1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 */
5
6 #include <rdma/ib_mad.h>
7 #include <rdma/ib_user_verbs.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/rculist.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <rdma/opa_addr.h>
15 #include <linux/nospec.h>
16
17 #include "hfi.h"
18 #include "common.h"
19 #include "device.h"
20 #include "trace.h"
21 #include "qp.h"
22 #include "verbs_txreq.h"
23 #include "debugfs.h"
24 #include "vnic.h"
25 #include "fault.h"
26 #include "affinity.h"
27 #include "ipoib.h"
28
29 static unsigned int hfi1_lkey_table_size = 16;
30 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
31 S_IRUGO);
32 MODULE_PARM_DESC(lkey_table_size,
33 "LKEY table size in bits (2^n, 1 <= n <= 23)");
34
35 static unsigned int hfi1_max_pds = 0xFFFF;
36 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
37 MODULE_PARM_DESC(max_pds,
38 "Maximum number of protection domains to support");
39
40 static unsigned int hfi1_max_ahs = 0xFFFF;
41 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
42 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
43
44 unsigned int hfi1_max_cqes = 0x2FFFFF;
45 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
46 MODULE_PARM_DESC(max_cqes,
47 "Maximum number of completion queue entries to support");
48
49 unsigned int hfi1_max_cqs = 0x1FFFF;
50 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
51 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
52
53 unsigned int hfi1_max_qp_wrs = 0x3FFF;
54 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
55 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
56
57 unsigned int hfi1_max_qps = 32768;
58 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
59 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
60
61 unsigned int hfi1_max_sges = 0x60;
62 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
63 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
64
65 unsigned int hfi1_max_mcast_grps = 16384;
66 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
67 MODULE_PARM_DESC(max_mcast_grps,
68 "Maximum number of multicast groups to support");
69
70 unsigned int hfi1_max_mcast_qp_attached = 16;
71 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
72 uint, S_IRUGO);
73 MODULE_PARM_DESC(max_mcast_qp_attached,
74 "Maximum number of attached QPs to support");
75
76 unsigned int hfi1_max_srqs = 1024;
77 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
79
80 unsigned int hfi1_max_srq_sges = 128;
81 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
83
84 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
85 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
87
88 unsigned short piothreshold = 256;
89 module_param(piothreshold, ushort, S_IRUGO);
90 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
91
92 static unsigned int sge_copy_mode;
93 module_param(sge_copy_mode, uint, S_IRUGO);
94 MODULE_PARM_DESC(sge_copy_mode,
95 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
96
97 static void verbs_sdma_complete(
98 struct sdma_txreq *cookie,
99 int status);
100
101 static int pio_wait(struct rvt_qp *qp,
102 struct send_context *sc,
103 struct hfi1_pkt_state *ps,
104 u32 flag);
105
106 /* Length of buffer to create verbs txreq cache name */
107 #define TXREQ_NAME_LEN 24
108
109 static uint wss_threshold = 80;
110 module_param(wss_threshold, uint, S_IRUGO);
111 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
112 static uint wss_clean_period = 256;
113 module_param(wss_clean_period, uint, S_IRUGO);
114 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
115
116 /*
117 * Translate ib_wr_opcode into ib_wc_opcode.
118 */
119 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
120 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
121 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
122 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
123 [IB_WR_SEND] = IB_WC_SEND,
124 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
125 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
126 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
127 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
128 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
129 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
130 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
131 [IB_WR_REG_MR] = IB_WC_REG_MR
132 };
133
134 /*
135 * Length of header by opcode, 0 --> not supported
136 */
137 const u8 hdr_len_by_opcode[256] = {
138 /* RC */
139 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
140 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
141 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
142 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
143 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
144 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
145 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
146 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
147 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
148 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
149 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
150 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
151 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
152 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
153 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
154 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
155 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
156 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
157 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
158 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
159 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
160 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
161 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
162 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36,
163 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36,
164 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36,
165 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36,
166 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36,
167 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36,
168 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36,
169 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36,
170 /* UC */
171 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
172 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
173 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
174 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
175 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
176 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
177 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
178 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
179 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
180 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
181 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
182 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
183 /* UD */
184 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
185 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
186 };
187
188 static const opcode_handler opcode_handler_tbl[256] = {
189 /* RC */
190 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
191 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
192 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
193 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
194 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
195 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
196 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
197 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
198 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
199 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
200 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
201 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
202 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
203 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
204 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
205 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
206 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
207 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
208 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
209 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
210 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
211 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
212 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
213
214 /* TID RDMA has separate handlers for different opcodes.*/
215 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req,
216 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp,
217 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data,
218 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
219 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req,
220 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp,
221 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync,
222 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack,
223
224 /* UC */
225 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
226 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
227 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
228 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
229 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
230 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
231 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
232 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
233 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
234 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
235 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
236 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
237 /* UD */
238 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
239 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
240 /* CNP */
241 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
242 };
243
244 #define OPMASK 0x1f
245
246 static const u32 pio_opmask[BIT(3)] = {
247 /* RC */
248 [IB_OPCODE_RC >> 5] =
249 BIT(RC_OP(SEND_ONLY) & OPMASK) |
250 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
251 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
252 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
253 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
254 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
255 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
256 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
257 BIT(RC_OP(FETCH_ADD) & OPMASK),
258 /* UC */
259 [IB_OPCODE_UC >> 5] =
260 BIT(UC_OP(SEND_ONLY) & OPMASK) |
261 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
262 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
263 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
264 };
265
266 /*
267 * System image GUID.
268 */
269 __be64 ib_hfi1_sys_image_guid;
270
271 /*
272 * Make sure the QP is ready and able to accept the given opcode.
273 */
qp_ok(struct hfi1_packet * packet)274 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
275 {
276 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
277 return NULL;
278 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
279 packet->qp->allowed_ops) ||
280 (packet->opcode == IB_OPCODE_CNP))
281 return opcode_handler_tbl[packet->opcode];
282
283 return NULL;
284 }
285
hfi1_fault_tx(struct rvt_qp * qp,u8 opcode,u64 pbc)286 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
287 {
288 #ifdef CONFIG_FAULT_INJECTION
289 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
290 /*
291 * In order to drop non-IB traffic we
292 * set PbcInsertHrc to NONE (0x2).
293 * The packet will still be delivered
294 * to the receiving node but a
295 * KHdrHCRCErr (KDETH packet with a bad
296 * HCRC) will be triggered and the
297 * packet will not be delivered to the
298 * correct context.
299 */
300 pbc &= ~PBC_INSERT_HCRC_SMASK;
301 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
302 } else {
303 /*
304 * In order to drop regular verbs
305 * traffic we set the PbcTestEbp
306 * flag. The packet will still be
307 * delivered to the receiving node but
308 * a 'late ebp error' will be
309 * triggered and will be dropped.
310 */
311 pbc |= PBC_TEST_EBP;
312 }
313 #endif
314 return pbc;
315 }
316
tid_qp_ok(int opcode,struct hfi1_packet * packet)317 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
318 {
319 if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
320 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
321 return NULL;
322 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
323 return opcode_handler_tbl[opcode];
324 return NULL;
325 }
326
hfi1_kdeth_eager_rcv(struct hfi1_packet * packet)327 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
328 {
329 struct hfi1_ctxtdata *rcd = packet->rcd;
330 struct ib_header *hdr = packet->hdr;
331 u32 tlen = packet->tlen;
332 struct hfi1_pportdata *ppd = rcd->ppd;
333 struct hfi1_ibport *ibp = &ppd->ibport_data;
334 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
335 opcode_handler opcode_handler;
336 unsigned long flags;
337 u32 qp_num;
338 int lnh;
339 u8 opcode;
340
341 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
342 if (unlikely(tlen < 15 * sizeof(u32)))
343 goto drop;
344
345 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
346 if (lnh != HFI1_LRH_BTH)
347 goto drop;
348
349 packet->ohdr = &hdr->u.oth;
350 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
351
352 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
353 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
354
355 /* verbs_qp can be picked up from any tid_rdma header struct */
356 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
357 RVT_QPN_MASK;
358
359 rcu_read_lock();
360 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
361 if (!packet->qp)
362 goto drop_rcu;
363 spin_lock_irqsave(&packet->qp->r_lock, flags);
364 opcode_handler = tid_qp_ok(opcode, packet);
365 if (likely(opcode_handler))
366 opcode_handler(packet);
367 else
368 goto drop_unlock;
369 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
370 rcu_read_unlock();
371
372 return;
373 drop_unlock:
374 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
375 drop_rcu:
376 rcu_read_unlock();
377 drop:
378 ibp->rvp.n_pkt_drops++;
379 }
380
hfi1_kdeth_expected_rcv(struct hfi1_packet * packet)381 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
382 {
383 struct hfi1_ctxtdata *rcd = packet->rcd;
384 struct ib_header *hdr = packet->hdr;
385 u32 tlen = packet->tlen;
386 struct hfi1_pportdata *ppd = rcd->ppd;
387 struct hfi1_ibport *ibp = &ppd->ibport_data;
388 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
389 opcode_handler opcode_handler;
390 unsigned long flags;
391 u32 qp_num;
392 int lnh;
393 u8 opcode;
394
395 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
396 if (unlikely(tlen < 15 * sizeof(u32)))
397 goto drop;
398
399 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
400 if (lnh != HFI1_LRH_BTH)
401 goto drop;
402
403 packet->ohdr = &hdr->u.oth;
404 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
405
406 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
407 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
408
409 /* verbs_qp can be picked up from any tid_rdma header struct */
410 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
411 RVT_QPN_MASK;
412
413 rcu_read_lock();
414 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
415 if (!packet->qp)
416 goto drop_rcu;
417 spin_lock_irqsave(&packet->qp->r_lock, flags);
418 opcode_handler = tid_qp_ok(opcode, packet);
419 if (likely(opcode_handler))
420 opcode_handler(packet);
421 else
422 goto drop_unlock;
423 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
424 rcu_read_unlock();
425
426 return;
427 drop_unlock:
428 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
429 drop_rcu:
430 rcu_read_unlock();
431 drop:
432 ibp->rvp.n_pkt_drops++;
433 }
434
hfi1_do_pkey_check(struct hfi1_packet * packet)435 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
436 {
437 struct hfi1_ctxtdata *rcd = packet->rcd;
438 struct hfi1_pportdata *ppd = rcd->ppd;
439 struct hfi1_16b_header *hdr = packet->hdr;
440 u16 pkey;
441
442 /* Pkey check needed only for bypass packets */
443 if (packet->etype != RHF_RCV_TYPE_BYPASS)
444 return 0;
445
446 /* Perform pkey check */
447 pkey = hfi1_16B_get_pkey(hdr);
448 return ingress_pkey_check(ppd, pkey, packet->sc,
449 packet->qp->s_pkey_index,
450 packet->slid, true);
451 }
452
hfi1_handle_packet(struct hfi1_packet * packet,bool is_mcast)453 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
454 bool is_mcast)
455 {
456 u32 qp_num;
457 struct hfi1_ctxtdata *rcd = packet->rcd;
458 struct hfi1_pportdata *ppd = rcd->ppd;
459 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
460 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
461 opcode_handler packet_handler;
462 unsigned long flags;
463
464 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
465
466 if (unlikely(is_mcast)) {
467 struct rvt_mcast *mcast;
468 struct rvt_mcast_qp *p;
469
470 if (!packet->grh)
471 goto drop;
472 mcast = rvt_mcast_find(&ibp->rvp,
473 &packet->grh->dgid,
474 opa_get_lid(packet->dlid, 9B));
475 if (!mcast)
476 goto drop;
477 rcu_read_lock();
478 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
479 packet->qp = p->qp;
480 if (hfi1_do_pkey_check(packet))
481 goto unlock_drop;
482 spin_lock_irqsave(&packet->qp->r_lock, flags);
483 packet_handler = qp_ok(packet);
484 if (likely(packet_handler))
485 packet_handler(packet);
486 else
487 ibp->rvp.n_pkt_drops++;
488 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
489 }
490 rcu_read_unlock();
491 /*
492 * Notify rvt_multicast_detach() if it is waiting for us
493 * to finish.
494 */
495 if (atomic_dec_return(&mcast->refcount) <= 1)
496 wake_up(&mcast->wait);
497 } else {
498 /* Get the destination QP number. */
499 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
500 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
501 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
502 else
503 qp_num = ib_bth_get_qpn(packet->ohdr);
504
505 rcu_read_lock();
506 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
507 if (!packet->qp)
508 goto unlock_drop;
509
510 if (hfi1_do_pkey_check(packet))
511 goto unlock_drop;
512
513 spin_lock_irqsave(&packet->qp->r_lock, flags);
514 packet_handler = qp_ok(packet);
515 if (likely(packet_handler))
516 packet_handler(packet);
517 else
518 ibp->rvp.n_pkt_drops++;
519 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
520 rcu_read_unlock();
521 }
522 return;
523 unlock_drop:
524 rcu_read_unlock();
525 drop:
526 ibp->rvp.n_pkt_drops++;
527 }
528
529 /**
530 * hfi1_ib_rcv - process an incoming packet
531 * @packet: data packet information
532 *
533 * This is called to process an incoming packet at interrupt level.
534 */
hfi1_ib_rcv(struct hfi1_packet * packet)535 void hfi1_ib_rcv(struct hfi1_packet *packet)
536 {
537 struct hfi1_ctxtdata *rcd = packet->rcd;
538
539 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
540 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
541 }
542
hfi1_16B_rcv(struct hfi1_packet * packet)543 void hfi1_16B_rcv(struct hfi1_packet *packet)
544 {
545 struct hfi1_ctxtdata *rcd = packet->rcd;
546
547 trace_input_ibhdr(rcd->dd, packet, false);
548 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
549 }
550
551 /*
552 * This is called from a timer to check for QPs
553 * which need kernel memory in order to send a packet.
554 */
mem_timer(struct timer_list * t)555 static void mem_timer(struct timer_list *t)
556 {
557 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
558 struct list_head *list = &dev->memwait;
559 struct rvt_qp *qp = NULL;
560 struct iowait *wait;
561 unsigned long flags;
562 struct hfi1_qp_priv *priv;
563
564 write_seqlock_irqsave(&dev->iowait_lock, flags);
565 if (!list_empty(list)) {
566 wait = list_first_entry(list, struct iowait, list);
567 qp = iowait_to_qp(wait);
568 priv = qp->priv;
569 list_del_init(&priv->s_iowait.list);
570 priv->s_iowait.lock = NULL;
571 /* refcount held until actual wake up */
572 if (!list_empty(list))
573 mod_timer(&dev->mem_timer, jiffies + 1);
574 }
575 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
576
577 if (qp)
578 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
579 }
580
581 /*
582 * This is called with progress side lock held.
583 */
584 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status)585 static void verbs_sdma_complete(
586 struct sdma_txreq *cookie,
587 int status)
588 {
589 struct verbs_txreq *tx =
590 container_of(cookie, struct verbs_txreq, txreq);
591 struct rvt_qp *qp = tx->qp;
592
593 spin_lock(&qp->s_lock);
594 if (tx->wqe) {
595 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
596 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
597 struct hfi1_opa_header *hdr;
598
599 hdr = &tx->phdr.hdr;
600 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
601 hfi1_rc_verbs_aborted(qp, hdr);
602 hfi1_rc_send_complete(qp, hdr);
603 }
604 spin_unlock(&qp->s_lock);
605
606 hfi1_put_txreq(tx);
607 }
608
hfi1_wait_kmem(struct rvt_qp * qp)609 void hfi1_wait_kmem(struct rvt_qp *qp)
610 {
611 struct hfi1_qp_priv *priv = qp->priv;
612 struct ib_qp *ibqp = &qp->ibqp;
613 struct ib_device *ibdev = ibqp->device;
614 struct hfi1_ibdev *dev = to_idev(ibdev);
615
616 if (list_empty(&priv->s_iowait.list)) {
617 if (list_empty(&dev->memwait))
618 mod_timer(&dev->mem_timer, jiffies + 1);
619 qp->s_flags |= RVT_S_WAIT_KMEM;
620 list_add_tail(&priv->s_iowait.list, &dev->memwait);
621 priv->s_iowait.lock = &dev->iowait_lock;
622 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
623 rvt_get_qp(qp);
624 }
625 }
626
wait_kmem(struct hfi1_ibdev * dev,struct rvt_qp * qp,struct hfi1_pkt_state * ps)627 static int wait_kmem(struct hfi1_ibdev *dev,
628 struct rvt_qp *qp,
629 struct hfi1_pkt_state *ps)
630 {
631 unsigned long flags;
632 int ret = 0;
633
634 spin_lock_irqsave(&qp->s_lock, flags);
635 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
636 write_seqlock(&dev->iowait_lock);
637 list_add_tail(&ps->s_txreq->txreq.list,
638 &ps->wait->tx_head);
639 hfi1_wait_kmem(qp);
640 write_sequnlock(&dev->iowait_lock);
641 hfi1_qp_unbusy(qp, ps->wait);
642 ret = -EBUSY;
643 }
644 spin_unlock_irqrestore(&qp->s_lock, flags);
645
646 return ret;
647 }
648
649 /*
650 * This routine calls txadds for each sg entry.
651 *
652 * Add failures will revert the sge cursor
653 */
build_verbs_ulp_payload(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx)654 static noinline int build_verbs_ulp_payload(
655 struct sdma_engine *sde,
656 u32 length,
657 struct verbs_txreq *tx)
658 {
659 struct rvt_sge_state *ss = tx->ss;
660 struct rvt_sge *sg_list = ss->sg_list;
661 struct rvt_sge sge = ss->sge;
662 u8 num_sge = ss->num_sge;
663 u32 len;
664 int ret = 0;
665
666 while (length) {
667 len = rvt_get_sge_length(&ss->sge, length);
668 WARN_ON_ONCE(len == 0);
669 ret = sdma_txadd_kvaddr(
670 sde->dd,
671 &tx->txreq,
672 ss->sge.vaddr,
673 len);
674 if (ret)
675 goto bail_txadd;
676 rvt_update_sge(ss, len, false);
677 length -= len;
678 }
679 return ret;
680 bail_txadd:
681 /* unwind cursor */
682 ss->sge = sge;
683 ss->num_sge = num_sge;
684 ss->sg_list = sg_list;
685 return ret;
686 }
687
688 /**
689 * update_tx_opstats - record stats by opcode
690 * @qp: the qp
691 * @ps: transmit packet state
692 * @plen: the plen in dwords
693 *
694 * This is a routine to record the tx opstats after a
695 * packet has been presented to the egress mechanism.
696 */
update_tx_opstats(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u32 plen)697 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
698 u32 plen)
699 {
700 #ifdef CONFIG_DEBUG_FS
701 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
702 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
703
704 inc_opstats(plen * 4, &s->stats[ps->opcode]);
705 put_cpu_ptr(s);
706 #endif
707 }
708
709 /*
710 * Build the number of DMA descriptors needed to send length bytes of data.
711 *
712 * NOTE: DMA mapping is held in the tx until completed in the ring or
713 * the tx desc is freed without having been submitted to the ring
714 *
715 * This routine ensures all the helper routine calls succeed.
716 */
717 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx,struct hfi1_ahg_info * ahg_info,u64 pbc)718 static int build_verbs_tx_desc(
719 struct sdma_engine *sde,
720 u32 length,
721 struct verbs_txreq *tx,
722 struct hfi1_ahg_info *ahg_info,
723 u64 pbc)
724 {
725 int ret = 0;
726 struct hfi1_sdma_header *phdr = &tx->phdr;
727 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
728 u8 extra_bytes = 0;
729
730 if (tx->phdr.hdr.hdr_type) {
731 /*
732 * hdrbytes accounts for PBC. Need to subtract 8 bytes
733 * before calculating padding.
734 */
735 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
736 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
737 }
738 if (!ahg_info->ahgcount) {
739 ret = sdma_txinit_ahg(
740 &tx->txreq,
741 ahg_info->tx_flags,
742 hdrbytes + length +
743 extra_bytes,
744 ahg_info->ahgidx,
745 0,
746 NULL,
747 0,
748 verbs_sdma_complete);
749 if (ret)
750 goto bail_txadd;
751 phdr->pbc = cpu_to_le64(pbc);
752 ret = sdma_txadd_kvaddr(
753 sde->dd,
754 &tx->txreq,
755 phdr,
756 hdrbytes);
757 if (ret)
758 goto bail_txadd;
759 } else {
760 ret = sdma_txinit_ahg(
761 &tx->txreq,
762 ahg_info->tx_flags,
763 length,
764 ahg_info->ahgidx,
765 ahg_info->ahgcount,
766 ahg_info->ahgdesc,
767 hdrbytes,
768 verbs_sdma_complete);
769 if (ret)
770 goto bail_txadd;
771 }
772 /* add the ulp payload - if any. tx->ss can be NULL for acks */
773 if (tx->ss) {
774 ret = build_verbs_ulp_payload(sde, length, tx);
775 if (ret)
776 goto bail_txadd;
777 }
778
779 /* add icrc, lt byte, and padding to flit */
780 if (extra_bytes)
781 ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
782 sde->dd->sdma_pad_phys, extra_bytes);
783
784 bail_txadd:
785 return ret;
786 }
787
update_hcrc(u8 opcode,u64 pbc)788 static u64 update_hcrc(u8 opcode, u64 pbc)
789 {
790 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
791 pbc &= ~PBC_INSERT_HCRC_SMASK;
792 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
793 }
794 return pbc;
795 }
796
hfi1_verbs_send_dma(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)797 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
798 u64 pbc)
799 {
800 struct hfi1_qp_priv *priv = qp->priv;
801 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
802 u32 hdrwords = ps->s_txreq->hdr_dwords;
803 u32 len = ps->s_txreq->s_cur_size;
804 u32 plen;
805 struct hfi1_ibdev *dev = ps->dev;
806 struct hfi1_pportdata *ppd = ps->ppd;
807 struct verbs_txreq *tx;
808 u8 sc5 = priv->s_sc;
809 int ret;
810 u32 dwords;
811
812 if (ps->s_txreq->phdr.hdr.hdr_type) {
813 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
814
815 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
816 SIZE_OF_LT) >> 2;
817 } else {
818 dwords = (len + 3) >> 2;
819 }
820 plen = hdrwords + dwords + sizeof(pbc) / 4;
821
822 tx = ps->s_txreq;
823 if (!sdma_txreq_built(&tx->txreq)) {
824 if (likely(pbc == 0)) {
825 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
826
827 /* No vl15 here */
828 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
829 if (ps->s_txreq->phdr.hdr.hdr_type)
830 pbc |= PBC_PACKET_BYPASS |
831 PBC_INSERT_BYPASS_ICRC;
832 else
833 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
834
835 pbc = create_pbc(ppd,
836 pbc,
837 qp->srate_mbps,
838 vl,
839 plen);
840
841 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
842 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
843 else
844 /* Update HCRC based on packet opcode */
845 pbc = update_hcrc(ps->opcode, pbc);
846 }
847 tx->wqe = qp->s_wqe;
848 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
849 if (unlikely(ret))
850 goto bail_build;
851 }
852 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
853 if (unlikely(ret < 0)) {
854 if (ret == -ECOMM)
855 goto bail_ecomm;
856 return ret;
857 }
858
859 update_tx_opstats(qp, ps, plen);
860 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
861 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
862 return ret;
863
864 bail_ecomm:
865 /* The current one got "sent" */
866 return 0;
867 bail_build:
868 ret = wait_kmem(dev, qp, ps);
869 if (!ret) {
870 /* free txreq - bad state */
871 hfi1_put_txreq(ps->s_txreq);
872 ps->s_txreq = NULL;
873 }
874 return ret;
875 }
876
877 /*
878 * If we are now in the error state, return zero to flush the
879 * send work request.
880 */
pio_wait(struct rvt_qp * qp,struct send_context * sc,struct hfi1_pkt_state * ps,u32 flag)881 static int pio_wait(struct rvt_qp *qp,
882 struct send_context *sc,
883 struct hfi1_pkt_state *ps,
884 u32 flag)
885 {
886 struct hfi1_qp_priv *priv = qp->priv;
887 struct hfi1_devdata *dd = sc->dd;
888 unsigned long flags;
889 int ret = 0;
890
891 /*
892 * Note that as soon as want_buffer() is called and
893 * possibly before it returns, sc_piobufavail()
894 * could be called. Therefore, put QP on the I/O wait list before
895 * enabling the PIO avail interrupt.
896 */
897 spin_lock_irqsave(&qp->s_lock, flags);
898 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
899 write_seqlock(&sc->waitlock);
900 list_add_tail(&ps->s_txreq->txreq.list,
901 &ps->wait->tx_head);
902 if (list_empty(&priv->s_iowait.list)) {
903 struct hfi1_ibdev *dev = &dd->verbs_dev;
904 int was_empty;
905
906 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
907 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
908 qp->s_flags |= flag;
909 was_empty = list_empty(&sc->piowait);
910 iowait_get_priority(&priv->s_iowait);
911 iowait_queue(ps->pkts_sent, &priv->s_iowait,
912 &sc->piowait);
913 priv->s_iowait.lock = &sc->waitlock;
914 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
915 rvt_get_qp(qp);
916 /* counting: only call wantpiobuf_intr if first user */
917 if (was_empty)
918 hfi1_sc_wantpiobuf_intr(sc, 1);
919 }
920 write_sequnlock(&sc->waitlock);
921 hfi1_qp_unbusy(qp, ps->wait);
922 ret = -EBUSY;
923 }
924 spin_unlock_irqrestore(&qp->s_lock, flags);
925 return ret;
926 }
927
verbs_pio_complete(void * arg,int code)928 static void verbs_pio_complete(void *arg, int code)
929 {
930 struct rvt_qp *qp = (struct rvt_qp *)arg;
931 struct hfi1_qp_priv *priv = qp->priv;
932
933 if (iowait_pio_dec(&priv->s_iowait))
934 iowait_drain_wakeup(&priv->s_iowait);
935 }
936
hfi1_verbs_send_pio(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)937 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
938 u64 pbc)
939 {
940 struct hfi1_qp_priv *priv = qp->priv;
941 u32 hdrwords = ps->s_txreq->hdr_dwords;
942 struct rvt_sge_state *ss = ps->s_txreq->ss;
943 u32 len = ps->s_txreq->s_cur_size;
944 u32 dwords;
945 u32 plen;
946 struct hfi1_pportdata *ppd = ps->ppd;
947 u32 *hdr;
948 u8 sc5;
949 unsigned long flags = 0;
950 struct send_context *sc;
951 struct pio_buf *pbuf;
952 int wc_status = IB_WC_SUCCESS;
953 int ret = 0;
954 pio_release_cb cb = NULL;
955 u8 extra_bytes = 0;
956
957 if (ps->s_txreq->phdr.hdr.hdr_type) {
958 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
959
960 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
961 dwords = (len + extra_bytes) >> 2;
962 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
963 } else {
964 dwords = (len + 3) >> 2;
965 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
966 }
967 plen = hdrwords + dwords + sizeof(pbc) / 4;
968
969 /* only RC/UC use complete */
970 switch (qp->ibqp.qp_type) {
971 case IB_QPT_RC:
972 case IB_QPT_UC:
973 cb = verbs_pio_complete;
974 break;
975 default:
976 break;
977 }
978
979 /* vl15 special case taken care of in ud.c */
980 sc5 = priv->s_sc;
981 sc = ps->s_txreq->psc;
982
983 if (likely(pbc == 0)) {
984 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
985
986 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
987 if (ps->s_txreq->phdr.hdr.hdr_type)
988 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
989 else
990 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
991
992 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
993 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
994 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
995 else
996 /* Update HCRC based on packet opcode */
997 pbc = update_hcrc(ps->opcode, pbc);
998 }
999 if (cb)
1000 iowait_pio_inc(&priv->s_iowait);
1001 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1002 if (IS_ERR_OR_NULL(pbuf)) {
1003 if (cb)
1004 verbs_pio_complete(qp, 0);
1005 if (IS_ERR(pbuf)) {
1006 /*
1007 * If we have filled the PIO buffers to capacity and are
1008 * not in an active state this request is not going to
1009 * go out to so just complete it with an error or else a
1010 * ULP or the core may be stuck waiting.
1011 */
1012 hfi1_cdbg(
1013 PIO,
1014 "alloc failed. state not active, completing");
1015 wc_status = IB_WC_GENERAL_ERR;
1016 goto pio_bail;
1017 } else {
1018 /*
1019 * This is a normal occurrence. The PIO buffs are full
1020 * up but we are still happily sending, well we could be
1021 * so lets continue to queue the request.
1022 */
1023 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1024 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1025 if (!ret)
1026 /* txreq not queued - free */
1027 goto bail;
1028 /* tx consumed in wait */
1029 return ret;
1030 }
1031 }
1032
1033 if (dwords == 0) {
1034 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1035 } else {
1036 seg_pio_copy_start(pbuf, pbc,
1037 hdr, hdrwords * 4);
1038 if (ss) {
1039 while (len) {
1040 void *addr = ss->sge.vaddr;
1041 u32 slen = rvt_get_sge_length(&ss->sge, len);
1042
1043 rvt_update_sge(ss, slen, false);
1044 seg_pio_copy_mid(pbuf, addr, slen);
1045 len -= slen;
1046 }
1047 }
1048 /* add icrc, lt byte, and padding to flit */
1049 if (extra_bytes)
1050 seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1051 extra_bytes);
1052
1053 seg_pio_copy_end(pbuf);
1054 }
1055
1056 update_tx_opstats(qp, ps, plen);
1057 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1058 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1059
1060 pio_bail:
1061 spin_lock_irqsave(&qp->s_lock, flags);
1062 if (qp->s_wqe) {
1063 rvt_send_complete(qp, qp->s_wqe, wc_status);
1064 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1065 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1066 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1067 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1068 }
1069 spin_unlock_irqrestore(&qp->s_lock, flags);
1070
1071 ret = 0;
1072
1073 bail:
1074 hfi1_put_txreq(ps->s_txreq);
1075 return ret;
1076 }
1077
1078 /*
1079 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1080 * being an entry from the partition key table), return 0
1081 * otherwise. Use the matching criteria for egress partition keys
1082 * specified in the OPAv1 spec., section 9.1l.7.
1083 */
egress_pkey_matches_entry(u16 pkey,u16 ent)1084 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1085 {
1086 u16 mkey = pkey & PKEY_LOW_15_MASK;
1087 u16 mentry = ent & PKEY_LOW_15_MASK;
1088
1089 if (mkey == mentry) {
1090 /*
1091 * If pkey[15] is set (full partition member),
1092 * is bit 15 in the corresponding table element
1093 * clear (limited member)?
1094 */
1095 if (pkey & PKEY_MEMBER_MASK)
1096 return !!(ent & PKEY_MEMBER_MASK);
1097 return 1;
1098 }
1099 return 0;
1100 }
1101
1102 /**
1103 * egress_pkey_check - check P_KEY of a packet
1104 * @ppd: Physical IB port data
1105 * @slid: SLID for packet
1106 * @pkey: PKEY for header
1107 * @sc5: SC for packet
1108 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1109 * only. If it is negative value, then it means user contexts is calling this
1110 * function.
1111 *
1112 * It checks if hdr's pkey is valid.
1113 *
1114 * Return: 0 on success, otherwise, 1
1115 */
egress_pkey_check(struct hfi1_pportdata * ppd,u32 slid,u16 pkey,u8 sc5,int8_t s_pkey_index)1116 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1117 u8 sc5, int8_t s_pkey_index)
1118 {
1119 struct hfi1_devdata *dd;
1120 int i;
1121 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1122
1123 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1124 return 0;
1125
1126 /* If SC15, pkey[0:14] must be 0x7fff */
1127 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1128 goto bad;
1129
1130 /* Is the pkey = 0x0, or 0x8000? */
1131 if ((pkey & PKEY_LOW_15_MASK) == 0)
1132 goto bad;
1133
1134 /*
1135 * For the kernel contexts only, if a qp is passed into the function,
1136 * the most likely matching pkey has index qp->s_pkey_index
1137 */
1138 if (!is_user_ctxt_mechanism &&
1139 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1140 return 0;
1141 }
1142
1143 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1144 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1145 return 0;
1146 }
1147 bad:
1148 /*
1149 * For the user-context mechanism, the P_KEY check would only happen
1150 * once per SDMA request, not once per packet. Therefore, there's no
1151 * need to increment the counter for the user-context mechanism.
1152 */
1153 if (!is_user_ctxt_mechanism) {
1154 incr_cntr64(&ppd->port_xmit_constraint_errors);
1155 dd = ppd->dd;
1156 if (!(dd->err_info_xmit_constraint.status &
1157 OPA_EI_STATUS_SMASK)) {
1158 dd->err_info_xmit_constraint.status |=
1159 OPA_EI_STATUS_SMASK;
1160 dd->err_info_xmit_constraint.slid = slid;
1161 dd->err_info_xmit_constraint.pkey = pkey;
1162 }
1163 }
1164 return 1;
1165 }
1166
1167 /*
1168 * get_send_routine - choose an egress routine
1169 *
1170 * Choose an egress routine based on QP type
1171 * and size
1172 */
get_send_routine(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1173 static inline send_routine get_send_routine(struct rvt_qp *qp,
1174 struct hfi1_pkt_state *ps)
1175 {
1176 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1177 struct hfi1_qp_priv *priv = qp->priv;
1178 struct verbs_txreq *tx = ps->s_txreq;
1179
1180 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1181 return dd->process_pio_send;
1182 switch (qp->ibqp.qp_type) {
1183 case IB_QPT_SMI:
1184 return dd->process_pio_send;
1185 case IB_QPT_GSI:
1186 case IB_QPT_UD:
1187 break;
1188 case IB_QPT_UC:
1189 case IB_QPT_RC:
1190 priv->s_running_pkt_size =
1191 (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1192 if (piothreshold &&
1193 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1194 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1195 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1196 !sdma_txreq_built(&tx->txreq))
1197 return dd->process_pio_send;
1198 break;
1199 default:
1200 break;
1201 }
1202 return dd->process_dma_send;
1203 }
1204
1205 /**
1206 * hfi1_verbs_send - send a packet
1207 * @qp: the QP to send on
1208 * @ps: the state of the packet to send
1209 *
1210 * Return zero if packet is sent or queued OK.
1211 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1212 */
hfi1_verbs_send(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1213 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1214 {
1215 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216 struct hfi1_qp_priv *priv = qp->priv;
1217 struct ib_other_headers *ohdr = NULL;
1218 send_routine sr;
1219 int ret;
1220 u16 pkey;
1221 u32 slid;
1222 u8 l4 = 0;
1223
1224 /* locate the pkey within the headers */
1225 if (ps->s_txreq->phdr.hdr.hdr_type) {
1226 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1227
1228 l4 = hfi1_16B_get_l4(hdr);
1229 if (l4 == OPA_16B_L4_IB_LOCAL)
1230 ohdr = &hdr->u.oth;
1231 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1232 ohdr = &hdr->u.l.oth;
1233
1234 slid = hfi1_16B_get_slid(hdr);
1235 pkey = hfi1_16B_get_pkey(hdr);
1236 } else {
1237 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1238 u8 lnh = ib_get_lnh(hdr);
1239
1240 if (lnh == HFI1_LRH_GRH)
1241 ohdr = &hdr->u.l.oth;
1242 else
1243 ohdr = &hdr->u.oth;
1244 slid = ib_get_slid(hdr);
1245 pkey = ib_bth_get_pkey(ohdr);
1246 }
1247
1248 if (likely(l4 != OPA_16B_L4_FM))
1249 ps->opcode = ib_bth_get_opcode(ohdr);
1250 else
1251 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1252
1253 sr = get_send_routine(qp, ps);
1254 ret = egress_pkey_check(dd->pport, slid, pkey,
1255 priv->s_sc, qp->s_pkey_index);
1256 if (unlikely(ret)) {
1257 /*
1258 * The value we are returning here does not get propagated to
1259 * the verbs caller. Thus we need to complete the request with
1260 * error otherwise the caller could be sitting waiting on the
1261 * completion event. Only do this for PIO. SDMA has its own
1262 * mechanism for handling the errors. So for SDMA we can just
1263 * return.
1264 */
1265 if (sr == dd->process_pio_send) {
1266 unsigned long flags;
1267
1268 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1269 __func__);
1270 spin_lock_irqsave(&qp->s_lock, flags);
1271 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1272 spin_unlock_irqrestore(&qp->s_lock, flags);
1273 }
1274 return -EINVAL;
1275 }
1276 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1277 return pio_wait(qp,
1278 ps->s_txreq->psc,
1279 ps,
1280 HFI1_S_WAIT_PIO_DRAIN);
1281 return sr(qp, ps, 0);
1282 }
1283
1284 /**
1285 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1286 * @dd: the device data structure
1287 */
hfi1_fill_device_attr(struct hfi1_devdata * dd)1288 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1289 {
1290 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1291 u32 ver = dd->dc8051_ver;
1292
1293 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1294
1295 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1296 ((u64)(dc8051_ver_min(ver)) << 16) |
1297 (u64)dc8051_ver_patch(ver);
1298
1299 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1300 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1301 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1302 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1303 IB_DEVICE_MEM_MGT_EXTENSIONS;
1304 rdi->dparms.props.kernel_cap_flags = IBK_RDMA_NETDEV_OPA;
1305 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1306 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1307 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1308 rdi->dparms.props.hw_ver = dd->minrev;
1309 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1310 rdi->dparms.props.max_mr_size = U64_MAX;
1311 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1312 rdi->dparms.props.max_qp = hfi1_max_qps;
1313 rdi->dparms.props.max_qp_wr =
1314 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1315 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1316 rdi->dparms.props.max_send_sge = hfi1_max_sges;
1317 rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1318 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1319 rdi->dparms.props.max_cq = hfi1_max_cqs;
1320 rdi->dparms.props.max_ah = hfi1_max_ahs;
1321 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1322 rdi->dparms.props.max_pd = hfi1_max_pds;
1323 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1324 rdi->dparms.props.max_qp_init_rd_atom = 255;
1325 rdi->dparms.props.max_srq = hfi1_max_srqs;
1326 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1327 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1328 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1329 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1330 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1331 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1332 rdi->dparms.props.max_total_mcast_qp_attach =
1333 rdi->dparms.props.max_mcast_qp_attach *
1334 rdi->dparms.props.max_mcast_grp;
1335 }
1336
opa_speed_to_ib(u16 in)1337 static inline u16 opa_speed_to_ib(u16 in)
1338 {
1339 u16 out = 0;
1340
1341 if (in & OPA_LINK_SPEED_25G)
1342 out |= IB_SPEED_EDR;
1343 if (in & OPA_LINK_SPEED_12_5G)
1344 out |= IB_SPEED_FDR;
1345
1346 return out;
1347 }
1348
1349 /*
1350 * Convert a single OPA link width (no multiple flags) to an IB value.
1351 * A zero OPA link width means link down, which means the IB width value
1352 * is a don't care.
1353 */
opa_width_to_ib(u16 in)1354 static inline u16 opa_width_to_ib(u16 in)
1355 {
1356 switch (in) {
1357 case OPA_LINK_WIDTH_1X:
1358 /* map 2x and 3x to 1x as they don't exist in IB */
1359 case OPA_LINK_WIDTH_2X:
1360 case OPA_LINK_WIDTH_3X:
1361 return IB_WIDTH_1X;
1362 default: /* link down or unknown, return our largest width */
1363 case OPA_LINK_WIDTH_4X:
1364 return IB_WIDTH_4X;
1365 }
1366 }
1367
query_port(struct rvt_dev_info * rdi,u32 port_num,struct ib_port_attr * props)1368 static int query_port(struct rvt_dev_info *rdi, u32 port_num,
1369 struct ib_port_attr *props)
1370 {
1371 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1372 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1373 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1374 u32 lid = ppd->lid;
1375
1376 /* props being zeroed by the caller, avoid zeroing it here */
1377 props->lid = lid ? lid : 0;
1378 props->lmc = ppd->lmc;
1379 /* OPA logical states match IB logical states */
1380 props->state = driver_lstate(ppd);
1381 props->phys_state = driver_pstate(ppd);
1382 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1383 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1384 /* see rate_show() in ib core/sysfs.c */
1385 props->active_speed = opa_speed_to_ib(ppd->link_speed_active);
1386 props->max_vl_num = ppd->vls_supported;
1387
1388 /* Once we are a "first class" citizen and have added the OPA MTUs to
1389 * the core we can advertise the larger MTU enum to the ULPs, for now
1390 * advertise only 4K.
1391 *
1392 * Those applications which are either OPA aware or pass the MTU enum
1393 * from the Path Records to us will get the new 8k MTU. Those that
1394 * attempt to process the MTU enum may fail in various ways.
1395 */
1396 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1397 4096 : hfi1_max_mtu), IB_MTU_4096);
1398 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1399 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1400 props->phys_mtu = hfi1_max_mtu;
1401
1402 return 0;
1403 }
1404
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1405 static int modify_device(struct ib_device *device,
1406 int device_modify_mask,
1407 struct ib_device_modify *device_modify)
1408 {
1409 struct hfi1_devdata *dd = dd_from_ibdev(device);
1410 unsigned i;
1411 int ret;
1412
1413 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1414 IB_DEVICE_MODIFY_NODE_DESC)) {
1415 ret = -EOPNOTSUPP;
1416 goto bail;
1417 }
1418
1419 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1420 memcpy(device->node_desc, device_modify->node_desc,
1421 IB_DEVICE_NODE_DESC_MAX);
1422 for (i = 0; i < dd->num_pports; i++) {
1423 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1424
1425 hfi1_node_desc_chg(ibp);
1426 }
1427 }
1428
1429 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1430 ib_hfi1_sys_image_guid =
1431 cpu_to_be64(device_modify->sys_image_guid);
1432 for (i = 0; i < dd->num_pports; i++) {
1433 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1434
1435 hfi1_sys_guid_chg(ibp);
1436 }
1437 }
1438
1439 ret = 0;
1440
1441 bail:
1442 return ret;
1443 }
1444
shut_down_port(struct rvt_dev_info * rdi,u32 port_num)1445 static int shut_down_port(struct rvt_dev_info *rdi, u32 port_num)
1446 {
1447 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1448 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1449 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1450
1451 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1452 OPA_LINKDOWN_REASON_UNKNOWN);
1453 return set_link_state(ppd, HLS_DN_DOWNDEF);
1454 }
1455
hfi1_get_guid_be(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,int guid_index,__be64 * guid)1456 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1457 int guid_index, __be64 *guid)
1458 {
1459 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1460
1461 if (guid_index >= HFI1_GUIDS_PER_PORT)
1462 return -EINVAL;
1463
1464 *guid = get_sguid(ibp, guid_index);
1465 return 0;
1466 }
1467
1468 /*
1469 * convert ah port,sl to sc
1470 */
ah_to_sc(struct ib_device * ibdev,struct rdma_ah_attr * ah)1471 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1472 {
1473 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1474
1475 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1476 }
1477
hfi1_check_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr)1478 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1479 {
1480 struct hfi1_ibport *ibp;
1481 struct hfi1_pportdata *ppd;
1482 struct hfi1_devdata *dd;
1483 u8 sc5;
1484 u8 sl;
1485
1486 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1487 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1488 return -EINVAL;
1489
1490 /* test the mapping for validity */
1491 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1492 ppd = ppd_from_ibp(ibp);
1493 dd = dd_from_ppd(ppd);
1494
1495 sl = rdma_ah_get_sl(ah_attr);
1496 if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1497 return -EINVAL;
1498 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1499
1500 sc5 = ibp->sl_to_sc[sl];
1501 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1502 return -EINVAL;
1503 return 0;
1504 }
1505
hfi1_notify_new_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr,struct rvt_ah * ah)1506 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1507 struct rdma_ah_attr *ah_attr,
1508 struct rvt_ah *ah)
1509 {
1510 struct hfi1_ibport *ibp;
1511 struct hfi1_pportdata *ppd;
1512 struct hfi1_devdata *dd;
1513 u8 sc5;
1514 struct rdma_ah_attr *attr = &ah->attr;
1515
1516 /*
1517 * Do not trust reading anything from rvt_ah at this point as it is not
1518 * done being setup. We can however modify things which we need to set.
1519 */
1520
1521 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1522 ppd = ppd_from_ibp(ibp);
1523 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1524 hfi1_update_ah_attr(ibdev, attr);
1525 hfi1_make_opa_lid(attr);
1526 dd = dd_from_ppd(ppd);
1527 ah->vl = sc_to_vlt(dd, sc5);
1528 if (ah->vl < num_vls || ah->vl == 15)
1529 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1530 }
1531
1532 /**
1533 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1534 * @dd: the hfi1_ib device
1535 */
hfi1_get_npkeys(struct hfi1_devdata * dd)1536 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1537 {
1538 return ARRAY_SIZE(dd->pport[0].pkeys);
1539 }
1540
init_ibport(struct hfi1_pportdata * ppd)1541 static void init_ibport(struct hfi1_pportdata *ppd)
1542 {
1543 struct hfi1_ibport *ibp = &ppd->ibport_data;
1544 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1545 int i;
1546
1547 for (i = 0; i < sz; i++) {
1548 ibp->sl_to_sc[i] = i;
1549 ibp->sc_to_sl[i] = i;
1550 }
1551
1552 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1553 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1554 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1555
1556 spin_lock_init(&ibp->rvp.lock);
1557 /* Set the prefix to the default value (see ch. 4.1.1) */
1558 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1559 ibp->rvp.sm_lid = 0;
1560 /*
1561 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1562 * and PortInfo.CapabilityMask3
1563 */
1564 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1565 IB_PORT_CAP_MASK_NOTICE_SUP;
1566 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1567 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1568 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1569 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1570 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1571 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1572
1573 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1574 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1575 }
1576
hfi1_get_dev_fw_str(struct ib_device * ibdev,char * str)1577 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1578 {
1579 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1580 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1581 u32 ver = dd_from_dev(dev)->dc8051_ver;
1582
1583 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1584 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1585 }
1586
1587 static const char * const driver_cntr_names[] = {
1588 /* must be element 0*/
1589 "DRIVER_KernIntr",
1590 "DRIVER_ErrorIntr",
1591 "DRIVER_Tx_Errs",
1592 "DRIVER_Rcv_Errs",
1593 "DRIVER_HW_Errs",
1594 "DRIVER_NoPIOBufs",
1595 "DRIVER_CtxtsOpen",
1596 "DRIVER_RcvLen_Errs",
1597 "DRIVER_EgrBufFull",
1598 "DRIVER_EgrHdrFull"
1599 };
1600
1601 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1602 static struct rdma_stat_desc *dev_cntr_descs;
1603 static struct rdma_stat_desc *port_cntr_descs;
1604 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1605 static int num_dev_cntrs;
1606 static int num_port_cntrs;
1607 static int cntr_names_initialized;
1608
1609 /*
1610 * Convert a list of names separated by '\n' into an array of NULL terminated
1611 * strings. Optionally some entries can be reserved in the array to hold extra
1612 * external strings.
1613 */
init_cntr_names(const char * names_in,const size_t names_len,int num_extra_names,int * num_cntrs,struct rdma_stat_desc ** cntr_descs)1614 static int init_cntr_names(const char *names_in, const size_t names_len,
1615 int num_extra_names, int *num_cntrs,
1616 struct rdma_stat_desc **cntr_descs)
1617 {
1618 struct rdma_stat_desc *q;
1619 char *names_out, *p;
1620 int i, n;
1621
1622 n = 0;
1623 for (i = 0; i < names_len; i++)
1624 if (names_in[i] == '\n')
1625 n++;
1626
1627 names_out =
1628 kzalloc((n + num_extra_names) * sizeof(*q) + names_len,
1629 GFP_KERNEL);
1630 if (!names_out) {
1631 *num_cntrs = 0;
1632 *cntr_descs = NULL;
1633 return -ENOMEM;
1634 }
1635
1636 p = names_out + (n + num_extra_names) * sizeof(*q);
1637 memcpy(p, names_in, names_len);
1638
1639 q = (struct rdma_stat_desc *)names_out;
1640 for (i = 0; i < n; i++) {
1641 q[i].name = p;
1642 p = strchr(p, '\n');
1643 *p++ = '\0';
1644 }
1645
1646 *num_cntrs = n;
1647 *cntr_descs = (struct rdma_stat_desc *)names_out;
1648 return 0;
1649 }
1650
init_counters(struct ib_device * ibdev)1651 static int init_counters(struct ib_device *ibdev)
1652 {
1653 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1654 int i, err = 0;
1655
1656 mutex_lock(&cntr_names_lock);
1657 if (cntr_names_initialized)
1658 goto out_unlock;
1659
1660 err = init_cntr_names(dd->cntrnames, dd->cntrnameslen, num_driver_cntrs,
1661 &num_dev_cntrs, &dev_cntr_descs);
1662 if (err)
1663 goto out_unlock;
1664
1665 for (i = 0; i < num_driver_cntrs; i++)
1666 dev_cntr_descs[num_dev_cntrs + i].name = driver_cntr_names[i];
1667
1668 err = init_cntr_names(dd->portcntrnames, dd->portcntrnameslen, 0,
1669 &num_port_cntrs, &port_cntr_descs);
1670 if (err) {
1671 kfree(dev_cntr_descs);
1672 dev_cntr_descs = NULL;
1673 goto out_unlock;
1674 }
1675 cntr_names_initialized = 1;
1676
1677 out_unlock:
1678 mutex_unlock(&cntr_names_lock);
1679 return err;
1680 }
1681
hfi1_alloc_hw_device_stats(struct ib_device * ibdev)1682 static struct rdma_hw_stats *hfi1_alloc_hw_device_stats(struct ib_device *ibdev)
1683 {
1684 if (init_counters(ibdev))
1685 return NULL;
1686 return rdma_alloc_hw_stats_struct(dev_cntr_descs,
1687 num_dev_cntrs + num_driver_cntrs,
1688 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1689 }
1690
hfi_alloc_hw_port_stats(struct ib_device * ibdev,u32 port_num)1691 static struct rdma_hw_stats *hfi_alloc_hw_port_stats(struct ib_device *ibdev,
1692 u32 port_num)
1693 {
1694 if (init_counters(ibdev))
1695 return NULL;
1696 return rdma_alloc_hw_stats_struct(port_cntr_descs, num_port_cntrs,
1697 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1698 }
1699
hfi1_sps_ints(void)1700 static u64 hfi1_sps_ints(void)
1701 {
1702 unsigned long index, flags;
1703 struct hfi1_devdata *dd;
1704 u64 sps_ints = 0;
1705
1706 xa_lock_irqsave(&hfi1_dev_table, flags);
1707 xa_for_each(&hfi1_dev_table, index, dd) {
1708 sps_ints += get_all_cpu_total(dd->int_counter);
1709 }
1710 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1711 return sps_ints;
1712 }
1713
get_hw_stats(struct ib_device * ibdev,struct rdma_hw_stats * stats,u32 port,int index)1714 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1715 u32 port, int index)
1716 {
1717 u64 *values;
1718 int count;
1719
1720 if (!port) {
1721 u64 *stats = (u64 *)&hfi1_stats;
1722 int i;
1723
1724 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1725 values[num_dev_cntrs] = hfi1_sps_ints();
1726 for (i = 1; i < num_driver_cntrs; i++)
1727 values[num_dev_cntrs + i] = stats[i];
1728 count = num_dev_cntrs + num_driver_cntrs;
1729 } else {
1730 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1731
1732 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1733 count = num_port_cntrs;
1734 }
1735
1736 memcpy(stats->value, values, count * sizeof(u64));
1737 return count;
1738 }
1739
1740 static const struct ib_device_ops hfi1_dev_ops = {
1741 .owner = THIS_MODULE,
1742 .driver_id = RDMA_DRIVER_HFI1,
1743
1744 .alloc_hw_device_stats = hfi1_alloc_hw_device_stats,
1745 .alloc_hw_port_stats = hfi_alloc_hw_port_stats,
1746 .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1747 .device_group = &ib_hfi1_attr_group,
1748 .get_dev_fw_str = hfi1_get_dev_fw_str,
1749 .get_hw_stats = get_hw_stats,
1750 .modify_device = modify_device,
1751 .port_groups = hfi1_attr_port_groups,
1752 /* keep process mad in the driver */
1753 .process_mad = hfi1_process_mad,
1754 .rdma_netdev_get_params = hfi1_ipoib_rn_get_params,
1755 };
1756
1757 /**
1758 * hfi1_register_ib_device - register our device with the infiniband core
1759 * @dd: the device data structure
1760 * Return 0 if successful, errno if unsuccessful.
1761 */
hfi1_register_ib_device(struct hfi1_devdata * dd)1762 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1763 {
1764 struct hfi1_ibdev *dev = &dd->verbs_dev;
1765 struct ib_device *ibdev = &dev->rdi.ibdev;
1766 struct hfi1_pportdata *ppd = dd->pport;
1767 struct hfi1_ibport *ibp = &ppd->ibport_data;
1768 unsigned i;
1769 int ret;
1770
1771 for (i = 0; i < dd->num_pports; i++)
1772 init_ibport(ppd + i);
1773
1774 /* Only need to initialize non-zero fields. */
1775
1776 timer_setup(&dev->mem_timer, mem_timer, 0);
1777
1778 seqlock_init(&dev->iowait_lock);
1779 seqlock_init(&dev->txwait_lock);
1780 INIT_LIST_HEAD(&dev->txwait);
1781 INIT_LIST_HEAD(&dev->memwait);
1782
1783 ret = verbs_txreq_init(dev);
1784 if (ret)
1785 goto err_verbs_txreq;
1786
1787 /* Use first-port GUID as node guid */
1788 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1789
1790 /*
1791 * The system image GUID is supposed to be the same for all
1792 * HFIs in a single system but since there can be other
1793 * device types in the system, we can't be sure this is unique.
1794 */
1795 if (!ib_hfi1_sys_image_guid)
1796 ib_hfi1_sys_image_guid = ibdev->node_guid;
1797 ibdev->phys_port_cnt = dd->num_pports;
1798 ibdev->dev.parent = &dd->pcidev->dev;
1799
1800 ib_set_device_ops(ibdev, &hfi1_dev_ops);
1801
1802 strscpy(ibdev->node_desc, init_utsname()->nodename,
1803 sizeof(ibdev->node_desc));
1804
1805 /*
1806 * Fill in rvt info object.
1807 */
1808 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1809 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1810 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1811 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1812 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1813 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1814 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1815 /*
1816 * Fill in rvt info device attributes.
1817 */
1818 hfi1_fill_device_attr(dd);
1819
1820 /* queue pair */
1821 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1822 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1823 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1824 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1825 dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE;
1826 dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX;
1827 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1828 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1829 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1830 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1831 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1832 RDMA_CORE_CAP_OPA_AH;
1833 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1834
1835 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1836 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1837 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1838 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1839 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1840 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1841 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1842 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1843 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1844 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1845 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1846 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1847 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1848 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1849 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1850 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1851 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1852 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1853 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1854 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1855 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1856 hfi1_comp_vect_mappings_lookup;
1857
1858 /* completeion queue */
1859 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1860 dd->verbs_dev.rdi.dparms.node = dd->node;
1861
1862 /* misc settings */
1863 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1864 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1865 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1866 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1867 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1868 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1869 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1870 dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1871 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1872
1873 /* post send table */
1874 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1875
1876 /* opcode translation table */
1877 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1878
1879 ppd = dd->pport;
1880 for (i = 0; i < dd->num_pports; i++, ppd++)
1881 rvt_init_port(&dd->verbs_dev.rdi,
1882 &ppd->ibport_data.rvp,
1883 i,
1884 ppd->pkeys);
1885
1886 ret = rvt_register_device(&dd->verbs_dev.rdi);
1887 if (ret)
1888 goto err_verbs_txreq;
1889
1890 ret = hfi1_verbs_register_sysfs(dd);
1891 if (ret)
1892 goto err_class;
1893
1894 return ret;
1895
1896 err_class:
1897 rvt_unregister_device(&dd->verbs_dev.rdi);
1898 err_verbs_txreq:
1899 verbs_txreq_exit(dev);
1900 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1901 return ret;
1902 }
1903
hfi1_unregister_ib_device(struct hfi1_devdata * dd)1904 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1905 {
1906 struct hfi1_ibdev *dev = &dd->verbs_dev;
1907
1908 hfi1_verbs_unregister_sysfs(dd);
1909
1910 rvt_unregister_device(&dd->verbs_dev.rdi);
1911
1912 if (!list_empty(&dev->txwait))
1913 dd_dev_err(dd, "txwait list not empty!\n");
1914 if (!list_empty(&dev->memwait))
1915 dd_dev_err(dd, "memwait list not empty!\n");
1916
1917 del_timer_sync(&dev->mem_timer);
1918 verbs_txreq_exit(dev);
1919
1920 mutex_lock(&cntr_names_lock);
1921 kfree(dev_cntr_descs);
1922 kfree(port_cntr_descs);
1923 dev_cntr_descs = NULL;
1924 port_cntr_descs = NULL;
1925 cntr_names_initialized = 0;
1926 mutex_unlock(&cntr_names_lock);
1927 }
1928
hfi1_cnp_rcv(struct hfi1_packet * packet)1929 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1930 {
1931 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1932 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1933 struct ib_header *hdr = packet->hdr;
1934 struct rvt_qp *qp = packet->qp;
1935 u32 lqpn, rqpn = 0;
1936 u16 rlid = 0;
1937 u8 sl, sc5, svc_type;
1938
1939 switch (packet->qp->ibqp.qp_type) {
1940 case IB_QPT_UC:
1941 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1942 rqpn = qp->remote_qpn;
1943 svc_type = IB_CC_SVCTYPE_UC;
1944 break;
1945 case IB_QPT_RC:
1946 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1947 rqpn = qp->remote_qpn;
1948 svc_type = IB_CC_SVCTYPE_RC;
1949 break;
1950 case IB_QPT_SMI:
1951 case IB_QPT_GSI:
1952 case IB_QPT_UD:
1953 svc_type = IB_CC_SVCTYPE_UD;
1954 break;
1955 default:
1956 ibp->rvp.n_pkt_drops++;
1957 return;
1958 }
1959
1960 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1961 sl = ibp->sc_to_sl[sc5];
1962 lqpn = qp->ibqp.qp_num;
1963
1964 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1965 }
1966