1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright(c) 2021-2022 Intel Corporation. All rights reserved.
4 //
5 // Author: Cezary Rojewski <cezary.rojewski@intel.com>
6 //
7
8 #include <linux/pci.h>
9 #include <sound/hda_register.h>
10 #include <sound/hdaudio_ext.h>
11 #include "cldma.h"
12 #include "registers.h"
13
14 /* Stream Registers */
15 #define AZX_CL_SD_BASE 0x80
16 #define AZX_SD_CTL_STRM_MASK GENMASK(23, 20)
17 #define AZX_SD_CTL_STRM(s) (((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK)
18 #define AZX_SD_BDLPL_BDLPLBA_MASK GENMASK(31, 7)
19 #define AZX_SD_BDLPL_BDLPLBA(lb) ((lb) & AZX_SD_BDLPL_BDLPLBA_MASK)
20
21 /* Software Position Based FIFO Capability Registers */
22 #define AZX_CL_SPBFCS 0x20
23 #define AZX_REG_CL_SPBFCTL (AZX_CL_SPBFCS + 0x4)
24 #define AZX_REG_CL_SD_SPIB (AZX_CL_SPBFCS + 0x8)
25
26 #define AVS_CL_OP_INTERVAL_US 3
27 #define AVS_CL_OP_TIMEOUT_US 300
28 #define AVS_CL_IOC_TIMEOUT_MS 300
29 #define AVS_CL_STREAM_INDEX 0
30
31 struct hda_cldma {
32 struct device *dev;
33 struct hdac_bus *bus;
34 void __iomem *dsp_ba;
35
36 unsigned int buffer_size;
37 unsigned int num_periods;
38 unsigned int stream_tag;
39 void __iomem *sd_addr;
40
41 struct snd_dma_buffer dmab_data;
42 struct snd_dma_buffer dmab_bdl;
43 struct delayed_work memcpy_work;
44 struct completion completion;
45
46 /* runtime */
47 void *position;
48 unsigned int remaining;
49 unsigned int sd_status;
50 };
51
52 static void cldma_memcpy_work(struct work_struct *work);
53
54 struct hda_cldma code_loader = {
55 .stream_tag = AVS_CL_STREAM_INDEX + 1,
56 .memcpy_work = __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0),
57 .completion = COMPLETION_INITIALIZER(code_loader.completion),
58 };
59
hda_cldma_fill(struct hda_cldma * cl)60 void hda_cldma_fill(struct hda_cldma *cl)
61 {
62 unsigned int size, offset;
63
64 if (cl->remaining > cl->buffer_size)
65 size = cl->buffer_size;
66 else
67 size = cl->remaining;
68
69 offset = snd_hdac_stream_readl(cl, CL_SD_SPIB);
70 if (offset + size > cl->buffer_size) {
71 unsigned int ss;
72
73 ss = cl->buffer_size - offset;
74 memcpy(cl->dmab_data.area + offset, cl->position, ss);
75 offset = 0;
76 size -= ss;
77 cl->position += ss;
78 cl->remaining -= ss;
79 }
80
81 memcpy(cl->dmab_data.area + offset, cl->position, size);
82 cl->position += size;
83 cl->remaining -= size;
84
85 snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size);
86 }
87
cldma_memcpy_work(struct work_struct * work)88 static void cldma_memcpy_work(struct work_struct *work)
89 {
90 struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work);
91 int ret;
92
93 ret = hda_cldma_start(cl);
94 if (ret < 0) {
95 dev_err(cl->dev, "cldma set RUN failed: %d\n", ret);
96 return;
97 }
98
99 while (true) {
100 ret = wait_for_completion_timeout(&cl->completion,
101 msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS));
102 if (!ret) {
103 dev_err(cl->dev, "cldma IOC timeout\n");
104 break;
105 }
106
107 if (!(cl->sd_status & SD_INT_COMPLETE)) {
108 dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n",
109 cl->sd_status);
110 break;
111 }
112
113 if (!cl->remaining)
114 break;
115
116 reinit_completion(&cl->completion);
117 hda_cldma_fill(cl);
118 /* enable CLDMA interrupt */
119 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
120 AVS_ADSP_ADSPIC_CLDMA);
121 }
122 }
123
hda_cldma_transfer(struct hda_cldma * cl,unsigned long start_delay)124 void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay)
125 {
126 if (!cl->remaining)
127 return;
128
129 reinit_completion(&cl->completion);
130 /* fill buffer with the first chunk before scheduling run */
131 hda_cldma_fill(cl);
132
133 schedule_delayed_work(&cl->memcpy_work, start_delay);
134 }
135
hda_cldma_start(struct hda_cldma * cl)136 int hda_cldma_start(struct hda_cldma *cl)
137 {
138 unsigned int reg;
139
140 /* enable interrupts */
141 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
142 AVS_ADSP_ADSPIC_CLDMA);
143 snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START,
144 SD_INT_MASK | SD_CTL_DMA_START);
145
146 /* await DMA engine start */
147 return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START,
148 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
149 }
150
hda_cldma_stop(struct hda_cldma * cl)151 int hda_cldma_stop(struct hda_cldma *cl)
152 {
153 unsigned int reg;
154 int ret;
155
156 /* disable interrupts */
157 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
158 snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0);
159
160 /* await DMA engine stop */
161 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START),
162 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
163 cancel_delayed_work_sync(&cl->memcpy_work);
164
165 return ret;
166 }
167
hda_cldma_reset(struct hda_cldma * cl)168 int hda_cldma_reset(struct hda_cldma *cl)
169 {
170 unsigned int reg;
171 int ret;
172
173 ret = hda_cldma_stop(cl);
174 if (ret < 0) {
175 dev_err(cl->dev, "cldma stop failed: %d\n", ret);
176 return ret;
177 }
178
179 snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET);
180 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET),
181 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
182 if (ret < 0) {
183 dev_err(cl->dev, "cldma set SRST failed: %d\n", ret);
184 return ret;
185 }
186
187 snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0);
188 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET),
189 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
190 if (ret < 0) {
191 dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret);
192 return ret;
193 }
194
195 return 0;
196 }
197
hda_cldma_set_data(struct hda_cldma * cl,void * data,unsigned int size)198 void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size)
199 {
200 /* setup runtime */
201 cl->position = data;
202 cl->remaining = size;
203 }
204
cldma_setup_bdle(struct hda_cldma * cl,u32 bdle_size)205 static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size)
206 {
207 struct snd_dma_buffer *dmab = &cl->dmab_data;
208 __le32 *bdl = (__le32 *)cl->dmab_bdl.area;
209 int remaining = cl->buffer_size;
210 int offset = 0;
211
212 cl->num_periods = 0;
213
214 while (remaining > 0) {
215 phys_addr_t addr;
216 int chunk;
217
218 addr = snd_sgbuf_get_addr(dmab, offset);
219 bdl[0] = cpu_to_le32(lower_32_bits(addr));
220 bdl[1] = cpu_to_le32(upper_32_bits(addr));
221 chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size);
222 bdl[2] = cpu_to_le32(chunk);
223
224 remaining -= chunk;
225 /* set IOC only for the last entry */
226 bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01);
227
228 bdl += 4;
229 offset += chunk;
230 cl->num_periods++;
231 }
232 }
233
hda_cldma_setup(struct hda_cldma * cl)234 void hda_cldma_setup(struct hda_cldma *cl)
235 {
236 dma_addr_t bdl_addr = cl->dmab_bdl.addr;
237
238 cldma_setup_bdle(cl, cl->buffer_size / 2);
239
240 snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr)));
241 snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr));
242
243 snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size);
244 snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1);
245
246 snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl));
247 /* enable spib */
248 snd_hdac_stream_writel(cl, CL_SPBFCTL, 1);
249 }
250
cldma_irq_handler(int irq,void * dev_id)251 static irqreturn_t cldma_irq_handler(int irq, void *dev_id)
252 {
253 struct hda_cldma *cl = dev_id;
254 u32 adspis;
255
256 adspis = snd_hdac_adsp_readl(cl, AVS_ADSP_REG_ADSPIS);
257 if (adspis == UINT_MAX)
258 return IRQ_NONE;
259 if (!(adspis & AVS_ADSP_ADSPIS_CLDMA))
260 return IRQ_NONE;
261
262 cl->sd_status = snd_hdac_stream_readb(cl, SD_STS);
263 dev_warn(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status);
264
265 /* disable CLDMA interrupt */
266 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
267
268 complete(&cl->completion);
269
270 return IRQ_HANDLED;
271 }
272
hda_cldma_init(struct hda_cldma * cl,struct hdac_bus * bus,void __iomem * dsp_ba,unsigned int buffer_size)273 int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba,
274 unsigned int buffer_size)
275 {
276 struct pci_dev *pci = to_pci_dev(bus->dev);
277 int ret;
278
279 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data);
280 if (ret < 0)
281 return ret;
282
283 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl);
284 if (ret < 0)
285 goto alloc_err;
286
287 cl->dev = bus->dev;
288 cl->bus = bus;
289 cl->dsp_ba = dsp_ba;
290 cl->buffer_size = buffer_size;
291 cl->sd_addr = dsp_ba + AZX_CL_SD_BASE;
292
293 ret = pci_request_irq(pci, 0, cldma_irq_handler, NULL, cl, "CLDMA");
294 if (ret < 0) {
295 dev_err(cl->dev, "Failed to request CLDMA IRQ handler: %d\n", ret);
296 goto req_err;
297 }
298
299 return 0;
300
301 req_err:
302 snd_dma_free_pages(&cl->dmab_bdl);
303 alloc_err:
304 snd_dma_free_pages(&cl->dmab_data);
305
306 return ret;
307 }
308
hda_cldma_free(struct hda_cldma * cl)309 void hda_cldma_free(struct hda_cldma *cl)
310 {
311 struct pci_dev *pci = to_pci_dev(cl->dev);
312
313 pci_free_irq(pci, 0, cl);
314 snd_dma_free_pages(&cl->dmab_data);
315 snd_dma_free_pages(&cl->dmab_bdl);
316 }
317