1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21 
22 #include <asm/cpu_device_id.h>
23 #include <asm/resctrl.h>
24 
25 #include "internal.h"
26 
27 struct rmid_entry {
28 	u32				rmid;
29 	int				busy;
30 	struct list_head		list;
31 };
32 
33 /**
34  * @rmid_free_lru    A least recently used list of free RMIDs
35  *     These RMIDs are guaranteed to have an occupancy less than the
36  *     threshold occupancy
37  */
38 static LIST_HEAD(rmid_free_lru);
39 
40 /**
41  * @rmid_limbo_count     count of currently unused but (potentially)
42  *     dirty RMIDs.
43  *     This counts RMIDs that no one is currently using but that
44  *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
45  *     change the threshold occupancy value.
46  */
47 static unsigned int rmid_limbo_count;
48 
49 /**
50  * @rmid_entry - The entry in the limbo and free lists.
51  */
52 static struct rmid_entry	*rmid_ptrs;
53 
54 /*
55  * Global boolean for rdt_monitor which is true if any
56  * resource monitoring is enabled.
57  */
58 bool rdt_mon_capable;
59 
60 /*
61  * Global to indicate which monitoring events are enabled.
62  */
63 unsigned int rdt_mon_features;
64 
65 /*
66  * This is the threshold cache occupancy in bytes at which we will consider an
67  * RMID available for re-allocation.
68  */
69 unsigned int resctrl_rmid_realloc_threshold;
70 
71 /*
72  * This is the maximum value for the reallocation threshold, in bytes.
73  */
74 unsigned int resctrl_rmid_realloc_limit;
75 
76 #define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
77 
78 /*
79  * The correction factor table is documented in Documentation/x86/resctrl.rst.
80  * If rmid > rmid threshold, MBM total and local values should be multiplied
81  * by the correction factor.
82  *
83  * The original table is modified for better code:
84  *
85  * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
86  *    for the case.
87  * 2. MBM total and local correction table indexed by core counter which is
88  *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
89  * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
90  *    to calculate corrected value by shifting:
91  *    corrected_value = (original_value * correction_factor) >> 20
92  */
93 static const struct mbm_correction_factor_table {
94 	u32 rmidthreshold;
95 	u64 cf;
96 } mbm_cf_table[] __initconst = {
97 	{7,	CF(1.000000)},
98 	{15,	CF(1.000000)},
99 	{15,	CF(0.969650)},
100 	{31,	CF(1.000000)},
101 	{31,	CF(1.066667)},
102 	{31,	CF(0.969650)},
103 	{47,	CF(1.142857)},
104 	{63,	CF(1.000000)},
105 	{63,	CF(1.185115)},
106 	{63,	CF(1.066553)},
107 	{79,	CF(1.454545)},
108 	{95,	CF(1.000000)},
109 	{95,	CF(1.230769)},
110 	{95,	CF(1.142857)},
111 	{95,	CF(1.066667)},
112 	{127,	CF(1.000000)},
113 	{127,	CF(1.254863)},
114 	{127,	CF(1.185255)},
115 	{151,	CF(1.000000)},
116 	{127,	CF(1.066667)},
117 	{167,	CF(1.000000)},
118 	{159,	CF(1.454334)},
119 	{183,	CF(1.000000)},
120 	{127,	CF(0.969744)},
121 	{191,	CF(1.280246)},
122 	{191,	CF(1.230921)},
123 	{215,	CF(1.000000)},
124 	{191,	CF(1.143118)},
125 };
126 
127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
128 static u64 mbm_cf __read_mostly;
129 
get_corrected_mbm_count(u32 rmid,unsigned long val)130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
131 {
132 	/* Correct MBM value. */
133 	if (rmid > mbm_cf_rmidthreshold)
134 		val = (val * mbm_cf) >> 20;
135 
136 	return val;
137 }
138 
__rmid_entry(u32 rmid)139 static inline struct rmid_entry *__rmid_entry(u32 rmid)
140 {
141 	struct rmid_entry *entry;
142 
143 	entry = &rmid_ptrs[rmid];
144 	WARN_ON(entry->rmid != rmid);
145 
146 	return entry;
147 }
148 
__rmid_read(u32 rmid,enum resctrl_event_id eventid,u64 * val)149 static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
150 {
151 	u64 msr_val;
152 
153 	/*
154 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
155 	 * with a valid event code for supported resource type and the bits
156 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
157 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
158 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
159 	 * are error bits.
160 	 */
161 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
162 	rdmsrl(MSR_IA32_QM_CTR, msr_val);
163 
164 	if (msr_val & RMID_VAL_ERROR)
165 		return -EIO;
166 	if (msr_val & RMID_VAL_UNAVAIL)
167 		return -EINVAL;
168 
169 	*val = msr_val;
170 	return 0;
171 }
172 
get_arch_mbm_state(struct rdt_hw_domain * hw_dom,u32 rmid,enum resctrl_event_id eventid)173 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
174 						 u32 rmid,
175 						 enum resctrl_event_id eventid)
176 {
177 	switch (eventid) {
178 	case QOS_L3_OCCUP_EVENT_ID:
179 		return NULL;
180 	case QOS_L3_MBM_TOTAL_EVENT_ID:
181 		return &hw_dom->arch_mbm_total[rmid];
182 	case QOS_L3_MBM_LOCAL_EVENT_ID:
183 		return &hw_dom->arch_mbm_local[rmid];
184 	}
185 
186 	/* Never expect to get here */
187 	WARN_ON_ONCE(1);
188 
189 	return NULL;
190 }
191 
resctrl_arch_reset_rmid(struct rdt_resource * r,struct rdt_domain * d,u32 rmid,enum resctrl_event_id eventid)192 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
193 			     u32 rmid, enum resctrl_event_id eventid)
194 {
195 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
196 	struct arch_mbm_state *am;
197 
198 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
199 	if (am) {
200 		memset(am, 0, sizeof(*am));
201 
202 		/* Record any initial, non-zero count value. */
203 		__rmid_read(rmid, eventid, &am->prev_msr);
204 	}
205 }
206 
mbm_overflow_count(u64 prev_msr,u64 cur_msr,unsigned int width)207 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
208 {
209 	u64 shift = 64 - width, chunks;
210 
211 	chunks = (cur_msr << shift) - (prev_msr << shift);
212 	return chunks >> shift;
213 }
214 
resctrl_arch_rmid_read(struct rdt_resource * r,struct rdt_domain * d,u32 rmid,enum resctrl_event_id eventid,u64 * val)215 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
216 			   u32 rmid, enum resctrl_event_id eventid, u64 *val)
217 {
218 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
219 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
220 	struct arch_mbm_state *am;
221 	u64 msr_val, chunks;
222 	int ret;
223 
224 	if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
225 		return -EINVAL;
226 
227 	ret = __rmid_read(rmid, eventid, &msr_val);
228 	if (ret)
229 		return ret;
230 
231 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
232 	if (am) {
233 		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
234 						 hw_res->mbm_width);
235 		chunks = get_corrected_mbm_count(rmid, am->chunks);
236 		am->prev_msr = msr_val;
237 	} else {
238 		chunks = msr_val;
239 	}
240 
241 	*val = chunks * hw_res->mon_scale;
242 
243 	return 0;
244 }
245 
246 /*
247  * Check the RMIDs that are marked as busy for this domain. If the
248  * reported LLC occupancy is below the threshold clear the busy bit and
249  * decrement the count. If the busy count gets to zero on an RMID, we
250  * free the RMID
251  */
__check_limbo(struct rdt_domain * d,bool force_free)252 void __check_limbo(struct rdt_domain *d, bool force_free)
253 {
254 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
255 	struct rmid_entry *entry;
256 	u32 crmid = 1, nrmid;
257 	bool rmid_dirty;
258 	u64 val = 0;
259 
260 	/*
261 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
262 	 * are marked as busy for occupancy < threshold. If the occupancy
263 	 * is less than the threshold decrement the busy counter of the
264 	 * RMID and move it to the free list when the counter reaches 0.
265 	 */
266 	for (;;) {
267 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
268 		if (nrmid >= r->num_rmid)
269 			break;
270 
271 		entry = __rmid_entry(nrmid);
272 
273 		if (resctrl_arch_rmid_read(r, d, entry->rmid,
274 					   QOS_L3_OCCUP_EVENT_ID, &val)) {
275 			rmid_dirty = true;
276 		} else {
277 			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
278 		}
279 
280 		if (force_free || !rmid_dirty) {
281 			clear_bit(entry->rmid, d->rmid_busy_llc);
282 			if (!--entry->busy) {
283 				rmid_limbo_count--;
284 				list_add_tail(&entry->list, &rmid_free_lru);
285 			}
286 		}
287 		crmid = nrmid + 1;
288 	}
289 }
290 
has_busy_rmid(struct rdt_resource * r,struct rdt_domain * d)291 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
292 {
293 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
294 }
295 
296 /*
297  * As of now the RMIDs allocation is global.
298  * However we keep track of which packages the RMIDs
299  * are used to optimize the limbo list management.
300  */
alloc_rmid(void)301 int alloc_rmid(void)
302 {
303 	struct rmid_entry *entry;
304 
305 	lockdep_assert_held(&rdtgroup_mutex);
306 
307 	if (list_empty(&rmid_free_lru))
308 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
309 
310 	entry = list_first_entry(&rmid_free_lru,
311 				 struct rmid_entry, list);
312 	list_del(&entry->list);
313 
314 	return entry->rmid;
315 }
316 
add_rmid_to_limbo(struct rmid_entry * entry)317 static void add_rmid_to_limbo(struct rmid_entry *entry)
318 {
319 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
320 	struct rdt_domain *d;
321 	int cpu, err;
322 	u64 val = 0;
323 
324 	entry->busy = 0;
325 	cpu = get_cpu();
326 	list_for_each_entry(d, &r->domains, list) {
327 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
328 			err = resctrl_arch_rmid_read(r, d, entry->rmid,
329 						     QOS_L3_OCCUP_EVENT_ID,
330 						     &val);
331 			if (err || val <= resctrl_rmid_realloc_threshold)
332 				continue;
333 		}
334 
335 		/*
336 		 * For the first limbo RMID in the domain,
337 		 * setup up the limbo worker.
338 		 */
339 		if (!has_busy_rmid(r, d))
340 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
341 		set_bit(entry->rmid, d->rmid_busy_llc);
342 		entry->busy++;
343 	}
344 	put_cpu();
345 
346 	if (entry->busy)
347 		rmid_limbo_count++;
348 	else
349 		list_add_tail(&entry->list, &rmid_free_lru);
350 }
351 
free_rmid(u32 rmid)352 void free_rmid(u32 rmid)
353 {
354 	struct rmid_entry *entry;
355 
356 	if (!rmid)
357 		return;
358 
359 	lockdep_assert_held(&rdtgroup_mutex);
360 
361 	entry = __rmid_entry(rmid);
362 
363 	if (is_llc_occupancy_enabled())
364 		add_rmid_to_limbo(entry);
365 	else
366 		list_add_tail(&entry->list, &rmid_free_lru);
367 }
368 
__mon_event_count(u32 rmid,struct rmid_read * rr)369 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
370 {
371 	struct mbm_state *m;
372 	u64 tval = 0;
373 
374 	if (rr->first)
375 		resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid);
376 
377 	rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval);
378 	if (rr->err)
379 		return rr->err;
380 
381 	switch (rr->evtid) {
382 	case QOS_L3_OCCUP_EVENT_ID:
383 		rr->val += tval;
384 		return 0;
385 	case QOS_L3_MBM_TOTAL_EVENT_ID:
386 		m = &rr->d->mbm_total[rmid];
387 		break;
388 	case QOS_L3_MBM_LOCAL_EVENT_ID:
389 		m = &rr->d->mbm_local[rmid];
390 		break;
391 	default:
392 		/*
393 		 * Code would never reach here because an invalid
394 		 * event id would fail in resctrl_arch_rmid_read().
395 		 */
396 		return -EINVAL;
397 	}
398 
399 	if (rr->first) {
400 		memset(m, 0, sizeof(struct mbm_state));
401 		return 0;
402 	}
403 
404 	rr->val += tval;
405 
406 	return 0;
407 }
408 
409 /*
410  * mbm_bw_count() - Update bw count from values previously read by
411  *		    __mon_event_count().
412  * @rmid:	The rmid used to identify the cached mbm_state.
413  * @rr:		The struct rmid_read populated by __mon_event_count().
414  *
415  * Supporting function to calculate the memory bandwidth
416  * and delta bandwidth in MBps. The chunks value previously read by
417  * __mon_event_count() is compared with the chunks value from the previous
418  * invocation. This must be called once per second to maintain values in MBps.
419  */
mbm_bw_count(u32 rmid,struct rmid_read * rr)420 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
421 {
422 	struct mbm_state *m = &rr->d->mbm_local[rmid];
423 	u64 cur_bw, bytes, cur_bytes;
424 
425 	cur_bytes = rr->val;
426 	bytes = cur_bytes - m->prev_bw_bytes;
427 	m->prev_bw_bytes = cur_bytes;
428 
429 	cur_bw = bytes / SZ_1M;
430 
431 	if (m->delta_comp)
432 		m->delta_bw = abs(cur_bw - m->prev_bw);
433 	m->delta_comp = false;
434 	m->prev_bw = cur_bw;
435 }
436 
437 /*
438  * This is called via IPI to read the CQM/MBM counters
439  * on a domain.
440  */
mon_event_count(void * info)441 void mon_event_count(void *info)
442 {
443 	struct rdtgroup *rdtgrp, *entry;
444 	struct rmid_read *rr = info;
445 	struct list_head *head;
446 	int ret;
447 
448 	rdtgrp = rr->rgrp;
449 
450 	ret = __mon_event_count(rdtgrp->mon.rmid, rr);
451 
452 	/*
453 	 * For Ctrl groups read data from child monitor groups and
454 	 * add them together. Count events which are read successfully.
455 	 * Discard the rmid_read's reporting errors.
456 	 */
457 	head = &rdtgrp->mon.crdtgrp_list;
458 
459 	if (rdtgrp->type == RDTCTRL_GROUP) {
460 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
461 			if (__mon_event_count(entry->mon.rmid, rr) == 0)
462 				ret = 0;
463 		}
464 	}
465 
466 	/*
467 	 * __mon_event_count() calls for newly created monitor groups may
468 	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
469 	 * Discard error if any of the monitor event reads succeeded.
470 	 */
471 	if (ret == 0)
472 		rr->err = 0;
473 }
474 
475 /*
476  * Feedback loop for MBA software controller (mba_sc)
477  *
478  * mba_sc is a feedback loop where we periodically read MBM counters and
479  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
480  * that:
481  *
482  *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
483  *
484  * This uses the MBM counters to measure the bandwidth and MBA throttle
485  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
486  * fact that resctrl rdtgroups have both monitoring and control.
487  *
488  * The frequency of the checks is 1s and we just tag along the MBM overflow
489  * timer. Having 1s interval makes the calculation of bandwidth simpler.
490  *
491  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
492  * be a need to increase the bandwidth to avoid unnecessarily restricting
493  * the L2 <-> L3 traffic.
494  *
495  * Since MBA controls the L2 external bandwidth where as MBM measures the
496  * L3 external bandwidth the following sequence could lead to such a
497  * situation.
498  *
499  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
500  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
501  * after some time rdtgroup has mostly L2 <-> L3 traffic.
502  *
503  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
504  * throttle MSRs already have low percentage values.  To avoid
505  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
506  */
update_mba_bw(struct rdtgroup * rgrp,struct rdt_domain * dom_mbm)507 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
508 {
509 	u32 closid, rmid, cur_msr_val, new_msr_val;
510 	struct mbm_state *pmbm_data, *cmbm_data;
511 	u32 cur_bw, delta_bw, user_bw;
512 	struct rdt_resource *r_mba;
513 	struct rdt_domain *dom_mba;
514 	struct list_head *head;
515 	struct rdtgroup *entry;
516 
517 	if (!is_mbm_local_enabled())
518 		return;
519 
520 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
521 
522 	closid = rgrp->closid;
523 	rmid = rgrp->mon.rmid;
524 	pmbm_data = &dom_mbm->mbm_local[rmid];
525 
526 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
527 	if (!dom_mba) {
528 		pr_warn_once("Failure to get domain for MBA update\n");
529 		return;
530 	}
531 
532 	cur_bw = pmbm_data->prev_bw;
533 	user_bw = dom_mba->mbps_val[closid];
534 	delta_bw = pmbm_data->delta_bw;
535 
536 	/* MBA resource doesn't support CDP */
537 	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
538 
539 	/*
540 	 * For Ctrl groups read data from child monitor groups.
541 	 */
542 	head = &rgrp->mon.crdtgrp_list;
543 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
544 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
545 		cur_bw += cmbm_data->prev_bw;
546 		delta_bw += cmbm_data->delta_bw;
547 	}
548 
549 	/*
550 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
551 	 * bandwidth step is the bandwidth granularity specified by the
552 	 * hardware.
553 	 *
554 	 * The delta_bw is used when increasing the bandwidth so that we
555 	 * dont alternately increase and decrease the control values
556 	 * continuously.
557 	 *
558 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
559 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
560 	 * switching between 90 and 110 continuously if we only check
561 	 * cur_bw < user_bw.
562 	 */
563 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
564 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
565 	} else if (cur_msr_val < MAX_MBA_BW &&
566 		   (user_bw > (cur_bw + delta_bw))) {
567 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
568 	} else {
569 		return;
570 	}
571 
572 	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
573 
574 	/*
575 	 * Delta values are updated dynamically package wise for each
576 	 * rdtgrp every time the throttle MSR changes value.
577 	 *
578 	 * This is because (1)the increase in bandwidth is not perfectly
579 	 * linear and only "approximately" linear even when the hardware
580 	 * says it is linear.(2)Also since MBA is a core specific
581 	 * mechanism, the delta values vary based on number of cores used
582 	 * by the rdtgrp.
583 	 */
584 	pmbm_data->delta_comp = true;
585 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
586 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
587 		cmbm_data->delta_comp = true;
588 	}
589 }
590 
mbm_update(struct rdt_resource * r,struct rdt_domain * d,int rmid)591 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
592 {
593 	struct rmid_read rr;
594 
595 	rr.first = false;
596 	rr.r = r;
597 	rr.d = d;
598 
599 	/*
600 	 * This is protected from concurrent reads from user
601 	 * as both the user and we hold the global mutex.
602 	 */
603 	if (is_mbm_total_enabled()) {
604 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
605 		rr.val = 0;
606 		__mon_event_count(rmid, &rr);
607 	}
608 	if (is_mbm_local_enabled()) {
609 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
610 		rr.val = 0;
611 		__mon_event_count(rmid, &rr);
612 
613 		/*
614 		 * Call the MBA software controller only for the
615 		 * control groups and when user has enabled
616 		 * the software controller explicitly.
617 		 */
618 		if (is_mba_sc(NULL))
619 			mbm_bw_count(rmid, &rr);
620 	}
621 }
622 
623 /*
624  * Handler to scan the limbo list and move the RMIDs
625  * to free list whose occupancy < threshold_occupancy.
626  */
cqm_handle_limbo(struct work_struct * work)627 void cqm_handle_limbo(struct work_struct *work)
628 {
629 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
630 	int cpu = smp_processor_id();
631 	struct rdt_resource *r;
632 	struct rdt_domain *d;
633 
634 	mutex_lock(&rdtgroup_mutex);
635 
636 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
637 	d = container_of(work, struct rdt_domain, cqm_limbo.work);
638 
639 	__check_limbo(d, false);
640 
641 	if (has_busy_rmid(r, d))
642 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
643 
644 	mutex_unlock(&rdtgroup_mutex);
645 }
646 
cqm_setup_limbo_handler(struct rdt_domain * dom,unsigned long delay_ms)647 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
648 {
649 	unsigned long delay = msecs_to_jiffies(delay_ms);
650 	int cpu;
651 
652 	cpu = cpumask_any(&dom->cpu_mask);
653 	dom->cqm_work_cpu = cpu;
654 
655 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
656 }
657 
mbm_handle_overflow(struct work_struct * work)658 void mbm_handle_overflow(struct work_struct *work)
659 {
660 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
661 	struct rdtgroup *prgrp, *crgrp;
662 	int cpu = smp_processor_id();
663 	struct list_head *head;
664 	struct rdt_resource *r;
665 	struct rdt_domain *d;
666 
667 	mutex_lock(&rdtgroup_mutex);
668 
669 	if (!static_branch_likely(&rdt_mon_enable_key))
670 		goto out_unlock;
671 
672 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
673 	d = container_of(work, struct rdt_domain, mbm_over.work);
674 
675 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
676 		mbm_update(r, d, prgrp->mon.rmid);
677 
678 		head = &prgrp->mon.crdtgrp_list;
679 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
680 			mbm_update(r, d, crgrp->mon.rmid);
681 
682 		if (is_mba_sc(NULL))
683 			update_mba_bw(prgrp, d);
684 	}
685 
686 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
687 
688 out_unlock:
689 	mutex_unlock(&rdtgroup_mutex);
690 }
691 
mbm_setup_overflow_handler(struct rdt_domain * dom,unsigned long delay_ms)692 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
693 {
694 	unsigned long delay = msecs_to_jiffies(delay_ms);
695 	int cpu;
696 
697 	if (!static_branch_likely(&rdt_mon_enable_key))
698 		return;
699 	cpu = cpumask_any(&dom->cpu_mask);
700 	dom->mbm_work_cpu = cpu;
701 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
702 }
703 
dom_data_init(struct rdt_resource * r)704 static int dom_data_init(struct rdt_resource *r)
705 {
706 	struct rmid_entry *entry = NULL;
707 	int i, nr_rmids;
708 
709 	nr_rmids = r->num_rmid;
710 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
711 	if (!rmid_ptrs)
712 		return -ENOMEM;
713 
714 	for (i = 0; i < nr_rmids; i++) {
715 		entry = &rmid_ptrs[i];
716 		INIT_LIST_HEAD(&entry->list);
717 
718 		entry->rmid = i;
719 		list_add_tail(&entry->list, &rmid_free_lru);
720 	}
721 
722 	/*
723 	 * RMID 0 is special and is always allocated. It's used for all
724 	 * tasks that are not monitored.
725 	 */
726 	entry = __rmid_entry(0);
727 	list_del(&entry->list);
728 
729 	return 0;
730 }
731 
732 static struct mon_evt llc_occupancy_event = {
733 	.name		= "llc_occupancy",
734 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
735 };
736 
737 static struct mon_evt mbm_total_event = {
738 	.name		= "mbm_total_bytes",
739 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
740 };
741 
742 static struct mon_evt mbm_local_event = {
743 	.name		= "mbm_local_bytes",
744 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
745 };
746 
747 /*
748  * Initialize the event list for the resource.
749  *
750  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
751  * because as per the SDM the total and local memory bandwidth
752  * are enumerated as part of L3 monitoring.
753  */
l3_mon_evt_init(struct rdt_resource * r)754 static void l3_mon_evt_init(struct rdt_resource *r)
755 {
756 	INIT_LIST_HEAD(&r->evt_list);
757 
758 	if (is_llc_occupancy_enabled())
759 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
760 	if (is_mbm_total_enabled())
761 		list_add_tail(&mbm_total_event.list, &r->evt_list);
762 	if (is_mbm_local_enabled())
763 		list_add_tail(&mbm_local_event.list, &r->evt_list);
764 }
765 
rdt_get_mon_l3_config(struct rdt_resource * r)766 int rdt_get_mon_l3_config(struct rdt_resource *r)
767 {
768 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
769 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
770 	unsigned int threshold;
771 	int ret;
772 
773 	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
774 	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
775 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
776 	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
777 
778 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
779 		hw_res->mbm_width += mbm_offset;
780 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
781 		pr_warn("Ignoring impossible MBM counter offset\n");
782 
783 	/*
784 	 * A reasonable upper limit on the max threshold is the number
785 	 * of lines tagged per RMID if all RMIDs have the same number of
786 	 * lines tagged in the LLC.
787 	 *
788 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
789 	 */
790 	threshold = resctrl_rmid_realloc_limit / r->num_rmid;
791 
792 	/*
793 	 * Because num_rmid may not be a power of two, round the value
794 	 * to the nearest multiple of hw_res->mon_scale so it matches a
795 	 * value the hardware will measure. mon_scale may not be a power of 2.
796 	 */
797 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
798 
799 	ret = dom_data_init(r);
800 	if (ret)
801 		return ret;
802 
803 	l3_mon_evt_init(r);
804 
805 	r->mon_capable = true;
806 
807 	return 0;
808 }
809 
intel_rdt_mbm_apply_quirk(void)810 void __init intel_rdt_mbm_apply_quirk(void)
811 {
812 	int cf_index;
813 
814 	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
815 	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
816 		pr_info("No MBM correction factor available\n");
817 		return;
818 	}
819 
820 	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
821 	mbm_cf = mbm_cf_table[cf_index].cf;
822 }
823