1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2019 SUSE
6 *
7 * Author: Joerg Roedel <jroedel@suse.de>
8 */
9
10 #define pr_fmt(fmt) "SEV: " fmt
11
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 #include <linux/psp-sev.h>
26 #include <uapi/linux/sev-guest.h>
27
28 #include <asm/cpu_entry_area.h>
29 #include <asm/stacktrace.h>
30 #include <asm/sev.h>
31 #include <asm/insn-eval.h>
32 #include <asm/fpu/xcr.h>
33 #include <asm/processor.h>
34 #include <asm/realmode.h>
35 #include <asm/setup.h>
36 #include <asm/traps.h>
37 #include <asm/svm.h>
38 #include <asm/smp.h>
39 #include <asm/cpu.h>
40 #include <asm/apic.h>
41 #include <asm/cpuid.h>
42 #include <asm/cmdline.h>
43
44 #define DR7_RESET_VALUE 0x400
45
46 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */
47 #define AP_INIT_CS_LIMIT 0xffff
48 #define AP_INIT_DS_LIMIT 0xffff
49 #define AP_INIT_LDTR_LIMIT 0xffff
50 #define AP_INIT_GDTR_LIMIT 0xffff
51 #define AP_INIT_IDTR_LIMIT 0xffff
52 #define AP_INIT_TR_LIMIT 0xffff
53 #define AP_INIT_RFLAGS_DEFAULT 0x2
54 #define AP_INIT_DR6_DEFAULT 0xffff0ff0
55 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
56 #define AP_INIT_XCR0_DEFAULT 0x1
57 #define AP_INIT_X87_FTW_DEFAULT 0x5555
58 #define AP_INIT_X87_FCW_DEFAULT 0x0040
59 #define AP_INIT_CR0_DEFAULT 0x60000010
60 #define AP_INIT_MXCSR_DEFAULT 0x1f80
61
62 /* For early boot hypervisor communication in SEV-ES enabled guests */
63 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
64
65 /*
66 * Needs to be in the .data section because we need it NULL before bss is
67 * cleared
68 */
69 static struct ghcb *boot_ghcb __section(".data");
70
71 /* Bitmap of SEV features supported by the hypervisor */
72 static u64 sev_hv_features __ro_after_init;
73
74 /* #VC handler runtime per-CPU data */
75 struct sev_es_runtime_data {
76 struct ghcb ghcb_page;
77
78 /*
79 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
80 * It is needed when an NMI happens while the #VC handler uses the real
81 * GHCB, and the NMI handler itself is causing another #VC exception. In
82 * that case the GHCB content of the first handler needs to be backed up
83 * and restored.
84 */
85 struct ghcb backup_ghcb;
86
87 /*
88 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
89 * There is no need for it to be atomic, because nothing is written to
90 * the GHCB between the read and the write of ghcb_active. So it is safe
91 * to use it when a nested #VC exception happens before the write.
92 *
93 * This is necessary for example in the #VC->NMI->#VC case when the NMI
94 * happens while the first #VC handler uses the GHCB. When the NMI code
95 * raises a second #VC handler it might overwrite the contents of the
96 * GHCB written by the first handler. To avoid this the content of the
97 * GHCB is saved and restored when the GHCB is detected to be in use
98 * already.
99 */
100 bool ghcb_active;
101 bool backup_ghcb_active;
102
103 /*
104 * Cached DR7 value - write it on DR7 writes and return it on reads.
105 * That value will never make it to the real hardware DR7 as debugging
106 * is currently unsupported in SEV-ES guests.
107 */
108 unsigned long dr7;
109 };
110
111 struct ghcb_state {
112 struct ghcb *ghcb;
113 };
114
115 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
117
118 struct sev_config {
119 __u64 debug : 1,
120
121 /*
122 * A flag used by __set_pages_state() that indicates when the
123 * per-CPU GHCB has been created and registered and thus can be
124 * used by the BSP instead of the early boot GHCB.
125 *
126 * For APs, the per-CPU GHCB is created before they are started
127 * and registered upon startup, so this flag can be used globally
128 * for the BSP and APs.
129 */
130 ghcbs_initialized : 1,
131
132 __reserved : 62;
133 };
134
135 static struct sev_config sev_cfg __read_mostly;
136
on_vc_stack(struct pt_regs * regs)137 static __always_inline bool on_vc_stack(struct pt_regs *regs)
138 {
139 unsigned long sp = regs->sp;
140
141 /* User-mode RSP is not trusted */
142 if (user_mode(regs))
143 return false;
144
145 /* SYSCALL gap still has user-mode RSP */
146 if (ip_within_syscall_gap(regs))
147 return false;
148
149 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
150 }
151
152 /*
153 * This function handles the case when an NMI is raised in the #VC
154 * exception handler entry code, before the #VC handler has switched off
155 * its IST stack. In this case, the IST entry for #VC must be adjusted,
156 * so that any nested #VC exception will not overwrite the stack
157 * contents of the interrupted #VC handler.
158 *
159 * The IST entry is adjusted unconditionally so that it can be also be
160 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
161 * nested sev_es_ist_exit() call may adjust back the IST entry too
162 * early.
163 *
164 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
165 * on the NMI IST stack, as they are only called from NMI handling code
166 * right now.
167 */
__sev_es_ist_enter(struct pt_regs * regs)168 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
169 {
170 unsigned long old_ist, new_ist;
171
172 /* Read old IST entry */
173 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
174
175 /*
176 * If NMI happened while on the #VC IST stack, set the new IST
177 * value below regs->sp, so that the interrupted stack frame is
178 * not overwritten by subsequent #VC exceptions.
179 */
180 if (on_vc_stack(regs))
181 new_ist = regs->sp;
182
183 /*
184 * Reserve additional 8 bytes and store old IST value so this
185 * adjustment can be unrolled in __sev_es_ist_exit().
186 */
187 new_ist -= sizeof(old_ist);
188 *(unsigned long *)new_ist = old_ist;
189
190 /* Set new IST entry */
191 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
192 }
193
__sev_es_ist_exit(void)194 void noinstr __sev_es_ist_exit(void)
195 {
196 unsigned long ist;
197
198 /* Read IST entry */
199 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
200
201 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
202 return;
203
204 /* Read back old IST entry and write it to the TSS */
205 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
206 }
207
208 /*
209 * Nothing shall interrupt this code path while holding the per-CPU
210 * GHCB. The backup GHCB is only for NMIs interrupting this path.
211 *
212 * Callers must disable local interrupts around it.
213 */
__sev_get_ghcb(struct ghcb_state * state)214 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
215 {
216 struct sev_es_runtime_data *data;
217 struct ghcb *ghcb;
218
219 WARN_ON(!irqs_disabled());
220
221 data = this_cpu_read(runtime_data);
222 ghcb = &data->ghcb_page;
223
224 if (unlikely(data->ghcb_active)) {
225 /* GHCB is already in use - save its contents */
226
227 if (unlikely(data->backup_ghcb_active)) {
228 /*
229 * Backup-GHCB is also already in use. There is no way
230 * to continue here so just kill the machine. To make
231 * panic() work, mark GHCBs inactive so that messages
232 * can be printed out.
233 */
234 data->ghcb_active = false;
235 data->backup_ghcb_active = false;
236
237 instrumentation_begin();
238 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
239 instrumentation_end();
240 }
241
242 /* Mark backup_ghcb active before writing to it */
243 data->backup_ghcb_active = true;
244
245 state->ghcb = &data->backup_ghcb;
246
247 /* Backup GHCB content */
248 *state->ghcb = *ghcb;
249 } else {
250 state->ghcb = NULL;
251 data->ghcb_active = true;
252 }
253
254 return ghcb;
255 }
256
sev_es_rd_ghcb_msr(void)257 static inline u64 sev_es_rd_ghcb_msr(void)
258 {
259 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
260 }
261
sev_es_wr_ghcb_msr(u64 val)262 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
263 {
264 u32 low, high;
265
266 low = (u32)(val);
267 high = (u32)(val >> 32);
268
269 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
270 }
271
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)272 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
273 unsigned char *buffer)
274 {
275 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
276 }
277
__vc_decode_user_insn(struct es_em_ctxt * ctxt)278 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
279 {
280 char buffer[MAX_INSN_SIZE];
281 int insn_bytes;
282
283 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
284 if (insn_bytes == 0) {
285 /* Nothing could be copied */
286 ctxt->fi.vector = X86_TRAP_PF;
287 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
288 ctxt->fi.cr2 = ctxt->regs->ip;
289 return ES_EXCEPTION;
290 } else if (insn_bytes == -EINVAL) {
291 /* Effective RIP could not be calculated */
292 ctxt->fi.vector = X86_TRAP_GP;
293 ctxt->fi.error_code = 0;
294 ctxt->fi.cr2 = 0;
295 return ES_EXCEPTION;
296 }
297
298 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
299 return ES_DECODE_FAILED;
300
301 if (ctxt->insn.immediate.got)
302 return ES_OK;
303 else
304 return ES_DECODE_FAILED;
305 }
306
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)307 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
308 {
309 char buffer[MAX_INSN_SIZE];
310 int res, ret;
311
312 res = vc_fetch_insn_kernel(ctxt, buffer);
313 if (res) {
314 ctxt->fi.vector = X86_TRAP_PF;
315 ctxt->fi.error_code = X86_PF_INSTR;
316 ctxt->fi.cr2 = ctxt->regs->ip;
317 return ES_EXCEPTION;
318 }
319
320 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
321 if (ret < 0)
322 return ES_DECODE_FAILED;
323 else
324 return ES_OK;
325 }
326
vc_decode_insn(struct es_em_ctxt * ctxt)327 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
328 {
329 if (user_mode(ctxt->regs))
330 return __vc_decode_user_insn(ctxt);
331 else
332 return __vc_decode_kern_insn(ctxt);
333 }
334
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)335 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
336 char *dst, char *buf, size_t size)
337 {
338 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
339
340 /*
341 * This function uses __put_user() independent of whether kernel or user
342 * memory is accessed. This works fine because __put_user() does no
343 * sanity checks of the pointer being accessed. All that it does is
344 * to report when the access failed.
345 *
346 * Also, this function runs in atomic context, so __put_user() is not
347 * allowed to sleep. The page-fault handler detects that it is running
348 * in atomic context and will not try to take mmap_sem and handle the
349 * fault, so additional pagefault_enable()/disable() calls are not
350 * needed.
351 *
352 * The access can't be done via copy_to_user() here because
353 * vc_write_mem() must not use string instructions to access unsafe
354 * memory. The reason is that MOVS is emulated by the #VC handler by
355 * splitting the move up into a read and a write and taking a nested #VC
356 * exception on whatever of them is the MMIO access. Using string
357 * instructions here would cause infinite nesting.
358 */
359 switch (size) {
360 case 1: {
361 u8 d1;
362 u8 __user *target = (u8 __user *)dst;
363
364 memcpy(&d1, buf, 1);
365 if (__put_user(d1, target))
366 goto fault;
367 break;
368 }
369 case 2: {
370 u16 d2;
371 u16 __user *target = (u16 __user *)dst;
372
373 memcpy(&d2, buf, 2);
374 if (__put_user(d2, target))
375 goto fault;
376 break;
377 }
378 case 4: {
379 u32 d4;
380 u32 __user *target = (u32 __user *)dst;
381
382 memcpy(&d4, buf, 4);
383 if (__put_user(d4, target))
384 goto fault;
385 break;
386 }
387 case 8: {
388 u64 d8;
389 u64 __user *target = (u64 __user *)dst;
390
391 memcpy(&d8, buf, 8);
392 if (__put_user(d8, target))
393 goto fault;
394 break;
395 }
396 default:
397 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
398 return ES_UNSUPPORTED;
399 }
400
401 return ES_OK;
402
403 fault:
404 if (user_mode(ctxt->regs))
405 error_code |= X86_PF_USER;
406
407 ctxt->fi.vector = X86_TRAP_PF;
408 ctxt->fi.error_code = error_code;
409 ctxt->fi.cr2 = (unsigned long)dst;
410
411 return ES_EXCEPTION;
412 }
413
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)414 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
415 char *src, char *buf, size_t size)
416 {
417 unsigned long error_code = X86_PF_PROT;
418
419 /*
420 * This function uses __get_user() independent of whether kernel or user
421 * memory is accessed. This works fine because __get_user() does no
422 * sanity checks of the pointer being accessed. All that it does is
423 * to report when the access failed.
424 *
425 * Also, this function runs in atomic context, so __get_user() is not
426 * allowed to sleep. The page-fault handler detects that it is running
427 * in atomic context and will not try to take mmap_sem and handle the
428 * fault, so additional pagefault_enable()/disable() calls are not
429 * needed.
430 *
431 * The access can't be done via copy_from_user() here because
432 * vc_read_mem() must not use string instructions to access unsafe
433 * memory. The reason is that MOVS is emulated by the #VC handler by
434 * splitting the move up into a read and a write and taking a nested #VC
435 * exception on whatever of them is the MMIO access. Using string
436 * instructions here would cause infinite nesting.
437 */
438 switch (size) {
439 case 1: {
440 u8 d1;
441 u8 __user *s = (u8 __user *)src;
442
443 if (__get_user(d1, s))
444 goto fault;
445 memcpy(buf, &d1, 1);
446 break;
447 }
448 case 2: {
449 u16 d2;
450 u16 __user *s = (u16 __user *)src;
451
452 if (__get_user(d2, s))
453 goto fault;
454 memcpy(buf, &d2, 2);
455 break;
456 }
457 case 4: {
458 u32 d4;
459 u32 __user *s = (u32 __user *)src;
460
461 if (__get_user(d4, s))
462 goto fault;
463 memcpy(buf, &d4, 4);
464 break;
465 }
466 case 8: {
467 u64 d8;
468 u64 __user *s = (u64 __user *)src;
469 if (__get_user(d8, s))
470 goto fault;
471 memcpy(buf, &d8, 8);
472 break;
473 }
474 default:
475 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
476 return ES_UNSUPPORTED;
477 }
478
479 return ES_OK;
480
481 fault:
482 if (user_mode(ctxt->regs))
483 error_code |= X86_PF_USER;
484
485 ctxt->fi.vector = X86_TRAP_PF;
486 ctxt->fi.error_code = error_code;
487 ctxt->fi.cr2 = (unsigned long)src;
488
489 return ES_EXCEPTION;
490 }
491
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)492 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
493 unsigned long vaddr, phys_addr_t *paddr)
494 {
495 unsigned long va = (unsigned long)vaddr;
496 unsigned int level;
497 phys_addr_t pa;
498 pgd_t *pgd;
499 pte_t *pte;
500
501 pgd = __va(read_cr3_pa());
502 pgd = &pgd[pgd_index(va)];
503 pte = lookup_address_in_pgd(pgd, va, &level);
504 if (!pte) {
505 ctxt->fi.vector = X86_TRAP_PF;
506 ctxt->fi.cr2 = vaddr;
507 ctxt->fi.error_code = 0;
508
509 if (user_mode(ctxt->regs))
510 ctxt->fi.error_code |= X86_PF_USER;
511
512 return ES_EXCEPTION;
513 }
514
515 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
516 /* Emulated MMIO to/from encrypted memory not supported */
517 return ES_UNSUPPORTED;
518
519 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
520 pa |= va & ~page_level_mask(level);
521
522 *paddr = pa;
523
524 return ES_OK;
525 }
526
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)527 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
528 {
529 BUG_ON(size > 4);
530
531 if (user_mode(ctxt->regs)) {
532 struct thread_struct *t = ¤t->thread;
533 struct io_bitmap *iobm = t->io_bitmap;
534 size_t idx;
535
536 if (!iobm)
537 goto fault;
538
539 for (idx = port; idx < port + size; ++idx) {
540 if (test_bit(idx, iobm->bitmap))
541 goto fault;
542 }
543 }
544
545 return ES_OK;
546
547 fault:
548 ctxt->fi.vector = X86_TRAP_GP;
549 ctxt->fi.error_code = 0;
550
551 return ES_EXCEPTION;
552 }
553
554 /* Include code shared with pre-decompression boot stage */
555 #include "sev-shared.c"
556
__sev_put_ghcb(struct ghcb_state * state)557 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
558 {
559 struct sev_es_runtime_data *data;
560 struct ghcb *ghcb;
561
562 WARN_ON(!irqs_disabled());
563
564 data = this_cpu_read(runtime_data);
565 ghcb = &data->ghcb_page;
566
567 if (state->ghcb) {
568 /* Restore GHCB from Backup */
569 *ghcb = *state->ghcb;
570 data->backup_ghcb_active = false;
571 state->ghcb = NULL;
572 } else {
573 /*
574 * Invalidate the GHCB so a VMGEXIT instruction issued
575 * from userspace won't appear to be valid.
576 */
577 vc_ghcb_invalidate(ghcb);
578 data->ghcb_active = false;
579 }
580 }
581
__sev_es_nmi_complete(void)582 void noinstr __sev_es_nmi_complete(void)
583 {
584 struct ghcb_state state;
585 struct ghcb *ghcb;
586
587 ghcb = __sev_get_ghcb(&state);
588
589 vc_ghcb_invalidate(ghcb);
590 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
591 ghcb_set_sw_exit_info_1(ghcb, 0);
592 ghcb_set_sw_exit_info_2(ghcb, 0);
593
594 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
595 VMGEXIT();
596
597 __sev_put_ghcb(&state);
598 }
599
get_secrets_page(void)600 static u64 __init get_secrets_page(void)
601 {
602 u64 pa_data = boot_params.cc_blob_address;
603 struct cc_blob_sev_info info;
604 void *map;
605
606 /*
607 * The CC blob contains the address of the secrets page, check if the
608 * blob is present.
609 */
610 if (!pa_data)
611 return 0;
612
613 map = early_memremap(pa_data, sizeof(info));
614 if (!map) {
615 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
616 return 0;
617 }
618 memcpy(&info, map, sizeof(info));
619 early_memunmap(map, sizeof(info));
620
621 /* smoke-test the secrets page passed */
622 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
623 return 0;
624
625 return info.secrets_phys;
626 }
627
get_snp_jump_table_addr(void)628 static u64 __init get_snp_jump_table_addr(void)
629 {
630 struct snp_secrets_page_layout *layout;
631 void __iomem *mem;
632 u64 pa, addr;
633
634 pa = get_secrets_page();
635 if (!pa)
636 return 0;
637
638 mem = ioremap_encrypted(pa, PAGE_SIZE);
639 if (!mem) {
640 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
641 return 0;
642 }
643
644 layout = (__force struct snp_secrets_page_layout *)mem;
645
646 addr = layout->os_area.ap_jump_table_pa;
647 iounmap(mem);
648
649 return addr;
650 }
651
get_jump_table_addr(void)652 static u64 __init get_jump_table_addr(void)
653 {
654 struct ghcb_state state;
655 unsigned long flags;
656 struct ghcb *ghcb;
657 u64 ret = 0;
658
659 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
660 return get_snp_jump_table_addr();
661
662 local_irq_save(flags);
663
664 ghcb = __sev_get_ghcb(&state);
665
666 vc_ghcb_invalidate(ghcb);
667 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
668 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
669 ghcb_set_sw_exit_info_2(ghcb, 0);
670
671 sev_es_wr_ghcb_msr(__pa(ghcb));
672 VMGEXIT();
673
674 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
675 ghcb_sw_exit_info_2_is_valid(ghcb))
676 ret = ghcb->save.sw_exit_info_2;
677
678 __sev_put_ghcb(&state);
679
680 local_irq_restore(flags);
681
682 return ret;
683 }
684
early_set_pages_state(unsigned long vaddr,unsigned long paddr,unsigned long npages,enum psc_op op)685 static void early_set_pages_state(unsigned long vaddr, unsigned long paddr,
686 unsigned long npages, enum psc_op op)
687 {
688 unsigned long paddr_end;
689 u64 val;
690 int ret;
691
692 vaddr = vaddr & PAGE_MASK;
693
694 paddr = paddr & PAGE_MASK;
695 paddr_end = paddr + (npages << PAGE_SHIFT);
696
697 while (paddr < paddr_end) {
698 if (op == SNP_PAGE_STATE_SHARED) {
699 /* Page validation must be rescinded before changing to shared */
700 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
701 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
702 goto e_term;
703 }
704
705 /*
706 * Use the MSR protocol because this function can be called before
707 * the GHCB is established.
708 */
709 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
710 VMGEXIT();
711
712 val = sev_es_rd_ghcb_msr();
713
714 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
715 "Wrong PSC response code: 0x%x\n",
716 (unsigned int)GHCB_RESP_CODE(val)))
717 goto e_term;
718
719 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
720 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
721 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
722 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
723 goto e_term;
724
725 if (op == SNP_PAGE_STATE_PRIVATE) {
726 /* Page validation must be performed after changing to private */
727 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
728 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
729 goto e_term;
730 }
731
732 vaddr += PAGE_SIZE;
733 paddr += PAGE_SIZE;
734 }
735
736 return;
737
738 e_term:
739 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
740 }
741
early_snp_set_memory_private(unsigned long vaddr,unsigned long paddr,unsigned long npages)742 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
743 unsigned long npages)
744 {
745 /*
746 * This can be invoked in early boot while running identity mapped, so
747 * use an open coded check for SNP instead of using cc_platform_has().
748 * This eliminates worries about jump tables or checking boot_cpu_data
749 * in the cc_platform_has() function.
750 */
751 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
752 return;
753
754 /*
755 * Ask the hypervisor to mark the memory pages as private in the RMP
756 * table.
757 */
758 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
759 }
760
early_snp_set_memory_shared(unsigned long vaddr,unsigned long paddr,unsigned long npages)761 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
762 unsigned long npages)
763 {
764 /*
765 * This can be invoked in early boot while running identity mapped, so
766 * use an open coded check for SNP instead of using cc_platform_has().
767 * This eliminates worries about jump tables or checking boot_cpu_data
768 * in the cc_platform_has() function.
769 */
770 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
771 return;
772
773 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
774 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
775 }
776
snp_prep_memory(unsigned long paddr,unsigned int sz,enum psc_op op)777 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
778 {
779 unsigned long vaddr, npages;
780
781 vaddr = (unsigned long)__va(paddr);
782 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
783
784 if (op == SNP_PAGE_STATE_PRIVATE)
785 early_snp_set_memory_private(vaddr, paddr, npages);
786 else if (op == SNP_PAGE_STATE_SHARED)
787 early_snp_set_memory_shared(vaddr, paddr, npages);
788 else
789 WARN(1, "invalid memory op %d\n", op);
790 }
791
__set_pages_state(struct snp_psc_desc * data,unsigned long vaddr,unsigned long vaddr_end,int op)792 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
793 unsigned long vaddr_end, int op)
794 {
795 struct ghcb_state state;
796 bool use_large_entry;
797 struct psc_hdr *hdr;
798 struct psc_entry *e;
799 unsigned long flags;
800 unsigned long pfn;
801 struct ghcb *ghcb;
802 int i;
803
804 hdr = &data->hdr;
805 e = data->entries;
806
807 memset(data, 0, sizeof(*data));
808 i = 0;
809
810 while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
811 hdr->end_entry = i;
812
813 if (is_vmalloc_addr((void *)vaddr)) {
814 pfn = vmalloc_to_pfn((void *)vaddr);
815 use_large_entry = false;
816 } else {
817 pfn = __pa(vaddr) >> PAGE_SHIFT;
818 use_large_entry = true;
819 }
820
821 e->gfn = pfn;
822 e->operation = op;
823
824 if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
825 (vaddr_end - vaddr) >= PMD_SIZE) {
826 e->pagesize = RMP_PG_SIZE_2M;
827 vaddr += PMD_SIZE;
828 } else {
829 e->pagesize = RMP_PG_SIZE_4K;
830 vaddr += PAGE_SIZE;
831 }
832
833 e++;
834 i++;
835 }
836
837 /* Page validation must be rescinded before changing to shared */
838 if (op == SNP_PAGE_STATE_SHARED)
839 pvalidate_pages(data);
840
841 local_irq_save(flags);
842
843 if (sev_cfg.ghcbs_initialized)
844 ghcb = __sev_get_ghcb(&state);
845 else
846 ghcb = boot_ghcb;
847
848 /* Invoke the hypervisor to perform the page state changes */
849 if (!ghcb || vmgexit_psc(ghcb, data))
850 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
851
852 if (sev_cfg.ghcbs_initialized)
853 __sev_put_ghcb(&state);
854
855 local_irq_restore(flags);
856
857 /* Page validation must be performed after changing to private */
858 if (op == SNP_PAGE_STATE_PRIVATE)
859 pvalidate_pages(data);
860
861 return vaddr;
862 }
863
set_pages_state(unsigned long vaddr,unsigned long npages,int op)864 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
865 {
866 struct snp_psc_desc desc;
867 unsigned long vaddr_end;
868
869 /* Use the MSR protocol when a GHCB is not available. */
870 if (!boot_ghcb)
871 return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
872
873 vaddr = vaddr & PAGE_MASK;
874 vaddr_end = vaddr + (npages << PAGE_SHIFT);
875
876 while (vaddr < vaddr_end)
877 vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
878 }
879
snp_set_memory_shared(unsigned long vaddr,unsigned long npages)880 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
881 {
882 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
883 return;
884
885 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
886 }
887
snp_set_memory_private(unsigned long vaddr,unsigned long npages)888 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
889 {
890 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
891 return;
892
893 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
894 }
895
snp_accept_memory(phys_addr_t start,phys_addr_t end)896 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
897 {
898 unsigned long vaddr, npages;
899
900 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
901 return;
902
903 vaddr = (unsigned long)__va(start);
904 npages = (end - start) >> PAGE_SHIFT;
905
906 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
907 }
908
snp_set_vmsa(void * va,bool vmsa)909 static int snp_set_vmsa(void *va, bool vmsa)
910 {
911 u64 attrs;
912
913 /*
914 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
915 * using the RMPADJUST instruction. However, for the instruction to
916 * succeed it must target the permissions of a lesser privileged
917 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
918 * instruction in the AMD64 APM Volume 3).
919 */
920 attrs = 1;
921 if (vmsa)
922 attrs |= RMPADJUST_VMSA_PAGE_BIT;
923
924 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
925 }
926
927 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
928 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
929 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
930
931 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
932 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
933
snp_alloc_vmsa_page(void)934 static void *snp_alloc_vmsa_page(void)
935 {
936 struct page *p;
937
938 /*
939 * Allocate VMSA page to work around the SNP erratum where the CPU will
940 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
941 * collides with the RMP entry of VMSA page. The recommended workaround
942 * is to not use a large page.
943 *
944 * Allocate an 8k page which is also 8k-aligned.
945 */
946 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
947 if (!p)
948 return NULL;
949
950 split_page(p, 1);
951
952 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
953 __free_page(p);
954
955 return page_address(p + 1);
956 }
957
snp_cleanup_vmsa(struct sev_es_save_area * vmsa)958 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
959 {
960 int err;
961
962 err = snp_set_vmsa(vmsa, false);
963 if (err)
964 pr_err("clear VMSA page failed (%u), leaking page\n", err);
965 else
966 free_page((unsigned long)vmsa);
967 }
968
wakeup_cpu_via_vmgexit(int apic_id,unsigned long start_ip)969 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
970 {
971 struct sev_es_save_area *cur_vmsa, *vmsa;
972 struct ghcb_state state;
973 unsigned long flags;
974 struct ghcb *ghcb;
975 u8 sipi_vector;
976 int cpu, ret;
977 u64 cr4;
978
979 /*
980 * The hypervisor SNP feature support check has happened earlier, just check
981 * the AP_CREATION one here.
982 */
983 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
984 return -EOPNOTSUPP;
985
986 /*
987 * Verify the desired start IP against the known trampoline start IP
988 * to catch any future new trampolines that may be introduced that
989 * would require a new protected guest entry point.
990 */
991 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
992 "Unsupported SNP start_ip: %lx\n", start_ip))
993 return -EINVAL;
994
995 /* Override start_ip with known protected guest start IP */
996 start_ip = real_mode_header->sev_es_trampoline_start;
997
998 /* Find the logical CPU for the APIC ID */
999 for_each_present_cpu(cpu) {
1000 if (arch_match_cpu_phys_id(cpu, apic_id))
1001 break;
1002 }
1003 if (cpu >= nr_cpu_ids)
1004 return -EINVAL;
1005
1006 cur_vmsa = per_cpu(sev_vmsa, cpu);
1007
1008 /*
1009 * A new VMSA is created each time because there is no guarantee that
1010 * the current VMSA is the kernels or that the vCPU is not running. If
1011 * an attempt was done to use the current VMSA with a running vCPU, a
1012 * #VMEXIT of that vCPU would wipe out all of the settings being done
1013 * here.
1014 */
1015 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1016 if (!vmsa)
1017 return -ENOMEM;
1018
1019 /* CR4 should maintain the MCE value */
1020 cr4 = native_read_cr4() & X86_CR4_MCE;
1021
1022 /* Set the CS value based on the start_ip converted to a SIPI vector */
1023 sipi_vector = (start_ip >> 12);
1024 vmsa->cs.base = sipi_vector << 12;
1025 vmsa->cs.limit = AP_INIT_CS_LIMIT;
1026 vmsa->cs.attrib = INIT_CS_ATTRIBS;
1027 vmsa->cs.selector = sipi_vector << 8;
1028
1029 /* Set the RIP value based on start_ip */
1030 vmsa->rip = start_ip & 0xfff;
1031
1032 /* Set AP INIT defaults as documented in the APM */
1033 vmsa->ds.limit = AP_INIT_DS_LIMIT;
1034 vmsa->ds.attrib = INIT_DS_ATTRIBS;
1035 vmsa->es = vmsa->ds;
1036 vmsa->fs = vmsa->ds;
1037 vmsa->gs = vmsa->ds;
1038 vmsa->ss = vmsa->ds;
1039
1040 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
1041 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
1042 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
1043 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
1044 vmsa->tr.limit = AP_INIT_TR_LIMIT;
1045 vmsa->tr.attrib = INIT_TR_ATTRIBS;
1046
1047 vmsa->cr4 = cr4;
1048 vmsa->cr0 = AP_INIT_CR0_DEFAULT;
1049 vmsa->dr7 = DR7_RESET_VALUE;
1050 vmsa->dr6 = AP_INIT_DR6_DEFAULT;
1051 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
1052 vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
1053 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
1054 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
1055 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
1056 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
1057
1058 /* SVME must be set. */
1059 vmsa->efer = EFER_SVME;
1060
1061 /*
1062 * Set the SNP-specific fields for this VMSA:
1063 * VMPL level
1064 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1065 */
1066 vmsa->vmpl = 0;
1067 vmsa->sev_features = sev_status >> 2;
1068
1069 /* Switch the page over to a VMSA page now that it is initialized */
1070 ret = snp_set_vmsa(vmsa, true);
1071 if (ret) {
1072 pr_err("set VMSA page failed (%u)\n", ret);
1073 free_page((unsigned long)vmsa);
1074
1075 return -EINVAL;
1076 }
1077
1078 /* Issue VMGEXIT AP Creation NAE event */
1079 local_irq_save(flags);
1080
1081 ghcb = __sev_get_ghcb(&state);
1082
1083 vc_ghcb_invalidate(ghcb);
1084 ghcb_set_rax(ghcb, vmsa->sev_features);
1085 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1086 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1087 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1088
1089 sev_es_wr_ghcb_msr(__pa(ghcb));
1090 VMGEXIT();
1091
1092 if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1093 lower_32_bits(ghcb->save.sw_exit_info_1)) {
1094 pr_err("SNP AP Creation error\n");
1095 ret = -EINVAL;
1096 }
1097
1098 __sev_put_ghcb(&state);
1099
1100 local_irq_restore(flags);
1101
1102 /* Perform cleanup if there was an error */
1103 if (ret) {
1104 snp_cleanup_vmsa(vmsa);
1105 vmsa = NULL;
1106 }
1107
1108 /* Free up any previous VMSA page */
1109 if (cur_vmsa)
1110 snp_cleanup_vmsa(cur_vmsa);
1111
1112 /* Record the current VMSA page */
1113 per_cpu(sev_vmsa, cpu) = vmsa;
1114
1115 return ret;
1116 }
1117
snp_set_wakeup_secondary_cpu(void)1118 void __init snp_set_wakeup_secondary_cpu(void)
1119 {
1120 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1121 return;
1122
1123 /*
1124 * Always set this override if SNP is enabled. This makes it the
1125 * required method to start APs under SNP. If the hypervisor does
1126 * not support AP creation, then no APs will be started.
1127 */
1128 apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1129 }
1130
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)1131 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1132 {
1133 u16 startup_cs, startup_ip;
1134 phys_addr_t jump_table_pa;
1135 u64 jump_table_addr;
1136 u16 __iomem *jump_table;
1137
1138 jump_table_addr = get_jump_table_addr();
1139
1140 /* On UP guests there is no jump table so this is not a failure */
1141 if (!jump_table_addr)
1142 return 0;
1143
1144 /* Check if AP Jump Table is page-aligned */
1145 if (jump_table_addr & ~PAGE_MASK)
1146 return -EINVAL;
1147
1148 jump_table_pa = jump_table_addr & PAGE_MASK;
1149
1150 startup_cs = (u16)(rmh->trampoline_start >> 4);
1151 startup_ip = (u16)(rmh->sev_es_trampoline_start -
1152 rmh->trampoline_start);
1153
1154 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1155 if (!jump_table)
1156 return -EIO;
1157
1158 writew(startup_ip, &jump_table[0]);
1159 writew(startup_cs, &jump_table[1]);
1160
1161 iounmap(jump_table);
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1168 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1169 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1170 */
sev_es_efi_map_ghcbs(pgd_t * pgd)1171 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1172 {
1173 struct sev_es_runtime_data *data;
1174 unsigned long address, pflags;
1175 int cpu;
1176 u64 pfn;
1177
1178 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1179 return 0;
1180
1181 pflags = _PAGE_NX | _PAGE_RW;
1182
1183 for_each_possible_cpu(cpu) {
1184 data = per_cpu(runtime_data, cpu);
1185
1186 address = __pa(&data->ghcb_page);
1187 pfn = address >> PAGE_SHIFT;
1188
1189 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1190 return 1;
1191 }
1192
1193 return 0;
1194 }
1195
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1196 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1197 {
1198 struct pt_regs *regs = ctxt->regs;
1199 enum es_result ret;
1200 u64 exit_info_1;
1201
1202 /* Is it a WRMSR? */
1203 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1204
1205 ghcb_set_rcx(ghcb, regs->cx);
1206 if (exit_info_1) {
1207 ghcb_set_rax(ghcb, regs->ax);
1208 ghcb_set_rdx(ghcb, regs->dx);
1209 }
1210
1211 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1212
1213 if ((ret == ES_OK) && (!exit_info_1)) {
1214 regs->ax = ghcb->save.rax;
1215 regs->dx = ghcb->save.rdx;
1216 }
1217
1218 return ret;
1219 }
1220
snp_register_per_cpu_ghcb(void)1221 static void snp_register_per_cpu_ghcb(void)
1222 {
1223 struct sev_es_runtime_data *data;
1224 struct ghcb *ghcb;
1225
1226 data = this_cpu_read(runtime_data);
1227 ghcb = &data->ghcb_page;
1228
1229 snp_register_ghcb_early(__pa(ghcb));
1230 }
1231
setup_ghcb(void)1232 void setup_ghcb(void)
1233 {
1234 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1235 return;
1236
1237 /*
1238 * Check whether the runtime #VC exception handler is active. It uses
1239 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1240 *
1241 * If SNP is active, register the per-CPU GHCB page so that the runtime
1242 * exception handler can use it.
1243 */
1244 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1245 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1246 snp_register_per_cpu_ghcb();
1247
1248 sev_cfg.ghcbs_initialized = true;
1249
1250 return;
1251 }
1252
1253 /*
1254 * Make sure the hypervisor talks a supported protocol.
1255 * This gets called only in the BSP boot phase.
1256 */
1257 if (!sev_es_negotiate_protocol())
1258 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1259
1260 /*
1261 * Clear the boot_ghcb. The first exception comes in before the bss
1262 * section is cleared.
1263 */
1264 memset(&boot_ghcb_page, 0, PAGE_SIZE);
1265
1266 /* Alright - Make the boot-ghcb public */
1267 boot_ghcb = &boot_ghcb_page;
1268
1269 /* SNP guest requires that GHCB GPA must be registered. */
1270 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1271 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1272 }
1273
1274 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)1275 static void sev_es_ap_hlt_loop(void)
1276 {
1277 struct ghcb_state state;
1278 struct ghcb *ghcb;
1279
1280 ghcb = __sev_get_ghcb(&state);
1281
1282 while (true) {
1283 vc_ghcb_invalidate(ghcb);
1284 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1285 ghcb_set_sw_exit_info_1(ghcb, 0);
1286 ghcb_set_sw_exit_info_2(ghcb, 0);
1287
1288 sev_es_wr_ghcb_msr(__pa(ghcb));
1289 VMGEXIT();
1290
1291 /* Wakeup signal? */
1292 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1293 ghcb->save.sw_exit_info_2)
1294 break;
1295 }
1296
1297 __sev_put_ghcb(&state);
1298 }
1299
1300 /*
1301 * Play_dead handler when running under SEV-ES. This is needed because
1302 * the hypervisor can't deliver an SIPI request to restart the AP.
1303 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1304 * hypervisor wakes it up again.
1305 */
sev_es_play_dead(void)1306 static void sev_es_play_dead(void)
1307 {
1308 play_dead_common();
1309
1310 /* IRQs now disabled */
1311
1312 sev_es_ap_hlt_loop();
1313
1314 /*
1315 * If we get here, the VCPU was woken up again. Jump to CPU
1316 * startup code to get it back online.
1317 */
1318 soft_restart_cpu();
1319 }
1320 #else /* CONFIG_HOTPLUG_CPU */
1321 #define sev_es_play_dead native_play_dead
1322 #endif /* CONFIG_HOTPLUG_CPU */
1323
1324 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)1325 static void __init sev_es_setup_play_dead(void)
1326 {
1327 smp_ops.play_dead = sev_es_play_dead;
1328 }
1329 #else
sev_es_setup_play_dead(void)1330 static inline void sev_es_setup_play_dead(void) { }
1331 #endif
1332
alloc_runtime_data(int cpu)1333 static void __init alloc_runtime_data(int cpu)
1334 {
1335 struct sev_es_runtime_data *data;
1336
1337 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1338 if (!data)
1339 panic("Can't allocate SEV-ES runtime data");
1340
1341 per_cpu(runtime_data, cpu) = data;
1342 }
1343
init_ghcb(int cpu)1344 static void __init init_ghcb(int cpu)
1345 {
1346 struct sev_es_runtime_data *data;
1347 int err;
1348
1349 data = per_cpu(runtime_data, cpu);
1350
1351 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1352 sizeof(data->ghcb_page));
1353 if (err)
1354 panic("Can't map GHCBs unencrypted");
1355
1356 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1357
1358 data->ghcb_active = false;
1359 data->backup_ghcb_active = false;
1360 }
1361
sev_es_init_vc_handling(void)1362 void __init sev_es_init_vc_handling(void)
1363 {
1364 int cpu;
1365
1366 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1367
1368 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1369 return;
1370
1371 if (!sev_es_check_cpu_features())
1372 panic("SEV-ES CPU Features missing");
1373
1374 /*
1375 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1376 * features.
1377 */
1378 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1379 sev_hv_features = get_hv_features();
1380
1381 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1382 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1383 }
1384
1385 /* Initialize per-cpu GHCB pages */
1386 for_each_possible_cpu(cpu) {
1387 alloc_runtime_data(cpu);
1388 init_ghcb(cpu);
1389 }
1390
1391 sev_es_setup_play_dead();
1392
1393 /* Secondary CPUs use the runtime #VC handler */
1394 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1395 }
1396
vc_early_forward_exception(struct es_em_ctxt * ctxt)1397 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1398 {
1399 int trapnr = ctxt->fi.vector;
1400
1401 if (trapnr == X86_TRAP_PF)
1402 native_write_cr2(ctxt->fi.cr2);
1403
1404 ctxt->regs->orig_ax = ctxt->fi.error_code;
1405 do_early_exception(ctxt->regs, trapnr);
1406 }
1407
vc_insn_get_rm(struct es_em_ctxt * ctxt)1408 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1409 {
1410 long *reg_array;
1411 int offset;
1412
1413 reg_array = (long *)ctxt->regs;
1414 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1415
1416 if (offset < 0)
1417 return NULL;
1418
1419 offset /= sizeof(long);
1420
1421 return reg_array + offset;
1422 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)1423 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1424 unsigned int bytes, bool read)
1425 {
1426 u64 exit_code, exit_info_1, exit_info_2;
1427 unsigned long ghcb_pa = __pa(ghcb);
1428 enum es_result res;
1429 phys_addr_t paddr;
1430 void __user *ref;
1431
1432 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1433 if (ref == (void __user *)-1L)
1434 return ES_UNSUPPORTED;
1435
1436 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1437
1438 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1439 if (res != ES_OK) {
1440 if (res == ES_EXCEPTION && !read)
1441 ctxt->fi.error_code |= X86_PF_WRITE;
1442
1443 return res;
1444 }
1445
1446 exit_info_1 = paddr;
1447 /* Can never be greater than 8 */
1448 exit_info_2 = bytes;
1449
1450 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1451
1452 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1453 }
1454
1455 /*
1456 * The MOVS instruction has two memory operands, which raises the
1457 * problem that it is not known whether the access to the source or the
1458 * destination caused the #VC exception (and hence whether an MMIO read
1459 * or write operation needs to be emulated).
1460 *
1461 * Instead of playing games with walking page-tables and trying to guess
1462 * whether the source or destination is an MMIO range, split the move
1463 * into two operations, a read and a write with only one memory operand.
1464 * This will cause a nested #VC exception on the MMIO address which can
1465 * then be handled.
1466 *
1467 * This implementation has the benefit that it also supports MOVS where
1468 * source _and_ destination are MMIO regions.
1469 *
1470 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1471 * rare operation. If it turns out to be a performance problem the split
1472 * operations can be moved to memcpy_fromio() and memcpy_toio().
1473 */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)1474 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1475 unsigned int bytes)
1476 {
1477 unsigned long ds_base, es_base;
1478 unsigned char *src, *dst;
1479 unsigned char buffer[8];
1480 enum es_result ret;
1481 bool rep;
1482 int off;
1483
1484 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1485 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1486
1487 if (ds_base == -1L || es_base == -1L) {
1488 ctxt->fi.vector = X86_TRAP_GP;
1489 ctxt->fi.error_code = 0;
1490 return ES_EXCEPTION;
1491 }
1492
1493 src = ds_base + (unsigned char *)ctxt->regs->si;
1494 dst = es_base + (unsigned char *)ctxt->regs->di;
1495
1496 ret = vc_read_mem(ctxt, src, buffer, bytes);
1497 if (ret != ES_OK)
1498 return ret;
1499
1500 ret = vc_write_mem(ctxt, dst, buffer, bytes);
1501 if (ret != ES_OK)
1502 return ret;
1503
1504 if (ctxt->regs->flags & X86_EFLAGS_DF)
1505 off = -bytes;
1506 else
1507 off = bytes;
1508
1509 ctxt->regs->si += off;
1510 ctxt->regs->di += off;
1511
1512 rep = insn_has_rep_prefix(&ctxt->insn);
1513 if (rep)
1514 ctxt->regs->cx -= 1;
1515
1516 if (!rep || ctxt->regs->cx == 0)
1517 return ES_OK;
1518 else
1519 return ES_RETRY;
1520 }
1521
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1522 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1523 {
1524 struct insn *insn = &ctxt->insn;
1525 enum insn_mmio_type mmio;
1526 unsigned int bytes = 0;
1527 enum es_result ret;
1528 u8 sign_byte;
1529 long *reg_data;
1530
1531 mmio = insn_decode_mmio(insn, &bytes);
1532 if (mmio == INSN_MMIO_DECODE_FAILED)
1533 return ES_DECODE_FAILED;
1534
1535 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1536 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1537 if (!reg_data)
1538 return ES_DECODE_FAILED;
1539 }
1540
1541 if (user_mode(ctxt->regs))
1542 return ES_UNSUPPORTED;
1543
1544 switch (mmio) {
1545 case INSN_MMIO_WRITE:
1546 memcpy(ghcb->shared_buffer, reg_data, bytes);
1547 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1548 break;
1549 case INSN_MMIO_WRITE_IMM:
1550 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1551 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1552 break;
1553 case INSN_MMIO_READ:
1554 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1555 if (ret)
1556 break;
1557
1558 /* Zero-extend for 32-bit operation */
1559 if (bytes == 4)
1560 *reg_data = 0;
1561
1562 memcpy(reg_data, ghcb->shared_buffer, bytes);
1563 break;
1564 case INSN_MMIO_READ_ZERO_EXTEND:
1565 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1566 if (ret)
1567 break;
1568
1569 /* Zero extend based on operand size */
1570 memset(reg_data, 0, insn->opnd_bytes);
1571 memcpy(reg_data, ghcb->shared_buffer, bytes);
1572 break;
1573 case INSN_MMIO_READ_SIGN_EXTEND:
1574 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1575 if (ret)
1576 break;
1577
1578 if (bytes == 1) {
1579 u8 *val = (u8 *)ghcb->shared_buffer;
1580
1581 sign_byte = (*val & 0x80) ? 0xff : 0x00;
1582 } else {
1583 u16 *val = (u16 *)ghcb->shared_buffer;
1584
1585 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1586 }
1587
1588 /* Sign extend based on operand size */
1589 memset(reg_data, sign_byte, insn->opnd_bytes);
1590 memcpy(reg_data, ghcb->shared_buffer, bytes);
1591 break;
1592 case INSN_MMIO_MOVS:
1593 ret = vc_handle_mmio_movs(ctxt, bytes);
1594 break;
1595 default:
1596 ret = ES_UNSUPPORTED;
1597 break;
1598 }
1599
1600 return ret;
1601 }
1602
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1603 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1604 struct es_em_ctxt *ctxt)
1605 {
1606 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1607 long val, *reg = vc_insn_get_rm(ctxt);
1608 enum es_result ret;
1609
1610 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1611 return ES_VMM_ERROR;
1612
1613 if (!reg)
1614 return ES_DECODE_FAILED;
1615
1616 val = *reg;
1617
1618 /* Upper 32 bits must be written as zeroes */
1619 if (val >> 32) {
1620 ctxt->fi.vector = X86_TRAP_GP;
1621 ctxt->fi.error_code = 0;
1622 return ES_EXCEPTION;
1623 }
1624
1625 /* Clear out other reserved bits and set bit 10 */
1626 val = (val & 0xffff23ffL) | BIT(10);
1627
1628 /* Early non-zero writes to DR7 are not supported */
1629 if (!data && (val & ~DR7_RESET_VALUE))
1630 return ES_UNSUPPORTED;
1631
1632 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1633 ghcb_set_rax(ghcb, val);
1634 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1635 if (ret != ES_OK)
1636 return ret;
1637
1638 if (data)
1639 data->dr7 = val;
1640
1641 return ES_OK;
1642 }
1643
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1644 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1645 struct es_em_ctxt *ctxt)
1646 {
1647 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1648 long *reg = vc_insn_get_rm(ctxt);
1649
1650 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1651 return ES_VMM_ERROR;
1652
1653 if (!reg)
1654 return ES_DECODE_FAILED;
1655
1656 if (data)
1657 *reg = data->dr7;
1658 else
1659 *reg = DR7_RESET_VALUE;
1660
1661 return ES_OK;
1662 }
1663
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1664 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1665 struct es_em_ctxt *ctxt)
1666 {
1667 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1668 }
1669
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1670 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1671 {
1672 enum es_result ret;
1673
1674 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1675
1676 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1677 if (ret != ES_OK)
1678 return ret;
1679
1680 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1681 return ES_VMM_ERROR;
1682
1683 ctxt->regs->ax = ghcb->save.rax;
1684 ctxt->regs->dx = ghcb->save.rdx;
1685
1686 return ES_OK;
1687 }
1688
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1689 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1690 struct es_em_ctxt *ctxt)
1691 {
1692 /*
1693 * Treat it as a NOP and do not leak a physical address to the
1694 * hypervisor.
1695 */
1696 return ES_OK;
1697 }
1698
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1699 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1700 struct es_em_ctxt *ctxt)
1701 {
1702 /* Treat the same as MONITOR/MONITORX */
1703 return ES_OK;
1704 }
1705
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1706 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1707 struct es_em_ctxt *ctxt)
1708 {
1709 enum es_result ret;
1710
1711 ghcb_set_rax(ghcb, ctxt->regs->ax);
1712 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1713
1714 if (x86_platform.hyper.sev_es_hcall_prepare)
1715 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1716
1717 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1718 if (ret != ES_OK)
1719 return ret;
1720
1721 if (!ghcb_rax_is_valid(ghcb))
1722 return ES_VMM_ERROR;
1723
1724 ctxt->regs->ax = ghcb->save.rax;
1725
1726 /*
1727 * Call sev_es_hcall_finish() after regs->ax is already set.
1728 * This allows the hypervisor handler to overwrite it again if
1729 * necessary.
1730 */
1731 if (x86_platform.hyper.sev_es_hcall_finish &&
1732 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1733 return ES_VMM_ERROR;
1734
1735 return ES_OK;
1736 }
1737
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1738 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1739 struct es_em_ctxt *ctxt)
1740 {
1741 /*
1742 * Calling ecx_alignment_check() directly does not work, because it
1743 * enables IRQs and the GHCB is active. Forward the exception and call
1744 * it later from vc_forward_exception().
1745 */
1746 ctxt->fi.vector = X86_TRAP_AC;
1747 ctxt->fi.error_code = 0;
1748 return ES_EXCEPTION;
1749 }
1750
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1751 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1752 struct ghcb *ghcb,
1753 unsigned long exit_code)
1754 {
1755 enum es_result result;
1756
1757 switch (exit_code) {
1758 case SVM_EXIT_READ_DR7:
1759 result = vc_handle_dr7_read(ghcb, ctxt);
1760 break;
1761 case SVM_EXIT_WRITE_DR7:
1762 result = vc_handle_dr7_write(ghcb, ctxt);
1763 break;
1764 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1765 result = vc_handle_trap_ac(ghcb, ctxt);
1766 break;
1767 case SVM_EXIT_RDTSC:
1768 case SVM_EXIT_RDTSCP:
1769 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1770 break;
1771 case SVM_EXIT_RDPMC:
1772 result = vc_handle_rdpmc(ghcb, ctxt);
1773 break;
1774 case SVM_EXIT_INVD:
1775 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1776 result = ES_UNSUPPORTED;
1777 break;
1778 case SVM_EXIT_CPUID:
1779 result = vc_handle_cpuid(ghcb, ctxt);
1780 break;
1781 case SVM_EXIT_IOIO:
1782 result = vc_handle_ioio(ghcb, ctxt);
1783 break;
1784 case SVM_EXIT_MSR:
1785 result = vc_handle_msr(ghcb, ctxt);
1786 break;
1787 case SVM_EXIT_VMMCALL:
1788 result = vc_handle_vmmcall(ghcb, ctxt);
1789 break;
1790 case SVM_EXIT_WBINVD:
1791 result = vc_handle_wbinvd(ghcb, ctxt);
1792 break;
1793 case SVM_EXIT_MONITOR:
1794 result = vc_handle_monitor(ghcb, ctxt);
1795 break;
1796 case SVM_EXIT_MWAIT:
1797 result = vc_handle_mwait(ghcb, ctxt);
1798 break;
1799 case SVM_EXIT_NPF:
1800 result = vc_handle_mmio(ghcb, ctxt);
1801 break;
1802 default:
1803 /*
1804 * Unexpected #VC exception
1805 */
1806 result = ES_UNSUPPORTED;
1807 }
1808
1809 return result;
1810 }
1811
vc_forward_exception(struct es_em_ctxt * ctxt)1812 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1813 {
1814 long error_code = ctxt->fi.error_code;
1815 int trapnr = ctxt->fi.vector;
1816
1817 ctxt->regs->orig_ax = ctxt->fi.error_code;
1818
1819 switch (trapnr) {
1820 case X86_TRAP_GP:
1821 exc_general_protection(ctxt->regs, error_code);
1822 break;
1823 case X86_TRAP_UD:
1824 exc_invalid_op(ctxt->regs);
1825 break;
1826 case X86_TRAP_PF:
1827 write_cr2(ctxt->fi.cr2);
1828 exc_page_fault(ctxt->regs, error_code);
1829 break;
1830 case X86_TRAP_AC:
1831 exc_alignment_check(ctxt->regs, error_code);
1832 break;
1833 default:
1834 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1835 BUG();
1836 }
1837 }
1838
is_vc2_stack(unsigned long sp)1839 static __always_inline bool is_vc2_stack(unsigned long sp)
1840 {
1841 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1842 }
1843
vc_from_invalid_context(struct pt_regs * regs)1844 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1845 {
1846 unsigned long sp, prev_sp;
1847
1848 sp = (unsigned long)regs;
1849 prev_sp = regs->sp;
1850
1851 /*
1852 * If the code was already executing on the VC2 stack when the #VC
1853 * happened, let it proceed to the normal handling routine. This way the
1854 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1855 */
1856 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1857 }
1858
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1859 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1860 {
1861 struct ghcb_state state;
1862 struct es_em_ctxt ctxt;
1863 enum es_result result;
1864 struct ghcb *ghcb;
1865 bool ret = true;
1866
1867 ghcb = __sev_get_ghcb(&state);
1868
1869 vc_ghcb_invalidate(ghcb);
1870 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1871
1872 if (result == ES_OK)
1873 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1874
1875 __sev_put_ghcb(&state);
1876
1877 /* Done - now check the result */
1878 switch (result) {
1879 case ES_OK:
1880 vc_finish_insn(&ctxt);
1881 break;
1882 case ES_UNSUPPORTED:
1883 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1884 error_code, regs->ip);
1885 ret = false;
1886 break;
1887 case ES_VMM_ERROR:
1888 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1889 error_code, regs->ip);
1890 ret = false;
1891 break;
1892 case ES_DECODE_FAILED:
1893 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1894 error_code, regs->ip);
1895 ret = false;
1896 break;
1897 case ES_EXCEPTION:
1898 vc_forward_exception(&ctxt);
1899 break;
1900 case ES_RETRY:
1901 /* Nothing to do */
1902 break;
1903 default:
1904 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1905 /*
1906 * Emulating the instruction which caused the #VC exception
1907 * failed - can't continue so print debug information
1908 */
1909 BUG();
1910 }
1911
1912 return ret;
1913 }
1914
vc_is_db(unsigned long error_code)1915 static __always_inline bool vc_is_db(unsigned long error_code)
1916 {
1917 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1918 }
1919
1920 /*
1921 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1922 * and will panic when an error happens.
1923 */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1924 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1925 {
1926 irqentry_state_t irq_state;
1927
1928 /*
1929 * With the current implementation it is always possible to switch to a
1930 * safe stack because #VC exceptions only happen at known places, like
1931 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1932 * also happen with code instrumentation when the hypervisor intercepts
1933 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1934 * exceptions currently also only happen in safe places.
1935 *
1936 * But keep this here in case the noinstr annotations are violated due
1937 * to bug elsewhere.
1938 */
1939 if (unlikely(vc_from_invalid_context(regs))) {
1940 instrumentation_begin();
1941 panic("Can't handle #VC exception from unsupported context\n");
1942 instrumentation_end();
1943 }
1944
1945 /*
1946 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1947 */
1948 if (vc_is_db(error_code)) {
1949 exc_debug(regs);
1950 return;
1951 }
1952
1953 irq_state = irqentry_nmi_enter(regs);
1954
1955 instrumentation_begin();
1956
1957 if (!vc_raw_handle_exception(regs, error_code)) {
1958 /* Show some debug info */
1959 show_regs(regs);
1960
1961 /* Ask hypervisor to sev_es_terminate */
1962 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1963
1964 /* If that fails and we get here - just panic */
1965 panic("Returned from Terminate-Request to Hypervisor\n");
1966 }
1967
1968 instrumentation_end();
1969 irqentry_nmi_exit(regs, irq_state);
1970 }
1971
1972 /*
1973 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1974 * and will kill the current task with SIGBUS when an error happens.
1975 */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1976 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1977 {
1978 /*
1979 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1980 */
1981 if (vc_is_db(error_code)) {
1982 noist_exc_debug(regs);
1983 return;
1984 }
1985
1986 irqentry_enter_from_user_mode(regs);
1987 instrumentation_begin();
1988
1989 if (!vc_raw_handle_exception(regs, error_code)) {
1990 /*
1991 * Do not kill the machine if user-space triggered the
1992 * exception. Send SIGBUS instead and let user-space deal with
1993 * it.
1994 */
1995 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1996 }
1997
1998 instrumentation_end();
1999 irqentry_exit_to_user_mode(regs);
2000 }
2001
handle_vc_boot_ghcb(struct pt_regs * regs)2002 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2003 {
2004 unsigned long exit_code = regs->orig_ax;
2005 struct es_em_ctxt ctxt;
2006 enum es_result result;
2007
2008 vc_ghcb_invalidate(boot_ghcb);
2009
2010 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2011 if (result == ES_OK)
2012 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2013
2014 /* Done - now check the result */
2015 switch (result) {
2016 case ES_OK:
2017 vc_finish_insn(&ctxt);
2018 break;
2019 case ES_UNSUPPORTED:
2020 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2021 exit_code, regs->ip);
2022 goto fail;
2023 case ES_VMM_ERROR:
2024 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2025 exit_code, regs->ip);
2026 goto fail;
2027 case ES_DECODE_FAILED:
2028 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2029 exit_code, regs->ip);
2030 goto fail;
2031 case ES_EXCEPTION:
2032 vc_early_forward_exception(&ctxt);
2033 break;
2034 case ES_RETRY:
2035 /* Nothing to do */
2036 break;
2037 default:
2038 BUG();
2039 }
2040
2041 return true;
2042
2043 fail:
2044 show_regs(regs);
2045
2046 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2047 }
2048
2049 /*
2050 * Initial set up of SNP relies on information provided by the
2051 * Confidential Computing blob, which can be passed to the kernel
2052 * in the following ways, depending on how it is booted:
2053 *
2054 * - when booted via the boot/decompress kernel:
2055 * - via boot_params
2056 *
2057 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2058 * - via a setup_data entry, as defined by the Linux Boot Protocol
2059 *
2060 * Scan for the blob in that order.
2061 */
find_cc_blob(struct boot_params * bp)2062 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2063 {
2064 struct cc_blob_sev_info *cc_info;
2065
2066 /* Boot kernel would have passed the CC blob via boot_params. */
2067 if (bp->cc_blob_address) {
2068 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2069 goto found_cc_info;
2070 }
2071
2072 /*
2073 * If kernel was booted directly, without the use of the
2074 * boot/decompression kernel, the CC blob may have been passed via
2075 * setup_data instead.
2076 */
2077 cc_info = find_cc_blob_setup_data(bp);
2078 if (!cc_info)
2079 return NULL;
2080
2081 found_cc_info:
2082 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2083 snp_abort();
2084
2085 return cc_info;
2086 }
2087
snp_init(struct boot_params * bp)2088 bool __init snp_init(struct boot_params *bp)
2089 {
2090 struct cc_blob_sev_info *cc_info;
2091
2092 if (!bp)
2093 return false;
2094
2095 cc_info = find_cc_blob(bp);
2096 if (!cc_info)
2097 return false;
2098
2099 setup_cpuid_table(cc_info);
2100
2101 /*
2102 * The CC blob will be used later to access the secrets page. Cache
2103 * it here like the boot kernel does.
2104 */
2105 bp->cc_blob_address = (u32)(unsigned long)cc_info;
2106
2107 return true;
2108 }
2109
snp_abort(void)2110 void __init __noreturn snp_abort(void)
2111 {
2112 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2113 }
2114
dump_cpuid_table(void)2115 static void dump_cpuid_table(void)
2116 {
2117 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2118 int i = 0;
2119
2120 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2121 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2122
2123 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2124 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2125
2126 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2127 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2128 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2129 }
2130 }
2131
2132 /*
2133 * It is useful from an auditing/testing perspective to provide an easy way
2134 * for the guest owner to know that the CPUID table has been initialized as
2135 * expected, but that initialization happens too early in boot to print any
2136 * sort of indicator, and there's not really any other good place to do it,
2137 * so do it here.
2138 */
report_cpuid_table(void)2139 static int __init report_cpuid_table(void)
2140 {
2141 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2142
2143 if (!cpuid_table->count)
2144 return 0;
2145
2146 pr_info("Using SNP CPUID table, %d entries present.\n",
2147 cpuid_table->count);
2148
2149 if (sev_cfg.debug)
2150 dump_cpuid_table();
2151
2152 return 0;
2153 }
2154 arch_initcall(report_cpuid_table);
2155
init_sev_config(char * str)2156 static int __init init_sev_config(char *str)
2157 {
2158 char *s;
2159
2160 while ((s = strsep(&str, ","))) {
2161 if (!strcmp(s, "debug")) {
2162 sev_cfg.debug = true;
2163 continue;
2164 }
2165
2166 pr_info("SEV command-line option '%s' was not recognized\n", s);
2167 }
2168
2169 return 1;
2170 }
2171 __setup("sev=", init_sev_config);
2172
snp_issue_guest_request(u64 exit_code,struct snp_req_data * input,struct snp_guest_request_ioctl * rio)2173 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2174 {
2175 struct ghcb_state state;
2176 struct es_em_ctxt ctxt;
2177 unsigned long flags;
2178 struct ghcb *ghcb;
2179 int ret;
2180
2181 rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2182
2183 /*
2184 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2185 * a per-CPU GHCB.
2186 */
2187 local_irq_save(flags);
2188
2189 ghcb = __sev_get_ghcb(&state);
2190 if (!ghcb) {
2191 ret = -EIO;
2192 goto e_restore_irq;
2193 }
2194
2195 vc_ghcb_invalidate(ghcb);
2196
2197 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2198 ghcb_set_rax(ghcb, input->data_gpa);
2199 ghcb_set_rbx(ghcb, input->data_npages);
2200 }
2201
2202 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2203 if (ret)
2204 goto e_put;
2205
2206 rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2207 switch (rio->exitinfo2) {
2208 case 0:
2209 break;
2210
2211 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2212 ret = -EAGAIN;
2213 break;
2214
2215 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2216 /* Number of expected pages are returned in RBX */
2217 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2218 input->data_npages = ghcb_get_rbx(ghcb);
2219 ret = -ENOSPC;
2220 break;
2221 }
2222 fallthrough;
2223 default:
2224 ret = -EIO;
2225 break;
2226 }
2227
2228 e_put:
2229 __sev_put_ghcb(&state);
2230 e_restore_irq:
2231 local_irq_restore(flags);
2232
2233 return ret;
2234 }
2235 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2236
2237 static struct platform_device sev_guest_device = {
2238 .name = "sev-guest",
2239 .id = -1,
2240 };
2241
snp_init_platform_device(void)2242 static int __init snp_init_platform_device(void)
2243 {
2244 struct sev_guest_platform_data data;
2245 u64 gpa;
2246
2247 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2248 return -ENODEV;
2249
2250 gpa = get_secrets_page();
2251 if (!gpa)
2252 return -ENODEV;
2253
2254 data.secrets_gpa = gpa;
2255 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2256 return -ENODEV;
2257
2258 if (platform_device_register(&sev_guest_device))
2259 return -ENODEV;
2260
2261 pr_info("SNP guest platform device initialized.\n");
2262 return 0;
2263 }
2264 device_initcall(snp_init_platform_device);
2265