driver(struct device_driver *drv, void *data)
2847 {
2848 return bus_rescan_devices(&hid_bus_type);
2849 }
2850
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2851 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2852 const char *mod_name)
2853 {
2854 int ret;
2855
2856 hdrv->driver.name = hdrv->name;
2857 hdrv->driver.bus = &hid_bus_type;
2858 hdrv->driver.owner = owner;
2859 hdrv->driver.mod_name = mod_name;
2860
2861 INIT_LIST_HEAD(&hdrv->dyn_list);
2862 spin_lock_init(&hdrv->dyn_lock);
2863
2864 ret = driver_register(&hdrv->driver);
2865
2866 if (ret == 0)
2867 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2868 __hid_bus_driver_added);
2869
2870 return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(__hid_register_driver);
2873
hid_unregister_driver(struct hid_driver * hdrv)2874 void hid_unregister_driver(struct hid_driver *hdrv)
2875 {
2876 driver_unregister(&hdrv->driver);
2877 hid_free_dynids(hdrv);
2878
2879 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2880 }
2881 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2882
hid_check_keys_pressed(struct hid_device * hid)2883 int hid_check_keys_pressed(struct hid_device *hid)
2884 {
2885 struct hid_input *hidinput;
2886 int i;
2887
2888 if (!(hid->claimed & HID_CLAIMED_INPUT))
2889 return 0;
2890
2891 list_for_each_entry(hidinput, &hid->inputs, list) {
2892 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2893 if (hidinput->input->key[i])
2894 return 1;
2895 }
2896
2897 return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2900
hid_init(void)2901 static int __init hid_init(void)
2902 {
2903 int ret;
2904
2905 if (hid_debug)
2906 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2907 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2908
2909 ret = bus_register(&hid_bus_type);
2910 if (ret) {
2911 pr_err("can't register hid bus\n");
2912 goto err;
2913 }
2914
2915 ret = hidraw_init();
2916 if (ret)
2917 goto err_bus;
2918
2919 hid_debug_init();
2920
2921 return 0;
2922 err_bus:
2923 bus_unregister(&hid_bus_type);
2924 err:
2925 return ret;
2926 }
2927
hid_exit(void)2928 static void __exit hid_exit(void)
2929 {
2930 hid_debug_exit();
2931 hidraw_exit();
2932 bus_unregister(&hid_bus_type);
2933 hid_quirks_exit(HID_BUS_ANY);
2934 }
2935
2936 module_init(hid_init);
2937 module_exit(hid_exit);
2938
2939 MODULE_AUTHOR("Andreas Gal");
2940 MODULE_AUTHOR("Vojtech Pavlik");
2941 MODULE_AUTHOR("Jiri Kosina");
2942 MODULE_LICENSE("GPL");
2943