1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
42 };
43
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
50 };
51
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
55 };
56
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
60 };
61
62 /* This function requires the caller holds hdev->lock */
hci_connect_le_scan_cleanup(struct hci_conn * conn)63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
70
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
73
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
79 }
80
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
85
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
90 */
91 params->explicit_connect = false;
92
93 list_del_init(¶ms->action);
94
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(¶ms->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(¶ms->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
109 }
110
111 hci_update_passive_scan(hdev);
112 }
113
hci_conn_cleanup(struct hci_conn * conn)114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 struct hci_dev *hdev = conn->hdev;
117
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120
121 hci_chan_list_flush(conn);
122
123 hci_conn_hash_del(hdev, conn);
124
125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 switch (conn->setting & SCO_AIRMODE_MASK) {
127 case SCO_AIRMODE_CVSD:
128 case SCO_AIRMODE_TRANSP:
129 if (hdev->notify)
130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 break;
132 }
133 } else {
134 if (hdev->notify)
135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 }
137
138 hci_conn_del_sysfs(conn);
139
140 debugfs_remove_recursive(conn->debugfs);
141
142 hci_dev_put(hdev);
143
144 hci_conn_put(conn);
145 }
146
le_scan_cleanup(struct work_struct * work)147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 struct hci_conn *conn = container_of(work, struct hci_conn,
150 le_scan_cleanup);
151 struct hci_dev *hdev = conn->hdev;
152 struct hci_conn *c = NULL;
153
154 BT_DBG("%s hcon %p", hdev->name, conn);
155
156 hci_dev_lock(hdev);
157
158 /* Check that the hci_conn is still around */
159 rcu_read_lock();
160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 if (c == conn)
162 break;
163 }
164 rcu_read_unlock();
165
166 if (c == conn) {
167 hci_connect_le_scan_cleanup(conn);
168 hci_conn_cleanup(conn);
169 }
170
171 hci_dev_unlock(hdev);
172 hci_dev_put(hdev);
173 hci_conn_put(conn);
174 }
175
hci_connect_le_scan_remove(struct hci_conn * conn)176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 BT_DBG("%s hcon %p", conn->hdev->name, conn);
179
180 /* We can't call hci_conn_del/hci_conn_cleanup here since that
181 * could deadlock with another hci_conn_del() call that's holding
182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 * Instead, grab temporary extra references to the hci_dev and
184 * hci_conn and perform the necessary cleanup in a separate work
185 * callback.
186 */
187
188 hci_dev_hold(conn->hdev);
189 hci_conn_get(conn);
190
191 /* Even though we hold a reference to the hdev, many other
192 * things might get cleaned up meanwhile, including the hdev's
193 * own workqueue, so we can't use that for scheduling.
194 */
195 schedule_work(&conn->le_scan_cleanup);
196 }
197
hci_acl_create_connection(struct hci_conn * conn)198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 struct hci_dev *hdev = conn->hdev;
201 struct inquiry_entry *ie;
202 struct hci_cp_create_conn cp;
203
204 BT_DBG("hcon %p", conn);
205
206 /* Many controllers disallow HCI Create Connection while it is doing
207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
208 * Connection. This may cause the MGMT discovering state to become false
209 * without user space's request but it is okay since the MGMT Discovery
210 * APIs do not promise that discovery should be done forever. Instead,
211 * the user space monitors the status of MGMT discovering and it may
212 * request for discovery again when this flag becomes false.
213 */
214 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
215 /* Put this connection to "pending" state so that it will be
216 * executed after the inquiry cancel command complete event.
217 */
218 conn->state = BT_CONNECT2;
219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
220 return;
221 }
222
223 conn->state = BT_CONNECT;
224 conn->out = true;
225 conn->role = HCI_ROLE_MASTER;
226
227 conn->attempt++;
228
229 conn->link_policy = hdev->link_policy;
230
231 memset(&cp, 0, sizeof(cp));
232 bacpy(&cp.bdaddr, &conn->dst);
233 cp.pscan_rep_mode = 0x02;
234
235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
236 if (ie) {
237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
238 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
239 cp.pscan_mode = ie->data.pscan_mode;
240 cp.clock_offset = ie->data.clock_offset |
241 cpu_to_le16(0x8000);
242 }
243
244 memcpy(conn->dev_class, ie->data.dev_class, 3);
245 }
246
247 cp.pkt_type = cpu_to_le16(conn->pkt_type);
248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
249 cp.role_switch = 0x01;
250 else
251 cp.role_switch = 0x00;
252
253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
254 }
255
hci_disconnect(struct hci_conn * conn,__u8 reason)256 int hci_disconnect(struct hci_conn *conn, __u8 reason)
257 {
258 BT_DBG("hcon %p", conn);
259
260 /* When we are central of an established connection and it enters
261 * the disconnect timeout, then go ahead and try to read the
262 * current clock offset. Processing of the result is done
263 * within the event handling and hci_clock_offset_evt function.
264 */
265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
267 struct hci_dev *hdev = conn->hdev;
268 struct hci_cp_read_clock_offset clkoff_cp;
269
270 clkoff_cp.handle = cpu_to_le16(conn->handle);
271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
272 &clkoff_cp);
273 }
274
275 return hci_abort_conn(conn, reason);
276 }
277
hci_add_sco(struct hci_conn * conn,__u16 handle)278 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
279 {
280 struct hci_dev *hdev = conn->hdev;
281 struct hci_cp_add_sco cp;
282
283 BT_DBG("hcon %p", conn);
284
285 conn->state = BT_CONNECT;
286 conn->out = true;
287
288 conn->attempt++;
289
290 cp.handle = cpu_to_le16(handle);
291 cp.pkt_type = cpu_to_le16(conn->pkt_type);
292
293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
294 }
295
find_next_esco_param(struct hci_conn * conn,const struct sco_param * esco_param,int size)296 static bool find_next_esco_param(struct hci_conn *conn,
297 const struct sco_param *esco_param, int size)
298 {
299 for (; conn->attempt <= size; conn->attempt++) {
300 if (lmp_esco_2m_capable(conn->link) ||
301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
302 break;
303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
304 conn, conn->attempt);
305 }
306
307 return conn->attempt <= size;
308 }
309
hci_enhanced_setup_sync_conn(struct hci_conn * conn,__u16 handle)310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle)
311 {
312 struct hci_dev *hdev = conn->hdev;
313 struct hci_cp_enhanced_setup_sync_conn cp;
314 const struct sco_param *param;
315
316 bt_dev_dbg(hdev, "hcon %p", conn);
317
318 /* for offload use case, codec needs to configured before opening SCO */
319 if (conn->codec.data_path)
320 hci_req_configure_datapath(hdev, &conn->codec);
321
322 conn->state = BT_CONNECT;
323 conn->out = true;
324
325 conn->attempt++;
326
327 memset(&cp, 0x00, sizeof(cp));
328
329 cp.handle = cpu_to_le16(handle);
330
331 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
332 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
333
334 switch (conn->codec.id) {
335 case BT_CODEC_MSBC:
336 if (!find_next_esco_param(conn, esco_param_msbc,
337 ARRAY_SIZE(esco_param_msbc)))
338 return false;
339
340 param = &esco_param_msbc[conn->attempt - 1];
341 cp.tx_coding_format.id = 0x05;
342 cp.rx_coding_format.id = 0x05;
343 cp.tx_codec_frame_size = __cpu_to_le16(60);
344 cp.rx_codec_frame_size = __cpu_to_le16(60);
345 cp.in_bandwidth = __cpu_to_le32(32000);
346 cp.out_bandwidth = __cpu_to_le32(32000);
347 cp.in_coding_format.id = 0x04;
348 cp.out_coding_format.id = 0x04;
349 cp.in_coded_data_size = __cpu_to_le16(16);
350 cp.out_coded_data_size = __cpu_to_le16(16);
351 cp.in_pcm_data_format = 2;
352 cp.out_pcm_data_format = 2;
353 cp.in_pcm_sample_payload_msb_pos = 0;
354 cp.out_pcm_sample_payload_msb_pos = 0;
355 cp.in_data_path = conn->codec.data_path;
356 cp.out_data_path = conn->codec.data_path;
357 cp.in_transport_unit_size = 1;
358 cp.out_transport_unit_size = 1;
359 break;
360
361 case BT_CODEC_TRANSPARENT:
362 if (!find_next_esco_param(conn, esco_param_msbc,
363 ARRAY_SIZE(esco_param_msbc)))
364 return false;
365 param = &esco_param_msbc[conn->attempt - 1];
366 cp.tx_coding_format.id = 0x03;
367 cp.rx_coding_format.id = 0x03;
368 cp.tx_codec_frame_size = __cpu_to_le16(60);
369 cp.rx_codec_frame_size = __cpu_to_le16(60);
370 cp.in_bandwidth = __cpu_to_le32(0x1f40);
371 cp.out_bandwidth = __cpu_to_le32(0x1f40);
372 cp.in_coding_format.id = 0x03;
373 cp.out_coding_format.id = 0x03;
374 cp.in_coded_data_size = __cpu_to_le16(16);
375 cp.out_coded_data_size = __cpu_to_le16(16);
376 cp.in_pcm_data_format = 2;
377 cp.out_pcm_data_format = 2;
378 cp.in_pcm_sample_payload_msb_pos = 0;
379 cp.out_pcm_sample_payload_msb_pos = 0;
380 cp.in_data_path = conn->codec.data_path;
381 cp.out_data_path = conn->codec.data_path;
382 cp.in_transport_unit_size = 1;
383 cp.out_transport_unit_size = 1;
384 break;
385
386 case BT_CODEC_CVSD:
387 if (lmp_esco_capable(conn->link)) {
388 if (!find_next_esco_param(conn, esco_param_cvsd,
389 ARRAY_SIZE(esco_param_cvsd)))
390 return false;
391 param = &esco_param_cvsd[conn->attempt - 1];
392 } else {
393 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
394 return false;
395 param = &sco_param_cvsd[conn->attempt - 1];
396 }
397 cp.tx_coding_format.id = 2;
398 cp.rx_coding_format.id = 2;
399 cp.tx_codec_frame_size = __cpu_to_le16(60);
400 cp.rx_codec_frame_size = __cpu_to_le16(60);
401 cp.in_bandwidth = __cpu_to_le32(16000);
402 cp.out_bandwidth = __cpu_to_le32(16000);
403 cp.in_coding_format.id = 4;
404 cp.out_coding_format.id = 4;
405 cp.in_coded_data_size = __cpu_to_le16(16);
406 cp.out_coded_data_size = __cpu_to_le16(16);
407 cp.in_pcm_data_format = 2;
408 cp.out_pcm_data_format = 2;
409 cp.in_pcm_sample_payload_msb_pos = 0;
410 cp.out_pcm_sample_payload_msb_pos = 0;
411 cp.in_data_path = conn->codec.data_path;
412 cp.out_data_path = conn->codec.data_path;
413 cp.in_transport_unit_size = 16;
414 cp.out_transport_unit_size = 16;
415 break;
416 default:
417 return false;
418 }
419
420 cp.retrans_effort = param->retrans_effort;
421 cp.pkt_type = __cpu_to_le16(param->pkt_type);
422 cp.max_latency = __cpu_to_le16(param->max_latency);
423
424 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
425 return false;
426
427 return true;
428 }
429
hci_setup_sync_conn(struct hci_conn * conn,__u16 handle)430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
431 {
432 struct hci_dev *hdev = conn->hdev;
433 struct hci_cp_setup_sync_conn cp;
434 const struct sco_param *param;
435
436 bt_dev_dbg(hdev, "hcon %p", conn);
437
438 conn->state = BT_CONNECT;
439 conn->out = true;
440
441 conn->attempt++;
442
443 cp.handle = cpu_to_le16(handle);
444
445 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
446 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
447 cp.voice_setting = cpu_to_le16(conn->setting);
448
449 switch (conn->setting & SCO_AIRMODE_MASK) {
450 case SCO_AIRMODE_TRANSP:
451 if (!find_next_esco_param(conn, esco_param_msbc,
452 ARRAY_SIZE(esco_param_msbc)))
453 return false;
454 param = &esco_param_msbc[conn->attempt - 1];
455 break;
456 case SCO_AIRMODE_CVSD:
457 if (lmp_esco_capable(conn->link)) {
458 if (!find_next_esco_param(conn, esco_param_cvsd,
459 ARRAY_SIZE(esco_param_cvsd)))
460 return false;
461 param = &esco_param_cvsd[conn->attempt - 1];
462 } else {
463 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
464 return false;
465 param = &sco_param_cvsd[conn->attempt - 1];
466 }
467 break;
468 default:
469 return false;
470 }
471
472 cp.retrans_effort = param->retrans_effort;
473 cp.pkt_type = __cpu_to_le16(param->pkt_type);
474 cp.max_latency = __cpu_to_le16(param->max_latency);
475
476 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
477 return false;
478
479 return true;
480 }
481
hci_setup_sync(struct hci_conn * conn,__u16 handle)482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
483 {
484 if (enhanced_sync_conn_capable(conn->hdev))
485 return hci_enhanced_setup_sync_conn(conn, handle);
486
487 return hci_setup_sync_conn(conn, handle);
488 }
489
hci_le_conn_update(struct hci_conn * conn,u16 min,u16 max,u16 latency,u16 to_multiplier)490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
491 u16 to_multiplier)
492 {
493 struct hci_dev *hdev = conn->hdev;
494 struct hci_conn_params *params;
495 struct hci_cp_le_conn_update cp;
496
497 hci_dev_lock(hdev);
498
499 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
500 if (params) {
501 params->conn_min_interval = min;
502 params->conn_max_interval = max;
503 params->conn_latency = latency;
504 params->supervision_timeout = to_multiplier;
505 }
506
507 hci_dev_unlock(hdev);
508
509 memset(&cp, 0, sizeof(cp));
510 cp.handle = cpu_to_le16(conn->handle);
511 cp.conn_interval_min = cpu_to_le16(min);
512 cp.conn_interval_max = cpu_to_le16(max);
513 cp.conn_latency = cpu_to_le16(latency);
514 cp.supervision_timeout = cpu_to_le16(to_multiplier);
515 cp.min_ce_len = cpu_to_le16(0x0000);
516 cp.max_ce_len = cpu_to_le16(0x0000);
517
518 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
519
520 if (params)
521 return 0x01;
522
523 return 0x00;
524 }
525
hci_le_start_enc(struct hci_conn * conn,__le16 ediv,__le64 rand,__u8 ltk[16],__u8 key_size)526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
527 __u8 ltk[16], __u8 key_size)
528 {
529 struct hci_dev *hdev = conn->hdev;
530 struct hci_cp_le_start_enc cp;
531
532 BT_DBG("hcon %p", conn);
533
534 memset(&cp, 0, sizeof(cp));
535
536 cp.handle = cpu_to_le16(conn->handle);
537 cp.rand = rand;
538 cp.ediv = ediv;
539 memcpy(cp.ltk, ltk, key_size);
540
541 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
542 }
543
544 /* Device _must_ be locked */
hci_sco_setup(struct hci_conn * conn,__u8 status)545 void hci_sco_setup(struct hci_conn *conn, __u8 status)
546 {
547 struct hci_conn *sco = conn->link;
548
549 if (!sco)
550 return;
551
552 BT_DBG("hcon %p", conn);
553
554 if (!status) {
555 if (lmp_esco_capable(conn->hdev))
556 hci_setup_sync(sco, conn->handle);
557 else
558 hci_add_sco(sco, conn->handle);
559 } else {
560 hci_connect_cfm(sco, status);
561 hci_conn_del(sco);
562 }
563 }
564
hci_conn_timeout(struct work_struct * work)565 static void hci_conn_timeout(struct work_struct *work)
566 {
567 struct hci_conn *conn = container_of(work, struct hci_conn,
568 disc_work.work);
569 int refcnt = atomic_read(&conn->refcnt);
570
571 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
572
573 WARN_ON(refcnt < 0);
574
575 /* FIXME: It was observed that in pairing failed scenario, refcnt
576 * drops below 0. Probably this is because l2cap_conn_del calls
577 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
578 * dropped. After that loop hci_chan_del is called which also drops
579 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
580 * otherwise drop it.
581 */
582 if (refcnt > 0)
583 return;
584
585 /* LE connections in scanning state need special handling */
586 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
587 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
588 hci_connect_le_scan_remove(conn);
589 return;
590 }
591
592 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
593 }
594
595 /* Enter sniff mode */
hci_conn_idle(struct work_struct * work)596 static void hci_conn_idle(struct work_struct *work)
597 {
598 struct hci_conn *conn = container_of(work, struct hci_conn,
599 idle_work.work);
600 struct hci_dev *hdev = conn->hdev;
601
602 BT_DBG("hcon %p mode %d", conn, conn->mode);
603
604 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
605 return;
606
607 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
608 return;
609
610 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
611 struct hci_cp_sniff_subrate cp;
612 cp.handle = cpu_to_le16(conn->handle);
613 cp.max_latency = cpu_to_le16(0);
614 cp.min_remote_timeout = cpu_to_le16(0);
615 cp.min_local_timeout = cpu_to_le16(0);
616 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
617 }
618
619 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
620 struct hci_cp_sniff_mode cp;
621 cp.handle = cpu_to_le16(conn->handle);
622 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
623 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
624 cp.attempt = cpu_to_le16(4);
625 cp.timeout = cpu_to_le16(1);
626 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
627 }
628 }
629
hci_conn_auto_accept(struct work_struct * work)630 static void hci_conn_auto_accept(struct work_struct *work)
631 {
632 struct hci_conn *conn = container_of(work, struct hci_conn,
633 auto_accept_work.work);
634
635 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
636 &conn->dst);
637 }
638
le_disable_advertising(struct hci_dev * hdev)639 static void le_disable_advertising(struct hci_dev *hdev)
640 {
641 if (ext_adv_capable(hdev)) {
642 struct hci_cp_le_set_ext_adv_enable cp;
643
644 cp.enable = 0x00;
645 cp.num_of_sets = 0x00;
646
647 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
648 &cp);
649 } else {
650 u8 enable = 0x00;
651 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
652 &enable);
653 }
654 }
655
le_conn_timeout(struct work_struct * work)656 static void le_conn_timeout(struct work_struct *work)
657 {
658 struct hci_conn *conn = container_of(work, struct hci_conn,
659 le_conn_timeout.work);
660 struct hci_dev *hdev = conn->hdev;
661
662 BT_DBG("");
663
664 /* We could end up here due to having done directed advertising,
665 * so clean up the state if necessary. This should however only
666 * happen with broken hardware or if low duty cycle was used
667 * (which doesn't have a timeout of its own).
668 */
669 if (conn->role == HCI_ROLE_SLAVE) {
670 /* Disable LE Advertising */
671 le_disable_advertising(hdev);
672 hci_dev_lock(hdev);
673 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
674 hci_dev_unlock(hdev);
675 return;
676 }
677
678 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
679 }
680
hci_conn_add(struct hci_dev * hdev,int type,bdaddr_t * dst,u8 role)681 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
682 u8 role)
683 {
684 struct hci_conn *conn;
685
686 BT_DBG("%s dst %pMR", hdev->name, dst);
687
688 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
689 if (!conn)
690 return NULL;
691
692 bacpy(&conn->dst, dst);
693 bacpy(&conn->src, &hdev->bdaddr);
694 conn->handle = HCI_CONN_HANDLE_UNSET;
695 conn->hdev = hdev;
696 conn->type = type;
697 conn->role = role;
698 conn->mode = HCI_CM_ACTIVE;
699 conn->state = BT_OPEN;
700 conn->auth_type = HCI_AT_GENERAL_BONDING;
701 conn->io_capability = hdev->io_capability;
702 conn->remote_auth = 0xff;
703 conn->key_type = 0xff;
704 conn->rssi = HCI_RSSI_INVALID;
705 conn->tx_power = HCI_TX_POWER_INVALID;
706 conn->max_tx_power = HCI_TX_POWER_INVALID;
707
708 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
709 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
710
711 /* Set Default Authenticated payload timeout to 30s */
712 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
713
714 if (conn->role == HCI_ROLE_MASTER)
715 conn->out = true;
716
717 switch (type) {
718 case ACL_LINK:
719 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
720 break;
721 case LE_LINK:
722 /* conn->src should reflect the local identity address */
723 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
724 break;
725 case SCO_LINK:
726 if (lmp_esco_capable(hdev))
727 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
728 (hdev->esco_type & EDR_ESCO_MASK);
729 else
730 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
731 break;
732 case ESCO_LINK:
733 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
734 break;
735 }
736
737 skb_queue_head_init(&conn->data_q);
738
739 INIT_LIST_HEAD(&conn->chan_list);
740
741 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
742 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
743 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
744 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
745 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
746
747 atomic_set(&conn->refcnt, 0);
748
749 hci_dev_hold(hdev);
750
751 hci_conn_hash_add(hdev, conn);
752
753 /* The SCO and eSCO connections will only be notified when their
754 * setup has been completed. This is different to ACL links which
755 * can be notified right away.
756 */
757 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
758 if (hdev->notify)
759 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
760 }
761
762 hci_conn_init_sysfs(conn);
763
764 return conn;
765 }
766
hci_conn_del(struct hci_conn * conn)767 int hci_conn_del(struct hci_conn *conn)
768 {
769 struct hci_dev *hdev = conn->hdev;
770
771 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
772
773 cancel_delayed_work_sync(&conn->disc_work);
774 cancel_delayed_work_sync(&conn->auto_accept_work);
775 cancel_delayed_work_sync(&conn->idle_work);
776
777 if (conn->type == ACL_LINK) {
778 struct hci_conn *sco = conn->link;
779 if (sco)
780 sco->link = NULL;
781
782 /* Unacked frames */
783 hdev->acl_cnt += conn->sent;
784 } else if (conn->type == LE_LINK) {
785 cancel_delayed_work(&conn->le_conn_timeout);
786
787 if (hdev->le_pkts)
788 hdev->le_cnt += conn->sent;
789 else
790 hdev->acl_cnt += conn->sent;
791 } else {
792 struct hci_conn *acl = conn->link;
793 if (acl) {
794 acl->link = NULL;
795 hci_conn_drop(acl);
796 }
797 }
798
799 if (conn->amp_mgr)
800 amp_mgr_put(conn->amp_mgr);
801
802 skb_queue_purge(&conn->data_q);
803
804 /* Remove the connection from the list and cleanup its remaining
805 * state. This is a separate function since for some cases like
806 * BT_CONNECT_SCAN we *only* want the cleanup part without the
807 * rest of hci_conn_del.
808 */
809 hci_conn_cleanup(conn);
810
811 return 0;
812 }
813
hci_get_route(bdaddr_t * dst,bdaddr_t * src,uint8_t src_type)814 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
815 {
816 int use_src = bacmp(src, BDADDR_ANY);
817 struct hci_dev *hdev = NULL, *d;
818
819 BT_DBG("%pMR -> %pMR", src, dst);
820
821 read_lock(&hci_dev_list_lock);
822
823 list_for_each_entry(d, &hci_dev_list, list) {
824 if (!test_bit(HCI_UP, &d->flags) ||
825 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
826 d->dev_type != HCI_PRIMARY)
827 continue;
828
829 /* Simple routing:
830 * No source address - find interface with bdaddr != dst
831 * Source address - find interface with bdaddr == src
832 */
833
834 if (use_src) {
835 bdaddr_t id_addr;
836 u8 id_addr_type;
837
838 if (src_type == BDADDR_BREDR) {
839 if (!lmp_bredr_capable(d))
840 continue;
841 bacpy(&id_addr, &d->bdaddr);
842 id_addr_type = BDADDR_BREDR;
843 } else {
844 if (!lmp_le_capable(d))
845 continue;
846
847 hci_copy_identity_address(d, &id_addr,
848 &id_addr_type);
849
850 /* Convert from HCI to three-value type */
851 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
852 id_addr_type = BDADDR_LE_PUBLIC;
853 else
854 id_addr_type = BDADDR_LE_RANDOM;
855 }
856
857 if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
858 hdev = d; break;
859 }
860 } else {
861 if (bacmp(&d->bdaddr, dst)) {
862 hdev = d; break;
863 }
864 }
865 }
866
867 if (hdev)
868 hdev = hci_dev_hold(hdev);
869
870 read_unlock(&hci_dev_list_lock);
871 return hdev;
872 }
873 EXPORT_SYMBOL(hci_get_route);
874
875 /* This function requires the caller holds hdev->lock */
hci_le_conn_failed(struct hci_conn * conn,u8 status)876 static void hci_le_conn_failed(struct hci_conn *conn, u8 status)
877 {
878 struct hci_dev *hdev = conn->hdev;
879 struct hci_conn_params *params;
880
881 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
882 conn->dst_type);
883 if (params && params->conn) {
884 hci_conn_drop(params->conn);
885 hci_conn_put(params->conn);
886 params->conn = NULL;
887 }
888
889 /* If the status indicates successful cancellation of
890 * the attempt (i.e. Unknown Connection Id) there's no point of
891 * notifying failure since we'll go back to keep trying to
892 * connect. The only exception is explicit connect requests
893 * where a timeout + cancel does indicate an actual failure.
894 */
895 if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
896 (params && params->explicit_connect))
897 mgmt_connect_failed(hdev, &conn->dst, conn->type,
898 conn->dst_type, status);
899
900 /* Since we may have temporarily stopped the background scanning in
901 * favor of connection establishment, we should restart it.
902 */
903 hci_update_passive_scan(hdev);
904
905 /* Enable advertising in case this was a failed connection
906 * attempt as a peripheral.
907 */
908 hci_enable_advertising(hdev);
909 }
910
911 /* This function requires the caller holds hdev->lock */
hci_conn_failed(struct hci_conn * conn,u8 status)912 void hci_conn_failed(struct hci_conn *conn, u8 status)
913 {
914 struct hci_dev *hdev = conn->hdev;
915
916 bt_dev_dbg(hdev, "status 0x%2.2x", status);
917
918 switch (conn->type) {
919 case LE_LINK:
920 hci_le_conn_failed(conn, status);
921 break;
922 case ACL_LINK:
923 mgmt_connect_failed(hdev, &conn->dst, conn->type,
924 conn->dst_type, status);
925 break;
926 }
927
928 conn->state = BT_CLOSED;
929 hci_connect_cfm(conn, status);
930 hci_conn_del(conn);
931 }
932
create_le_conn_complete(struct hci_dev * hdev,void * data,int err)933 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
934 {
935 struct hci_conn *conn = data;
936
937 hci_dev_lock(hdev);
938
939 if (!err) {
940 hci_connect_le_scan_cleanup(conn);
941 goto done;
942 }
943
944 bt_dev_err(hdev, "request failed to create LE connection: err %d", err);
945
946 /* Check if connection is still pending */
947 if (conn != hci_lookup_le_connect(hdev))
948 goto done;
949
950 hci_conn_failed(conn, err);
951
952 done:
953 hci_dev_unlock(hdev);
954 }
955
hci_connect_le_sync(struct hci_dev * hdev,void * data)956 static int hci_connect_le_sync(struct hci_dev *hdev, void *data)
957 {
958 struct hci_conn *conn = data;
959
960 bt_dev_dbg(hdev, "conn %p", conn);
961
962 return hci_le_create_conn_sync(hdev, conn);
963 }
964
hci_connect_le(struct hci_dev * hdev,bdaddr_t * dst,u8 dst_type,bool dst_resolved,u8 sec_level,u16 conn_timeout,u8 role)965 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
966 u8 dst_type, bool dst_resolved, u8 sec_level,
967 u16 conn_timeout, u8 role)
968 {
969 struct hci_conn *conn;
970 struct smp_irk *irk;
971 int err;
972
973 /* Let's make sure that le is enabled.*/
974 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
975 if (lmp_le_capable(hdev))
976 return ERR_PTR(-ECONNREFUSED);
977
978 return ERR_PTR(-EOPNOTSUPP);
979 }
980
981 /* Since the controller supports only one LE connection attempt at a
982 * time, we return -EBUSY if there is any connection attempt running.
983 */
984 if (hci_lookup_le_connect(hdev))
985 return ERR_PTR(-EBUSY);
986
987 /* If there's already a connection object but it's not in
988 * scanning state it means it must already be established, in
989 * which case we can't do anything else except report a failure
990 * to connect.
991 */
992 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
993 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
994 return ERR_PTR(-EBUSY);
995 }
996
997 /* Check if the destination address has been resolved by the controller
998 * since if it did then the identity address shall be used.
999 */
1000 if (!dst_resolved) {
1001 /* When given an identity address with existing identity
1002 * resolving key, the connection needs to be established
1003 * to a resolvable random address.
1004 *
1005 * Storing the resolvable random address is required here
1006 * to handle connection failures. The address will later
1007 * be resolved back into the original identity address
1008 * from the connect request.
1009 */
1010 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1011 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1012 dst = &irk->rpa;
1013 dst_type = ADDR_LE_DEV_RANDOM;
1014 }
1015 }
1016
1017 if (conn) {
1018 bacpy(&conn->dst, dst);
1019 } else {
1020 conn = hci_conn_add(hdev, LE_LINK, dst, role);
1021 if (!conn)
1022 return ERR_PTR(-ENOMEM);
1023 hci_conn_hold(conn);
1024 conn->pending_sec_level = sec_level;
1025 }
1026
1027 conn->dst_type = dst_type;
1028 conn->sec_level = BT_SECURITY_LOW;
1029 conn->conn_timeout = conn_timeout;
1030
1031 conn->state = BT_CONNECT;
1032 clear_bit(HCI_CONN_SCANNING, &conn->flags);
1033
1034 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn,
1035 create_le_conn_complete);
1036 if (err) {
1037 hci_conn_del(conn);
1038 return ERR_PTR(err);
1039 }
1040
1041 return conn;
1042 }
1043
is_connected(struct hci_dev * hdev,bdaddr_t * addr,u8 type)1044 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1045 {
1046 struct hci_conn *conn;
1047
1048 conn = hci_conn_hash_lookup_le(hdev, addr, type);
1049 if (!conn)
1050 return false;
1051
1052 if (conn->state != BT_CONNECTED)
1053 return false;
1054
1055 return true;
1056 }
1057
1058 /* This function requires the caller holds hdev->lock */
hci_explicit_conn_params_set(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)1059 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1060 bdaddr_t *addr, u8 addr_type)
1061 {
1062 struct hci_conn_params *params;
1063
1064 if (is_connected(hdev, addr, addr_type))
1065 return -EISCONN;
1066
1067 params = hci_conn_params_lookup(hdev, addr, addr_type);
1068 if (!params) {
1069 params = hci_conn_params_add(hdev, addr, addr_type);
1070 if (!params)
1071 return -ENOMEM;
1072
1073 /* If we created new params, mark them to be deleted in
1074 * hci_connect_le_scan_cleanup. It's different case than
1075 * existing disabled params, those will stay after cleanup.
1076 */
1077 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1078 }
1079
1080 /* We're trying to connect, so make sure params are at pend_le_conns */
1081 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1082 params->auto_connect == HCI_AUTO_CONN_REPORT ||
1083 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1084 list_del_init(¶ms->action);
1085 list_add(¶ms->action, &hdev->pend_le_conns);
1086 }
1087
1088 params->explicit_connect = true;
1089
1090 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1091 params->auto_connect);
1092
1093 return 0;
1094 }
1095
1096 /* This function requires the caller holds hdev->lock */
hci_connect_le_scan(struct hci_dev * hdev,bdaddr_t * dst,u8 dst_type,u8 sec_level,u16 conn_timeout,enum conn_reasons conn_reason)1097 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1098 u8 dst_type, u8 sec_level,
1099 u16 conn_timeout,
1100 enum conn_reasons conn_reason)
1101 {
1102 struct hci_conn *conn;
1103
1104 /* Let's make sure that le is enabled.*/
1105 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1106 if (lmp_le_capable(hdev))
1107 return ERR_PTR(-ECONNREFUSED);
1108
1109 return ERR_PTR(-EOPNOTSUPP);
1110 }
1111
1112 /* Some devices send ATT messages as soon as the physical link is
1113 * established. To be able to handle these ATT messages, the user-
1114 * space first establishes the connection and then starts the pairing
1115 * process.
1116 *
1117 * So if a hci_conn object already exists for the following connection
1118 * attempt, we simply update pending_sec_level and auth_type fields
1119 * and return the object found.
1120 */
1121 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1122 if (conn) {
1123 if (conn->pending_sec_level < sec_level)
1124 conn->pending_sec_level = sec_level;
1125 goto done;
1126 }
1127
1128 BT_DBG("requesting refresh of dst_addr");
1129
1130 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1131 if (!conn)
1132 return ERR_PTR(-ENOMEM);
1133
1134 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1135 hci_conn_del(conn);
1136 return ERR_PTR(-EBUSY);
1137 }
1138
1139 conn->state = BT_CONNECT;
1140 set_bit(HCI_CONN_SCANNING, &conn->flags);
1141 conn->dst_type = dst_type;
1142 conn->sec_level = BT_SECURITY_LOW;
1143 conn->pending_sec_level = sec_level;
1144 conn->conn_timeout = conn_timeout;
1145 conn->conn_reason = conn_reason;
1146
1147 hci_update_passive_scan(hdev);
1148
1149 done:
1150 hci_conn_hold(conn);
1151 return conn;
1152 }
1153
hci_connect_acl(struct hci_dev * hdev,bdaddr_t * dst,u8 sec_level,u8 auth_type,enum conn_reasons conn_reason)1154 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1155 u8 sec_level, u8 auth_type,
1156 enum conn_reasons conn_reason)
1157 {
1158 struct hci_conn *acl;
1159
1160 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1161 if (lmp_bredr_capable(hdev))
1162 return ERR_PTR(-ECONNREFUSED);
1163
1164 return ERR_PTR(-EOPNOTSUPP);
1165 }
1166
1167 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1168 if (!acl) {
1169 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1170 if (!acl)
1171 return ERR_PTR(-ENOMEM);
1172 }
1173
1174 hci_conn_hold(acl);
1175
1176 acl->conn_reason = conn_reason;
1177 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1178 acl->sec_level = BT_SECURITY_LOW;
1179 acl->pending_sec_level = sec_level;
1180 acl->auth_type = auth_type;
1181 hci_acl_create_connection(acl);
1182 }
1183
1184 return acl;
1185 }
1186
hci_connect_sco(struct hci_dev * hdev,int type,bdaddr_t * dst,__u16 setting,struct bt_codec * codec)1187 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1188 __u16 setting, struct bt_codec *codec)
1189 {
1190 struct hci_conn *acl;
1191 struct hci_conn *sco;
1192
1193 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1194 CONN_REASON_SCO_CONNECT);
1195 if (IS_ERR(acl))
1196 return acl;
1197
1198 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1199 if (!sco) {
1200 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1201 if (!sco) {
1202 hci_conn_drop(acl);
1203 return ERR_PTR(-ENOMEM);
1204 }
1205 }
1206
1207 acl->link = sco;
1208 sco->link = acl;
1209
1210 hci_conn_hold(sco);
1211
1212 sco->setting = setting;
1213 sco->codec = *codec;
1214
1215 if (acl->state == BT_CONNECTED &&
1216 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1217 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1218 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1219
1220 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1221 /* defer SCO setup until mode change completed */
1222 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1223 return sco;
1224 }
1225
1226 hci_sco_setup(acl, 0x00);
1227 }
1228
1229 return sco;
1230 }
1231
1232 /* Check link security requirement */
hci_conn_check_link_mode(struct hci_conn * conn)1233 int hci_conn_check_link_mode(struct hci_conn *conn)
1234 {
1235 BT_DBG("hcon %p", conn);
1236
1237 /* In Secure Connections Only mode, it is required that Secure
1238 * Connections is used and the link is encrypted with AES-CCM
1239 * using a P-256 authenticated combination key.
1240 */
1241 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1242 if (!hci_conn_sc_enabled(conn) ||
1243 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1244 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1245 return 0;
1246 }
1247
1248 /* AES encryption is required for Level 4:
1249 *
1250 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1251 * page 1319:
1252 *
1253 * 128-bit equivalent strength for link and encryption keys
1254 * required using FIPS approved algorithms (E0 not allowed,
1255 * SAFER+ not allowed, and P-192 not allowed; encryption key
1256 * not shortened)
1257 */
1258 if (conn->sec_level == BT_SECURITY_FIPS &&
1259 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1260 bt_dev_err(conn->hdev,
1261 "Invalid security: Missing AES-CCM usage");
1262 return 0;
1263 }
1264
1265 if (hci_conn_ssp_enabled(conn) &&
1266 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1267 return 0;
1268
1269 return 1;
1270 }
1271
1272 /* Authenticate remote device */
hci_conn_auth(struct hci_conn * conn,__u8 sec_level,__u8 auth_type)1273 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1274 {
1275 BT_DBG("hcon %p", conn);
1276
1277 if (conn->pending_sec_level > sec_level)
1278 sec_level = conn->pending_sec_level;
1279
1280 if (sec_level > conn->sec_level)
1281 conn->pending_sec_level = sec_level;
1282 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1283 return 1;
1284
1285 /* Make sure we preserve an existing MITM requirement*/
1286 auth_type |= (conn->auth_type & 0x01);
1287
1288 conn->auth_type = auth_type;
1289
1290 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1291 struct hci_cp_auth_requested cp;
1292
1293 cp.handle = cpu_to_le16(conn->handle);
1294 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1295 sizeof(cp), &cp);
1296
1297 /* If we're already encrypted set the REAUTH_PEND flag,
1298 * otherwise set the ENCRYPT_PEND.
1299 */
1300 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1301 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1302 else
1303 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1304 }
1305
1306 return 0;
1307 }
1308
1309 /* Encrypt the link */
hci_conn_encrypt(struct hci_conn * conn)1310 static void hci_conn_encrypt(struct hci_conn *conn)
1311 {
1312 BT_DBG("hcon %p", conn);
1313
1314 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1315 struct hci_cp_set_conn_encrypt cp;
1316 cp.handle = cpu_to_le16(conn->handle);
1317 cp.encrypt = 0x01;
1318 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1319 &cp);
1320 }
1321 }
1322
1323 /* Enable security */
hci_conn_security(struct hci_conn * conn,__u8 sec_level,__u8 auth_type,bool initiator)1324 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1325 bool initiator)
1326 {
1327 BT_DBG("hcon %p", conn);
1328
1329 if (conn->type == LE_LINK)
1330 return smp_conn_security(conn, sec_level);
1331
1332 /* For sdp we don't need the link key. */
1333 if (sec_level == BT_SECURITY_SDP)
1334 return 1;
1335
1336 /* For non 2.1 devices and low security level we don't need the link
1337 key. */
1338 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1339 return 1;
1340
1341 /* For other security levels we need the link key. */
1342 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1343 goto auth;
1344
1345 /* An authenticated FIPS approved combination key has sufficient
1346 * security for security level 4. */
1347 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1348 sec_level == BT_SECURITY_FIPS)
1349 goto encrypt;
1350
1351 /* An authenticated combination key has sufficient security for
1352 security level 3. */
1353 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1354 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1355 sec_level == BT_SECURITY_HIGH)
1356 goto encrypt;
1357
1358 /* An unauthenticated combination key has sufficient security for
1359 security level 1 and 2. */
1360 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1361 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1362 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1363 goto encrypt;
1364
1365 /* A combination key has always sufficient security for the security
1366 levels 1 or 2. High security level requires the combination key
1367 is generated using maximum PIN code length (16).
1368 For pre 2.1 units. */
1369 if (conn->key_type == HCI_LK_COMBINATION &&
1370 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1371 conn->pin_length == 16))
1372 goto encrypt;
1373
1374 auth:
1375 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1376 return 0;
1377
1378 if (initiator)
1379 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1380
1381 if (!hci_conn_auth(conn, sec_level, auth_type))
1382 return 0;
1383
1384 encrypt:
1385 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1386 /* Ensure that the encryption key size has been read,
1387 * otherwise stall the upper layer responses.
1388 */
1389 if (!conn->enc_key_size)
1390 return 0;
1391
1392 /* Nothing else needed, all requirements are met */
1393 return 1;
1394 }
1395
1396 hci_conn_encrypt(conn);
1397 return 0;
1398 }
1399 EXPORT_SYMBOL(hci_conn_security);
1400
1401 /* Check secure link requirement */
hci_conn_check_secure(struct hci_conn * conn,__u8 sec_level)1402 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1403 {
1404 BT_DBG("hcon %p", conn);
1405
1406 /* Accept if non-secure or higher security level is required */
1407 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1408 return 1;
1409
1410 /* Accept if secure or higher security level is already present */
1411 if (conn->sec_level == BT_SECURITY_HIGH ||
1412 conn->sec_level == BT_SECURITY_FIPS)
1413 return 1;
1414
1415 /* Reject not secure link */
1416 return 0;
1417 }
1418 EXPORT_SYMBOL(hci_conn_check_secure);
1419
1420 /* Switch role */
hci_conn_switch_role(struct hci_conn * conn,__u8 role)1421 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1422 {
1423 BT_DBG("hcon %p", conn);
1424
1425 if (role == conn->role)
1426 return 1;
1427
1428 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1429 struct hci_cp_switch_role cp;
1430 bacpy(&cp.bdaddr, &conn->dst);
1431 cp.role = role;
1432 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1433 }
1434
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(hci_conn_switch_role);
1438
1439 /* Enter active mode */
hci_conn_enter_active_mode(struct hci_conn * conn,__u8 force_active)1440 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1441 {
1442 struct hci_dev *hdev = conn->hdev;
1443
1444 BT_DBG("hcon %p mode %d", conn, conn->mode);
1445
1446 if (conn->mode != HCI_CM_SNIFF)
1447 goto timer;
1448
1449 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1450 goto timer;
1451
1452 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1453 struct hci_cp_exit_sniff_mode cp;
1454 cp.handle = cpu_to_le16(conn->handle);
1455 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1456 }
1457
1458 timer:
1459 if (hdev->idle_timeout > 0)
1460 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1461 msecs_to_jiffies(hdev->idle_timeout));
1462 }
1463
1464 /* Drop all connection on the device */
hci_conn_hash_flush(struct hci_dev * hdev)1465 void hci_conn_hash_flush(struct hci_dev *hdev)
1466 {
1467 struct hci_conn_hash *h = &hdev->conn_hash;
1468 struct hci_conn *c, *n;
1469
1470 BT_DBG("hdev %s", hdev->name);
1471
1472 list_for_each_entry_safe(c, n, &h->list, list) {
1473 c->state = BT_CLOSED;
1474
1475 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1476 hci_conn_del(c);
1477 }
1478 }
1479
1480 /* Check pending connect attempts */
hci_conn_check_pending(struct hci_dev * hdev)1481 void hci_conn_check_pending(struct hci_dev *hdev)
1482 {
1483 struct hci_conn *conn;
1484
1485 BT_DBG("hdev %s", hdev->name);
1486
1487 hci_dev_lock(hdev);
1488
1489 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1490 if (conn)
1491 hci_acl_create_connection(conn);
1492
1493 hci_dev_unlock(hdev);
1494 }
1495
get_link_mode(struct hci_conn * conn)1496 static u32 get_link_mode(struct hci_conn *conn)
1497 {
1498 u32 link_mode = 0;
1499
1500 if (conn->role == HCI_ROLE_MASTER)
1501 link_mode |= HCI_LM_MASTER;
1502
1503 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1504 link_mode |= HCI_LM_ENCRYPT;
1505
1506 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1507 link_mode |= HCI_LM_AUTH;
1508
1509 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1510 link_mode |= HCI_LM_SECURE;
1511
1512 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1513 link_mode |= HCI_LM_FIPS;
1514
1515 return link_mode;
1516 }
1517
hci_get_conn_list(void __user * arg)1518 int hci_get_conn_list(void __user *arg)
1519 {
1520 struct hci_conn *c;
1521 struct hci_conn_list_req req, *cl;
1522 struct hci_conn_info *ci;
1523 struct hci_dev *hdev;
1524 int n = 0, size, err;
1525
1526 if (copy_from_user(&req, arg, sizeof(req)))
1527 return -EFAULT;
1528
1529 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1530 return -EINVAL;
1531
1532 size = sizeof(req) + req.conn_num * sizeof(*ci);
1533
1534 cl = kmalloc(size, GFP_KERNEL);
1535 if (!cl)
1536 return -ENOMEM;
1537
1538 hdev = hci_dev_get(req.dev_id);
1539 if (!hdev) {
1540 kfree(cl);
1541 return -ENODEV;
1542 }
1543
1544 ci = cl->conn_info;
1545
1546 hci_dev_lock(hdev);
1547 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1548 bacpy(&(ci + n)->bdaddr, &c->dst);
1549 (ci + n)->handle = c->handle;
1550 (ci + n)->type = c->type;
1551 (ci + n)->out = c->out;
1552 (ci + n)->state = c->state;
1553 (ci + n)->link_mode = get_link_mode(c);
1554 if (++n >= req.conn_num)
1555 break;
1556 }
1557 hci_dev_unlock(hdev);
1558
1559 cl->dev_id = hdev->id;
1560 cl->conn_num = n;
1561 size = sizeof(req) + n * sizeof(*ci);
1562
1563 hci_dev_put(hdev);
1564
1565 err = copy_to_user(arg, cl, size);
1566 kfree(cl);
1567
1568 return err ? -EFAULT : 0;
1569 }
1570
hci_get_conn_info(struct hci_dev * hdev,void __user * arg)1571 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1572 {
1573 struct hci_conn_info_req req;
1574 struct hci_conn_info ci;
1575 struct hci_conn *conn;
1576 char __user *ptr = arg + sizeof(req);
1577
1578 if (copy_from_user(&req, arg, sizeof(req)))
1579 return -EFAULT;
1580
1581 hci_dev_lock(hdev);
1582 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1583 if (conn) {
1584 bacpy(&ci.bdaddr, &conn->dst);
1585 ci.handle = conn->handle;
1586 ci.type = conn->type;
1587 ci.out = conn->out;
1588 ci.state = conn->state;
1589 ci.link_mode = get_link_mode(conn);
1590 }
1591 hci_dev_unlock(hdev);
1592
1593 if (!conn)
1594 return -ENOENT;
1595
1596 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1597 }
1598
hci_get_auth_info(struct hci_dev * hdev,void __user * arg)1599 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1600 {
1601 struct hci_auth_info_req req;
1602 struct hci_conn *conn;
1603
1604 if (copy_from_user(&req, arg, sizeof(req)))
1605 return -EFAULT;
1606
1607 hci_dev_lock(hdev);
1608 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1609 if (conn)
1610 req.type = conn->auth_type;
1611 hci_dev_unlock(hdev);
1612
1613 if (!conn)
1614 return -ENOENT;
1615
1616 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1617 }
1618
hci_chan_create(struct hci_conn * conn)1619 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1620 {
1621 struct hci_dev *hdev = conn->hdev;
1622 struct hci_chan *chan;
1623
1624 BT_DBG("%s hcon %p", hdev->name, conn);
1625
1626 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1627 BT_DBG("Refusing to create new hci_chan");
1628 return NULL;
1629 }
1630
1631 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1632 if (!chan)
1633 return NULL;
1634
1635 chan->conn = hci_conn_get(conn);
1636 skb_queue_head_init(&chan->data_q);
1637 chan->state = BT_CONNECTED;
1638
1639 list_add_rcu(&chan->list, &conn->chan_list);
1640
1641 return chan;
1642 }
1643
hci_chan_del(struct hci_chan * chan)1644 void hci_chan_del(struct hci_chan *chan)
1645 {
1646 struct hci_conn *conn = chan->conn;
1647 struct hci_dev *hdev = conn->hdev;
1648
1649 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1650
1651 list_del_rcu(&chan->list);
1652
1653 synchronize_rcu();
1654
1655 /* Prevent new hci_chan's to be created for this hci_conn */
1656 set_bit(HCI_CONN_DROP, &conn->flags);
1657
1658 hci_conn_put(conn);
1659
1660 skb_queue_purge(&chan->data_q);
1661 kfree(chan);
1662 }
1663
hci_chan_list_flush(struct hci_conn * conn)1664 void hci_chan_list_flush(struct hci_conn *conn)
1665 {
1666 struct hci_chan *chan, *n;
1667
1668 BT_DBG("hcon %p", conn);
1669
1670 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1671 hci_chan_del(chan);
1672 }
1673
__hci_chan_lookup_handle(struct hci_conn * hcon,__u16 handle)1674 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1675 __u16 handle)
1676 {
1677 struct hci_chan *hchan;
1678
1679 list_for_each_entry(hchan, &hcon->chan_list, list) {
1680 if (hchan->handle == handle)
1681 return hchan;
1682 }
1683
1684 return NULL;
1685 }
1686
hci_chan_lookup_handle(struct hci_dev * hdev,__u16 handle)1687 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1688 {
1689 struct hci_conn_hash *h = &hdev->conn_hash;
1690 struct hci_conn *hcon;
1691 struct hci_chan *hchan = NULL;
1692
1693 rcu_read_lock();
1694
1695 list_for_each_entry_rcu(hcon, &h->list, list) {
1696 hchan = __hci_chan_lookup_handle(hcon, handle);
1697 if (hchan)
1698 break;
1699 }
1700
1701 rcu_read_unlock();
1702
1703 return hchan;
1704 }
1705
hci_conn_get_phy(struct hci_conn * conn)1706 u32 hci_conn_get_phy(struct hci_conn *conn)
1707 {
1708 u32 phys = 0;
1709
1710 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1711 * Table 6.2: Packets defined for synchronous, asynchronous, and
1712 * CPB logical transport types.
1713 */
1714 switch (conn->type) {
1715 case SCO_LINK:
1716 /* SCO logical transport (1 Mb/s):
1717 * HV1, HV2, HV3 and DV.
1718 */
1719 phys |= BT_PHY_BR_1M_1SLOT;
1720
1721 break;
1722
1723 case ACL_LINK:
1724 /* ACL logical transport (1 Mb/s) ptt=0:
1725 * DH1, DM3, DH3, DM5 and DH5.
1726 */
1727 phys |= BT_PHY_BR_1M_1SLOT;
1728
1729 if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1730 phys |= BT_PHY_BR_1M_3SLOT;
1731
1732 if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1733 phys |= BT_PHY_BR_1M_5SLOT;
1734
1735 /* ACL logical transport (2 Mb/s) ptt=1:
1736 * 2-DH1, 2-DH3 and 2-DH5.
1737 */
1738 if (!(conn->pkt_type & HCI_2DH1))
1739 phys |= BT_PHY_EDR_2M_1SLOT;
1740
1741 if (!(conn->pkt_type & HCI_2DH3))
1742 phys |= BT_PHY_EDR_2M_3SLOT;
1743
1744 if (!(conn->pkt_type & HCI_2DH5))
1745 phys |= BT_PHY_EDR_2M_5SLOT;
1746
1747 /* ACL logical transport (3 Mb/s) ptt=1:
1748 * 3-DH1, 3-DH3 and 3-DH5.
1749 */
1750 if (!(conn->pkt_type & HCI_3DH1))
1751 phys |= BT_PHY_EDR_3M_1SLOT;
1752
1753 if (!(conn->pkt_type & HCI_3DH3))
1754 phys |= BT_PHY_EDR_3M_3SLOT;
1755
1756 if (!(conn->pkt_type & HCI_3DH5))
1757 phys |= BT_PHY_EDR_3M_5SLOT;
1758
1759 break;
1760
1761 case ESCO_LINK:
1762 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1763 phys |= BT_PHY_BR_1M_1SLOT;
1764
1765 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1766 phys |= BT_PHY_BR_1M_3SLOT;
1767
1768 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1769 if (!(conn->pkt_type & ESCO_2EV3))
1770 phys |= BT_PHY_EDR_2M_1SLOT;
1771
1772 if (!(conn->pkt_type & ESCO_2EV5))
1773 phys |= BT_PHY_EDR_2M_3SLOT;
1774
1775 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1776 if (!(conn->pkt_type & ESCO_3EV3))
1777 phys |= BT_PHY_EDR_3M_1SLOT;
1778
1779 if (!(conn->pkt_type & ESCO_3EV5))
1780 phys |= BT_PHY_EDR_3M_3SLOT;
1781
1782 break;
1783
1784 case LE_LINK:
1785 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1786 phys |= BT_PHY_LE_1M_TX;
1787
1788 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1789 phys |= BT_PHY_LE_1M_RX;
1790
1791 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1792 phys |= BT_PHY_LE_2M_TX;
1793
1794 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1795 phys |= BT_PHY_LE_2M_RX;
1796
1797 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1798 phys |= BT_PHY_LE_CODED_TX;
1799
1800 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1801 phys |= BT_PHY_LE_CODED_RX;
1802
1803 break;
1804 }
1805
1806 return phys;
1807 }
1808