1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5 
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13 
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28 
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32 
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 
39 #include <linux/platform_data/crypto-ux500.h>
40 
41 #include "hash_alg.h"
42 
43 static int hash_mode;
44 module_param(hash_mode, int, 0);
45 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
46 
47 /* HMAC-SHA1, no key */
48 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
49 	0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
50 	0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
51 	0x70, 0x69, 0x0e, 0x1d
52 };
53 
54 /* HMAC-SHA256, no key */
55 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
56 	0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
57 	0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
58 	0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
59 	0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 };
61 
62 /**
63  * struct hash_driver_data - data specific to the driver.
64  *
65  * @device_list:	A list of registered devices to choose from.
66  * @device_allocation:	A semaphore initialized with number of devices.
67  */
68 struct hash_driver_data {
69 	struct klist		device_list;
70 	struct semaphore	device_allocation;
71 };
72 
73 static struct hash_driver_data	driver_data;
74 
75 /* Declaration of functions */
76 /**
77  * hash_messagepad - Pads a message and write the nblw bits.
78  * @device_data:	Structure for the hash device.
79  * @message:		Last word of a message
80  * @index_bytes:	The number of bytes in the last message
81  *
82  * This function manages the final part of the digest calculation, when less
83  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
84  *
85  */
86 static void hash_messagepad(struct hash_device_data *device_data,
87 			    const u32 *message, u8 index_bytes);
88 
89 /**
90  * release_hash_device - Releases a previously allocated hash device.
91  * @device_data:	Structure for the hash device.
92  *
93  */
release_hash_device(struct hash_device_data * device_data)94 static void release_hash_device(struct hash_device_data *device_data)
95 {
96 	spin_lock(&device_data->ctx_lock);
97 	device_data->current_ctx->device = NULL;
98 	device_data->current_ctx = NULL;
99 	spin_unlock(&device_data->ctx_lock);
100 
101 	/*
102 	 * The down_interruptible part for this semaphore is called in
103 	 * cryp_get_device_data.
104 	 */
105 	up(&driver_data.device_allocation);
106 }
107 
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)108 static void hash_dma_setup_channel(struct hash_device_data *device_data,
109 				   struct device *dev)
110 {
111 	struct hash_platform_data *platform_data = dev->platform_data;
112 	struct dma_slave_config conf = {
113 		.direction = DMA_MEM_TO_DEV,
114 		.dst_addr = device_data->phybase + HASH_DMA_FIFO,
115 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
116 		.dst_maxburst = 16,
117 	};
118 
119 	dma_cap_zero(device_data->dma.mask);
120 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
121 
122 	device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
123 	device_data->dma.chan_mem2hash =
124 		dma_request_channel(device_data->dma.mask,
125 				    platform_data->dma_filter,
126 				    device_data->dma.cfg_mem2hash);
127 
128 	dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
129 
130 	init_completion(&device_data->dma.complete);
131 }
132 
hash_dma_callback(void * data)133 static void hash_dma_callback(void *data)
134 {
135 	struct hash_ctx *ctx = data;
136 
137 	complete(&ctx->device->dma.complete);
138 }
139 
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)140 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
141 				 int len, enum dma_data_direction direction)
142 {
143 	struct dma_async_tx_descriptor *desc = NULL;
144 	struct dma_chan *channel = NULL;
145 
146 	if (direction != DMA_TO_DEVICE) {
147 		dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
148 			__func__);
149 		return -EFAULT;
150 	}
151 
152 	sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
153 
154 	channel = ctx->device->dma.chan_mem2hash;
155 	ctx->device->dma.sg = sg;
156 	ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
157 			ctx->device->dma.sg, ctx->device->dma.nents,
158 			direction);
159 
160 	if (!ctx->device->dma.sg_len) {
161 		dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
162 			__func__);
163 		return -EFAULT;
164 	}
165 
166 	dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
167 		__func__);
168 	desc = dmaengine_prep_slave_sg(channel,
169 			ctx->device->dma.sg, ctx->device->dma.sg_len,
170 			DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
171 	if (!desc) {
172 		dev_err(ctx->device->dev,
173 			"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
174 		return -EFAULT;
175 	}
176 
177 	desc->callback = hash_dma_callback;
178 	desc->callback_param = ctx;
179 
180 	dmaengine_submit(desc);
181 	dma_async_issue_pending(channel);
182 
183 	return 0;
184 }
185 
hash_dma_done(struct hash_ctx * ctx)186 static void hash_dma_done(struct hash_ctx *ctx)
187 {
188 	struct dma_chan *chan;
189 
190 	chan = ctx->device->dma.chan_mem2hash;
191 	dmaengine_terminate_all(chan);
192 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
193 		     ctx->device->dma.nents, DMA_TO_DEVICE);
194 }
195 
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)196 static int hash_dma_write(struct hash_ctx *ctx,
197 			  struct scatterlist *sg, int len)
198 {
199 	int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
200 	if (error) {
201 		dev_dbg(ctx->device->dev,
202 			"%s: hash_set_dma_transfer() failed\n", __func__);
203 		return error;
204 	}
205 
206 	return len;
207 }
208 
209 /**
210  * get_empty_message_digest - Returns a pre-calculated digest for
211  * the empty message.
212  * @device_data:	Structure for the hash device.
213  * @zero_hash:		Buffer to return the empty message digest.
214  * @zero_hash_size:	Hash size of the empty message digest.
215  * @zero_digest:	True if zero_digest returned.
216  */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)217 static int get_empty_message_digest(
218 		struct hash_device_data *device_data,
219 		u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
220 {
221 	int ret = 0;
222 	struct hash_ctx *ctx = device_data->current_ctx;
223 	*zero_digest = false;
224 
225 	/**
226 	 * Caller responsible for ctx != NULL.
227 	 */
228 
229 	if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
230 		if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
231 			memcpy(zero_hash, &sha1_zero_message_hash[0],
232 			       SHA1_DIGEST_SIZE);
233 			*zero_hash_size = SHA1_DIGEST_SIZE;
234 			*zero_digest = true;
235 		} else if (HASH_ALGO_SHA256 ==
236 				ctx->config.algorithm) {
237 			memcpy(zero_hash, &sha256_zero_message_hash[0],
238 			       SHA256_DIGEST_SIZE);
239 			*zero_hash_size = SHA256_DIGEST_SIZE;
240 			*zero_digest = true;
241 		} else {
242 			dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
243 				__func__);
244 			ret = -EINVAL;
245 			goto out;
246 		}
247 	} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
248 		if (!ctx->keylen) {
249 			if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
250 				memcpy(zero_hash, &zero_message_hmac_sha1[0],
251 				       SHA1_DIGEST_SIZE);
252 				*zero_hash_size = SHA1_DIGEST_SIZE;
253 				*zero_digest = true;
254 			} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
255 				memcpy(zero_hash, &zero_message_hmac_sha256[0],
256 				       SHA256_DIGEST_SIZE);
257 				*zero_hash_size = SHA256_DIGEST_SIZE;
258 				*zero_digest = true;
259 			} else {
260 				dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
261 					__func__);
262 				ret = -EINVAL;
263 				goto out;
264 			}
265 		} else {
266 			dev_dbg(device_data->dev,
267 				"%s: Continue hash calculation, since hmac key available\n",
268 				__func__);
269 		}
270 	}
271 out:
272 
273 	return ret;
274 }
275 
276 /**
277  * hash_disable_power - Request to disable power and clock.
278  * @device_data:	Structure for the hash device.
279  * @save_device_state:	If true, saves the current hw state.
280  *
281  * This function request for disabling power (regulator) and clock,
282  * and could also save current hw state.
283  */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)284 static int hash_disable_power(struct hash_device_data *device_data,
285 			      bool save_device_state)
286 {
287 	int ret = 0;
288 	struct device *dev = device_data->dev;
289 
290 	spin_lock(&device_data->power_state_lock);
291 	if (!device_data->power_state)
292 		goto out;
293 
294 	if (save_device_state) {
295 		hash_save_state(device_data,
296 				&device_data->state);
297 		device_data->restore_dev_state = true;
298 	}
299 
300 	clk_disable(device_data->clk);
301 	ret = regulator_disable(device_data->regulator);
302 	if (ret)
303 		dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
304 
305 	device_data->power_state = false;
306 
307 out:
308 	spin_unlock(&device_data->power_state_lock);
309 
310 	return ret;
311 }
312 
313 /**
314  * hash_enable_power - Request to enable power and clock.
315  * @device_data:		Structure for the hash device.
316  * @restore_device_state:	If true, restores a previous saved hw state.
317  *
318  * This function request for enabling power (regulator) and clock,
319  * and could also restore a previously saved hw state.
320  */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)321 static int hash_enable_power(struct hash_device_data *device_data,
322 			     bool restore_device_state)
323 {
324 	int ret = 0;
325 	struct device *dev = device_data->dev;
326 
327 	spin_lock(&device_data->power_state_lock);
328 	if (!device_data->power_state) {
329 		ret = regulator_enable(device_data->regulator);
330 		if (ret) {
331 			dev_err(dev, "%s: regulator_enable() failed!\n",
332 				__func__);
333 			goto out;
334 		}
335 		ret = clk_enable(device_data->clk);
336 		if (ret) {
337 			dev_err(dev, "%s: clk_enable() failed!\n", __func__);
338 			ret = regulator_disable(
339 					device_data->regulator);
340 			goto out;
341 		}
342 		device_data->power_state = true;
343 	}
344 
345 	if (device_data->restore_dev_state) {
346 		if (restore_device_state) {
347 			device_data->restore_dev_state = false;
348 			hash_resume_state(device_data, &device_data->state);
349 		}
350 	}
351 out:
352 	spin_unlock(&device_data->power_state_lock);
353 
354 	return ret;
355 }
356 
357 /**
358  * hash_get_device_data - Checks for an available hash device and return it.
359  * @ctx:		Structure for the hash context.
360  * @device_data:	Structure for the hash device.
361  *
362  * This function check for an available hash device and return it to
363  * the caller.
364  * Note! Caller need to release the device, calling up().
365  */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)366 static int hash_get_device_data(struct hash_ctx *ctx,
367 				struct hash_device_data **device_data)
368 {
369 	int			ret;
370 	struct klist_iter	device_iterator;
371 	struct klist_node	*device_node;
372 	struct hash_device_data *local_device_data = NULL;
373 
374 	/* Wait until a device is available */
375 	ret = down_interruptible(&driver_data.device_allocation);
376 	if (ret)
377 		return ret;  /* Interrupted */
378 
379 	/* Select a device */
380 	klist_iter_init(&driver_data.device_list, &device_iterator);
381 	device_node = klist_next(&device_iterator);
382 	while (device_node) {
383 		local_device_data = container_of(device_node,
384 					   struct hash_device_data, list_node);
385 		spin_lock(&local_device_data->ctx_lock);
386 		/* current_ctx allocates a device, NULL = unallocated */
387 		if (local_device_data->current_ctx) {
388 			device_node = klist_next(&device_iterator);
389 		} else {
390 			local_device_data->current_ctx = ctx;
391 			ctx->device = local_device_data;
392 			spin_unlock(&local_device_data->ctx_lock);
393 			break;
394 		}
395 		spin_unlock(&local_device_data->ctx_lock);
396 	}
397 	klist_iter_exit(&device_iterator);
398 
399 	if (!device_node) {
400 		/**
401 		 * No free device found.
402 		 * Since we allocated a device with down_interruptible, this
403 		 * should not be able to happen.
404 		 * Number of available devices, which are contained in
405 		 * device_allocation, is therefore decremented by not doing
406 		 * an up(device_allocation).
407 		 */
408 		return -EBUSY;
409 	}
410 
411 	*device_data = local_device_data;
412 
413 	return 0;
414 }
415 
416 /**
417  * hash_hw_write_key - Writes the key to the hardware registries.
418  *
419  * @device_data:	Structure for the hash device.
420  * @key:		Key to be written.
421  * @keylen:		The lengt of the key.
422  *
423  * Note! This function DOES NOT write to the NBLW registry, even though
424  * specified in the the hw design spec. Either due to incorrect info in the
425  * spec or due to a bug in the hw.
426  */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)427 static void hash_hw_write_key(struct hash_device_data *device_data,
428 			      const u8 *key, unsigned int keylen)
429 {
430 	u32 word = 0;
431 	int nwords = 1;
432 
433 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
434 
435 	while (keylen >= 4) {
436 		u32 *key_word = (u32 *)key;
437 
438 		HASH_SET_DIN(key_word, nwords);
439 		keylen -= 4;
440 		key += 4;
441 	}
442 
443 	/* Take care of the remaining bytes in the last word */
444 	if (keylen) {
445 		word = 0;
446 		while (keylen) {
447 			word |= (key[keylen - 1] << (8 * (keylen - 1)));
448 			keylen--;
449 		}
450 
451 		HASH_SET_DIN(&word, nwords);
452 	}
453 
454 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
455 		cpu_relax();
456 
457 	HASH_SET_DCAL;
458 
459 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
460 		cpu_relax();
461 }
462 
463 /**
464  * init_hash_hw - Initialise the hash hardware for a new calculation.
465  * @device_data:	Structure for the hash device.
466  * @ctx:		The hash context.
467  *
468  * This function will enable the bits needed to clear and start a new
469  * calculation.
470  */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)471 static int init_hash_hw(struct hash_device_data *device_data,
472 			struct hash_ctx *ctx)
473 {
474 	int ret = 0;
475 
476 	ret = hash_setconfiguration(device_data, &ctx->config);
477 	if (ret) {
478 		dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
479 			__func__);
480 		return ret;
481 	}
482 
483 	hash_begin(device_data, ctx);
484 
485 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
486 		hash_hw_write_key(device_data, ctx->key, ctx->keylen);
487 
488 	return ret;
489 }
490 
491 /**
492  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493  *
494  * @sg:		Scatterlist.
495  * @size:	Size in bytes.
496  * @aligned:	True if sg data aligned to work in DMA mode.
497  *
498  */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)499 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
500 {
501 	int nents = 0;
502 	bool aligned_data = true;
503 
504 	while (size > 0 && sg) {
505 		nents++;
506 		size -= sg->length;
507 
508 		/* hash_set_dma_transfer will align last nent */
509 		if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
510 		    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
511 			aligned_data = false;
512 
513 		sg = sg_next(sg);
514 	}
515 
516 	if (aligned)
517 		*aligned = aligned_data;
518 
519 	if (size != 0)
520 		return -EFAULT;
521 
522 	return nents;
523 }
524 
525 /**
526  * hash_dma_valid_data - checks for dma valid sg data.
527  * @sg:		Scatterlist.
528  * @datasize:	Datasize in bytes.
529  *
530  * NOTE! This function checks for dma valid sg data, since dma
531  * only accept datasizes of even wordsize.
532  */
hash_dma_valid_data(struct scatterlist * sg,int datasize)533 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
534 {
535 	bool aligned;
536 
537 	/* Need to include at least one nent, else error */
538 	if (hash_get_nents(sg, datasize, &aligned) < 1)
539 		return false;
540 
541 	return aligned;
542 }
543 
544 /**
545  * ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
546  * @req: The hash request for the job.
547  *
548  * Initialize structures.
549  */
ux500_hash_init(struct ahash_request * req)550 static int ux500_hash_init(struct ahash_request *req)
551 {
552 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
553 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
554 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
555 
556 	if (!ctx->key)
557 		ctx->keylen = 0;
558 
559 	memset(&req_ctx->state, 0, sizeof(struct hash_state));
560 	req_ctx->updated = 0;
561 	if (hash_mode == HASH_MODE_DMA) {
562 		if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
563 			req_ctx->dma_mode = false; /* Don't use DMA */
564 
565 			pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
566 				 __func__, HASH_DMA_ALIGN_SIZE);
567 		} else {
568 			if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
569 			    hash_dma_valid_data(req->src, req->nbytes)) {
570 				req_ctx->dma_mode = true;
571 			} else {
572 				req_ctx->dma_mode = false;
573 				pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
574 					 __func__,
575 					 HASH_DMA_PERFORMANCE_MIN_SIZE);
576 			}
577 		}
578 	}
579 	return 0;
580 }
581 
582 /**
583  * hash_processblock - This function processes a single block of 512 bits (64
584  *                     bytes), word aligned, starting at message.
585  * @device_data:	Structure for the hash device.
586  * @message:		Block (512 bits) of message to be written to
587  *			the HASH hardware.
588  * @length:		Message length
589  *
590  */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)591 static void hash_processblock(struct hash_device_data *device_data,
592 			      const u32 *message, int length)
593 {
594 	int len = length / HASH_BYTES_PER_WORD;
595 	/*
596 	 * NBLW bits. Reset the number of bits in last word (NBLW).
597 	 */
598 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
599 
600 	/*
601 	 * Write message data to the HASH_DIN register.
602 	 */
603 	HASH_SET_DIN(message, len);
604 }
605 
606 /**
607  * hash_messagepad - Pads a message and write the nblw bits.
608  * @device_data:	Structure for the hash device.
609  * @message:		Last word of a message.
610  * @index_bytes:	The number of bytes in the last message.
611  *
612  * This function manages the final part of the digest calculation, when less
613  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
614  *
615  */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)616 static void hash_messagepad(struct hash_device_data *device_data,
617 			    const u32 *message, u8 index_bytes)
618 {
619 	int nwords = 1;
620 
621 	/*
622 	 * Clear hash str register, only clear NBLW
623 	 * since DCAL will be reset by hardware.
624 	 */
625 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
626 
627 	/* Main loop */
628 	while (index_bytes >= 4) {
629 		HASH_SET_DIN(message, nwords);
630 		index_bytes -= 4;
631 		message++;
632 	}
633 
634 	if (index_bytes)
635 		HASH_SET_DIN(message, nwords);
636 
637 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
638 		cpu_relax();
639 
640 	/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
641 	HASH_SET_NBLW(index_bytes * 8);
642 	dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
643 		__func__, readl_relaxed(&device_data->base->din),
644 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
645 	HASH_SET_DCAL;
646 	dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
647 		__func__, readl_relaxed(&device_data->base->din),
648 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
649 
650 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651 		cpu_relax();
652 }
653 
654 /**
655  * hash_incrementlength - Increments the length of the current message.
656  * @ctx: Hash context
657  * @incr: Length of message processed already
658  *
659  * Overflow cannot occur, because conditions for overflow are checked in
660  * hash_hw_update.
661  */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)662 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
663 {
664 	ctx->state.length.low_word += incr;
665 
666 	/* Check for wrap-around */
667 	if (ctx->state.length.low_word < incr)
668 		ctx->state.length.high_word++;
669 }
670 
671 /**
672  * hash_setconfiguration - Sets the required configuration for the hash
673  *                         hardware.
674  * @device_data:	Structure for the hash device.
675  * @config:		Pointer to a configuration structure.
676  */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)677 int hash_setconfiguration(struct hash_device_data *device_data,
678 			  struct hash_config *config)
679 {
680 	int ret = 0;
681 
682 	if (config->algorithm != HASH_ALGO_SHA1 &&
683 	    config->algorithm != HASH_ALGO_SHA256)
684 		return -EPERM;
685 
686 	/*
687 	 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
688 	 * to be written to HASH_DIN is considered as 32 bits.
689 	 */
690 	HASH_SET_DATA_FORMAT(config->data_format);
691 
692 	/*
693 	 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
694 	 */
695 	switch (config->algorithm) {
696 	case HASH_ALGO_SHA1:
697 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
698 		break;
699 
700 	case HASH_ALGO_SHA256:
701 		HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
702 		break;
703 
704 	default:
705 		dev_err(device_data->dev, "%s: Incorrect algorithm\n",
706 			__func__);
707 		return -EPERM;
708 	}
709 
710 	/*
711 	 * MODE bit. This bit selects between HASH or HMAC mode for the
712 	 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
713 	 */
714 	if (HASH_OPER_MODE_HASH == config->oper_mode)
715 		HASH_CLEAR_BITS(&device_data->base->cr,
716 				HASH_CR_MODE_MASK);
717 	else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
718 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
719 		if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
720 			/* Truncate key to blocksize */
721 			dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
722 			HASH_SET_BITS(&device_data->base->cr,
723 				      HASH_CR_LKEY_MASK);
724 		} else {
725 			dev_dbg(device_data->dev, "%s: LKEY cleared\n",
726 				__func__);
727 			HASH_CLEAR_BITS(&device_data->base->cr,
728 					HASH_CR_LKEY_MASK);
729 		}
730 	} else {	/* Wrong hash mode */
731 		ret = -EPERM;
732 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
733 			__func__);
734 	}
735 	return ret;
736 }
737 
738 /**
739  * hash_begin - This routine resets some globals and initializes the hash
740  *              hardware.
741  * @device_data:	Structure for the hash device.
742  * @ctx:		Hash context.
743  */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)744 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
745 {
746 	/* HW and SW initializations */
747 	/* Note: there is no need to initialize buffer and digest members */
748 
749 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
750 		cpu_relax();
751 
752 	/*
753 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
754 	 * prepare the initialize the HASH accelerator to compute the message
755 	 * digest of a new message.
756 	 */
757 	HASH_INITIALIZE;
758 
759 	/*
760 	 * NBLW bits. Reset the number of bits in last word (NBLW).
761 	 */
762 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
763 }
764 
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)765 static int hash_process_data(struct hash_device_data *device_data,
766 			     struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
767 			     int msg_length, u8 *data_buffer, u8 *buffer,
768 			     u8 *index)
769 {
770 	int ret = 0;
771 	u32 count;
772 
773 	do {
774 		if ((*index + msg_length) < HASH_BLOCK_SIZE) {
775 			for (count = 0; count < msg_length; count++) {
776 				buffer[*index + count] =
777 					*(data_buffer + count);
778 			}
779 			*index += msg_length;
780 			msg_length = 0;
781 		} else {
782 			if (req_ctx->updated) {
783 				ret = hash_resume_state(device_data,
784 						&device_data->state);
785 				memmove(req_ctx->state.buffer,
786 					device_data->state.buffer,
787 					HASH_BLOCK_SIZE);
788 				if (ret) {
789 					dev_err(device_data->dev,
790 						"%s: hash_resume_state() failed!\n",
791 						__func__);
792 					goto out;
793 				}
794 			} else {
795 				ret = init_hash_hw(device_data, ctx);
796 				if (ret) {
797 					dev_err(device_data->dev,
798 						"%s: init_hash_hw() failed!\n",
799 						__func__);
800 					goto out;
801 				}
802 				req_ctx->updated = 1;
803 			}
804 			/*
805 			 * If 'data_buffer' is four byte aligned and
806 			 * local buffer does not have any data, we can
807 			 * write data directly from 'data_buffer' to
808 			 * HW peripheral, otherwise we first copy data
809 			 * to a local buffer
810 			 */
811 			if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
812 			    (0 == *index))
813 				hash_processblock(device_data,
814 						  (const u32 *)data_buffer,
815 						  HASH_BLOCK_SIZE);
816 			else {
817 				for (count = 0;
818 				     count < (u32)(HASH_BLOCK_SIZE - *index);
819 				     count++) {
820 					buffer[*index + count] =
821 						*(data_buffer + count);
822 				}
823 				hash_processblock(device_data,
824 						  (const u32 *)buffer,
825 						  HASH_BLOCK_SIZE);
826 			}
827 			hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
828 			data_buffer += (HASH_BLOCK_SIZE - *index);
829 
830 			msg_length -= (HASH_BLOCK_SIZE - *index);
831 			*index = 0;
832 
833 			ret = hash_save_state(device_data,
834 					&device_data->state);
835 
836 			memmove(device_data->state.buffer,
837 				req_ctx->state.buffer,
838 				HASH_BLOCK_SIZE);
839 			if (ret) {
840 				dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
841 					__func__);
842 				goto out;
843 			}
844 		}
845 	} while (msg_length != 0);
846 out:
847 
848 	return ret;
849 }
850 
851 /**
852  * hash_dma_final - The hash dma final function for SHA1/SHA256.
853  * @req:	The hash request for the job.
854  */
hash_dma_final(struct ahash_request * req)855 static int hash_dma_final(struct ahash_request *req)
856 {
857 	int ret = 0;
858 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
859 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
860 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
861 	struct hash_device_data *device_data;
862 	u8 digest[SHA256_DIGEST_SIZE];
863 	int bytes_written = 0;
864 
865 	ret = hash_get_device_data(ctx, &device_data);
866 	if (ret)
867 		return ret;
868 
869 	dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
870 		(unsigned long)ctx);
871 
872 	if (req_ctx->updated) {
873 		ret = hash_resume_state(device_data, &device_data->state);
874 
875 		if (ret) {
876 			dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
877 				__func__);
878 			goto out;
879 		}
880 	} else {
881 		ret = hash_setconfiguration(device_data, &ctx->config);
882 		if (ret) {
883 			dev_err(device_data->dev,
884 				"%s: hash_setconfiguration() failed!\n",
885 				__func__);
886 			goto out;
887 		}
888 
889 		/* Enable DMA input */
890 		if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891 			HASH_CLEAR_BITS(&device_data->base->cr,
892 					HASH_CR_DMAE_MASK);
893 		} else {
894 			HASH_SET_BITS(&device_data->base->cr,
895 				      HASH_CR_DMAE_MASK);
896 			HASH_SET_BITS(&device_data->base->cr,
897 				      HASH_CR_PRIVN_MASK);
898 		}
899 
900 		HASH_INITIALIZE;
901 
902 		if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903 			hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904 
905 		/* Number of bits in last word = (nbytes * 8) % 32 */
906 		HASH_SET_NBLW((req->nbytes * 8) % 32);
907 		req_ctx->updated = 1;
908 	}
909 
910 	/* Store the nents in the dma struct. */
911 	ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912 	if (!ctx->device->dma.nents) {
913 		dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914 			__func__);
915 		ret = ctx->device->dma.nents;
916 		goto out;
917 	}
918 
919 	bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920 	if (bytes_written != req->nbytes) {
921 		dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922 			__func__);
923 		ret = bytes_written;
924 		goto out;
925 	}
926 
927 	wait_for_completion(&ctx->device->dma.complete);
928 	hash_dma_done(ctx);
929 
930 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931 		cpu_relax();
932 
933 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934 		unsigned int keylen = ctx->keylen;
935 		u8 *key = ctx->key;
936 
937 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
938 			__func__, ctx->keylen);
939 		hash_hw_write_key(device_data, key, keylen);
940 	}
941 
942 	hash_get_digest(device_data, digest, ctx->config.algorithm);
943 	memcpy(req->result, digest, ctx->digestsize);
944 
945 out:
946 	release_hash_device(device_data);
947 
948 	/**
949 	 * Allocated in setkey, and only used in HMAC.
950 	 */
951 	kfree(ctx->key);
952 
953 	return ret;
954 }
955 
956 /**
957  * hash_hw_final - The final hash calculation function
958  * @req:	The hash request for the job.
959  */
hash_hw_final(struct ahash_request * req)960 static int hash_hw_final(struct ahash_request *req)
961 {
962 	int ret = 0;
963 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966 	struct hash_device_data *device_data;
967 	u8 digest[SHA256_DIGEST_SIZE];
968 
969 	ret = hash_get_device_data(ctx, &device_data);
970 	if (ret)
971 		return ret;
972 
973 	dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974 		(unsigned long)ctx);
975 
976 	if (req_ctx->updated) {
977 		ret = hash_resume_state(device_data, &device_data->state);
978 
979 		if (ret) {
980 			dev_err(device_data->dev,
981 				"%s: hash_resume_state() failed!\n", __func__);
982 			goto out;
983 		}
984 	} else if (req->nbytes == 0 && ctx->keylen == 0) {
985 		u8 zero_hash[SHA256_DIGEST_SIZE];
986 		u32 zero_hash_size = 0;
987 		bool zero_digest = false;
988 		/**
989 		 * Use a pre-calculated empty message digest
990 		 * (workaround since hw return zeroes, hw bug!?)
991 		 */
992 		ret = get_empty_message_digest(device_data, &zero_hash[0],
993 				&zero_hash_size, &zero_digest);
994 		if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995 		    zero_digest) {
996 			memcpy(req->result, &zero_hash[0], ctx->digestsize);
997 			goto out;
998 		} else if (!ret && !zero_digest) {
999 			dev_dbg(device_data->dev,
1000 				"%s: HMAC zero msg with key, continue...\n",
1001 				__func__);
1002 		} else {
1003 			dev_err(device_data->dev,
1004 				"%s: ret=%d, or wrong digest size? %s\n",
1005 				__func__, ret,
1006 				zero_hash_size == ctx->digestsize ?
1007 				"true" : "false");
1008 			/* Return error */
1009 			goto out;
1010 		}
1011 	} else if (req->nbytes == 0 && ctx->keylen > 0) {
1012 		ret = -EPERM;
1013 		dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1014 			__func__);
1015 		goto out;
1016 	}
1017 
1018 	if (!req_ctx->updated) {
1019 		ret = init_hash_hw(device_data, ctx);
1020 		if (ret) {
1021 			dev_err(device_data->dev,
1022 				"%s: init_hash_hw() failed!\n", __func__);
1023 			goto out;
1024 		}
1025 	}
1026 
1027 	if (req_ctx->state.index) {
1028 		hash_messagepad(device_data, req_ctx->state.buffer,
1029 				req_ctx->state.index);
1030 	} else {
1031 		HASH_SET_DCAL;
1032 		while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1033 			cpu_relax();
1034 	}
1035 
1036 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1037 		unsigned int keylen = ctx->keylen;
1038 		u8 *key = ctx->key;
1039 
1040 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
1041 			__func__, ctx->keylen);
1042 		hash_hw_write_key(device_data, key, keylen);
1043 	}
1044 
1045 	hash_get_digest(device_data, digest, ctx->config.algorithm);
1046 	memcpy(req->result, digest, ctx->digestsize);
1047 
1048 out:
1049 	release_hash_device(device_data);
1050 
1051 	/**
1052 	 * Allocated in setkey, and only used in HMAC.
1053 	 */
1054 	kfree(ctx->key);
1055 
1056 	return ret;
1057 }
1058 
1059 /**
1060  * hash_hw_update - Updates current HASH computation hashing another part of
1061  *                  the message.
1062  * @req:	Byte array containing the message to be hashed (caller
1063  *		allocated).
1064  */
hash_hw_update(struct ahash_request * req)1065 int hash_hw_update(struct ahash_request *req)
1066 {
1067 	int ret = 0;
1068 	u8 index = 0;
1069 	u8 *buffer;
1070 	struct hash_device_data *device_data;
1071 	u8 *data_buffer;
1072 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1073 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1074 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1075 	struct crypto_hash_walk walk;
1076 	int msg_length;
1077 
1078 	index = req_ctx->state.index;
1079 	buffer = (u8 *)req_ctx->state.buffer;
1080 
1081 	ret = hash_get_device_data(ctx, &device_data);
1082 	if (ret)
1083 		return ret;
1084 
1085 	msg_length = crypto_hash_walk_first(req, &walk);
1086 
1087 	/* Empty message ("") is correct indata */
1088 	if (msg_length == 0) {
1089 		ret = 0;
1090 		goto release_dev;
1091 	}
1092 
1093 	/* Check if ctx->state.length + msg_length
1094 	   overflows */
1095 	if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1096 	    HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1097 		pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1098 		ret = crypto_hash_walk_done(&walk, -EPERM);
1099 		goto release_dev;
1100 	}
1101 
1102 	/* Main loop */
1103 	while (0 != msg_length) {
1104 		data_buffer = walk.data;
1105 		ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1106 				data_buffer, buffer, &index);
1107 
1108 		if (ret) {
1109 			dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1110 				__func__);
1111 			crypto_hash_walk_done(&walk, ret);
1112 			goto release_dev;
1113 		}
1114 
1115 		msg_length = crypto_hash_walk_done(&walk, 0);
1116 	}
1117 
1118 	req_ctx->state.index = index;
1119 	dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1120 		__func__, req_ctx->state.index, req_ctx->state.bit_index);
1121 
1122 release_dev:
1123 	release_hash_device(device_data);
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * hash_resume_state - Function that resumes the state of an calculation.
1130  * @device_data:	Pointer to the device structure.
1131  * @device_state:	The state to be restored in the hash hardware
1132  */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1133 int hash_resume_state(struct hash_device_data *device_data,
1134 		      const struct hash_state *device_state)
1135 {
1136 	u32 temp_cr;
1137 	s32 count;
1138 	int hash_mode = HASH_OPER_MODE_HASH;
1139 
1140 	if (NULL == device_state) {
1141 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1142 			__func__);
1143 		return -EPERM;
1144 	}
1145 
1146 	/* Check correctness of index and length members */
1147 	if (device_state->index > HASH_BLOCK_SIZE ||
1148 	    (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1149 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1150 			__func__);
1151 		return -EPERM;
1152 	}
1153 
1154 	/*
1155 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1156 	 * prepare the initialize the HASH accelerator to compute the message
1157 	 * digest of a new message.
1158 	 */
1159 	HASH_INITIALIZE;
1160 
1161 	temp_cr = device_state->temp_cr;
1162 	writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1163 
1164 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1165 		hash_mode = HASH_OPER_MODE_HMAC;
1166 	else
1167 		hash_mode = HASH_OPER_MODE_HASH;
1168 
1169 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1170 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1171 			break;
1172 
1173 		writel_relaxed(device_state->csr[count],
1174 			       &device_data->base->csrx[count]);
1175 	}
1176 
1177 	writel_relaxed(device_state->csfull, &device_data->base->csfull);
1178 	writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1179 
1180 	writel_relaxed(device_state->str_reg, &device_data->base->str);
1181 	writel_relaxed(temp_cr, &device_data->base->cr);
1182 
1183 	return 0;
1184 }
1185 
1186 /**
1187  * hash_save_state - Function that saves the state of hardware.
1188  * @device_data:	Pointer to the device structure.
1189  * @device_state:	The strucure where the hardware state should be saved.
1190  */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1191 int hash_save_state(struct hash_device_data *device_data,
1192 		    struct hash_state *device_state)
1193 {
1194 	u32 temp_cr;
1195 	u32 count;
1196 	int hash_mode = HASH_OPER_MODE_HASH;
1197 
1198 	if (NULL == device_state) {
1199 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1200 			__func__);
1201 		return -ENOTSUPP;
1202 	}
1203 
1204 	/* Write dummy value to force digest intermediate calculation. This
1205 	 * actually makes sure that there isn't any ongoing calculation in the
1206 	 * hardware.
1207 	 */
1208 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1209 		cpu_relax();
1210 
1211 	temp_cr = readl_relaxed(&device_data->base->cr);
1212 
1213 	device_state->str_reg = readl_relaxed(&device_data->base->str);
1214 
1215 	device_state->din_reg = readl_relaxed(&device_data->base->din);
1216 
1217 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1218 		hash_mode = HASH_OPER_MODE_HMAC;
1219 	else
1220 		hash_mode = HASH_OPER_MODE_HASH;
1221 
1222 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1223 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1224 			break;
1225 
1226 		device_state->csr[count] =
1227 			readl_relaxed(&device_data->base->csrx[count]);
1228 	}
1229 
1230 	device_state->csfull = readl_relaxed(&device_data->base->csfull);
1231 	device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1232 
1233 	device_state->temp_cr = temp_cr;
1234 
1235 	return 0;
1236 }
1237 
1238 /**
1239  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1240  * @device_data:
1241  *
1242  */
hash_check_hw(struct hash_device_data * device_data)1243 int hash_check_hw(struct hash_device_data *device_data)
1244 {
1245 	/* Checking Peripheral Ids  */
1246 	if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1247 	    HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1248 	    HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1249 	    HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1250 	    HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1251 	    HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1252 	    HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1253 	    HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1254 		return 0;
1255 	}
1256 
1257 	dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1258 	return -ENOTSUPP;
1259 }
1260 
1261 /**
1262  * hash_get_digest - Gets the digest.
1263  * @device_data:	Pointer to the device structure.
1264  * @digest:		User allocated byte array for the calculated digest.
1265  * @algorithm:		The algorithm in use.
1266  */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1267 void hash_get_digest(struct hash_device_data *device_data,
1268 		     u8 *digest, int algorithm)
1269 {
1270 	u32 temp_hx_val, count;
1271 	int loop_ctr;
1272 
1273 	if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1274 		dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1275 			__func__, algorithm);
1276 		return;
1277 	}
1278 
1279 	if (algorithm == HASH_ALGO_SHA1)
1280 		loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1281 	else
1282 		loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1283 
1284 	dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1285 		__func__, (unsigned long)digest);
1286 
1287 	/* Copy result into digest array */
1288 	for (count = 0; count < loop_ctr; count++) {
1289 		temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1290 		digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1291 		digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1292 		digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1293 		digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1294 	}
1295 }
1296 
1297 /**
1298  * ahash_update - The hash update function for SHA1/SHA2 (SHA256).
1299  * @req: The hash request for the job.
1300  */
ahash_update(struct ahash_request * req)1301 static int ahash_update(struct ahash_request *req)
1302 {
1303 	int ret = 0;
1304 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1305 
1306 	if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1307 		ret = hash_hw_update(req);
1308 	/* Skip update for DMA, all data will be passed to DMA in final */
1309 
1310 	if (ret) {
1311 		pr_err("%s: hash_hw_update() failed!\n", __func__);
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  * ahash_final - The hash final function for SHA1/SHA2 (SHA256).
1319  * @req:	The hash request for the job.
1320  */
ahash_final(struct ahash_request * req)1321 static int ahash_final(struct ahash_request *req)
1322 {
1323 	int ret = 0;
1324 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325 
1326 	pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1327 
1328 	if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1329 		ret = hash_dma_final(req);
1330 	else
1331 		ret = hash_hw_final(req);
1332 
1333 	if (ret) {
1334 		pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1335 	}
1336 
1337 	return ret;
1338 }
1339 
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1340 static int hash_setkey(struct crypto_ahash *tfm,
1341 		       const u8 *key, unsigned int keylen, int alg)
1342 {
1343 	int ret = 0;
1344 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1345 
1346 	/**
1347 	 * Freed in final.
1348 	 */
1349 	ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1350 	if (!ctx->key) {
1351 		pr_err("%s: Failed to allocate ctx->key for %d\n",
1352 		       __func__, alg);
1353 		return -ENOMEM;
1354 	}
1355 	ctx->keylen = keylen;
1356 
1357 	return ret;
1358 }
1359 
ahash_sha1_init(struct ahash_request * req)1360 static int ahash_sha1_init(struct ahash_request *req)
1361 {
1362 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1363 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1364 
1365 	ctx->config.data_format = HASH_DATA_8_BITS;
1366 	ctx->config.algorithm = HASH_ALGO_SHA1;
1367 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1368 	ctx->digestsize = SHA1_DIGEST_SIZE;
1369 
1370 	return ux500_hash_init(req);
1371 }
1372 
ahash_sha256_init(struct ahash_request * req)1373 static int ahash_sha256_init(struct ahash_request *req)
1374 {
1375 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1376 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1377 
1378 	ctx->config.data_format = HASH_DATA_8_BITS;
1379 	ctx->config.algorithm = HASH_ALGO_SHA256;
1380 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1381 	ctx->digestsize = SHA256_DIGEST_SIZE;
1382 
1383 	return ux500_hash_init(req);
1384 }
1385 
ahash_sha1_digest(struct ahash_request * req)1386 static int ahash_sha1_digest(struct ahash_request *req)
1387 {
1388 	int ret2, ret1;
1389 
1390 	ret1 = ahash_sha1_init(req);
1391 	if (ret1)
1392 		goto out;
1393 
1394 	ret1 = ahash_update(req);
1395 	ret2 = ahash_final(req);
1396 
1397 out:
1398 	return ret1 ? ret1 : ret2;
1399 }
1400 
ahash_sha256_digest(struct ahash_request * req)1401 static int ahash_sha256_digest(struct ahash_request *req)
1402 {
1403 	int ret2, ret1;
1404 
1405 	ret1 = ahash_sha256_init(req);
1406 	if (ret1)
1407 		goto out;
1408 
1409 	ret1 = ahash_update(req);
1410 	ret2 = ahash_final(req);
1411 
1412 out:
1413 	return ret1 ? ret1 : ret2;
1414 }
1415 
ahash_noimport(struct ahash_request * req,const void * in)1416 static int ahash_noimport(struct ahash_request *req, const void *in)
1417 {
1418 	return -ENOSYS;
1419 }
1420 
ahash_noexport(struct ahash_request * req,void * out)1421 static int ahash_noexport(struct ahash_request *req, void *out)
1422 {
1423 	return -ENOSYS;
1424 }
1425 
hmac_sha1_init(struct ahash_request * req)1426 static int hmac_sha1_init(struct ahash_request *req)
1427 {
1428 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1429 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1430 
1431 	ctx->config.data_format	= HASH_DATA_8_BITS;
1432 	ctx->config.algorithm	= HASH_ALGO_SHA1;
1433 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1434 	ctx->digestsize		= SHA1_DIGEST_SIZE;
1435 
1436 	return ux500_hash_init(req);
1437 }
1438 
hmac_sha256_init(struct ahash_request * req)1439 static int hmac_sha256_init(struct ahash_request *req)
1440 {
1441 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1442 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1443 
1444 	ctx->config.data_format	= HASH_DATA_8_BITS;
1445 	ctx->config.algorithm	= HASH_ALGO_SHA256;
1446 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1447 	ctx->digestsize		= SHA256_DIGEST_SIZE;
1448 
1449 	return ux500_hash_init(req);
1450 }
1451 
hmac_sha1_digest(struct ahash_request * req)1452 static int hmac_sha1_digest(struct ahash_request *req)
1453 {
1454 	int ret2, ret1;
1455 
1456 	ret1 = hmac_sha1_init(req);
1457 	if (ret1)
1458 		goto out;
1459 
1460 	ret1 = ahash_update(req);
1461 	ret2 = ahash_final(req);
1462 
1463 out:
1464 	return ret1 ? ret1 : ret2;
1465 }
1466 
hmac_sha256_digest(struct ahash_request * req)1467 static int hmac_sha256_digest(struct ahash_request *req)
1468 {
1469 	int ret2, ret1;
1470 
1471 	ret1 = hmac_sha256_init(req);
1472 	if (ret1)
1473 		goto out;
1474 
1475 	ret1 = ahash_update(req);
1476 	ret2 = ahash_final(req);
1477 
1478 out:
1479 	return ret1 ? ret1 : ret2;
1480 }
1481 
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1482 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1483 			    const u8 *key, unsigned int keylen)
1484 {
1485 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1486 }
1487 
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1488 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1489 			      const u8 *key, unsigned int keylen)
1490 {
1491 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1492 }
1493 
1494 struct hash_algo_template {
1495 	struct hash_config conf;
1496 	struct ahash_alg hash;
1497 };
1498 
hash_cra_init(struct crypto_tfm * tfm)1499 static int hash_cra_init(struct crypto_tfm *tfm)
1500 {
1501 	struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1502 	struct crypto_alg *alg = tfm->__crt_alg;
1503 	struct hash_algo_template *hash_alg;
1504 
1505 	hash_alg = container_of(__crypto_ahash_alg(alg),
1506 			struct hash_algo_template,
1507 			hash);
1508 
1509 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1510 				 sizeof(struct hash_req_ctx));
1511 
1512 	ctx->config.data_format = HASH_DATA_8_BITS;
1513 	ctx->config.algorithm = hash_alg->conf.algorithm;
1514 	ctx->config.oper_mode = hash_alg->conf.oper_mode;
1515 
1516 	ctx->digestsize = hash_alg->hash.halg.digestsize;
1517 
1518 	return 0;
1519 }
1520 
1521 static struct hash_algo_template hash_algs[] = {
1522 	{
1523 		.conf.algorithm = HASH_ALGO_SHA1,
1524 		.conf.oper_mode = HASH_OPER_MODE_HASH,
1525 		.hash = {
1526 			.init = ux500_hash_init,
1527 			.update = ahash_update,
1528 			.final = ahash_final,
1529 			.digest = ahash_sha1_digest,
1530 			.export = ahash_noexport,
1531 			.import = ahash_noimport,
1532 			.halg.digestsize = SHA1_DIGEST_SIZE,
1533 			.halg.statesize = sizeof(struct hash_ctx),
1534 			.halg.base = {
1535 				.cra_name = "sha1",
1536 				.cra_driver_name = "sha1-ux500",
1537 				.cra_flags = CRYPTO_ALG_ASYNC,
1538 				.cra_blocksize = SHA1_BLOCK_SIZE,
1539 				.cra_ctxsize = sizeof(struct hash_ctx),
1540 				.cra_init = hash_cra_init,
1541 				.cra_module = THIS_MODULE,
1542 			}
1543 		}
1544 	},
1545 	{
1546 		.conf.algorithm	= HASH_ALGO_SHA256,
1547 		.conf.oper_mode	= HASH_OPER_MODE_HASH,
1548 		.hash = {
1549 			.init = ux500_hash_init,
1550 			.update	= ahash_update,
1551 			.final = ahash_final,
1552 			.digest = ahash_sha256_digest,
1553 			.export = ahash_noexport,
1554 			.import = ahash_noimport,
1555 			.halg.digestsize = SHA256_DIGEST_SIZE,
1556 			.halg.statesize = sizeof(struct hash_ctx),
1557 			.halg.base = {
1558 				.cra_name = "sha256",
1559 				.cra_driver_name = "sha256-ux500",
1560 				.cra_flags = CRYPTO_ALG_ASYNC,
1561 				.cra_blocksize = SHA256_BLOCK_SIZE,
1562 				.cra_ctxsize = sizeof(struct hash_ctx),
1563 				.cra_init = hash_cra_init,
1564 				.cra_module = THIS_MODULE,
1565 			}
1566 		}
1567 	},
1568 	{
1569 		.conf.algorithm = HASH_ALGO_SHA1,
1570 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1571 			.hash = {
1572 			.init = ux500_hash_init,
1573 			.update = ahash_update,
1574 			.final = ahash_final,
1575 			.digest = hmac_sha1_digest,
1576 			.setkey = hmac_sha1_setkey,
1577 			.export = ahash_noexport,
1578 			.import = ahash_noimport,
1579 			.halg.digestsize = SHA1_DIGEST_SIZE,
1580 			.halg.statesize = sizeof(struct hash_ctx),
1581 			.halg.base = {
1582 				.cra_name = "hmac(sha1)",
1583 				.cra_driver_name = "hmac-sha1-ux500",
1584 				.cra_flags = CRYPTO_ALG_ASYNC,
1585 				.cra_blocksize = SHA1_BLOCK_SIZE,
1586 				.cra_ctxsize = sizeof(struct hash_ctx),
1587 				.cra_init = hash_cra_init,
1588 				.cra_module = THIS_MODULE,
1589 			}
1590 		}
1591 	},
1592 	{
1593 		.conf.algorithm = HASH_ALGO_SHA256,
1594 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1595 		.hash = {
1596 			.init = ux500_hash_init,
1597 			.update = ahash_update,
1598 			.final = ahash_final,
1599 			.digest = hmac_sha256_digest,
1600 			.setkey = hmac_sha256_setkey,
1601 			.export = ahash_noexport,
1602 			.import = ahash_noimport,
1603 			.halg.digestsize = SHA256_DIGEST_SIZE,
1604 			.halg.statesize = sizeof(struct hash_ctx),
1605 			.halg.base = {
1606 				.cra_name = "hmac(sha256)",
1607 				.cra_driver_name = "hmac-sha256-ux500",
1608 				.cra_flags = CRYPTO_ALG_ASYNC,
1609 				.cra_blocksize = SHA256_BLOCK_SIZE,
1610 				.cra_ctxsize = sizeof(struct hash_ctx),
1611 				.cra_init = hash_cra_init,
1612 				.cra_module = THIS_MODULE,
1613 			}
1614 		}
1615 	}
1616 };
1617 
ahash_algs_register_all(struct hash_device_data * device_data)1618 static int ahash_algs_register_all(struct hash_device_data *device_data)
1619 {
1620 	int ret;
1621 	int i;
1622 	int count;
1623 
1624 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1625 		ret = crypto_register_ahash(&hash_algs[i].hash);
1626 		if (ret) {
1627 			count = i;
1628 			dev_err(device_data->dev, "%s: alg registration failed\n",
1629 				hash_algs[i].hash.halg.base.cra_driver_name);
1630 			goto unreg;
1631 		}
1632 	}
1633 	return 0;
1634 unreg:
1635 	for (i = 0; i < count; i++)
1636 		crypto_unregister_ahash(&hash_algs[i].hash);
1637 	return ret;
1638 }
1639 
ahash_algs_unregister_all(struct hash_device_data * device_data)1640 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1641 {
1642 	int i;
1643 
1644 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1645 		crypto_unregister_ahash(&hash_algs[i].hash);
1646 }
1647 
1648 /**
1649  * ux500_hash_probe - Function that probes the hash hardware.
1650  * @pdev: The platform device.
1651  */
ux500_hash_probe(struct platform_device * pdev)1652 static int ux500_hash_probe(struct platform_device *pdev)
1653 {
1654 	int			ret = 0;
1655 	struct resource		*res = NULL;
1656 	struct hash_device_data *device_data;
1657 	struct device		*dev = &pdev->dev;
1658 
1659 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_KERNEL);
1660 	if (!device_data) {
1661 		ret = -ENOMEM;
1662 		goto out;
1663 	}
1664 
1665 	device_data->dev = dev;
1666 	device_data->current_ctx = NULL;
1667 
1668 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669 	if (!res) {
1670 		dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1671 		ret = -ENODEV;
1672 		goto out;
1673 	}
1674 
1675 	device_data->phybase = res->start;
1676 	device_data->base = devm_ioremap_resource(dev, res);
1677 	if (IS_ERR(device_data->base)) {
1678 		ret = PTR_ERR(device_data->base);
1679 		goto out;
1680 	}
1681 	spin_lock_init(&device_data->ctx_lock);
1682 	spin_lock_init(&device_data->power_state_lock);
1683 
1684 	/* Enable power for HASH1 hardware block */
1685 	device_data->regulator = regulator_get(dev, "v-ape");
1686 	if (IS_ERR(device_data->regulator)) {
1687 		dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1688 		ret = PTR_ERR(device_data->regulator);
1689 		device_data->regulator = NULL;
1690 		goto out;
1691 	}
1692 
1693 	/* Enable the clock for HASH1 hardware block */
1694 	device_data->clk = devm_clk_get(dev, NULL);
1695 	if (IS_ERR(device_data->clk)) {
1696 		dev_err(dev, "%s: clk_get() failed!\n", __func__);
1697 		ret = PTR_ERR(device_data->clk);
1698 		goto out_regulator;
1699 	}
1700 
1701 	ret = clk_prepare(device_data->clk);
1702 	if (ret) {
1703 		dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1704 		goto out_regulator;
1705 	}
1706 
1707 	/* Enable device power (and clock) */
1708 	ret = hash_enable_power(device_data, false);
1709 	if (ret) {
1710 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1711 		goto out_clk_unprepare;
1712 	}
1713 
1714 	ret = hash_check_hw(device_data);
1715 	if (ret) {
1716 		dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1717 		goto out_power;
1718 	}
1719 
1720 	if (hash_mode == HASH_MODE_DMA)
1721 		hash_dma_setup_channel(device_data, dev);
1722 
1723 	platform_set_drvdata(pdev, device_data);
1724 
1725 	/* Put the new device into the device list... */
1726 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1727 	/* ... and signal that a new device is available. */
1728 	up(&driver_data.device_allocation);
1729 
1730 	ret = ahash_algs_register_all(device_data);
1731 	if (ret) {
1732 		dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1733 			__func__);
1734 		goto out_power;
1735 	}
1736 
1737 	dev_info(dev, "successfully registered\n");
1738 	return 0;
1739 
1740 out_power:
1741 	hash_disable_power(device_data, false);
1742 
1743 out_clk_unprepare:
1744 	clk_unprepare(device_data->clk);
1745 
1746 out_regulator:
1747 	regulator_put(device_data->regulator);
1748 
1749 out:
1750 	return ret;
1751 }
1752 
1753 /**
1754  * ux500_hash_remove - Function that removes the hash device from the platform.
1755  * @pdev: The platform device.
1756  */
ux500_hash_remove(struct platform_device * pdev)1757 static int ux500_hash_remove(struct platform_device *pdev)
1758 {
1759 	struct hash_device_data *device_data;
1760 	struct device		*dev = &pdev->dev;
1761 
1762 	device_data = platform_get_drvdata(pdev);
1763 	if (!device_data) {
1764 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1765 		return -ENOMEM;
1766 	}
1767 
1768 	/* Try to decrease the number of available devices. */
1769 	if (down_trylock(&driver_data.device_allocation))
1770 		return -EBUSY;
1771 
1772 	/* Check that the device is free */
1773 	spin_lock(&device_data->ctx_lock);
1774 	/* current_ctx allocates a device, NULL = unallocated */
1775 	if (device_data->current_ctx) {
1776 		/* The device is busy */
1777 		spin_unlock(&device_data->ctx_lock);
1778 		/* Return the device to the pool. */
1779 		up(&driver_data.device_allocation);
1780 		return -EBUSY;
1781 	}
1782 
1783 	spin_unlock(&device_data->ctx_lock);
1784 
1785 	/* Remove the device from the list */
1786 	if (klist_node_attached(&device_data->list_node))
1787 		klist_remove(&device_data->list_node);
1788 
1789 	/* If this was the last device, remove the services */
1790 	if (list_empty(&driver_data.device_list.k_list))
1791 		ahash_algs_unregister_all(device_data);
1792 
1793 	if (hash_disable_power(device_data, false))
1794 		dev_err(dev, "%s: hash_disable_power() failed\n",
1795 			__func__);
1796 
1797 	clk_unprepare(device_data->clk);
1798 	regulator_put(device_data->regulator);
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * ux500_hash_shutdown - Function that shutdown the hash device.
1805  * @pdev: The platform device
1806  */
ux500_hash_shutdown(struct platform_device * pdev)1807 static void ux500_hash_shutdown(struct platform_device *pdev)
1808 {
1809 	struct hash_device_data *device_data;
1810 
1811 	device_data = platform_get_drvdata(pdev);
1812 	if (!device_data) {
1813 		dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1814 			__func__);
1815 		return;
1816 	}
1817 
1818 	/* Check that the device is free */
1819 	spin_lock(&device_data->ctx_lock);
1820 	/* current_ctx allocates a device, NULL = unallocated */
1821 	if (!device_data->current_ctx) {
1822 		if (down_trylock(&driver_data.device_allocation))
1823 			dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1824 				__func__);
1825 		/**
1826 		 * (Allocate the device)
1827 		 * Need to set this to non-null (dummy) value,
1828 		 * to avoid usage if context switching.
1829 		 */
1830 		device_data->current_ctx++;
1831 	}
1832 	spin_unlock(&device_data->ctx_lock);
1833 
1834 	/* Remove the device from the list */
1835 	if (klist_node_attached(&device_data->list_node))
1836 		klist_remove(&device_data->list_node);
1837 
1838 	/* If this was the last device, remove the services */
1839 	if (list_empty(&driver_data.device_list.k_list))
1840 		ahash_algs_unregister_all(device_data);
1841 
1842 	if (hash_disable_power(device_data, false))
1843 		dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1844 			__func__);
1845 }
1846 
1847 #ifdef CONFIG_PM_SLEEP
1848 /**
1849  * ux500_hash_suspend - Function that suspends the hash device.
1850  * @dev:	Device to suspend.
1851  */
ux500_hash_suspend(struct device * dev)1852 static int ux500_hash_suspend(struct device *dev)
1853 {
1854 	int ret;
1855 	struct hash_device_data *device_data;
1856 	struct hash_ctx *temp_ctx = NULL;
1857 
1858 	device_data = dev_get_drvdata(dev);
1859 	if (!device_data) {
1860 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1861 		return -ENOMEM;
1862 	}
1863 
1864 	spin_lock(&device_data->ctx_lock);
1865 	if (!device_data->current_ctx)
1866 		device_data->current_ctx++;
1867 	spin_unlock(&device_data->ctx_lock);
1868 
1869 	if (device_data->current_ctx == ++temp_ctx) {
1870 		if (down_interruptible(&driver_data.device_allocation))
1871 			dev_dbg(dev, "%s: down_interruptible() failed\n",
1872 				__func__);
1873 		ret = hash_disable_power(device_data, false);
1874 
1875 	} else {
1876 		ret = hash_disable_power(device_data, true);
1877 	}
1878 
1879 	if (ret)
1880 		dev_err(dev, "%s: hash_disable_power()\n", __func__);
1881 
1882 	return ret;
1883 }
1884 
1885 /**
1886  * ux500_hash_resume - Function that resume the hash device.
1887  * @dev:	Device to resume.
1888  */
ux500_hash_resume(struct device * dev)1889 static int ux500_hash_resume(struct device *dev)
1890 {
1891 	int ret = 0;
1892 	struct hash_device_data *device_data;
1893 	struct hash_ctx *temp_ctx = NULL;
1894 
1895 	device_data = dev_get_drvdata(dev);
1896 	if (!device_data) {
1897 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1898 		return -ENOMEM;
1899 	}
1900 
1901 	spin_lock(&device_data->ctx_lock);
1902 	if (device_data->current_ctx == ++temp_ctx)
1903 		device_data->current_ctx = NULL;
1904 	spin_unlock(&device_data->ctx_lock);
1905 
1906 	if (!device_data->current_ctx)
1907 		up(&driver_data.device_allocation);
1908 	else
1909 		ret = hash_enable_power(device_data, true);
1910 
1911 	if (ret)
1912 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1913 
1914 	return ret;
1915 }
1916 #endif
1917 
1918 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1919 
1920 static const struct of_device_id ux500_hash_match[] = {
1921 	{ .compatible = "stericsson,ux500-hash" },
1922 	{ },
1923 };
1924 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1925 
1926 static struct platform_driver hash_driver = {
1927 	.probe  = ux500_hash_probe,
1928 	.remove = ux500_hash_remove,
1929 	.shutdown = ux500_hash_shutdown,
1930 	.driver = {
1931 		.name  = "hash1",
1932 		.of_match_table = ux500_hash_match,
1933 		.pm    = &ux500_hash_pm,
1934 	}
1935 };
1936 
1937 /**
1938  * ux500_hash_mod_init - The kernel module init function.
1939  */
ux500_hash_mod_init(void)1940 static int __init ux500_hash_mod_init(void)
1941 {
1942 	klist_init(&driver_data.device_list, NULL, NULL);
1943 	/* Initialize the semaphore to 0 devices (locked state) */
1944 	sema_init(&driver_data.device_allocation, 0);
1945 
1946 	return platform_driver_register(&hash_driver);
1947 }
1948 
1949 /**
1950  * ux500_hash_mod_fini - The kernel module exit function.
1951  */
ux500_hash_mod_fini(void)1952 static void __exit ux500_hash_mod_fini(void)
1953 {
1954 	platform_driver_unregister(&hash_driver);
1955 }
1956 
1957 module_init(ux500_hash_mod_init);
1958 module_exit(ux500_hash_mod_fini);
1959 
1960 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1961 MODULE_LICENSE("GPL");
1962 
1963 MODULE_ALIAS_CRYPTO("sha1-all");
1964 MODULE_ALIAS_CRYPTO("sha256-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1967