1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 */
5
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/interrupt.h>
9 #include <linux/numa.h>
10
11 #include "hfi.h"
12 #include "affinity.h"
13 #include "sdma.h"
14 #include "trace.h"
15
16 struct hfi1_affinity_node_list node_affinity = {
17 .list = LIST_HEAD_INIT(node_affinity.list),
18 .lock = __MUTEX_INITIALIZER(node_affinity.lock)
19 };
20
21 /* Name of IRQ types, indexed by enum irq_type */
22 static const char * const irq_type_names[] = {
23 "SDMA",
24 "RCVCTXT",
25 "NETDEVCTXT",
26 "GENERAL",
27 "OTHER",
28 };
29
30 /* Per NUMA node count of HFI devices */
31 static unsigned int *hfi1_per_node_cntr;
32
init_cpu_mask_set(struct cpu_mask_set * set)33 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
34 {
35 cpumask_clear(&set->mask);
36 cpumask_clear(&set->used);
37 set->gen = 0;
38 }
39
40 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)41 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
42 {
43 if (cpumask_equal(&set->mask, &set->used)) {
44 /*
45 * We've used up all the CPUs, bump up the generation
46 * and reset the 'used' map
47 */
48 set->gen++;
49 cpumask_clear(&set->used);
50 }
51 }
52
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)53 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
54 {
55 if (cpumask_empty(&set->used) && set->gen) {
56 set->gen--;
57 cpumask_copy(&set->used, &set->mask);
58 }
59 }
60
61 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)62 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
63 {
64 int cpu;
65
66 if (!diff || !set)
67 return -EINVAL;
68
69 _cpu_mask_set_gen_inc(set);
70
71 /* Find out CPUs left in CPU mask */
72 cpumask_andnot(diff, &set->mask, &set->used);
73
74 cpu = cpumask_first(diff);
75 if (cpu >= nr_cpu_ids) /* empty */
76 cpu = -EINVAL;
77 else
78 cpumask_set_cpu(cpu, &set->used);
79
80 return cpu;
81 }
82
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)83 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
84 {
85 if (!set)
86 return;
87
88 cpumask_clear_cpu(cpu, &set->used);
89 _cpu_mask_set_gen_dec(set);
90 }
91
92 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)93 void init_real_cpu_mask(void)
94 {
95 int possible, curr_cpu, i, ht;
96
97 cpumask_clear(&node_affinity.real_cpu_mask);
98
99 /* Start with cpu online mask as the real cpu mask */
100 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
101
102 /*
103 * Remove HT cores from the real cpu mask. Do this in two steps below.
104 */
105 possible = cpumask_weight(&node_affinity.real_cpu_mask);
106 ht = cpumask_weight(topology_sibling_cpumask(
107 cpumask_first(&node_affinity.real_cpu_mask)));
108 /*
109 * Step 1. Skip over the first N HT siblings and use them as the
110 * "real" cores. Assumes that HT cores are not enumerated in
111 * succession (except in the single core case).
112 */
113 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
114 for (i = 0; i < possible / ht; i++)
115 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
116 /*
117 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
118 * skip any gaps.
119 */
120 for (; i < possible; i++) {
121 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
122 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
123 }
124 }
125
node_affinity_init(void)126 int node_affinity_init(void)
127 {
128 int node;
129 struct pci_dev *dev = NULL;
130 const struct pci_device_id *ids = hfi1_pci_tbl;
131
132 cpumask_clear(&node_affinity.proc.used);
133 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
134
135 node_affinity.proc.gen = 0;
136 node_affinity.num_core_siblings =
137 cpumask_weight(topology_sibling_cpumask(
138 cpumask_first(&node_affinity.proc.mask)
139 ));
140 node_affinity.num_possible_nodes = num_possible_nodes();
141 node_affinity.num_online_nodes = num_online_nodes();
142 node_affinity.num_online_cpus = num_online_cpus();
143
144 /*
145 * The real cpu mask is part of the affinity struct but it has to be
146 * initialized early. It is needed to calculate the number of user
147 * contexts in set_up_context_variables().
148 */
149 init_real_cpu_mask();
150
151 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
152 sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
153 if (!hfi1_per_node_cntr)
154 return -ENOMEM;
155
156 while (ids->vendor) {
157 dev = NULL;
158 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
159 node = pcibus_to_node(dev->bus);
160 if (node < 0)
161 goto out;
162
163 hfi1_per_node_cntr[node]++;
164 }
165 ids++;
166 }
167
168 return 0;
169
170 out:
171 /*
172 * Invalid PCI NUMA node information found, note it, and populate
173 * our database 1:1.
174 */
175 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
176 pr_err("HFI: System BIOS may need to be upgraded\n");
177 for (node = 0; node < node_affinity.num_possible_nodes; node++)
178 hfi1_per_node_cntr[node] = 1;
179
180 return 0;
181 }
182
node_affinity_destroy(struct hfi1_affinity_node * entry)183 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
184 {
185 free_percpu(entry->comp_vect_affinity);
186 kfree(entry);
187 }
188
node_affinity_destroy_all(void)189 void node_affinity_destroy_all(void)
190 {
191 struct list_head *pos, *q;
192 struct hfi1_affinity_node *entry;
193
194 mutex_lock(&node_affinity.lock);
195 list_for_each_safe(pos, q, &node_affinity.list) {
196 entry = list_entry(pos, struct hfi1_affinity_node,
197 list);
198 list_del(pos);
199 node_affinity_destroy(entry);
200 }
201 mutex_unlock(&node_affinity.lock);
202 kfree(hfi1_per_node_cntr);
203 }
204
node_affinity_allocate(int node)205 static struct hfi1_affinity_node *node_affinity_allocate(int node)
206 {
207 struct hfi1_affinity_node *entry;
208
209 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
210 if (!entry)
211 return NULL;
212 entry->node = node;
213 entry->comp_vect_affinity = alloc_percpu(u16);
214 INIT_LIST_HEAD(&entry->list);
215
216 return entry;
217 }
218
219 /*
220 * It appends an entry to the list.
221 * It *must* be called with node_affinity.lock held.
222 */
node_affinity_add_tail(struct hfi1_affinity_node * entry)223 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
224 {
225 list_add_tail(&entry->list, &node_affinity.list);
226 }
227
228 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)229 static struct hfi1_affinity_node *node_affinity_lookup(int node)
230 {
231 struct list_head *pos;
232 struct hfi1_affinity_node *entry;
233
234 list_for_each(pos, &node_affinity.list) {
235 entry = list_entry(pos, struct hfi1_affinity_node, list);
236 if (entry->node == node)
237 return entry;
238 }
239
240 return NULL;
241 }
242
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)243 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
244 u16 __percpu *comp_vect_affinity)
245 {
246 int curr_cpu;
247 u16 cntr;
248 u16 prev_cntr;
249 int ret_cpu;
250
251 if (!possible_cpumask) {
252 ret_cpu = -EINVAL;
253 goto fail;
254 }
255
256 if (!comp_vect_affinity) {
257 ret_cpu = -EINVAL;
258 goto fail;
259 }
260
261 ret_cpu = cpumask_first(possible_cpumask);
262 if (ret_cpu >= nr_cpu_ids) {
263 ret_cpu = -EINVAL;
264 goto fail;
265 }
266
267 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
268 for_each_cpu(curr_cpu, possible_cpumask) {
269 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
270
271 if (cntr < prev_cntr) {
272 ret_cpu = curr_cpu;
273 prev_cntr = cntr;
274 }
275 }
276
277 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
278
279 fail:
280 return ret_cpu;
281 }
282
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)283 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
284 u16 __percpu *comp_vect_affinity)
285 {
286 int curr_cpu;
287 int max_cpu;
288 u16 cntr;
289 u16 prev_cntr;
290
291 if (!possible_cpumask)
292 return -EINVAL;
293
294 if (!comp_vect_affinity)
295 return -EINVAL;
296
297 max_cpu = cpumask_first(possible_cpumask);
298 if (max_cpu >= nr_cpu_ids)
299 return -EINVAL;
300
301 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
302 for_each_cpu(curr_cpu, possible_cpumask) {
303 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
304
305 if (cntr > prev_cntr) {
306 max_cpu = curr_cpu;
307 prev_cntr = cntr;
308 }
309 }
310
311 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
312
313 return max_cpu;
314 }
315
316 /*
317 * Non-interrupt CPUs are used first, then interrupt CPUs.
318 * Two already allocated cpu masks must be passed.
319 */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)320 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
321 struct hfi1_affinity_node *entry,
322 cpumask_var_t non_intr_cpus,
323 cpumask_var_t available_cpus)
324 __must_hold(&node_affinity.lock)
325 {
326 int cpu;
327 struct cpu_mask_set *set = dd->comp_vect;
328
329 lockdep_assert_held(&node_affinity.lock);
330 if (!non_intr_cpus) {
331 cpu = -1;
332 goto fail;
333 }
334
335 if (!available_cpus) {
336 cpu = -1;
337 goto fail;
338 }
339
340 /* Available CPUs for pinning completion vectors */
341 _cpu_mask_set_gen_inc(set);
342 cpumask_andnot(available_cpus, &set->mask, &set->used);
343
344 /* Available CPUs without SDMA engine interrupts */
345 cpumask_andnot(non_intr_cpus, available_cpus,
346 &entry->def_intr.used);
347
348 /* If there are non-interrupt CPUs available, use them first */
349 if (!cpumask_empty(non_intr_cpus))
350 cpu = cpumask_first(non_intr_cpus);
351 else /* Otherwise, use interrupt CPUs */
352 cpu = cpumask_first(available_cpus);
353
354 if (cpu >= nr_cpu_ids) { /* empty */
355 cpu = -1;
356 goto fail;
357 }
358 cpumask_set_cpu(cpu, &set->used);
359
360 fail:
361 return cpu;
362 }
363
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)364 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
365 {
366 struct cpu_mask_set *set = dd->comp_vect;
367
368 if (cpu < 0)
369 return;
370
371 cpu_mask_set_put(set, cpu);
372 }
373
374 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)375 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
376 {
377 int i, cpu;
378
379 if (!dd->comp_vect_mappings)
380 return;
381
382 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
383 cpu = dd->comp_vect_mappings[i];
384 _dev_comp_vect_cpu_put(dd, cpu);
385 dd->comp_vect_mappings[i] = -1;
386 hfi1_cdbg(AFFINITY,
387 "[%s] Release CPU %d from completion vector %d",
388 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
389 }
390
391 kfree(dd->comp_vect_mappings);
392 dd->comp_vect_mappings = NULL;
393 }
394
395 /*
396 * This function creates the table for looking up CPUs for completion vectors.
397 * num_comp_vectors needs to have been initilized before calling this function.
398 */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)399 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
400 struct hfi1_affinity_node *entry)
401 __must_hold(&node_affinity.lock)
402 {
403 int i, cpu, ret;
404 cpumask_var_t non_intr_cpus;
405 cpumask_var_t available_cpus;
406
407 lockdep_assert_held(&node_affinity.lock);
408
409 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
410 return -ENOMEM;
411
412 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
413 free_cpumask_var(non_intr_cpus);
414 return -ENOMEM;
415 }
416
417 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
418 sizeof(*dd->comp_vect_mappings),
419 GFP_KERNEL);
420 if (!dd->comp_vect_mappings) {
421 ret = -ENOMEM;
422 goto fail;
423 }
424 for (i = 0; i < dd->comp_vect_possible_cpus; i++)
425 dd->comp_vect_mappings[i] = -1;
426
427 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
428 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
429 available_cpus);
430 if (cpu < 0) {
431 ret = -EINVAL;
432 goto fail;
433 }
434
435 dd->comp_vect_mappings[i] = cpu;
436 hfi1_cdbg(AFFINITY,
437 "[%s] Completion Vector %d -> CPU %d",
438 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
439 }
440
441 free_cpumask_var(available_cpus);
442 free_cpumask_var(non_intr_cpus);
443 return 0;
444
445 fail:
446 free_cpumask_var(available_cpus);
447 free_cpumask_var(non_intr_cpus);
448 _dev_comp_vect_mappings_destroy(dd);
449
450 return ret;
451 }
452
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)453 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
454 {
455 int ret;
456 struct hfi1_affinity_node *entry;
457
458 mutex_lock(&node_affinity.lock);
459 entry = node_affinity_lookup(dd->node);
460 if (!entry) {
461 ret = -EINVAL;
462 goto unlock;
463 }
464 ret = _dev_comp_vect_mappings_create(dd, entry);
465 unlock:
466 mutex_unlock(&node_affinity.lock);
467
468 return ret;
469 }
470
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)471 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
472 {
473 _dev_comp_vect_mappings_destroy(dd);
474 }
475
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)476 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
477 {
478 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
479 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
480
481 if (!dd->comp_vect_mappings)
482 return -EINVAL;
483 if (comp_vect >= dd->comp_vect_possible_cpus)
484 return -EINVAL;
485
486 return dd->comp_vect_mappings[comp_vect];
487 }
488
489 /*
490 * It assumes dd->comp_vect_possible_cpus is available.
491 */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)492 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
493 struct hfi1_affinity_node *entry,
494 bool first_dev_init)
495 __must_hold(&node_affinity.lock)
496 {
497 int i, j, curr_cpu;
498 int possible_cpus_comp_vect = 0;
499 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
500
501 lockdep_assert_held(&node_affinity.lock);
502 /*
503 * If there's only one CPU available for completion vectors, then
504 * there will only be one completion vector available. Othewise,
505 * the number of completion vector available will be the number of
506 * available CPUs divide it by the number of devices in the
507 * local NUMA node.
508 */
509 if (cpumask_weight(&entry->comp_vect_mask) == 1) {
510 possible_cpus_comp_vect = 1;
511 dd_dev_warn(dd,
512 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
513 } else {
514 possible_cpus_comp_vect +=
515 cpumask_weight(&entry->comp_vect_mask) /
516 hfi1_per_node_cntr[dd->node];
517
518 /*
519 * If the completion vector CPUs available doesn't divide
520 * evenly among devices, then the first device device to be
521 * initialized gets an extra CPU.
522 */
523 if (first_dev_init &&
524 cpumask_weight(&entry->comp_vect_mask) %
525 hfi1_per_node_cntr[dd->node] != 0)
526 possible_cpus_comp_vect++;
527 }
528
529 dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
530
531 /* Reserving CPUs for device completion vector */
532 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
533 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
534 entry->comp_vect_affinity);
535 if (curr_cpu < 0)
536 goto fail;
537
538 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
539 }
540
541 hfi1_cdbg(AFFINITY,
542 "[%s] Completion vector affinity CPU set(s) %*pbl",
543 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
544 cpumask_pr_args(dev_comp_vect_mask));
545
546 return 0;
547
548 fail:
549 for (j = 0; j < i; j++)
550 per_cpu_affinity_put_max(&entry->comp_vect_mask,
551 entry->comp_vect_affinity);
552
553 return curr_cpu;
554 }
555
556 /*
557 * It assumes dd->comp_vect_possible_cpus is available.
558 */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)559 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
560 struct hfi1_affinity_node *entry)
561 __must_hold(&node_affinity.lock)
562 {
563 int i, cpu;
564
565 lockdep_assert_held(&node_affinity.lock);
566 if (!dd->comp_vect_possible_cpus)
567 return;
568
569 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
570 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
571 entry->comp_vect_affinity);
572 /* Clearing CPU in device completion vector cpu mask */
573 if (cpu >= 0)
574 cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
575 }
576
577 dd->comp_vect_possible_cpus = 0;
578 }
579
580 /*
581 * Interrupt affinity.
582 *
583 * non-rcv avail gets a default mask that
584 * starts as possible cpus with threads reset
585 * and each rcv avail reset.
586 *
587 * rcv avail gets node relative 1 wrapping back
588 * to the node relative 1 as necessary.
589 *
590 */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)591 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
592 {
593 struct hfi1_affinity_node *entry;
594 const struct cpumask *local_mask;
595 int curr_cpu, possible, i, ret;
596 bool new_entry = false;
597
598 local_mask = cpumask_of_node(dd->node);
599 if (cpumask_first(local_mask) >= nr_cpu_ids)
600 local_mask = topology_core_cpumask(0);
601
602 mutex_lock(&node_affinity.lock);
603 entry = node_affinity_lookup(dd->node);
604
605 /*
606 * If this is the first time this NUMA node's affinity is used,
607 * create an entry in the global affinity structure and initialize it.
608 */
609 if (!entry) {
610 entry = node_affinity_allocate(dd->node);
611 if (!entry) {
612 dd_dev_err(dd,
613 "Unable to allocate global affinity node\n");
614 ret = -ENOMEM;
615 goto fail;
616 }
617 new_entry = true;
618
619 init_cpu_mask_set(&entry->def_intr);
620 init_cpu_mask_set(&entry->rcv_intr);
621 cpumask_clear(&entry->comp_vect_mask);
622 cpumask_clear(&entry->general_intr_mask);
623 /* Use the "real" cpu mask of this node as the default */
624 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
625 local_mask);
626
627 /* fill in the receive list */
628 possible = cpumask_weight(&entry->def_intr.mask);
629 curr_cpu = cpumask_first(&entry->def_intr.mask);
630
631 if (possible == 1) {
632 /* only one CPU, everyone will use it */
633 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
634 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
635 } else {
636 /*
637 * The general/control context will be the first CPU in
638 * the default list, so it is removed from the default
639 * list and added to the general interrupt list.
640 */
641 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
642 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
643 curr_cpu = cpumask_next(curr_cpu,
644 &entry->def_intr.mask);
645
646 /*
647 * Remove the remaining kernel receive queues from
648 * the default list and add them to the receive list.
649 */
650 for (i = 0;
651 i < (dd->n_krcv_queues - 1) *
652 hfi1_per_node_cntr[dd->node];
653 i++) {
654 cpumask_clear_cpu(curr_cpu,
655 &entry->def_intr.mask);
656 cpumask_set_cpu(curr_cpu,
657 &entry->rcv_intr.mask);
658 curr_cpu = cpumask_next(curr_cpu,
659 &entry->def_intr.mask);
660 if (curr_cpu >= nr_cpu_ids)
661 break;
662 }
663
664 /*
665 * If there ends up being 0 CPU cores leftover for SDMA
666 * engines, use the same CPU cores as general/control
667 * context.
668 */
669 if (cpumask_empty(&entry->def_intr.mask))
670 cpumask_copy(&entry->def_intr.mask,
671 &entry->general_intr_mask);
672 }
673
674 /* Determine completion vector CPUs for the entire node */
675 cpumask_and(&entry->comp_vect_mask,
676 &node_affinity.real_cpu_mask, local_mask);
677 cpumask_andnot(&entry->comp_vect_mask,
678 &entry->comp_vect_mask,
679 &entry->rcv_intr.mask);
680 cpumask_andnot(&entry->comp_vect_mask,
681 &entry->comp_vect_mask,
682 &entry->general_intr_mask);
683
684 /*
685 * If there ends up being 0 CPU cores leftover for completion
686 * vectors, use the same CPU core as the general/control
687 * context.
688 */
689 if (cpumask_empty(&entry->comp_vect_mask))
690 cpumask_copy(&entry->comp_vect_mask,
691 &entry->general_intr_mask);
692 }
693
694 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
695 if (ret < 0)
696 goto fail;
697
698 if (new_entry)
699 node_affinity_add_tail(entry);
700
701 dd->affinity_entry = entry;
702 mutex_unlock(&node_affinity.lock);
703
704 return 0;
705
706 fail:
707 if (new_entry)
708 node_affinity_destroy(entry);
709 mutex_unlock(&node_affinity.lock);
710 return ret;
711 }
712
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)713 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
714 {
715 struct hfi1_affinity_node *entry;
716
717 mutex_lock(&node_affinity.lock);
718 if (!dd->affinity_entry)
719 goto unlock;
720 entry = node_affinity_lookup(dd->node);
721 if (!entry)
722 goto unlock;
723
724 /*
725 * Free device completion vector CPUs to be used by future
726 * completion vectors
727 */
728 _dev_comp_vect_cpu_mask_clean_up(dd, entry);
729 unlock:
730 dd->affinity_entry = NULL;
731 mutex_unlock(&node_affinity.lock);
732 }
733
734 /*
735 * Function updates the irq affinity hint for msix after it has been changed
736 * by the user using the /proc/irq interface. This function only accepts
737 * one cpu in the mask.
738 */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)739 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
740 {
741 struct sdma_engine *sde = msix->arg;
742 struct hfi1_devdata *dd = sde->dd;
743 struct hfi1_affinity_node *entry;
744 struct cpu_mask_set *set;
745 int i, old_cpu;
746
747 if (cpu > num_online_cpus() || cpu == sde->cpu)
748 return;
749
750 mutex_lock(&node_affinity.lock);
751 entry = node_affinity_lookup(dd->node);
752 if (!entry)
753 goto unlock;
754
755 old_cpu = sde->cpu;
756 sde->cpu = cpu;
757 cpumask_clear(&msix->mask);
758 cpumask_set_cpu(cpu, &msix->mask);
759 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
760 msix->irq, irq_type_names[msix->type],
761 sde->this_idx, cpu);
762 irq_set_affinity_hint(msix->irq, &msix->mask);
763
764 /*
765 * Set the new cpu in the hfi1_affinity_node and clean
766 * the old cpu if it is not used by any other IRQ
767 */
768 set = &entry->def_intr;
769 cpumask_set_cpu(cpu, &set->mask);
770 cpumask_set_cpu(cpu, &set->used);
771 for (i = 0; i < dd->msix_info.max_requested; i++) {
772 struct hfi1_msix_entry *other_msix;
773
774 other_msix = &dd->msix_info.msix_entries[i];
775 if (other_msix->type != IRQ_SDMA || other_msix == msix)
776 continue;
777
778 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
779 goto unlock;
780 }
781 cpumask_clear_cpu(old_cpu, &set->mask);
782 cpumask_clear_cpu(old_cpu, &set->used);
783 unlock:
784 mutex_unlock(&node_affinity.lock);
785 }
786
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)787 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
788 const cpumask_t *mask)
789 {
790 int cpu = cpumask_first(mask);
791 struct hfi1_msix_entry *msix = container_of(notify,
792 struct hfi1_msix_entry,
793 notify);
794
795 /* Only one CPU configuration supported currently */
796 hfi1_update_sdma_affinity(msix, cpu);
797 }
798
hfi1_irq_notifier_release(struct kref * ref)799 static void hfi1_irq_notifier_release(struct kref *ref)
800 {
801 /*
802 * This is required by affinity notifier. We don't have anything to
803 * free here.
804 */
805 }
806
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)807 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
808 {
809 struct irq_affinity_notify *notify = &msix->notify;
810
811 notify->irq = msix->irq;
812 notify->notify = hfi1_irq_notifier_notify;
813 notify->release = hfi1_irq_notifier_release;
814
815 if (irq_set_affinity_notifier(notify->irq, notify))
816 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
817 notify->irq);
818 }
819
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)820 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
821 {
822 struct irq_affinity_notify *notify = &msix->notify;
823
824 if (irq_set_affinity_notifier(notify->irq, NULL))
825 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
826 notify->irq);
827 }
828
829 /*
830 * Function sets the irq affinity for msix.
831 * It *must* be called with node_affinity.lock held.
832 */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)833 static int get_irq_affinity(struct hfi1_devdata *dd,
834 struct hfi1_msix_entry *msix)
835 {
836 cpumask_var_t diff;
837 struct hfi1_affinity_node *entry;
838 struct cpu_mask_set *set = NULL;
839 struct sdma_engine *sde = NULL;
840 struct hfi1_ctxtdata *rcd = NULL;
841 char extra[64];
842 int cpu = -1;
843
844 extra[0] = '\0';
845 cpumask_clear(&msix->mask);
846
847 entry = node_affinity_lookup(dd->node);
848
849 switch (msix->type) {
850 case IRQ_SDMA:
851 sde = (struct sdma_engine *)msix->arg;
852 scnprintf(extra, 64, "engine %u", sde->this_idx);
853 set = &entry->def_intr;
854 break;
855 case IRQ_GENERAL:
856 cpu = cpumask_first(&entry->general_intr_mask);
857 break;
858 case IRQ_RCVCTXT:
859 rcd = (struct hfi1_ctxtdata *)msix->arg;
860 if (rcd->ctxt == HFI1_CTRL_CTXT)
861 cpu = cpumask_first(&entry->general_intr_mask);
862 else
863 set = &entry->rcv_intr;
864 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
865 break;
866 case IRQ_NETDEVCTXT:
867 rcd = (struct hfi1_ctxtdata *)msix->arg;
868 set = &entry->def_intr;
869 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
870 break;
871 default:
872 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
873 return -EINVAL;
874 }
875
876 /*
877 * The general and control contexts are placed on a particular
878 * CPU, which is set above. Skip accounting for it. Everything else
879 * finds its CPU here.
880 */
881 if (cpu == -1 && set) {
882 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
883 return -ENOMEM;
884
885 cpu = cpu_mask_set_get_first(set, diff);
886 if (cpu < 0) {
887 free_cpumask_var(diff);
888 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
889 return cpu;
890 }
891
892 free_cpumask_var(diff);
893 }
894
895 cpumask_set_cpu(cpu, &msix->mask);
896 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
897 msix->irq, irq_type_names[msix->type],
898 extra, cpu);
899 irq_set_affinity_hint(msix->irq, &msix->mask);
900
901 if (msix->type == IRQ_SDMA) {
902 sde->cpu = cpu;
903 hfi1_setup_sdma_notifier(msix);
904 }
905
906 return 0;
907 }
908
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)909 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
910 {
911 int ret;
912
913 mutex_lock(&node_affinity.lock);
914 ret = get_irq_affinity(dd, msix);
915 mutex_unlock(&node_affinity.lock);
916 return ret;
917 }
918
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)919 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
920 struct hfi1_msix_entry *msix)
921 {
922 struct cpu_mask_set *set = NULL;
923 struct hfi1_affinity_node *entry;
924
925 mutex_lock(&node_affinity.lock);
926 entry = node_affinity_lookup(dd->node);
927
928 switch (msix->type) {
929 case IRQ_SDMA:
930 set = &entry->def_intr;
931 hfi1_cleanup_sdma_notifier(msix);
932 break;
933 case IRQ_GENERAL:
934 /* Don't do accounting for general contexts */
935 break;
936 case IRQ_RCVCTXT: {
937 struct hfi1_ctxtdata *rcd = msix->arg;
938
939 /* Don't do accounting for control contexts */
940 if (rcd->ctxt != HFI1_CTRL_CTXT)
941 set = &entry->rcv_intr;
942 break;
943 }
944 case IRQ_NETDEVCTXT:
945 set = &entry->def_intr;
946 break;
947 default:
948 mutex_unlock(&node_affinity.lock);
949 return;
950 }
951
952 if (set) {
953 cpumask_andnot(&set->used, &set->used, &msix->mask);
954 _cpu_mask_set_gen_dec(set);
955 }
956
957 irq_set_affinity_hint(msix->irq, NULL);
958 cpumask_clear(&msix->mask);
959 mutex_unlock(&node_affinity.lock);
960 }
961
962 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)963 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
964 struct hfi1_affinity_node_list *affinity)
965 {
966 int possible, curr_cpu, i;
967 uint num_cores_per_socket = node_affinity.num_online_cpus /
968 affinity->num_core_siblings /
969 node_affinity.num_online_nodes;
970
971 cpumask_copy(hw_thread_mask, &affinity->proc.mask);
972 if (affinity->num_core_siblings > 0) {
973 /* Removing other siblings not needed for now */
974 possible = cpumask_weight(hw_thread_mask);
975 curr_cpu = cpumask_first(hw_thread_mask);
976 for (i = 0;
977 i < num_cores_per_socket * node_affinity.num_online_nodes;
978 i++)
979 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
980
981 for (; i < possible; i++) {
982 cpumask_clear_cpu(curr_cpu, hw_thread_mask);
983 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
984 }
985
986 /* Identifying correct HW threads within physical cores */
987 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
988 num_cores_per_socket *
989 node_affinity.num_online_nodes *
990 hw_thread_no);
991 }
992 }
993
hfi1_get_proc_affinity(int node)994 int hfi1_get_proc_affinity(int node)
995 {
996 int cpu = -1, ret, i;
997 struct hfi1_affinity_node *entry;
998 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
999 const struct cpumask *node_mask,
1000 *proc_mask = current->cpus_ptr;
1001 struct hfi1_affinity_node_list *affinity = &node_affinity;
1002 struct cpu_mask_set *set = &affinity->proc;
1003
1004 /*
1005 * check whether process/context affinity has already
1006 * been set
1007 */
1008 if (current->nr_cpus_allowed == 1) {
1009 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1010 current->pid, current->comm,
1011 cpumask_pr_args(proc_mask));
1012 /*
1013 * Mark the pre-set CPU as used. This is atomic so we don't
1014 * need the lock
1015 */
1016 cpu = cpumask_first(proc_mask);
1017 cpumask_set_cpu(cpu, &set->used);
1018 goto done;
1019 } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1020 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1021 current->pid, current->comm,
1022 cpumask_pr_args(proc_mask));
1023 goto done;
1024 }
1025
1026 /*
1027 * The process does not have a preset CPU affinity so find one to
1028 * recommend using the following algorithm:
1029 *
1030 * For each user process that is opening a context on HFI Y:
1031 * a) If all cores are filled, reinitialize the bitmask
1032 * b) Fill real cores first, then HT cores (First set of HT
1033 * cores on all physical cores, then second set of HT core,
1034 * and, so on) in the following order:
1035 *
1036 * 1. Same NUMA node as HFI Y and not running an IRQ
1037 * handler
1038 * 2. Same NUMA node as HFI Y and running an IRQ handler
1039 * 3. Different NUMA node to HFI Y and not running an IRQ
1040 * handler
1041 * 4. Different NUMA node to HFI Y and running an IRQ
1042 * handler
1043 * c) Mark core as filled in the bitmask. As user processes are
1044 * done, clear cores from the bitmask.
1045 */
1046
1047 ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1048 if (!ret)
1049 goto done;
1050 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1051 if (!ret)
1052 goto free_diff;
1053 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1054 if (!ret)
1055 goto free_hw_thread_mask;
1056 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1057 if (!ret)
1058 goto free_available_mask;
1059
1060 mutex_lock(&affinity->lock);
1061 /*
1062 * If we've used all available HW threads, clear the mask and start
1063 * overloading.
1064 */
1065 _cpu_mask_set_gen_inc(set);
1066
1067 /*
1068 * If NUMA node has CPUs used by interrupt handlers, include them in the
1069 * interrupt handler mask.
1070 */
1071 entry = node_affinity_lookup(node);
1072 if (entry) {
1073 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1074 &entry->def_intr.mask :
1075 &entry->def_intr.used));
1076 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1077 &entry->rcv_intr.mask :
1078 &entry->rcv_intr.used));
1079 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1080 }
1081 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1082 cpumask_pr_args(intrs_mask));
1083
1084 cpumask_copy(hw_thread_mask, &set->mask);
1085
1086 /*
1087 * If HT cores are enabled, identify which HW threads within the
1088 * physical cores should be used.
1089 */
1090 if (affinity->num_core_siblings > 0) {
1091 for (i = 0; i < affinity->num_core_siblings; i++) {
1092 find_hw_thread_mask(i, hw_thread_mask, affinity);
1093
1094 /*
1095 * If there's at least one available core for this HW
1096 * thread number, stop looking for a core.
1097 *
1098 * diff will always be not empty at least once in this
1099 * loop as the used mask gets reset when
1100 * (set->mask == set->used) before this loop.
1101 */
1102 cpumask_andnot(diff, hw_thread_mask, &set->used);
1103 if (!cpumask_empty(diff))
1104 break;
1105 }
1106 }
1107 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1108 cpumask_pr_args(hw_thread_mask));
1109
1110 node_mask = cpumask_of_node(node);
1111 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1112 cpumask_pr_args(node_mask));
1113
1114 /* Get cpumask of available CPUs on preferred NUMA */
1115 cpumask_and(available_mask, hw_thread_mask, node_mask);
1116 cpumask_andnot(available_mask, available_mask, &set->used);
1117 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1118 cpumask_pr_args(available_mask));
1119
1120 /*
1121 * At first, we don't want to place processes on the same
1122 * CPUs as interrupt handlers. Then, CPUs running interrupt
1123 * handlers are used.
1124 *
1125 * 1) If diff is not empty, then there are CPUs not running
1126 * non-interrupt handlers available, so diff gets copied
1127 * over to available_mask.
1128 * 2) If diff is empty, then all CPUs not running interrupt
1129 * handlers are taken, so available_mask contains all
1130 * available CPUs running interrupt handlers.
1131 * 3) If available_mask is empty, then all CPUs on the
1132 * preferred NUMA node are taken, so other NUMA nodes are
1133 * used for process assignments using the same method as
1134 * the preferred NUMA node.
1135 */
1136 cpumask_andnot(diff, available_mask, intrs_mask);
1137 if (!cpumask_empty(diff))
1138 cpumask_copy(available_mask, diff);
1139
1140 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1141 if (cpumask_empty(available_mask)) {
1142 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1143 /* Excluding preferred NUMA cores */
1144 cpumask_andnot(available_mask, available_mask, node_mask);
1145 hfi1_cdbg(PROC,
1146 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1147 cpumask_pr_args(available_mask));
1148
1149 /*
1150 * At first, we don't want to place processes on the same
1151 * CPUs as interrupt handlers.
1152 */
1153 cpumask_andnot(diff, available_mask, intrs_mask);
1154 if (!cpumask_empty(diff))
1155 cpumask_copy(available_mask, diff);
1156 }
1157 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1158 cpumask_pr_args(available_mask));
1159
1160 cpu = cpumask_first(available_mask);
1161 if (cpu >= nr_cpu_ids) /* empty */
1162 cpu = -1;
1163 else
1164 cpumask_set_cpu(cpu, &set->used);
1165
1166 mutex_unlock(&affinity->lock);
1167 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1168
1169 free_cpumask_var(intrs_mask);
1170 free_available_mask:
1171 free_cpumask_var(available_mask);
1172 free_hw_thread_mask:
1173 free_cpumask_var(hw_thread_mask);
1174 free_diff:
1175 free_cpumask_var(diff);
1176 done:
1177 return cpu;
1178 }
1179
hfi1_put_proc_affinity(int cpu)1180 void hfi1_put_proc_affinity(int cpu)
1181 {
1182 struct hfi1_affinity_node_list *affinity = &node_affinity;
1183 struct cpu_mask_set *set = &affinity->proc;
1184
1185 if (cpu < 0)
1186 return;
1187
1188 mutex_lock(&affinity->lock);
1189 cpu_mask_set_put(set, cpu);
1190 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1191 mutex_unlock(&affinity->lock);
1192 }
1193