1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
4 * Support for Nomadik hardware crypto engine.
5
6 * Copyright (C) ST-Ericsson SA 2010
7 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12 */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38
39 #include <linux/platform_data/crypto-ux500.h>
40
41 #include "hash_alg.h"
42
43 static int hash_mode;
44 module_param(hash_mode, int, 0);
45 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
46
47 /* HMAC-SHA1, no key */
48 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
49 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
50 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
51 0x70, 0x69, 0x0e, 0x1d
52 };
53
54 /* HMAC-SHA256, no key */
55 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
56 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
57 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
58 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
59 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 };
61
62 /**
63 * struct hash_driver_data - data specific to the driver.
64 *
65 * @device_list: A list of registered devices to choose from.
66 * @device_allocation: A semaphore initialized with number of devices.
67 */
68 struct hash_driver_data {
69 struct klist device_list;
70 struct semaphore device_allocation;
71 };
72
73 static struct hash_driver_data driver_data;
74
75 /* Declaration of functions */
76 /**
77 * hash_messagepad - Pads a message and write the nblw bits.
78 * @device_data: Structure for the hash device.
79 * @message: Last word of a message
80 * @index_bytes: The number of bytes in the last message
81 *
82 * This function manages the final part of the digest calculation, when less
83 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
84 *
85 */
86 static void hash_messagepad(struct hash_device_data *device_data,
87 const u32 *message, u8 index_bytes);
88
89 /**
90 * release_hash_device - Releases a previously allocated hash device.
91 * @device_data: Structure for the hash device.
92 *
93 */
release_hash_device(struct hash_device_data * device_data)94 static void release_hash_device(struct hash_device_data *device_data)
95 {
96 spin_lock(&device_data->ctx_lock);
97 device_data->current_ctx->device = NULL;
98 device_data->current_ctx = NULL;
99 spin_unlock(&device_data->ctx_lock);
100
101 /*
102 * The down_interruptible part for this semaphore is called in
103 * cryp_get_device_data.
104 */
105 up(&driver_data.device_allocation);
106 }
107
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)108 static void hash_dma_setup_channel(struct hash_device_data *device_data,
109 struct device *dev)
110 {
111 struct hash_platform_data *platform_data = dev->platform_data;
112 struct dma_slave_config conf = {
113 .direction = DMA_MEM_TO_DEV,
114 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
115 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
116 .dst_maxburst = 16,
117 };
118
119 dma_cap_zero(device_data->dma.mask);
120 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
121
122 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
123 device_data->dma.chan_mem2hash =
124 dma_request_channel(device_data->dma.mask,
125 platform_data->dma_filter,
126 device_data->dma.cfg_mem2hash);
127
128 dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
129
130 init_completion(&device_data->dma.complete);
131 }
132
hash_dma_callback(void * data)133 static void hash_dma_callback(void *data)
134 {
135 struct hash_ctx *ctx = data;
136
137 complete(&ctx->device->dma.complete);
138 }
139
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)140 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
141 int len, enum dma_data_direction direction)
142 {
143 struct dma_async_tx_descriptor *desc = NULL;
144 struct dma_chan *channel = NULL;
145
146 if (direction != DMA_TO_DEVICE) {
147 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
148 __func__);
149 return -EFAULT;
150 }
151
152 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
153
154 channel = ctx->device->dma.chan_mem2hash;
155 ctx->device->dma.sg = sg;
156 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
157 ctx->device->dma.sg, ctx->device->dma.nents,
158 direction);
159
160 if (!ctx->device->dma.sg_len) {
161 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
162 __func__);
163 return -EFAULT;
164 }
165
166 dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
167 __func__);
168 desc = dmaengine_prep_slave_sg(channel,
169 ctx->device->dma.sg, ctx->device->dma.sg_len,
170 DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
171 if (!desc) {
172 dev_err(ctx->device->dev,
173 "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
174 return -EFAULT;
175 }
176
177 desc->callback = hash_dma_callback;
178 desc->callback_param = ctx;
179
180 dmaengine_submit(desc);
181 dma_async_issue_pending(channel);
182
183 return 0;
184 }
185
hash_dma_done(struct hash_ctx * ctx)186 static void hash_dma_done(struct hash_ctx *ctx)
187 {
188 struct dma_chan *chan;
189
190 chan = ctx->device->dma.chan_mem2hash;
191 dmaengine_terminate_all(chan);
192 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
193 ctx->device->dma.nents, DMA_TO_DEVICE);
194 }
195
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)196 static int hash_dma_write(struct hash_ctx *ctx,
197 struct scatterlist *sg, int len)
198 {
199 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
200 if (error) {
201 dev_dbg(ctx->device->dev,
202 "%s: hash_set_dma_transfer() failed\n", __func__);
203 return error;
204 }
205
206 return len;
207 }
208
209 /**
210 * get_empty_message_digest - Returns a pre-calculated digest for
211 * the empty message.
212 * @device_data: Structure for the hash device.
213 * @zero_hash: Buffer to return the empty message digest.
214 * @zero_hash_size: Hash size of the empty message digest.
215 * @zero_digest: True if zero_digest returned.
216 */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)217 static int get_empty_message_digest(
218 struct hash_device_data *device_data,
219 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
220 {
221 int ret = 0;
222 struct hash_ctx *ctx = device_data->current_ctx;
223 *zero_digest = false;
224
225 /**
226 * Caller responsible for ctx != NULL.
227 */
228
229 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
230 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
231 memcpy(zero_hash, &sha1_zero_message_hash[0],
232 SHA1_DIGEST_SIZE);
233 *zero_hash_size = SHA1_DIGEST_SIZE;
234 *zero_digest = true;
235 } else if (HASH_ALGO_SHA256 ==
236 ctx->config.algorithm) {
237 memcpy(zero_hash, &sha256_zero_message_hash[0],
238 SHA256_DIGEST_SIZE);
239 *zero_hash_size = SHA256_DIGEST_SIZE;
240 *zero_digest = true;
241 } else {
242 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
243 __func__);
244 ret = -EINVAL;
245 goto out;
246 }
247 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
248 if (!ctx->keylen) {
249 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
250 memcpy(zero_hash, &zero_message_hmac_sha1[0],
251 SHA1_DIGEST_SIZE);
252 *zero_hash_size = SHA1_DIGEST_SIZE;
253 *zero_digest = true;
254 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
255 memcpy(zero_hash, &zero_message_hmac_sha256[0],
256 SHA256_DIGEST_SIZE);
257 *zero_hash_size = SHA256_DIGEST_SIZE;
258 *zero_digest = true;
259 } else {
260 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
261 __func__);
262 ret = -EINVAL;
263 goto out;
264 }
265 } else {
266 dev_dbg(device_data->dev,
267 "%s: Continue hash calculation, since hmac key available\n",
268 __func__);
269 }
270 }
271 out:
272
273 return ret;
274 }
275
276 /**
277 * hash_disable_power - Request to disable power and clock.
278 * @device_data: Structure for the hash device.
279 * @save_device_state: If true, saves the current hw state.
280 *
281 * This function request for disabling power (regulator) and clock,
282 * and could also save current hw state.
283 */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)284 static int hash_disable_power(struct hash_device_data *device_data,
285 bool save_device_state)
286 {
287 int ret = 0;
288 struct device *dev = device_data->dev;
289
290 spin_lock(&device_data->power_state_lock);
291 if (!device_data->power_state)
292 goto out;
293
294 if (save_device_state) {
295 hash_save_state(device_data,
296 &device_data->state);
297 device_data->restore_dev_state = true;
298 }
299
300 clk_disable(device_data->clk);
301 ret = regulator_disable(device_data->regulator);
302 if (ret)
303 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
304
305 device_data->power_state = false;
306
307 out:
308 spin_unlock(&device_data->power_state_lock);
309
310 return ret;
311 }
312
313 /**
314 * hash_enable_power - Request to enable power and clock.
315 * @device_data: Structure for the hash device.
316 * @restore_device_state: If true, restores a previous saved hw state.
317 *
318 * This function request for enabling power (regulator) and clock,
319 * and could also restore a previously saved hw state.
320 */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)321 static int hash_enable_power(struct hash_device_data *device_data,
322 bool restore_device_state)
323 {
324 int ret = 0;
325 struct device *dev = device_data->dev;
326
327 spin_lock(&device_data->power_state_lock);
328 if (!device_data->power_state) {
329 ret = regulator_enable(device_data->regulator);
330 if (ret) {
331 dev_err(dev, "%s: regulator_enable() failed!\n",
332 __func__);
333 goto out;
334 }
335 ret = clk_enable(device_data->clk);
336 if (ret) {
337 dev_err(dev, "%s: clk_enable() failed!\n", __func__);
338 ret = regulator_disable(
339 device_data->regulator);
340 goto out;
341 }
342 device_data->power_state = true;
343 }
344
345 if (device_data->restore_dev_state) {
346 if (restore_device_state) {
347 device_data->restore_dev_state = false;
348 hash_resume_state(device_data, &device_data->state);
349 }
350 }
351 out:
352 spin_unlock(&device_data->power_state_lock);
353
354 return ret;
355 }
356
357 /**
358 * hash_get_device_data - Checks for an available hash device and return it.
359 * @ctx: Structure for the hash context.
360 * @device_data: Structure for the hash device.
361 *
362 * This function check for an available hash device and return it to
363 * the caller.
364 * Note! Caller need to release the device, calling up().
365 */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)366 static int hash_get_device_data(struct hash_ctx *ctx,
367 struct hash_device_data **device_data)
368 {
369 int ret;
370 struct klist_iter device_iterator;
371 struct klist_node *device_node;
372 struct hash_device_data *local_device_data = NULL;
373
374 /* Wait until a device is available */
375 ret = down_interruptible(&driver_data.device_allocation);
376 if (ret)
377 return ret; /* Interrupted */
378
379 /* Select a device */
380 klist_iter_init(&driver_data.device_list, &device_iterator);
381 device_node = klist_next(&device_iterator);
382 while (device_node) {
383 local_device_data = container_of(device_node,
384 struct hash_device_data, list_node);
385 spin_lock(&local_device_data->ctx_lock);
386 /* current_ctx allocates a device, NULL = unallocated */
387 if (local_device_data->current_ctx) {
388 device_node = klist_next(&device_iterator);
389 } else {
390 local_device_data->current_ctx = ctx;
391 ctx->device = local_device_data;
392 spin_unlock(&local_device_data->ctx_lock);
393 break;
394 }
395 spin_unlock(&local_device_data->ctx_lock);
396 }
397 klist_iter_exit(&device_iterator);
398
399 if (!device_node) {
400 /**
401 * No free device found.
402 * Since we allocated a device with down_interruptible, this
403 * should not be able to happen.
404 * Number of available devices, which are contained in
405 * device_allocation, is therefore decremented by not doing
406 * an up(device_allocation).
407 */
408 return -EBUSY;
409 }
410
411 *device_data = local_device_data;
412
413 return 0;
414 }
415
416 /**
417 * hash_hw_write_key - Writes the key to the hardware registries.
418 *
419 * @device_data: Structure for the hash device.
420 * @key: Key to be written.
421 * @keylen: The lengt of the key.
422 *
423 * Note! This function DOES NOT write to the NBLW registry, even though
424 * specified in the the hw design spec. Either due to incorrect info in the
425 * spec or due to a bug in the hw.
426 */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)427 static void hash_hw_write_key(struct hash_device_data *device_data,
428 const u8 *key, unsigned int keylen)
429 {
430 u32 word = 0;
431 int nwords = 1;
432
433 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
434
435 while (keylen >= 4) {
436 u32 *key_word = (u32 *)key;
437
438 HASH_SET_DIN(key_word, nwords);
439 keylen -= 4;
440 key += 4;
441 }
442
443 /* Take care of the remaining bytes in the last word */
444 if (keylen) {
445 word = 0;
446 while (keylen) {
447 word |= (key[keylen - 1] << (8 * (keylen - 1)));
448 keylen--;
449 }
450
451 HASH_SET_DIN(&word, nwords);
452 }
453
454 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
455 cpu_relax();
456
457 HASH_SET_DCAL;
458
459 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
460 cpu_relax();
461 }
462
463 /**
464 * init_hash_hw - Initialise the hash hardware for a new calculation.
465 * @device_data: Structure for the hash device.
466 * @ctx: The hash context.
467 *
468 * This function will enable the bits needed to clear and start a new
469 * calculation.
470 */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)471 static int init_hash_hw(struct hash_device_data *device_data,
472 struct hash_ctx *ctx)
473 {
474 int ret = 0;
475
476 ret = hash_setconfiguration(device_data, &ctx->config);
477 if (ret) {
478 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
479 __func__);
480 return ret;
481 }
482
483 hash_begin(device_data, ctx);
484
485 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
486 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
487
488 return ret;
489 }
490
491 /**
492 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493 *
494 * @sg: Scatterlist.
495 * @size: Size in bytes.
496 * @aligned: True if sg data aligned to work in DMA mode.
497 *
498 */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)499 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
500 {
501 int nents = 0;
502 bool aligned_data = true;
503
504 while (size > 0 && sg) {
505 nents++;
506 size -= sg->length;
507
508 /* hash_set_dma_transfer will align last nent */
509 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
510 (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
511 aligned_data = false;
512
513 sg = sg_next(sg);
514 }
515
516 if (aligned)
517 *aligned = aligned_data;
518
519 if (size != 0)
520 return -EFAULT;
521
522 return nents;
523 }
524
525 /**
526 * hash_dma_valid_data - checks for dma valid sg data.
527 * @sg: Scatterlist.
528 * @datasize: Datasize in bytes.
529 *
530 * NOTE! This function checks for dma valid sg data, since dma
531 * only accept datasizes of even wordsize.
532 */
hash_dma_valid_data(struct scatterlist * sg,int datasize)533 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
534 {
535 bool aligned;
536
537 /* Need to include at least one nent, else error */
538 if (hash_get_nents(sg, datasize, &aligned) < 1)
539 return false;
540
541 return aligned;
542 }
543
544 /**
545 * ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
546 * @req: The hash request for the job.
547 *
548 * Initialize structures.
549 */
ux500_hash_init(struct ahash_request * req)550 static int ux500_hash_init(struct ahash_request *req)
551 {
552 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
553 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
554 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
555
556 if (!ctx->key)
557 ctx->keylen = 0;
558
559 memset(&req_ctx->state, 0, sizeof(struct hash_state));
560 req_ctx->updated = 0;
561 if (hash_mode == HASH_MODE_DMA) {
562 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
563 req_ctx->dma_mode = false; /* Don't use DMA */
564
565 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
566 __func__, HASH_DMA_ALIGN_SIZE);
567 } else {
568 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
569 hash_dma_valid_data(req->src, req->nbytes)) {
570 req_ctx->dma_mode = true;
571 } else {
572 req_ctx->dma_mode = false;
573 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
574 __func__,
575 HASH_DMA_PERFORMANCE_MIN_SIZE);
576 }
577 }
578 }
579 return 0;
580 }
581
582 /**
583 * hash_processblock - This function processes a single block of 512 bits (64
584 * bytes), word aligned, starting at message.
585 * @device_data: Structure for the hash device.
586 * @message: Block (512 bits) of message to be written to
587 * the HASH hardware.
588 * @length: Message length
589 *
590 */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)591 static void hash_processblock(struct hash_device_data *device_data,
592 const u32 *message, int length)
593 {
594 int len = length / HASH_BYTES_PER_WORD;
595 /*
596 * NBLW bits. Reset the number of bits in last word (NBLW).
597 */
598 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
599
600 /*
601 * Write message data to the HASH_DIN register.
602 */
603 HASH_SET_DIN(message, len);
604 }
605
606 /**
607 * hash_messagepad - Pads a message and write the nblw bits.
608 * @device_data: Structure for the hash device.
609 * @message: Last word of a message.
610 * @index_bytes: The number of bytes in the last message.
611 *
612 * This function manages the final part of the digest calculation, when less
613 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
614 *
615 */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)616 static void hash_messagepad(struct hash_device_data *device_data,
617 const u32 *message, u8 index_bytes)
618 {
619 int nwords = 1;
620
621 /*
622 * Clear hash str register, only clear NBLW
623 * since DCAL will be reset by hardware.
624 */
625 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
626
627 /* Main loop */
628 while (index_bytes >= 4) {
629 HASH_SET_DIN(message, nwords);
630 index_bytes -= 4;
631 message++;
632 }
633
634 if (index_bytes)
635 HASH_SET_DIN(message, nwords);
636
637 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
638 cpu_relax();
639
640 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
641 HASH_SET_NBLW(index_bytes * 8);
642 dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
643 __func__, readl_relaxed(&device_data->base->din),
644 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
645 HASH_SET_DCAL;
646 dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
647 __func__, readl_relaxed(&device_data->base->din),
648 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
649
650 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651 cpu_relax();
652 }
653
654 /**
655 * hash_incrementlength - Increments the length of the current message.
656 * @ctx: Hash context
657 * @incr: Length of message processed already
658 *
659 * Overflow cannot occur, because conditions for overflow are checked in
660 * hash_hw_update.
661 */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)662 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
663 {
664 ctx->state.length.low_word += incr;
665
666 /* Check for wrap-around */
667 if (ctx->state.length.low_word < incr)
668 ctx->state.length.high_word++;
669 }
670
671 /**
672 * hash_setconfiguration - Sets the required configuration for the hash
673 * hardware.
674 * @device_data: Structure for the hash device.
675 * @config: Pointer to a configuration structure.
676 */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)677 int hash_setconfiguration(struct hash_device_data *device_data,
678 struct hash_config *config)
679 {
680 int ret = 0;
681
682 if (config->algorithm != HASH_ALGO_SHA1 &&
683 config->algorithm != HASH_ALGO_SHA256)
684 return -EPERM;
685
686 /*
687 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
688 * to be written to HASH_DIN is considered as 32 bits.
689 */
690 HASH_SET_DATA_FORMAT(config->data_format);
691
692 /*
693 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
694 */
695 switch (config->algorithm) {
696 case HASH_ALGO_SHA1:
697 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
698 break;
699
700 case HASH_ALGO_SHA256:
701 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
702 break;
703
704 default:
705 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
706 __func__);
707 return -EPERM;
708 }
709
710 /*
711 * MODE bit. This bit selects between HASH or HMAC mode for the
712 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
713 */
714 if (HASH_OPER_MODE_HASH == config->oper_mode)
715 HASH_CLEAR_BITS(&device_data->base->cr,
716 HASH_CR_MODE_MASK);
717 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
718 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
719 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
720 /* Truncate key to blocksize */
721 dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
722 HASH_SET_BITS(&device_data->base->cr,
723 HASH_CR_LKEY_MASK);
724 } else {
725 dev_dbg(device_data->dev, "%s: LKEY cleared\n",
726 __func__);
727 HASH_CLEAR_BITS(&device_data->base->cr,
728 HASH_CR_LKEY_MASK);
729 }
730 } else { /* Wrong hash mode */
731 ret = -EPERM;
732 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
733 __func__);
734 }
735 return ret;
736 }
737
738 /**
739 * hash_begin - This routine resets some globals and initializes the hash
740 * hardware.
741 * @device_data: Structure for the hash device.
742 * @ctx: Hash context.
743 */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)744 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
745 {
746 /* HW and SW initializations */
747 /* Note: there is no need to initialize buffer and digest members */
748
749 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
750 cpu_relax();
751
752 /*
753 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
754 * prepare the initialize the HASH accelerator to compute the message
755 * digest of a new message.
756 */
757 HASH_INITIALIZE;
758
759 /*
760 * NBLW bits. Reset the number of bits in last word (NBLW).
761 */
762 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
763 }
764
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)765 static int hash_process_data(struct hash_device_data *device_data,
766 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
767 int msg_length, u8 *data_buffer, u8 *buffer,
768 u8 *index)
769 {
770 int ret = 0;
771 u32 count;
772
773 do {
774 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
775 for (count = 0; count < msg_length; count++) {
776 buffer[*index + count] =
777 *(data_buffer + count);
778 }
779 *index += msg_length;
780 msg_length = 0;
781 } else {
782 if (req_ctx->updated) {
783 ret = hash_resume_state(device_data,
784 &device_data->state);
785 memmove(req_ctx->state.buffer,
786 device_data->state.buffer,
787 HASH_BLOCK_SIZE);
788 if (ret) {
789 dev_err(device_data->dev,
790 "%s: hash_resume_state() failed!\n",
791 __func__);
792 goto out;
793 }
794 } else {
795 ret = init_hash_hw(device_data, ctx);
796 if (ret) {
797 dev_err(device_data->dev,
798 "%s: init_hash_hw() failed!\n",
799 __func__);
800 goto out;
801 }
802 req_ctx->updated = 1;
803 }
804 /*
805 * If 'data_buffer' is four byte aligned and
806 * local buffer does not have any data, we can
807 * write data directly from 'data_buffer' to
808 * HW peripheral, otherwise we first copy data
809 * to a local buffer
810 */
811 if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
812 (0 == *index))
813 hash_processblock(device_data,
814 (const u32 *)data_buffer,
815 HASH_BLOCK_SIZE);
816 else {
817 for (count = 0;
818 count < (u32)(HASH_BLOCK_SIZE - *index);
819 count++) {
820 buffer[*index + count] =
821 *(data_buffer + count);
822 }
823 hash_processblock(device_data,
824 (const u32 *)buffer,
825 HASH_BLOCK_SIZE);
826 }
827 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
828 data_buffer += (HASH_BLOCK_SIZE - *index);
829
830 msg_length -= (HASH_BLOCK_SIZE - *index);
831 *index = 0;
832
833 ret = hash_save_state(device_data,
834 &device_data->state);
835
836 memmove(device_data->state.buffer,
837 req_ctx->state.buffer,
838 HASH_BLOCK_SIZE);
839 if (ret) {
840 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
841 __func__);
842 goto out;
843 }
844 }
845 } while (msg_length != 0);
846 out:
847
848 return ret;
849 }
850
851 /**
852 * hash_dma_final - The hash dma final function for SHA1/SHA256.
853 * @req: The hash request for the job.
854 */
hash_dma_final(struct ahash_request * req)855 static int hash_dma_final(struct ahash_request *req)
856 {
857 int ret = 0;
858 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
859 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
860 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
861 struct hash_device_data *device_data;
862 u8 digest[SHA256_DIGEST_SIZE];
863 int bytes_written = 0;
864
865 ret = hash_get_device_data(ctx, &device_data);
866 if (ret)
867 return ret;
868
869 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
870 (unsigned long)ctx);
871
872 if (req_ctx->updated) {
873 ret = hash_resume_state(device_data, &device_data->state);
874
875 if (ret) {
876 dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
877 __func__);
878 goto out;
879 }
880 } else {
881 ret = hash_setconfiguration(device_data, &ctx->config);
882 if (ret) {
883 dev_err(device_data->dev,
884 "%s: hash_setconfiguration() failed!\n",
885 __func__);
886 goto out;
887 }
888
889 /* Enable DMA input */
890 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891 HASH_CLEAR_BITS(&device_data->base->cr,
892 HASH_CR_DMAE_MASK);
893 } else {
894 HASH_SET_BITS(&device_data->base->cr,
895 HASH_CR_DMAE_MASK);
896 HASH_SET_BITS(&device_data->base->cr,
897 HASH_CR_PRIVN_MASK);
898 }
899
900 HASH_INITIALIZE;
901
902 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904
905 /* Number of bits in last word = (nbytes * 8) % 32 */
906 HASH_SET_NBLW((req->nbytes * 8) % 32);
907 req_ctx->updated = 1;
908 }
909
910 /* Store the nents in the dma struct. */
911 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912 if (!ctx->device->dma.nents) {
913 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914 __func__);
915 ret = ctx->device->dma.nents;
916 goto out;
917 }
918
919 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920 if (bytes_written != req->nbytes) {
921 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922 __func__);
923 ret = bytes_written;
924 goto out;
925 }
926
927 wait_for_completion(&ctx->device->dma.complete);
928 hash_dma_done(ctx);
929
930 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931 cpu_relax();
932
933 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934 unsigned int keylen = ctx->keylen;
935 u8 *key = ctx->key;
936
937 dev_dbg(device_data->dev, "%s: keylen: %d\n",
938 __func__, ctx->keylen);
939 hash_hw_write_key(device_data, key, keylen);
940 }
941
942 hash_get_digest(device_data, digest, ctx->config.algorithm);
943 memcpy(req->result, digest, ctx->digestsize);
944
945 out:
946 release_hash_device(device_data);
947
948 /**
949 * Allocated in setkey, and only used in HMAC.
950 */
951 kfree(ctx->key);
952
953 return ret;
954 }
955
956 /**
957 * hash_hw_final - The final hash calculation function
958 * @req: The hash request for the job.
959 */
hash_hw_final(struct ahash_request * req)960 static int hash_hw_final(struct ahash_request *req)
961 {
962 int ret = 0;
963 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966 struct hash_device_data *device_data;
967 u8 digest[SHA256_DIGEST_SIZE];
968
969 ret = hash_get_device_data(ctx, &device_data);
970 if (ret)
971 return ret;
972
973 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974 (unsigned long)ctx);
975
976 if (req_ctx->updated) {
977 ret = hash_resume_state(device_data, &device_data->state);
978
979 if (ret) {
980 dev_err(device_data->dev,
981 "%s: hash_resume_state() failed!\n", __func__);
982 goto out;
983 }
984 } else if (req->nbytes == 0 && ctx->keylen == 0) {
985 u8 zero_hash[SHA256_DIGEST_SIZE];
986 u32 zero_hash_size = 0;
987 bool zero_digest = false;
988 /**
989 * Use a pre-calculated empty message digest
990 * (workaround since hw return zeroes, hw bug!?)
991 */
992 ret = get_empty_message_digest(device_data, &zero_hash[0],
993 &zero_hash_size, &zero_digest);
994 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995 zero_digest) {
996 memcpy(req->result, &zero_hash[0], ctx->digestsize);
997 goto out;
998 } else if (!ret && !zero_digest) {
999 dev_dbg(device_data->dev,
1000 "%s: HMAC zero msg with key, continue...\n",
1001 __func__);
1002 } else {
1003 dev_err(device_data->dev,
1004 "%s: ret=%d, or wrong digest size? %s\n",
1005 __func__, ret,
1006 zero_hash_size == ctx->digestsize ?
1007 "true" : "false");
1008 /* Return error */
1009 goto out;
1010 }
1011 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1012 ret = -EPERM;
1013 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1014 __func__);
1015 goto out;
1016 }
1017
1018 if (!req_ctx->updated) {
1019 ret = init_hash_hw(device_data, ctx);
1020 if (ret) {
1021 dev_err(device_data->dev,
1022 "%s: init_hash_hw() failed!\n", __func__);
1023 goto out;
1024 }
1025 }
1026
1027 if (req_ctx->state.index) {
1028 hash_messagepad(device_data, req_ctx->state.buffer,
1029 req_ctx->state.index);
1030 } else {
1031 HASH_SET_DCAL;
1032 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1033 cpu_relax();
1034 }
1035
1036 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1037 unsigned int keylen = ctx->keylen;
1038 u8 *key = ctx->key;
1039
1040 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1041 __func__, ctx->keylen);
1042 hash_hw_write_key(device_data, key, keylen);
1043 }
1044
1045 hash_get_digest(device_data, digest, ctx->config.algorithm);
1046 memcpy(req->result, digest, ctx->digestsize);
1047
1048 out:
1049 release_hash_device(device_data);
1050
1051 /**
1052 * Allocated in setkey, and only used in HMAC.
1053 */
1054 kfree(ctx->key);
1055
1056 return ret;
1057 }
1058
1059 /**
1060 * hash_hw_update - Updates current HASH computation hashing another part of
1061 * the message.
1062 * @req: Byte array containing the message to be hashed (caller
1063 * allocated).
1064 */
hash_hw_update(struct ahash_request * req)1065 int hash_hw_update(struct ahash_request *req)
1066 {
1067 int ret = 0;
1068 u8 index = 0;
1069 u8 *buffer;
1070 struct hash_device_data *device_data;
1071 u8 *data_buffer;
1072 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1073 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1074 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1075 struct crypto_hash_walk walk;
1076 int msg_length;
1077
1078 index = req_ctx->state.index;
1079 buffer = (u8 *)req_ctx->state.buffer;
1080
1081 ret = hash_get_device_data(ctx, &device_data);
1082 if (ret)
1083 return ret;
1084
1085 msg_length = crypto_hash_walk_first(req, &walk);
1086
1087 /* Empty message ("") is correct indata */
1088 if (msg_length == 0) {
1089 ret = 0;
1090 goto release_dev;
1091 }
1092
1093 /* Check if ctx->state.length + msg_length
1094 overflows */
1095 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1096 HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1097 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1098 ret = crypto_hash_walk_done(&walk, -EPERM);
1099 goto release_dev;
1100 }
1101
1102 /* Main loop */
1103 while (0 != msg_length) {
1104 data_buffer = walk.data;
1105 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1106 data_buffer, buffer, &index);
1107
1108 if (ret) {
1109 dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1110 __func__);
1111 crypto_hash_walk_done(&walk, ret);
1112 goto release_dev;
1113 }
1114
1115 msg_length = crypto_hash_walk_done(&walk, 0);
1116 }
1117
1118 req_ctx->state.index = index;
1119 dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1120 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1121
1122 release_dev:
1123 release_hash_device(device_data);
1124
1125 return ret;
1126 }
1127
1128 /**
1129 * hash_resume_state - Function that resumes the state of an calculation.
1130 * @device_data: Pointer to the device structure.
1131 * @device_state: The state to be restored in the hash hardware
1132 */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1133 int hash_resume_state(struct hash_device_data *device_data,
1134 const struct hash_state *device_state)
1135 {
1136 u32 temp_cr;
1137 s32 count;
1138 int hash_mode = HASH_OPER_MODE_HASH;
1139
1140 if (NULL == device_state) {
1141 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1142 __func__);
1143 return -EPERM;
1144 }
1145
1146 /* Check correctness of index and length members */
1147 if (device_state->index > HASH_BLOCK_SIZE ||
1148 (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1149 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1150 __func__);
1151 return -EPERM;
1152 }
1153
1154 /*
1155 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1156 * prepare the initialize the HASH accelerator to compute the message
1157 * digest of a new message.
1158 */
1159 HASH_INITIALIZE;
1160
1161 temp_cr = device_state->temp_cr;
1162 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1163
1164 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1165 hash_mode = HASH_OPER_MODE_HMAC;
1166 else
1167 hash_mode = HASH_OPER_MODE_HASH;
1168
1169 for (count = 0; count < HASH_CSR_COUNT; count++) {
1170 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1171 break;
1172
1173 writel_relaxed(device_state->csr[count],
1174 &device_data->base->csrx[count]);
1175 }
1176
1177 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1178 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1179
1180 writel_relaxed(device_state->str_reg, &device_data->base->str);
1181 writel_relaxed(temp_cr, &device_data->base->cr);
1182
1183 return 0;
1184 }
1185
1186 /**
1187 * hash_save_state - Function that saves the state of hardware.
1188 * @device_data: Pointer to the device structure.
1189 * @device_state: The strucure where the hardware state should be saved.
1190 */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1191 int hash_save_state(struct hash_device_data *device_data,
1192 struct hash_state *device_state)
1193 {
1194 u32 temp_cr;
1195 u32 count;
1196 int hash_mode = HASH_OPER_MODE_HASH;
1197
1198 if (NULL == device_state) {
1199 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1200 __func__);
1201 return -ENOTSUPP;
1202 }
1203
1204 /* Write dummy value to force digest intermediate calculation. This
1205 * actually makes sure that there isn't any ongoing calculation in the
1206 * hardware.
1207 */
1208 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1209 cpu_relax();
1210
1211 temp_cr = readl_relaxed(&device_data->base->cr);
1212
1213 device_state->str_reg = readl_relaxed(&device_data->base->str);
1214
1215 device_state->din_reg = readl_relaxed(&device_data->base->din);
1216
1217 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1218 hash_mode = HASH_OPER_MODE_HMAC;
1219 else
1220 hash_mode = HASH_OPER_MODE_HASH;
1221
1222 for (count = 0; count < HASH_CSR_COUNT; count++) {
1223 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1224 break;
1225
1226 device_state->csr[count] =
1227 readl_relaxed(&device_data->base->csrx[count]);
1228 }
1229
1230 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1231 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1232
1233 device_state->temp_cr = temp_cr;
1234
1235 return 0;
1236 }
1237
1238 /**
1239 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1240 * @device_data:
1241 *
1242 */
hash_check_hw(struct hash_device_data * device_data)1243 int hash_check_hw(struct hash_device_data *device_data)
1244 {
1245 /* Checking Peripheral Ids */
1246 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1247 HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1248 HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1249 HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1250 HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1251 HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1252 HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1253 HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1254 return 0;
1255 }
1256
1257 dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1258 return -ENOTSUPP;
1259 }
1260
1261 /**
1262 * hash_get_digest - Gets the digest.
1263 * @device_data: Pointer to the device structure.
1264 * @digest: User allocated byte array for the calculated digest.
1265 * @algorithm: The algorithm in use.
1266 */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1267 void hash_get_digest(struct hash_device_data *device_data,
1268 u8 *digest, int algorithm)
1269 {
1270 u32 temp_hx_val, count;
1271 int loop_ctr;
1272
1273 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1274 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1275 __func__, algorithm);
1276 return;
1277 }
1278
1279 if (algorithm == HASH_ALGO_SHA1)
1280 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1281 else
1282 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1283
1284 dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1285 __func__, (unsigned long)digest);
1286
1287 /* Copy result into digest array */
1288 for (count = 0; count < loop_ctr; count++) {
1289 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1290 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1291 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1292 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1293 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1294 }
1295 }
1296
1297 /**
1298 * ahash_update - The hash update function for SHA1/SHA2 (SHA256).
1299 * @req: The hash request for the job.
1300 */
ahash_update(struct ahash_request * req)1301 static int ahash_update(struct ahash_request *req)
1302 {
1303 int ret = 0;
1304 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1305
1306 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1307 ret = hash_hw_update(req);
1308 /* Skip update for DMA, all data will be passed to DMA in final */
1309
1310 if (ret) {
1311 pr_err("%s: hash_hw_update() failed!\n", __func__);
1312 }
1313
1314 return ret;
1315 }
1316
1317 /**
1318 * ahash_final - The hash final function for SHA1/SHA2 (SHA256).
1319 * @req: The hash request for the job.
1320 */
ahash_final(struct ahash_request * req)1321 static int ahash_final(struct ahash_request *req)
1322 {
1323 int ret = 0;
1324 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325
1326 pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1327
1328 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1329 ret = hash_dma_final(req);
1330 else
1331 ret = hash_hw_final(req);
1332
1333 if (ret) {
1334 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1335 }
1336
1337 return ret;
1338 }
1339
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1340 static int hash_setkey(struct crypto_ahash *tfm,
1341 const u8 *key, unsigned int keylen, int alg)
1342 {
1343 int ret = 0;
1344 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1345
1346 /**
1347 * Freed in final.
1348 */
1349 ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1350 if (!ctx->key) {
1351 pr_err("%s: Failed to allocate ctx->key for %d\n",
1352 __func__, alg);
1353 return -ENOMEM;
1354 }
1355 ctx->keylen = keylen;
1356
1357 return ret;
1358 }
1359
ahash_sha1_init(struct ahash_request * req)1360 static int ahash_sha1_init(struct ahash_request *req)
1361 {
1362 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1363 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1364
1365 ctx->config.data_format = HASH_DATA_8_BITS;
1366 ctx->config.algorithm = HASH_ALGO_SHA1;
1367 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1368 ctx->digestsize = SHA1_DIGEST_SIZE;
1369
1370 return ux500_hash_init(req);
1371 }
1372
ahash_sha256_init(struct ahash_request * req)1373 static int ahash_sha256_init(struct ahash_request *req)
1374 {
1375 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1376 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1377
1378 ctx->config.data_format = HASH_DATA_8_BITS;
1379 ctx->config.algorithm = HASH_ALGO_SHA256;
1380 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1381 ctx->digestsize = SHA256_DIGEST_SIZE;
1382
1383 return ux500_hash_init(req);
1384 }
1385
ahash_sha1_digest(struct ahash_request * req)1386 static int ahash_sha1_digest(struct ahash_request *req)
1387 {
1388 int ret2, ret1;
1389
1390 ret1 = ahash_sha1_init(req);
1391 if (ret1)
1392 goto out;
1393
1394 ret1 = ahash_update(req);
1395 ret2 = ahash_final(req);
1396
1397 out:
1398 return ret1 ? ret1 : ret2;
1399 }
1400
ahash_sha256_digest(struct ahash_request * req)1401 static int ahash_sha256_digest(struct ahash_request *req)
1402 {
1403 int ret2, ret1;
1404
1405 ret1 = ahash_sha256_init(req);
1406 if (ret1)
1407 goto out;
1408
1409 ret1 = ahash_update(req);
1410 ret2 = ahash_final(req);
1411
1412 out:
1413 return ret1 ? ret1 : ret2;
1414 }
1415
ahash_noimport(struct ahash_request * req,const void * in)1416 static int ahash_noimport(struct ahash_request *req, const void *in)
1417 {
1418 return -ENOSYS;
1419 }
1420
ahash_noexport(struct ahash_request * req,void * out)1421 static int ahash_noexport(struct ahash_request *req, void *out)
1422 {
1423 return -ENOSYS;
1424 }
1425
hmac_sha1_init(struct ahash_request * req)1426 static int hmac_sha1_init(struct ahash_request *req)
1427 {
1428 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1429 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1430
1431 ctx->config.data_format = HASH_DATA_8_BITS;
1432 ctx->config.algorithm = HASH_ALGO_SHA1;
1433 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1434 ctx->digestsize = SHA1_DIGEST_SIZE;
1435
1436 return ux500_hash_init(req);
1437 }
1438
hmac_sha256_init(struct ahash_request * req)1439 static int hmac_sha256_init(struct ahash_request *req)
1440 {
1441 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1442 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1443
1444 ctx->config.data_format = HASH_DATA_8_BITS;
1445 ctx->config.algorithm = HASH_ALGO_SHA256;
1446 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1447 ctx->digestsize = SHA256_DIGEST_SIZE;
1448
1449 return ux500_hash_init(req);
1450 }
1451
hmac_sha1_digest(struct ahash_request * req)1452 static int hmac_sha1_digest(struct ahash_request *req)
1453 {
1454 int ret2, ret1;
1455
1456 ret1 = hmac_sha1_init(req);
1457 if (ret1)
1458 goto out;
1459
1460 ret1 = ahash_update(req);
1461 ret2 = ahash_final(req);
1462
1463 out:
1464 return ret1 ? ret1 : ret2;
1465 }
1466
hmac_sha256_digest(struct ahash_request * req)1467 static int hmac_sha256_digest(struct ahash_request *req)
1468 {
1469 int ret2, ret1;
1470
1471 ret1 = hmac_sha256_init(req);
1472 if (ret1)
1473 goto out;
1474
1475 ret1 = ahash_update(req);
1476 ret2 = ahash_final(req);
1477
1478 out:
1479 return ret1 ? ret1 : ret2;
1480 }
1481
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1482 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1483 const u8 *key, unsigned int keylen)
1484 {
1485 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1486 }
1487
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1488 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1489 const u8 *key, unsigned int keylen)
1490 {
1491 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1492 }
1493
1494 struct hash_algo_template {
1495 struct hash_config conf;
1496 struct ahash_alg hash;
1497 };
1498
hash_cra_init(struct crypto_tfm * tfm)1499 static int hash_cra_init(struct crypto_tfm *tfm)
1500 {
1501 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1502 struct crypto_alg *alg = tfm->__crt_alg;
1503 struct hash_algo_template *hash_alg;
1504
1505 hash_alg = container_of(__crypto_ahash_alg(alg),
1506 struct hash_algo_template,
1507 hash);
1508
1509 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1510 sizeof(struct hash_req_ctx));
1511
1512 ctx->config.data_format = HASH_DATA_8_BITS;
1513 ctx->config.algorithm = hash_alg->conf.algorithm;
1514 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1515
1516 ctx->digestsize = hash_alg->hash.halg.digestsize;
1517
1518 return 0;
1519 }
1520
1521 static struct hash_algo_template hash_algs[] = {
1522 {
1523 .conf.algorithm = HASH_ALGO_SHA1,
1524 .conf.oper_mode = HASH_OPER_MODE_HASH,
1525 .hash = {
1526 .init = ux500_hash_init,
1527 .update = ahash_update,
1528 .final = ahash_final,
1529 .digest = ahash_sha1_digest,
1530 .export = ahash_noexport,
1531 .import = ahash_noimport,
1532 .halg.digestsize = SHA1_DIGEST_SIZE,
1533 .halg.statesize = sizeof(struct hash_ctx),
1534 .halg.base = {
1535 .cra_name = "sha1",
1536 .cra_driver_name = "sha1-ux500",
1537 .cra_flags = CRYPTO_ALG_ASYNC,
1538 .cra_blocksize = SHA1_BLOCK_SIZE,
1539 .cra_ctxsize = sizeof(struct hash_ctx),
1540 .cra_init = hash_cra_init,
1541 .cra_module = THIS_MODULE,
1542 }
1543 }
1544 },
1545 {
1546 .conf.algorithm = HASH_ALGO_SHA256,
1547 .conf.oper_mode = HASH_OPER_MODE_HASH,
1548 .hash = {
1549 .init = ux500_hash_init,
1550 .update = ahash_update,
1551 .final = ahash_final,
1552 .digest = ahash_sha256_digest,
1553 .export = ahash_noexport,
1554 .import = ahash_noimport,
1555 .halg.digestsize = SHA256_DIGEST_SIZE,
1556 .halg.statesize = sizeof(struct hash_ctx),
1557 .halg.base = {
1558 .cra_name = "sha256",
1559 .cra_driver_name = "sha256-ux500",
1560 .cra_flags = CRYPTO_ALG_ASYNC,
1561 .cra_blocksize = SHA256_BLOCK_SIZE,
1562 .cra_ctxsize = sizeof(struct hash_ctx),
1563 .cra_init = hash_cra_init,
1564 .cra_module = THIS_MODULE,
1565 }
1566 }
1567 },
1568 {
1569 .conf.algorithm = HASH_ALGO_SHA1,
1570 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1571 .hash = {
1572 .init = ux500_hash_init,
1573 .update = ahash_update,
1574 .final = ahash_final,
1575 .digest = hmac_sha1_digest,
1576 .setkey = hmac_sha1_setkey,
1577 .export = ahash_noexport,
1578 .import = ahash_noimport,
1579 .halg.digestsize = SHA1_DIGEST_SIZE,
1580 .halg.statesize = sizeof(struct hash_ctx),
1581 .halg.base = {
1582 .cra_name = "hmac(sha1)",
1583 .cra_driver_name = "hmac-sha1-ux500",
1584 .cra_flags = CRYPTO_ALG_ASYNC,
1585 .cra_blocksize = SHA1_BLOCK_SIZE,
1586 .cra_ctxsize = sizeof(struct hash_ctx),
1587 .cra_init = hash_cra_init,
1588 .cra_module = THIS_MODULE,
1589 }
1590 }
1591 },
1592 {
1593 .conf.algorithm = HASH_ALGO_SHA256,
1594 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1595 .hash = {
1596 .init = ux500_hash_init,
1597 .update = ahash_update,
1598 .final = ahash_final,
1599 .digest = hmac_sha256_digest,
1600 .setkey = hmac_sha256_setkey,
1601 .export = ahash_noexport,
1602 .import = ahash_noimport,
1603 .halg.digestsize = SHA256_DIGEST_SIZE,
1604 .halg.statesize = sizeof(struct hash_ctx),
1605 .halg.base = {
1606 .cra_name = "hmac(sha256)",
1607 .cra_driver_name = "hmac-sha256-ux500",
1608 .cra_flags = CRYPTO_ALG_ASYNC,
1609 .cra_blocksize = SHA256_BLOCK_SIZE,
1610 .cra_ctxsize = sizeof(struct hash_ctx),
1611 .cra_init = hash_cra_init,
1612 .cra_module = THIS_MODULE,
1613 }
1614 }
1615 }
1616 };
1617
ahash_algs_register_all(struct hash_device_data * device_data)1618 static int ahash_algs_register_all(struct hash_device_data *device_data)
1619 {
1620 int ret;
1621 int i;
1622 int count;
1623
1624 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1625 ret = crypto_register_ahash(&hash_algs[i].hash);
1626 if (ret) {
1627 count = i;
1628 dev_err(device_data->dev, "%s: alg registration failed\n",
1629 hash_algs[i].hash.halg.base.cra_driver_name);
1630 goto unreg;
1631 }
1632 }
1633 return 0;
1634 unreg:
1635 for (i = 0; i < count; i++)
1636 crypto_unregister_ahash(&hash_algs[i].hash);
1637 return ret;
1638 }
1639
ahash_algs_unregister_all(struct hash_device_data * device_data)1640 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1641 {
1642 int i;
1643
1644 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1645 crypto_unregister_ahash(&hash_algs[i].hash);
1646 }
1647
1648 /**
1649 * ux500_hash_probe - Function that probes the hash hardware.
1650 * @pdev: The platform device.
1651 */
ux500_hash_probe(struct platform_device * pdev)1652 static int ux500_hash_probe(struct platform_device *pdev)
1653 {
1654 int ret = 0;
1655 struct resource *res = NULL;
1656 struct hash_device_data *device_data;
1657 struct device *dev = &pdev->dev;
1658
1659 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_KERNEL);
1660 if (!device_data) {
1661 ret = -ENOMEM;
1662 goto out;
1663 }
1664
1665 device_data->dev = dev;
1666 device_data->current_ctx = NULL;
1667
1668 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669 if (!res) {
1670 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1671 ret = -ENODEV;
1672 goto out;
1673 }
1674
1675 device_data->phybase = res->start;
1676 device_data->base = devm_ioremap_resource(dev, res);
1677 if (IS_ERR(device_data->base)) {
1678 ret = PTR_ERR(device_data->base);
1679 goto out;
1680 }
1681 spin_lock_init(&device_data->ctx_lock);
1682 spin_lock_init(&device_data->power_state_lock);
1683
1684 /* Enable power for HASH1 hardware block */
1685 device_data->regulator = regulator_get(dev, "v-ape");
1686 if (IS_ERR(device_data->regulator)) {
1687 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1688 ret = PTR_ERR(device_data->regulator);
1689 device_data->regulator = NULL;
1690 goto out;
1691 }
1692
1693 /* Enable the clock for HASH1 hardware block */
1694 device_data->clk = devm_clk_get(dev, NULL);
1695 if (IS_ERR(device_data->clk)) {
1696 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1697 ret = PTR_ERR(device_data->clk);
1698 goto out_regulator;
1699 }
1700
1701 ret = clk_prepare(device_data->clk);
1702 if (ret) {
1703 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1704 goto out_regulator;
1705 }
1706
1707 /* Enable device power (and clock) */
1708 ret = hash_enable_power(device_data, false);
1709 if (ret) {
1710 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1711 goto out_clk_unprepare;
1712 }
1713
1714 ret = hash_check_hw(device_data);
1715 if (ret) {
1716 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1717 goto out_power;
1718 }
1719
1720 if (hash_mode == HASH_MODE_DMA)
1721 hash_dma_setup_channel(device_data, dev);
1722
1723 platform_set_drvdata(pdev, device_data);
1724
1725 /* Put the new device into the device list... */
1726 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1727 /* ... and signal that a new device is available. */
1728 up(&driver_data.device_allocation);
1729
1730 ret = ahash_algs_register_all(device_data);
1731 if (ret) {
1732 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1733 __func__);
1734 goto out_power;
1735 }
1736
1737 dev_info(dev, "successfully registered\n");
1738 return 0;
1739
1740 out_power:
1741 hash_disable_power(device_data, false);
1742
1743 out_clk_unprepare:
1744 clk_unprepare(device_data->clk);
1745
1746 out_regulator:
1747 regulator_put(device_data->regulator);
1748
1749 out:
1750 return ret;
1751 }
1752
1753 /**
1754 * ux500_hash_remove - Function that removes the hash device from the platform.
1755 * @pdev: The platform device.
1756 */
ux500_hash_remove(struct platform_device * pdev)1757 static int ux500_hash_remove(struct platform_device *pdev)
1758 {
1759 struct hash_device_data *device_data;
1760 struct device *dev = &pdev->dev;
1761
1762 device_data = platform_get_drvdata(pdev);
1763 if (!device_data) {
1764 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1765 return -ENOMEM;
1766 }
1767
1768 /* Try to decrease the number of available devices. */
1769 if (down_trylock(&driver_data.device_allocation))
1770 return -EBUSY;
1771
1772 /* Check that the device is free */
1773 spin_lock(&device_data->ctx_lock);
1774 /* current_ctx allocates a device, NULL = unallocated */
1775 if (device_data->current_ctx) {
1776 /* The device is busy */
1777 spin_unlock(&device_data->ctx_lock);
1778 /* Return the device to the pool. */
1779 up(&driver_data.device_allocation);
1780 return -EBUSY;
1781 }
1782
1783 spin_unlock(&device_data->ctx_lock);
1784
1785 /* Remove the device from the list */
1786 if (klist_node_attached(&device_data->list_node))
1787 klist_remove(&device_data->list_node);
1788
1789 /* If this was the last device, remove the services */
1790 if (list_empty(&driver_data.device_list.k_list))
1791 ahash_algs_unregister_all(device_data);
1792
1793 if (hash_disable_power(device_data, false))
1794 dev_err(dev, "%s: hash_disable_power() failed\n",
1795 __func__);
1796
1797 clk_unprepare(device_data->clk);
1798 regulator_put(device_data->regulator);
1799
1800 return 0;
1801 }
1802
1803 /**
1804 * ux500_hash_shutdown - Function that shutdown the hash device.
1805 * @pdev: The platform device
1806 */
ux500_hash_shutdown(struct platform_device * pdev)1807 static void ux500_hash_shutdown(struct platform_device *pdev)
1808 {
1809 struct hash_device_data *device_data;
1810
1811 device_data = platform_get_drvdata(pdev);
1812 if (!device_data) {
1813 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1814 __func__);
1815 return;
1816 }
1817
1818 /* Check that the device is free */
1819 spin_lock(&device_data->ctx_lock);
1820 /* current_ctx allocates a device, NULL = unallocated */
1821 if (!device_data->current_ctx) {
1822 if (down_trylock(&driver_data.device_allocation))
1823 dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1824 __func__);
1825 /**
1826 * (Allocate the device)
1827 * Need to set this to non-null (dummy) value,
1828 * to avoid usage if context switching.
1829 */
1830 device_data->current_ctx++;
1831 }
1832 spin_unlock(&device_data->ctx_lock);
1833
1834 /* Remove the device from the list */
1835 if (klist_node_attached(&device_data->list_node))
1836 klist_remove(&device_data->list_node);
1837
1838 /* If this was the last device, remove the services */
1839 if (list_empty(&driver_data.device_list.k_list))
1840 ahash_algs_unregister_all(device_data);
1841
1842 if (hash_disable_power(device_data, false))
1843 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1844 __func__);
1845 }
1846
1847 #ifdef CONFIG_PM_SLEEP
1848 /**
1849 * ux500_hash_suspend - Function that suspends the hash device.
1850 * @dev: Device to suspend.
1851 */
ux500_hash_suspend(struct device * dev)1852 static int ux500_hash_suspend(struct device *dev)
1853 {
1854 int ret;
1855 struct hash_device_data *device_data;
1856 struct hash_ctx *temp_ctx = NULL;
1857
1858 device_data = dev_get_drvdata(dev);
1859 if (!device_data) {
1860 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1861 return -ENOMEM;
1862 }
1863
1864 spin_lock(&device_data->ctx_lock);
1865 if (!device_data->current_ctx)
1866 device_data->current_ctx++;
1867 spin_unlock(&device_data->ctx_lock);
1868
1869 if (device_data->current_ctx == ++temp_ctx) {
1870 if (down_interruptible(&driver_data.device_allocation))
1871 dev_dbg(dev, "%s: down_interruptible() failed\n",
1872 __func__);
1873 ret = hash_disable_power(device_data, false);
1874
1875 } else {
1876 ret = hash_disable_power(device_data, true);
1877 }
1878
1879 if (ret)
1880 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1881
1882 return ret;
1883 }
1884
1885 /**
1886 * ux500_hash_resume - Function that resume the hash device.
1887 * @dev: Device to resume.
1888 */
ux500_hash_resume(struct device * dev)1889 static int ux500_hash_resume(struct device *dev)
1890 {
1891 int ret = 0;
1892 struct hash_device_data *device_data;
1893 struct hash_ctx *temp_ctx = NULL;
1894
1895 device_data = dev_get_drvdata(dev);
1896 if (!device_data) {
1897 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1898 return -ENOMEM;
1899 }
1900
1901 spin_lock(&device_data->ctx_lock);
1902 if (device_data->current_ctx == ++temp_ctx)
1903 device_data->current_ctx = NULL;
1904 spin_unlock(&device_data->ctx_lock);
1905
1906 if (!device_data->current_ctx)
1907 up(&driver_data.device_allocation);
1908 else
1909 ret = hash_enable_power(device_data, true);
1910
1911 if (ret)
1912 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1913
1914 return ret;
1915 }
1916 #endif
1917
1918 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1919
1920 static const struct of_device_id ux500_hash_match[] = {
1921 { .compatible = "stericsson,ux500-hash" },
1922 { },
1923 };
1924 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1925
1926 static struct platform_driver hash_driver = {
1927 .probe = ux500_hash_probe,
1928 .remove = ux500_hash_remove,
1929 .shutdown = ux500_hash_shutdown,
1930 .driver = {
1931 .name = "hash1",
1932 .of_match_table = ux500_hash_match,
1933 .pm = &ux500_hash_pm,
1934 }
1935 };
1936
1937 /**
1938 * ux500_hash_mod_init - The kernel module init function.
1939 */
ux500_hash_mod_init(void)1940 static int __init ux500_hash_mod_init(void)
1941 {
1942 klist_init(&driver_data.device_list, NULL, NULL);
1943 /* Initialize the semaphore to 0 devices (locked state) */
1944 sema_init(&driver_data.device_allocation, 0);
1945
1946 return platform_driver_register(&hash_driver);
1947 }
1948
1949 /**
1950 * ux500_hash_mod_fini - The kernel module exit function.
1951 */
ux500_hash_mod_fini(void)1952 static void __exit ux500_hash_mod_fini(void)
1953 {
1954 platform_driver_unregister(&hash_driver);
1955 }
1956
1957 module_init(ux500_hash_mod_init);
1958 module_exit(ux500_hash_mod_fini);
1959
1960 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1961 MODULE_LICENSE("GPL");
1962
1963 MODULE_ALIAS_CRYPTO("sha1-all");
1964 MODULE_ALIAS_CRYPTO("sha256-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1967