1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2019 SUSE
6 *
7 * Author: Joerg Roedel <jroedel@suse.de>
8 */
9
10 #define pr_fmt(fmt) "SEV: " fmt
11
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25
26 #include <asm/cpu_entry_area.h>
27 #include <asm/stacktrace.h>
28 #include <asm/sev.h>
29 #include <asm/insn-eval.h>
30 #include <asm/fpu/xcr.h>
31 #include <asm/processor.h>
32 #include <asm/realmode.h>
33 #include <asm/setup.h>
34 #include <asm/traps.h>
35 #include <asm/svm.h>
36 #include <asm/smp.h>
37 #include <asm/cpu.h>
38 #include <asm/apic.h>
39 #include <asm/cpuid.h>
40 #include <asm/cmdline.h>
41
42 #define DR7_RESET_VALUE 0x400
43
44 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */
45 #define AP_INIT_CS_LIMIT 0xffff
46 #define AP_INIT_DS_LIMIT 0xffff
47 #define AP_INIT_LDTR_LIMIT 0xffff
48 #define AP_INIT_GDTR_LIMIT 0xffff
49 #define AP_INIT_IDTR_LIMIT 0xffff
50 #define AP_INIT_TR_LIMIT 0xffff
51 #define AP_INIT_RFLAGS_DEFAULT 0x2
52 #define AP_INIT_DR6_DEFAULT 0xffff0ff0
53 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
54 #define AP_INIT_XCR0_DEFAULT 0x1
55 #define AP_INIT_X87_FTW_DEFAULT 0x5555
56 #define AP_INIT_X87_FCW_DEFAULT 0x0040
57 #define AP_INIT_CR0_DEFAULT 0x60000010
58 #define AP_INIT_MXCSR_DEFAULT 0x1f80
59
60 /* For early boot hypervisor communication in SEV-ES enabled guests */
61 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
62
63 /*
64 * Needs to be in the .data section because we need it NULL before bss is
65 * cleared
66 */
67 static struct ghcb *boot_ghcb __section(".data");
68
69 /* Bitmap of SEV features supported by the hypervisor */
70 static u64 sev_hv_features __ro_after_init;
71
72 /* #VC handler runtime per-CPU data */
73 struct sev_es_runtime_data {
74 struct ghcb ghcb_page;
75
76 /*
77 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
78 * It is needed when an NMI happens while the #VC handler uses the real
79 * GHCB, and the NMI handler itself is causing another #VC exception. In
80 * that case the GHCB content of the first handler needs to be backed up
81 * and restored.
82 */
83 struct ghcb backup_ghcb;
84
85 /*
86 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
87 * There is no need for it to be atomic, because nothing is written to
88 * the GHCB between the read and the write of ghcb_active. So it is safe
89 * to use it when a nested #VC exception happens before the write.
90 *
91 * This is necessary for example in the #VC->NMI->#VC case when the NMI
92 * happens while the first #VC handler uses the GHCB. When the NMI code
93 * raises a second #VC handler it might overwrite the contents of the
94 * GHCB written by the first handler. To avoid this the content of the
95 * GHCB is saved and restored when the GHCB is detected to be in use
96 * already.
97 */
98 bool ghcb_active;
99 bool backup_ghcb_active;
100
101 /*
102 * Cached DR7 value - write it on DR7 writes and return it on reads.
103 * That value will never make it to the real hardware DR7 as debugging
104 * is currently unsupported in SEV-ES guests.
105 */
106 unsigned long dr7;
107 };
108
109 struct ghcb_state {
110 struct ghcb *ghcb;
111 };
112
113 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
114 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
115
116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
117
118 struct sev_config {
119 __u64 debug : 1,
120 __reserved : 63;
121 };
122
123 static struct sev_config sev_cfg __read_mostly;
124
on_vc_stack(struct pt_regs * regs)125 static __always_inline bool on_vc_stack(struct pt_regs *regs)
126 {
127 unsigned long sp = regs->sp;
128
129 /* User-mode RSP is not trusted */
130 if (user_mode(regs))
131 return false;
132
133 /* SYSCALL gap still has user-mode RSP */
134 if (ip_within_syscall_gap(regs))
135 return false;
136
137 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
138 }
139
140 /*
141 * This function handles the case when an NMI is raised in the #VC
142 * exception handler entry code, before the #VC handler has switched off
143 * its IST stack. In this case, the IST entry for #VC must be adjusted,
144 * so that any nested #VC exception will not overwrite the stack
145 * contents of the interrupted #VC handler.
146 *
147 * The IST entry is adjusted unconditionally so that it can be also be
148 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
149 * nested sev_es_ist_exit() call may adjust back the IST entry too
150 * early.
151 *
152 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
153 * on the NMI IST stack, as they are only called from NMI handling code
154 * right now.
155 */
__sev_es_ist_enter(struct pt_regs * regs)156 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
157 {
158 unsigned long old_ist, new_ist;
159
160 /* Read old IST entry */
161 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
162
163 /*
164 * If NMI happened while on the #VC IST stack, set the new IST
165 * value below regs->sp, so that the interrupted stack frame is
166 * not overwritten by subsequent #VC exceptions.
167 */
168 if (on_vc_stack(regs))
169 new_ist = regs->sp;
170
171 /*
172 * Reserve additional 8 bytes and store old IST value so this
173 * adjustment can be unrolled in __sev_es_ist_exit().
174 */
175 new_ist -= sizeof(old_ist);
176 *(unsigned long *)new_ist = old_ist;
177
178 /* Set new IST entry */
179 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
180 }
181
__sev_es_ist_exit(void)182 void noinstr __sev_es_ist_exit(void)
183 {
184 unsigned long ist;
185
186 /* Read IST entry */
187 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
188
189 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
190 return;
191
192 /* Read back old IST entry and write it to the TSS */
193 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
194 }
195
196 /*
197 * Nothing shall interrupt this code path while holding the per-CPU
198 * GHCB. The backup GHCB is only for NMIs interrupting this path.
199 *
200 * Callers must disable local interrupts around it.
201 */
__sev_get_ghcb(struct ghcb_state * state)202 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
203 {
204 struct sev_es_runtime_data *data;
205 struct ghcb *ghcb;
206
207 WARN_ON(!irqs_disabled());
208
209 data = this_cpu_read(runtime_data);
210 ghcb = &data->ghcb_page;
211
212 if (unlikely(data->ghcb_active)) {
213 /* GHCB is already in use - save its contents */
214
215 if (unlikely(data->backup_ghcb_active)) {
216 /*
217 * Backup-GHCB is also already in use. There is no way
218 * to continue here so just kill the machine. To make
219 * panic() work, mark GHCBs inactive so that messages
220 * can be printed out.
221 */
222 data->ghcb_active = false;
223 data->backup_ghcb_active = false;
224
225 instrumentation_begin();
226 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
227 instrumentation_end();
228 }
229
230 /* Mark backup_ghcb active before writing to it */
231 data->backup_ghcb_active = true;
232
233 state->ghcb = &data->backup_ghcb;
234
235 /* Backup GHCB content */
236 *state->ghcb = *ghcb;
237 } else {
238 state->ghcb = NULL;
239 data->ghcb_active = true;
240 }
241
242 return ghcb;
243 }
244
sev_es_rd_ghcb_msr(void)245 static inline u64 sev_es_rd_ghcb_msr(void)
246 {
247 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
248 }
249
sev_es_wr_ghcb_msr(u64 val)250 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
251 {
252 u32 low, high;
253
254 low = (u32)(val);
255 high = (u32)(val >> 32);
256
257 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
258 }
259
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)260 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
261 unsigned char *buffer)
262 {
263 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
264 }
265
__vc_decode_user_insn(struct es_em_ctxt * ctxt)266 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
267 {
268 char buffer[MAX_INSN_SIZE];
269 int insn_bytes;
270
271 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
272 if (insn_bytes == 0) {
273 /* Nothing could be copied */
274 ctxt->fi.vector = X86_TRAP_PF;
275 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
276 ctxt->fi.cr2 = ctxt->regs->ip;
277 return ES_EXCEPTION;
278 } else if (insn_bytes == -EINVAL) {
279 /* Effective RIP could not be calculated */
280 ctxt->fi.vector = X86_TRAP_GP;
281 ctxt->fi.error_code = 0;
282 ctxt->fi.cr2 = 0;
283 return ES_EXCEPTION;
284 }
285
286 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
287 return ES_DECODE_FAILED;
288
289 if (ctxt->insn.immediate.got)
290 return ES_OK;
291 else
292 return ES_DECODE_FAILED;
293 }
294
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)295 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
296 {
297 char buffer[MAX_INSN_SIZE];
298 int res, ret;
299
300 res = vc_fetch_insn_kernel(ctxt, buffer);
301 if (res) {
302 ctxt->fi.vector = X86_TRAP_PF;
303 ctxt->fi.error_code = X86_PF_INSTR;
304 ctxt->fi.cr2 = ctxt->regs->ip;
305 return ES_EXCEPTION;
306 }
307
308 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
309 if (ret < 0)
310 return ES_DECODE_FAILED;
311 else
312 return ES_OK;
313 }
314
vc_decode_insn(struct es_em_ctxt * ctxt)315 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
316 {
317 if (user_mode(ctxt->regs))
318 return __vc_decode_user_insn(ctxt);
319 else
320 return __vc_decode_kern_insn(ctxt);
321 }
322
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)323 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
324 char *dst, char *buf, size_t size)
325 {
326 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
327
328 /*
329 * This function uses __put_user() independent of whether kernel or user
330 * memory is accessed. This works fine because __put_user() does no
331 * sanity checks of the pointer being accessed. All that it does is
332 * to report when the access failed.
333 *
334 * Also, this function runs in atomic context, so __put_user() is not
335 * allowed to sleep. The page-fault handler detects that it is running
336 * in atomic context and will not try to take mmap_sem and handle the
337 * fault, so additional pagefault_enable()/disable() calls are not
338 * needed.
339 *
340 * The access can't be done via copy_to_user() here because
341 * vc_write_mem() must not use string instructions to access unsafe
342 * memory. The reason is that MOVS is emulated by the #VC handler by
343 * splitting the move up into a read and a write and taking a nested #VC
344 * exception on whatever of them is the MMIO access. Using string
345 * instructions here would cause infinite nesting.
346 */
347 switch (size) {
348 case 1: {
349 u8 d1;
350 u8 __user *target = (u8 __user *)dst;
351
352 memcpy(&d1, buf, 1);
353 if (__put_user(d1, target))
354 goto fault;
355 break;
356 }
357 case 2: {
358 u16 d2;
359 u16 __user *target = (u16 __user *)dst;
360
361 memcpy(&d2, buf, 2);
362 if (__put_user(d2, target))
363 goto fault;
364 break;
365 }
366 case 4: {
367 u32 d4;
368 u32 __user *target = (u32 __user *)dst;
369
370 memcpy(&d4, buf, 4);
371 if (__put_user(d4, target))
372 goto fault;
373 break;
374 }
375 case 8: {
376 u64 d8;
377 u64 __user *target = (u64 __user *)dst;
378
379 memcpy(&d8, buf, 8);
380 if (__put_user(d8, target))
381 goto fault;
382 break;
383 }
384 default:
385 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
386 return ES_UNSUPPORTED;
387 }
388
389 return ES_OK;
390
391 fault:
392 if (user_mode(ctxt->regs))
393 error_code |= X86_PF_USER;
394
395 ctxt->fi.vector = X86_TRAP_PF;
396 ctxt->fi.error_code = error_code;
397 ctxt->fi.cr2 = (unsigned long)dst;
398
399 return ES_EXCEPTION;
400 }
401
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)402 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
403 char *src, char *buf, size_t size)
404 {
405 unsigned long error_code = X86_PF_PROT;
406
407 /*
408 * This function uses __get_user() independent of whether kernel or user
409 * memory is accessed. This works fine because __get_user() does no
410 * sanity checks of the pointer being accessed. All that it does is
411 * to report when the access failed.
412 *
413 * Also, this function runs in atomic context, so __get_user() is not
414 * allowed to sleep. The page-fault handler detects that it is running
415 * in atomic context and will not try to take mmap_sem and handle the
416 * fault, so additional pagefault_enable()/disable() calls are not
417 * needed.
418 *
419 * The access can't be done via copy_from_user() here because
420 * vc_read_mem() must not use string instructions to access unsafe
421 * memory. The reason is that MOVS is emulated by the #VC handler by
422 * splitting the move up into a read and a write and taking a nested #VC
423 * exception on whatever of them is the MMIO access. Using string
424 * instructions here would cause infinite nesting.
425 */
426 switch (size) {
427 case 1: {
428 u8 d1;
429 u8 __user *s = (u8 __user *)src;
430
431 if (__get_user(d1, s))
432 goto fault;
433 memcpy(buf, &d1, 1);
434 break;
435 }
436 case 2: {
437 u16 d2;
438 u16 __user *s = (u16 __user *)src;
439
440 if (__get_user(d2, s))
441 goto fault;
442 memcpy(buf, &d2, 2);
443 break;
444 }
445 case 4: {
446 u32 d4;
447 u32 __user *s = (u32 __user *)src;
448
449 if (__get_user(d4, s))
450 goto fault;
451 memcpy(buf, &d4, 4);
452 break;
453 }
454 case 8: {
455 u64 d8;
456 u64 __user *s = (u64 __user *)src;
457 if (__get_user(d8, s))
458 goto fault;
459 memcpy(buf, &d8, 8);
460 break;
461 }
462 default:
463 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
464 return ES_UNSUPPORTED;
465 }
466
467 return ES_OK;
468
469 fault:
470 if (user_mode(ctxt->regs))
471 error_code |= X86_PF_USER;
472
473 ctxt->fi.vector = X86_TRAP_PF;
474 ctxt->fi.error_code = error_code;
475 ctxt->fi.cr2 = (unsigned long)src;
476
477 return ES_EXCEPTION;
478 }
479
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)480 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481 unsigned long vaddr, phys_addr_t *paddr)
482 {
483 unsigned long va = (unsigned long)vaddr;
484 unsigned int level;
485 phys_addr_t pa;
486 pgd_t *pgd;
487 pte_t *pte;
488
489 pgd = __va(read_cr3_pa());
490 pgd = &pgd[pgd_index(va)];
491 pte = lookup_address_in_pgd(pgd, va, &level);
492 if (!pte) {
493 ctxt->fi.vector = X86_TRAP_PF;
494 ctxt->fi.cr2 = vaddr;
495 ctxt->fi.error_code = 0;
496
497 if (user_mode(ctxt->regs))
498 ctxt->fi.error_code |= X86_PF_USER;
499
500 return ES_EXCEPTION;
501 }
502
503 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
504 /* Emulated MMIO to/from encrypted memory not supported */
505 return ES_UNSUPPORTED;
506
507 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
508 pa |= va & ~page_level_mask(level);
509
510 *paddr = pa;
511
512 return ES_OK;
513 }
514
515 /* Include code shared with pre-decompression boot stage */
516 #include "sev-shared.c"
517
__sev_put_ghcb(struct ghcb_state * state)518 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
519 {
520 struct sev_es_runtime_data *data;
521 struct ghcb *ghcb;
522
523 WARN_ON(!irqs_disabled());
524
525 data = this_cpu_read(runtime_data);
526 ghcb = &data->ghcb_page;
527
528 if (state->ghcb) {
529 /* Restore GHCB from Backup */
530 *ghcb = *state->ghcb;
531 data->backup_ghcb_active = false;
532 state->ghcb = NULL;
533 } else {
534 /*
535 * Invalidate the GHCB so a VMGEXIT instruction issued
536 * from userspace won't appear to be valid.
537 */
538 vc_ghcb_invalidate(ghcb);
539 data->ghcb_active = false;
540 }
541 }
542
__sev_es_nmi_complete(void)543 void noinstr __sev_es_nmi_complete(void)
544 {
545 struct ghcb_state state;
546 struct ghcb *ghcb;
547
548 ghcb = __sev_get_ghcb(&state);
549
550 vc_ghcb_invalidate(ghcb);
551 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
552 ghcb_set_sw_exit_info_1(ghcb, 0);
553 ghcb_set_sw_exit_info_2(ghcb, 0);
554
555 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
556 VMGEXIT();
557
558 __sev_put_ghcb(&state);
559 }
560
get_secrets_page(void)561 static u64 __init get_secrets_page(void)
562 {
563 u64 pa_data = boot_params.cc_blob_address;
564 struct cc_blob_sev_info info;
565 void *map;
566
567 /*
568 * The CC blob contains the address of the secrets page, check if the
569 * blob is present.
570 */
571 if (!pa_data)
572 return 0;
573
574 map = early_memremap(pa_data, sizeof(info));
575 if (!map) {
576 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
577 return 0;
578 }
579 memcpy(&info, map, sizeof(info));
580 early_memunmap(map, sizeof(info));
581
582 /* smoke-test the secrets page passed */
583 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
584 return 0;
585
586 return info.secrets_phys;
587 }
588
get_snp_jump_table_addr(void)589 static u64 __init get_snp_jump_table_addr(void)
590 {
591 struct snp_secrets_page_layout *layout;
592 void __iomem *mem;
593 u64 pa, addr;
594
595 pa = get_secrets_page();
596 if (!pa)
597 return 0;
598
599 mem = ioremap_encrypted(pa, PAGE_SIZE);
600 if (!mem) {
601 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
602 return 0;
603 }
604
605 layout = (__force struct snp_secrets_page_layout *)mem;
606
607 addr = layout->os_area.ap_jump_table_pa;
608 iounmap(mem);
609
610 return addr;
611 }
612
get_jump_table_addr(void)613 static u64 __init get_jump_table_addr(void)
614 {
615 struct ghcb_state state;
616 unsigned long flags;
617 struct ghcb *ghcb;
618 u64 ret = 0;
619
620 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
621 return get_snp_jump_table_addr();
622
623 local_irq_save(flags);
624
625 ghcb = __sev_get_ghcb(&state);
626
627 vc_ghcb_invalidate(ghcb);
628 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
629 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
630 ghcb_set_sw_exit_info_2(ghcb, 0);
631
632 sev_es_wr_ghcb_msr(__pa(ghcb));
633 VMGEXIT();
634
635 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
636 ghcb_sw_exit_info_2_is_valid(ghcb))
637 ret = ghcb->save.sw_exit_info_2;
638
639 __sev_put_ghcb(&state);
640
641 local_irq_restore(flags);
642
643 return ret;
644 }
645
pvalidate_pages(unsigned long vaddr,unsigned int npages,bool validate)646 static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate)
647 {
648 unsigned long vaddr_end;
649 int rc;
650
651 vaddr = vaddr & PAGE_MASK;
652 vaddr_end = vaddr + (npages << PAGE_SHIFT);
653
654 while (vaddr < vaddr_end) {
655 rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
656 if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc))
657 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
658
659 vaddr = vaddr + PAGE_SIZE;
660 }
661 }
662
early_set_pages_state(unsigned long paddr,unsigned int npages,enum psc_op op)663 static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op)
664 {
665 unsigned long paddr_end;
666 u64 val;
667
668 paddr = paddr & PAGE_MASK;
669 paddr_end = paddr + (npages << PAGE_SHIFT);
670
671 while (paddr < paddr_end) {
672 /*
673 * Use the MSR protocol because this function can be called before
674 * the GHCB is established.
675 */
676 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
677 VMGEXIT();
678
679 val = sev_es_rd_ghcb_msr();
680
681 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
682 "Wrong PSC response code: 0x%x\n",
683 (unsigned int)GHCB_RESP_CODE(val)))
684 goto e_term;
685
686 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
687 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
688 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
689 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
690 goto e_term;
691
692 paddr = paddr + PAGE_SIZE;
693 }
694
695 return;
696
697 e_term:
698 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
699 }
700
early_snp_set_memory_private(unsigned long vaddr,unsigned long paddr,unsigned int npages)701 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
702 unsigned int npages)
703 {
704 /*
705 * This can be invoked in early boot while running identity mapped, so
706 * use an open coded check for SNP instead of using cc_platform_has().
707 * This eliminates worries about jump tables or checking boot_cpu_data
708 * in the cc_platform_has() function.
709 */
710 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
711 return;
712
713 /*
714 * Ask the hypervisor to mark the memory pages as private in the RMP
715 * table.
716 */
717 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE);
718
719 /* Validate the memory pages after they've been added in the RMP table. */
720 pvalidate_pages(vaddr, npages, true);
721 }
722
early_snp_set_memory_shared(unsigned long vaddr,unsigned long paddr,unsigned int npages)723 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
724 unsigned int npages)
725 {
726 /*
727 * This can be invoked in early boot while running identity mapped, so
728 * use an open coded check for SNP instead of using cc_platform_has().
729 * This eliminates worries about jump tables or checking boot_cpu_data
730 * in the cc_platform_has() function.
731 */
732 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
733 return;
734
735 /* Invalidate the memory pages before they are marked shared in the RMP table. */
736 pvalidate_pages(vaddr, npages, false);
737
738 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
739 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED);
740 }
741
snp_prep_memory(unsigned long paddr,unsigned int sz,enum psc_op op)742 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
743 {
744 unsigned long vaddr, npages;
745
746 vaddr = (unsigned long)__va(paddr);
747 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
748
749 if (op == SNP_PAGE_STATE_PRIVATE)
750 early_snp_set_memory_private(vaddr, paddr, npages);
751 else if (op == SNP_PAGE_STATE_SHARED)
752 early_snp_set_memory_shared(vaddr, paddr, npages);
753 else
754 WARN(1, "invalid memory op %d\n", op);
755 }
756
vmgexit_psc(struct snp_psc_desc * desc)757 static int vmgexit_psc(struct snp_psc_desc *desc)
758 {
759 int cur_entry, end_entry, ret = 0;
760 struct snp_psc_desc *data;
761 struct ghcb_state state;
762 struct es_em_ctxt ctxt;
763 unsigned long flags;
764 struct ghcb *ghcb;
765
766 /*
767 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
768 * a per-CPU GHCB.
769 */
770 local_irq_save(flags);
771
772 ghcb = __sev_get_ghcb(&state);
773 if (!ghcb) {
774 ret = 1;
775 goto out_unlock;
776 }
777
778 /* Copy the input desc into GHCB shared buffer */
779 data = (struct snp_psc_desc *)ghcb->shared_buffer;
780 memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
781
782 /*
783 * As per the GHCB specification, the hypervisor can resume the guest
784 * before processing all the entries. Check whether all the entries
785 * are processed. If not, then keep retrying. Note, the hypervisor
786 * will update the data memory directly to indicate the status, so
787 * reference the data->hdr everywhere.
788 *
789 * The strategy here is to wait for the hypervisor to change the page
790 * state in the RMP table before guest accesses the memory pages. If the
791 * page state change was not successful, then later memory access will
792 * result in a crash.
793 */
794 cur_entry = data->hdr.cur_entry;
795 end_entry = data->hdr.end_entry;
796
797 while (data->hdr.cur_entry <= data->hdr.end_entry) {
798 ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
799
800 /* This will advance the shared buffer data points to. */
801 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
802
803 /*
804 * Page State Change VMGEXIT can pass error code through
805 * exit_info_2.
806 */
807 if (WARN(ret || ghcb->save.sw_exit_info_2,
808 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
809 ret, ghcb->save.sw_exit_info_2)) {
810 ret = 1;
811 goto out;
812 }
813
814 /* Verify that reserved bit is not set */
815 if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
816 ret = 1;
817 goto out;
818 }
819
820 /*
821 * Sanity check that entry processing is not going backwards.
822 * This will happen only if hypervisor is tricking us.
823 */
824 if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
825 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
826 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
827 ret = 1;
828 goto out;
829 }
830 }
831
832 out:
833 __sev_put_ghcb(&state);
834
835 out_unlock:
836 local_irq_restore(flags);
837
838 return ret;
839 }
840
__set_pages_state(struct snp_psc_desc * data,unsigned long vaddr,unsigned long vaddr_end,int op)841 static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
842 unsigned long vaddr_end, int op)
843 {
844 struct psc_hdr *hdr;
845 struct psc_entry *e;
846 unsigned long pfn;
847 int i;
848
849 hdr = &data->hdr;
850 e = data->entries;
851
852 memset(data, 0, sizeof(*data));
853 i = 0;
854
855 while (vaddr < vaddr_end) {
856 if (is_vmalloc_addr((void *)vaddr))
857 pfn = vmalloc_to_pfn((void *)vaddr);
858 else
859 pfn = __pa(vaddr) >> PAGE_SHIFT;
860
861 e->gfn = pfn;
862 e->operation = op;
863 hdr->end_entry = i;
864
865 /*
866 * Current SNP implementation doesn't keep track of the RMP page
867 * size so use 4K for simplicity.
868 */
869 e->pagesize = RMP_PG_SIZE_4K;
870
871 vaddr = vaddr + PAGE_SIZE;
872 e++;
873 i++;
874 }
875
876 if (vmgexit_psc(data))
877 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
878 }
879
set_pages_state(unsigned long vaddr,unsigned int npages,int op)880 static void set_pages_state(unsigned long vaddr, unsigned int npages, int op)
881 {
882 unsigned long vaddr_end, next_vaddr;
883 struct snp_psc_desc *desc;
884
885 desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT);
886 if (!desc)
887 panic("SNP: failed to allocate memory for PSC descriptor\n");
888
889 vaddr = vaddr & PAGE_MASK;
890 vaddr_end = vaddr + (npages << PAGE_SHIFT);
891
892 while (vaddr < vaddr_end) {
893 /* Calculate the last vaddr that fits in one struct snp_psc_desc. */
894 next_vaddr = min_t(unsigned long, vaddr_end,
895 (VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr);
896
897 __set_pages_state(desc, vaddr, next_vaddr, op);
898
899 vaddr = next_vaddr;
900 }
901
902 kfree(desc);
903 }
904
snp_set_memory_shared(unsigned long vaddr,unsigned int npages)905 void snp_set_memory_shared(unsigned long vaddr, unsigned int npages)
906 {
907 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
908 return;
909
910 pvalidate_pages(vaddr, npages, false);
911
912 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
913 }
914
snp_set_memory_private(unsigned long vaddr,unsigned int npages)915 void snp_set_memory_private(unsigned long vaddr, unsigned int npages)
916 {
917 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
918 return;
919
920 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
921
922 pvalidate_pages(vaddr, npages, true);
923 }
924
snp_set_vmsa(void * va,bool vmsa)925 static int snp_set_vmsa(void *va, bool vmsa)
926 {
927 u64 attrs;
928
929 /*
930 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
931 * using the RMPADJUST instruction. However, for the instruction to
932 * succeed it must target the permissions of a lesser privileged
933 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
934 * instruction in the AMD64 APM Volume 3).
935 */
936 attrs = 1;
937 if (vmsa)
938 attrs |= RMPADJUST_VMSA_PAGE_BIT;
939
940 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
941 }
942
943 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
944 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
945 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
946
947 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
948 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
949
snp_alloc_vmsa_page(void)950 static void *snp_alloc_vmsa_page(void)
951 {
952 struct page *p;
953
954 /*
955 * Allocate VMSA page to work around the SNP erratum where the CPU will
956 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
957 * collides with the RMP entry of VMSA page. The recommended workaround
958 * is to not use a large page.
959 *
960 * Allocate an 8k page which is also 8k-aligned.
961 */
962 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
963 if (!p)
964 return NULL;
965
966 split_page(p, 1);
967
968 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
969 __free_page(p);
970
971 return page_address(p + 1);
972 }
973
snp_cleanup_vmsa(struct sev_es_save_area * vmsa)974 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
975 {
976 int err;
977
978 err = snp_set_vmsa(vmsa, false);
979 if (err)
980 pr_err("clear VMSA page failed (%u), leaking page\n", err);
981 else
982 free_page((unsigned long)vmsa);
983 }
984
wakeup_cpu_via_vmgexit(int apic_id,unsigned long start_ip)985 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
986 {
987 struct sev_es_save_area *cur_vmsa, *vmsa;
988 struct ghcb_state state;
989 unsigned long flags;
990 struct ghcb *ghcb;
991 u8 sipi_vector;
992 int cpu, ret;
993 u64 cr4;
994
995 /*
996 * The hypervisor SNP feature support check has happened earlier, just check
997 * the AP_CREATION one here.
998 */
999 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1000 return -EOPNOTSUPP;
1001
1002 /*
1003 * Verify the desired start IP against the known trampoline start IP
1004 * to catch any future new trampolines that may be introduced that
1005 * would require a new protected guest entry point.
1006 */
1007 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1008 "Unsupported SNP start_ip: %lx\n", start_ip))
1009 return -EINVAL;
1010
1011 /* Override start_ip with known protected guest start IP */
1012 start_ip = real_mode_header->sev_es_trampoline_start;
1013
1014 /* Find the logical CPU for the APIC ID */
1015 for_each_present_cpu(cpu) {
1016 if (arch_match_cpu_phys_id(cpu, apic_id))
1017 break;
1018 }
1019 if (cpu >= nr_cpu_ids)
1020 return -EINVAL;
1021
1022 cur_vmsa = per_cpu(sev_vmsa, cpu);
1023
1024 /*
1025 * A new VMSA is created each time because there is no guarantee that
1026 * the current VMSA is the kernels or that the vCPU is not running. If
1027 * an attempt was done to use the current VMSA with a running vCPU, a
1028 * #VMEXIT of that vCPU would wipe out all of the settings being done
1029 * here.
1030 */
1031 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1032 if (!vmsa)
1033 return -ENOMEM;
1034
1035 /* CR4 should maintain the MCE value */
1036 cr4 = native_read_cr4() & X86_CR4_MCE;
1037
1038 /* Set the CS value based on the start_ip converted to a SIPI vector */
1039 sipi_vector = (start_ip >> 12);
1040 vmsa->cs.base = sipi_vector << 12;
1041 vmsa->cs.limit = AP_INIT_CS_LIMIT;
1042 vmsa->cs.attrib = INIT_CS_ATTRIBS;
1043 vmsa->cs.selector = sipi_vector << 8;
1044
1045 /* Set the RIP value based on start_ip */
1046 vmsa->rip = start_ip & 0xfff;
1047
1048 /* Set AP INIT defaults as documented in the APM */
1049 vmsa->ds.limit = AP_INIT_DS_LIMIT;
1050 vmsa->ds.attrib = INIT_DS_ATTRIBS;
1051 vmsa->es = vmsa->ds;
1052 vmsa->fs = vmsa->ds;
1053 vmsa->gs = vmsa->ds;
1054 vmsa->ss = vmsa->ds;
1055
1056 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
1057 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
1058 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
1059 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
1060 vmsa->tr.limit = AP_INIT_TR_LIMIT;
1061 vmsa->tr.attrib = INIT_TR_ATTRIBS;
1062
1063 vmsa->cr4 = cr4;
1064 vmsa->cr0 = AP_INIT_CR0_DEFAULT;
1065 vmsa->dr7 = DR7_RESET_VALUE;
1066 vmsa->dr6 = AP_INIT_DR6_DEFAULT;
1067 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
1068 vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
1069 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
1070 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
1071 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
1072 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
1073
1074 /* SVME must be set. */
1075 vmsa->efer = EFER_SVME;
1076
1077 /*
1078 * Set the SNP-specific fields for this VMSA:
1079 * VMPL level
1080 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1081 */
1082 vmsa->vmpl = 0;
1083 vmsa->sev_features = sev_status >> 2;
1084
1085 /* Switch the page over to a VMSA page now that it is initialized */
1086 ret = snp_set_vmsa(vmsa, true);
1087 if (ret) {
1088 pr_err("set VMSA page failed (%u)\n", ret);
1089 free_page((unsigned long)vmsa);
1090
1091 return -EINVAL;
1092 }
1093
1094 /* Issue VMGEXIT AP Creation NAE event */
1095 local_irq_save(flags);
1096
1097 ghcb = __sev_get_ghcb(&state);
1098
1099 vc_ghcb_invalidate(ghcb);
1100 ghcb_set_rax(ghcb, vmsa->sev_features);
1101 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1102 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1103 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1104
1105 sev_es_wr_ghcb_msr(__pa(ghcb));
1106 VMGEXIT();
1107
1108 if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1109 lower_32_bits(ghcb->save.sw_exit_info_1)) {
1110 pr_err("SNP AP Creation error\n");
1111 ret = -EINVAL;
1112 }
1113
1114 __sev_put_ghcb(&state);
1115
1116 local_irq_restore(flags);
1117
1118 /* Perform cleanup if there was an error */
1119 if (ret) {
1120 snp_cleanup_vmsa(vmsa);
1121 vmsa = NULL;
1122 }
1123
1124 /* Free up any previous VMSA page */
1125 if (cur_vmsa)
1126 snp_cleanup_vmsa(cur_vmsa);
1127
1128 /* Record the current VMSA page */
1129 per_cpu(sev_vmsa, cpu) = vmsa;
1130
1131 return ret;
1132 }
1133
snp_set_wakeup_secondary_cpu(void)1134 void snp_set_wakeup_secondary_cpu(void)
1135 {
1136 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1137 return;
1138
1139 /*
1140 * Always set this override if SNP is enabled. This makes it the
1141 * required method to start APs under SNP. If the hypervisor does
1142 * not support AP creation, then no APs will be started.
1143 */
1144 apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit;
1145 }
1146
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)1147 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1148 {
1149 u16 startup_cs, startup_ip;
1150 phys_addr_t jump_table_pa;
1151 u64 jump_table_addr;
1152 u16 __iomem *jump_table;
1153
1154 jump_table_addr = get_jump_table_addr();
1155
1156 /* On UP guests there is no jump table so this is not a failure */
1157 if (!jump_table_addr)
1158 return 0;
1159
1160 /* Check if AP Jump Table is page-aligned */
1161 if (jump_table_addr & ~PAGE_MASK)
1162 return -EINVAL;
1163
1164 jump_table_pa = jump_table_addr & PAGE_MASK;
1165
1166 startup_cs = (u16)(rmh->trampoline_start >> 4);
1167 startup_ip = (u16)(rmh->sev_es_trampoline_start -
1168 rmh->trampoline_start);
1169
1170 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1171 if (!jump_table)
1172 return -EIO;
1173
1174 writew(startup_ip, &jump_table[0]);
1175 writew(startup_cs, &jump_table[1]);
1176
1177 iounmap(jump_table);
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1184 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1185 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1186 */
sev_es_efi_map_ghcbs(pgd_t * pgd)1187 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1188 {
1189 struct sev_es_runtime_data *data;
1190 unsigned long address, pflags;
1191 int cpu;
1192 u64 pfn;
1193
1194 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1195 return 0;
1196
1197 pflags = _PAGE_NX | _PAGE_RW;
1198
1199 for_each_possible_cpu(cpu) {
1200 data = per_cpu(runtime_data, cpu);
1201
1202 address = __pa(&data->ghcb_page);
1203 pfn = address >> PAGE_SHIFT;
1204
1205 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1206 return 1;
1207 }
1208
1209 return 0;
1210 }
1211
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1212 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1213 {
1214 struct pt_regs *regs = ctxt->regs;
1215 enum es_result ret;
1216 u64 exit_info_1;
1217
1218 /* Is it a WRMSR? */
1219 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1220
1221 ghcb_set_rcx(ghcb, regs->cx);
1222 if (exit_info_1) {
1223 ghcb_set_rax(ghcb, regs->ax);
1224 ghcb_set_rdx(ghcb, regs->dx);
1225 }
1226
1227 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1228
1229 if ((ret == ES_OK) && (!exit_info_1)) {
1230 regs->ax = ghcb->save.rax;
1231 regs->dx = ghcb->save.rdx;
1232 }
1233
1234 return ret;
1235 }
1236
snp_register_per_cpu_ghcb(void)1237 static void snp_register_per_cpu_ghcb(void)
1238 {
1239 struct sev_es_runtime_data *data;
1240 struct ghcb *ghcb;
1241
1242 data = this_cpu_read(runtime_data);
1243 ghcb = &data->ghcb_page;
1244
1245 snp_register_ghcb_early(__pa(ghcb));
1246 }
1247
setup_ghcb(void)1248 void setup_ghcb(void)
1249 {
1250 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1251 return;
1252
1253 /* First make sure the hypervisor talks a supported protocol. */
1254 if (!sev_es_negotiate_protocol())
1255 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1256
1257 /*
1258 * Check whether the runtime #VC exception handler is active. It uses
1259 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1260 *
1261 * If SNP is active, register the per-CPU GHCB page so that the runtime
1262 * exception handler can use it.
1263 */
1264 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1265 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1266 snp_register_per_cpu_ghcb();
1267
1268 return;
1269 }
1270
1271 /*
1272 * Clear the boot_ghcb. The first exception comes in before the bss
1273 * section is cleared.
1274 */
1275 memset(&boot_ghcb_page, 0, PAGE_SIZE);
1276
1277 /* Alright - Make the boot-ghcb public */
1278 boot_ghcb = &boot_ghcb_page;
1279
1280 /* SNP guest requires that GHCB GPA must be registered. */
1281 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1282 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1283 }
1284
1285 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)1286 static void sev_es_ap_hlt_loop(void)
1287 {
1288 struct ghcb_state state;
1289 struct ghcb *ghcb;
1290
1291 ghcb = __sev_get_ghcb(&state);
1292
1293 while (true) {
1294 vc_ghcb_invalidate(ghcb);
1295 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1296 ghcb_set_sw_exit_info_1(ghcb, 0);
1297 ghcb_set_sw_exit_info_2(ghcb, 0);
1298
1299 sev_es_wr_ghcb_msr(__pa(ghcb));
1300 VMGEXIT();
1301
1302 /* Wakeup signal? */
1303 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1304 ghcb->save.sw_exit_info_2)
1305 break;
1306 }
1307
1308 __sev_put_ghcb(&state);
1309 }
1310
1311 /*
1312 * Play_dead handler when running under SEV-ES. This is needed because
1313 * the hypervisor can't deliver an SIPI request to restart the AP.
1314 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1315 * hypervisor wakes it up again.
1316 */
sev_es_play_dead(void)1317 static void sev_es_play_dead(void)
1318 {
1319 play_dead_common();
1320
1321 /* IRQs now disabled */
1322
1323 sev_es_ap_hlt_loop();
1324
1325 /*
1326 * If we get here, the VCPU was woken up again. Jump to CPU
1327 * startup code to get it back online.
1328 */
1329 start_cpu0();
1330 }
1331 #else /* CONFIG_HOTPLUG_CPU */
1332 #define sev_es_play_dead native_play_dead
1333 #endif /* CONFIG_HOTPLUG_CPU */
1334
1335 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)1336 static void __init sev_es_setup_play_dead(void)
1337 {
1338 smp_ops.play_dead = sev_es_play_dead;
1339 }
1340 #else
sev_es_setup_play_dead(void)1341 static inline void sev_es_setup_play_dead(void) { }
1342 #endif
1343
alloc_runtime_data(int cpu)1344 static void __init alloc_runtime_data(int cpu)
1345 {
1346 struct sev_es_runtime_data *data;
1347
1348 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1349 if (!data)
1350 panic("Can't allocate SEV-ES runtime data");
1351
1352 per_cpu(runtime_data, cpu) = data;
1353 }
1354
init_ghcb(int cpu)1355 static void __init init_ghcb(int cpu)
1356 {
1357 struct sev_es_runtime_data *data;
1358 int err;
1359
1360 data = per_cpu(runtime_data, cpu);
1361
1362 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1363 sizeof(data->ghcb_page));
1364 if (err)
1365 panic("Can't map GHCBs unencrypted");
1366
1367 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1368
1369 data->ghcb_active = false;
1370 data->backup_ghcb_active = false;
1371 }
1372
sev_es_init_vc_handling(void)1373 void __init sev_es_init_vc_handling(void)
1374 {
1375 int cpu;
1376
1377 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1378
1379 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1380 return;
1381
1382 if (!sev_es_check_cpu_features())
1383 panic("SEV-ES CPU Features missing");
1384
1385 /*
1386 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1387 * features.
1388 */
1389 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1390 sev_hv_features = get_hv_features();
1391
1392 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1393 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1394 }
1395
1396 /* Enable SEV-ES special handling */
1397 static_branch_enable(&sev_es_enable_key);
1398
1399 /* Initialize per-cpu GHCB pages */
1400 for_each_possible_cpu(cpu) {
1401 alloc_runtime_data(cpu);
1402 init_ghcb(cpu);
1403 }
1404
1405 sev_es_setup_play_dead();
1406
1407 /* Secondary CPUs use the runtime #VC handler */
1408 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1409 }
1410
vc_early_forward_exception(struct es_em_ctxt * ctxt)1411 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1412 {
1413 int trapnr = ctxt->fi.vector;
1414
1415 if (trapnr == X86_TRAP_PF)
1416 native_write_cr2(ctxt->fi.cr2);
1417
1418 ctxt->regs->orig_ax = ctxt->fi.error_code;
1419 do_early_exception(ctxt->regs, trapnr);
1420 }
1421
vc_insn_get_rm(struct es_em_ctxt * ctxt)1422 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1423 {
1424 long *reg_array;
1425 int offset;
1426
1427 reg_array = (long *)ctxt->regs;
1428 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1429
1430 if (offset < 0)
1431 return NULL;
1432
1433 offset /= sizeof(long);
1434
1435 return reg_array + offset;
1436 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)1437 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1438 unsigned int bytes, bool read)
1439 {
1440 u64 exit_code, exit_info_1, exit_info_2;
1441 unsigned long ghcb_pa = __pa(ghcb);
1442 enum es_result res;
1443 phys_addr_t paddr;
1444 void __user *ref;
1445
1446 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1447 if (ref == (void __user *)-1L)
1448 return ES_UNSUPPORTED;
1449
1450 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1451
1452 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1453 if (res != ES_OK) {
1454 if (res == ES_EXCEPTION && !read)
1455 ctxt->fi.error_code |= X86_PF_WRITE;
1456
1457 return res;
1458 }
1459
1460 exit_info_1 = paddr;
1461 /* Can never be greater than 8 */
1462 exit_info_2 = bytes;
1463
1464 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1465
1466 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1467 }
1468
1469 /*
1470 * The MOVS instruction has two memory operands, which raises the
1471 * problem that it is not known whether the access to the source or the
1472 * destination caused the #VC exception (and hence whether an MMIO read
1473 * or write operation needs to be emulated).
1474 *
1475 * Instead of playing games with walking page-tables and trying to guess
1476 * whether the source or destination is an MMIO range, split the move
1477 * into two operations, a read and a write with only one memory operand.
1478 * This will cause a nested #VC exception on the MMIO address which can
1479 * then be handled.
1480 *
1481 * This implementation has the benefit that it also supports MOVS where
1482 * source _and_ destination are MMIO regions.
1483 *
1484 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1485 * rare operation. If it turns out to be a performance problem the split
1486 * operations can be moved to memcpy_fromio() and memcpy_toio().
1487 */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)1488 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1489 unsigned int bytes)
1490 {
1491 unsigned long ds_base, es_base;
1492 unsigned char *src, *dst;
1493 unsigned char buffer[8];
1494 enum es_result ret;
1495 bool rep;
1496 int off;
1497
1498 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1499 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1500
1501 if (ds_base == -1L || es_base == -1L) {
1502 ctxt->fi.vector = X86_TRAP_GP;
1503 ctxt->fi.error_code = 0;
1504 return ES_EXCEPTION;
1505 }
1506
1507 src = ds_base + (unsigned char *)ctxt->regs->si;
1508 dst = es_base + (unsigned char *)ctxt->regs->di;
1509
1510 ret = vc_read_mem(ctxt, src, buffer, bytes);
1511 if (ret != ES_OK)
1512 return ret;
1513
1514 ret = vc_write_mem(ctxt, dst, buffer, bytes);
1515 if (ret != ES_OK)
1516 return ret;
1517
1518 if (ctxt->regs->flags & X86_EFLAGS_DF)
1519 off = -bytes;
1520 else
1521 off = bytes;
1522
1523 ctxt->regs->si += off;
1524 ctxt->regs->di += off;
1525
1526 rep = insn_has_rep_prefix(&ctxt->insn);
1527 if (rep)
1528 ctxt->regs->cx -= 1;
1529
1530 if (!rep || ctxt->regs->cx == 0)
1531 return ES_OK;
1532 else
1533 return ES_RETRY;
1534 }
1535
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1536 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1537 {
1538 struct insn *insn = &ctxt->insn;
1539 unsigned int bytes = 0;
1540 enum mmio_type mmio;
1541 enum es_result ret;
1542 u8 sign_byte;
1543 long *reg_data;
1544
1545 mmio = insn_decode_mmio(insn, &bytes);
1546 if (mmio == MMIO_DECODE_FAILED)
1547 return ES_DECODE_FAILED;
1548
1549 if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
1550 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1551 if (!reg_data)
1552 return ES_DECODE_FAILED;
1553 }
1554
1555 switch (mmio) {
1556 case MMIO_WRITE:
1557 memcpy(ghcb->shared_buffer, reg_data, bytes);
1558 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1559 break;
1560 case MMIO_WRITE_IMM:
1561 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1562 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1563 break;
1564 case MMIO_READ:
1565 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1566 if (ret)
1567 break;
1568
1569 /* Zero-extend for 32-bit operation */
1570 if (bytes == 4)
1571 *reg_data = 0;
1572
1573 memcpy(reg_data, ghcb->shared_buffer, bytes);
1574 break;
1575 case MMIO_READ_ZERO_EXTEND:
1576 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1577 if (ret)
1578 break;
1579
1580 /* Zero extend based on operand size */
1581 memset(reg_data, 0, insn->opnd_bytes);
1582 memcpy(reg_data, ghcb->shared_buffer, bytes);
1583 break;
1584 case MMIO_READ_SIGN_EXTEND:
1585 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1586 if (ret)
1587 break;
1588
1589 if (bytes == 1) {
1590 u8 *val = (u8 *)ghcb->shared_buffer;
1591
1592 sign_byte = (*val & 0x80) ? 0xff : 0x00;
1593 } else {
1594 u16 *val = (u16 *)ghcb->shared_buffer;
1595
1596 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1597 }
1598
1599 /* Sign extend based on operand size */
1600 memset(reg_data, sign_byte, insn->opnd_bytes);
1601 memcpy(reg_data, ghcb->shared_buffer, bytes);
1602 break;
1603 case MMIO_MOVS:
1604 ret = vc_handle_mmio_movs(ctxt, bytes);
1605 break;
1606 default:
1607 ret = ES_UNSUPPORTED;
1608 break;
1609 }
1610
1611 return ret;
1612 }
1613
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1614 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1615 struct es_em_ctxt *ctxt)
1616 {
1617 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1618 long val, *reg = vc_insn_get_rm(ctxt);
1619 enum es_result ret;
1620
1621 if (!reg)
1622 return ES_DECODE_FAILED;
1623
1624 val = *reg;
1625
1626 /* Upper 32 bits must be written as zeroes */
1627 if (val >> 32) {
1628 ctxt->fi.vector = X86_TRAP_GP;
1629 ctxt->fi.error_code = 0;
1630 return ES_EXCEPTION;
1631 }
1632
1633 /* Clear out other reserved bits and set bit 10 */
1634 val = (val & 0xffff23ffL) | BIT(10);
1635
1636 /* Early non-zero writes to DR7 are not supported */
1637 if (!data && (val & ~DR7_RESET_VALUE))
1638 return ES_UNSUPPORTED;
1639
1640 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1641 ghcb_set_rax(ghcb, val);
1642 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1643 if (ret != ES_OK)
1644 return ret;
1645
1646 if (data)
1647 data->dr7 = val;
1648
1649 return ES_OK;
1650 }
1651
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1652 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1653 struct es_em_ctxt *ctxt)
1654 {
1655 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1656 long *reg = vc_insn_get_rm(ctxt);
1657
1658 if (!reg)
1659 return ES_DECODE_FAILED;
1660
1661 if (data)
1662 *reg = data->dr7;
1663 else
1664 *reg = DR7_RESET_VALUE;
1665
1666 return ES_OK;
1667 }
1668
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1669 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1670 struct es_em_ctxt *ctxt)
1671 {
1672 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1673 }
1674
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1675 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1676 {
1677 enum es_result ret;
1678
1679 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1680
1681 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1682 if (ret != ES_OK)
1683 return ret;
1684
1685 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1686 return ES_VMM_ERROR;
1687
1688 ctxt->regs->ax = ghcb->save.rax;
1689 ctxt->regs->dx = ghcb->save.rdx;
1690
1691 return ES_OK;
1692 }
1693
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1694 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1695 struct es_em_ctxt *ctxt)
1696 {
1697 /*
1698 * Treat it as a NOP and do not leak a physical address to the
1699 * hypervisor.
1700 */
1701 return ES_OK;
1702 }
1703
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1704 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1705 struct es_em_ctxt *ctxt)
1706 {
1707 /* Treat the same as MONITOR/MONITORX */
1708 return ES_OK;
1709 }
1710
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1711 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1712 struct es_em_ctxt *ctxt)
1713 {
1714 enum es_result ret;
1715
1716 ghcb_set_rax(ghcb, ctxt->regs->ax);
1717 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1718
1719 if (x86_platform.hyper.sev_es_hcall_prepare)
1720 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1721
1722 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1723 if (ret != ES_OK)
1724 return ret;
1725
1726 if (!ghcb_rax_is_valid(ghcb))
1727 return ES_VMM_ERROR;
1728
1729 ctxt->regs->ax = ghcb->save.rax;
1730
1731 /*
1732 * Call sev_es_hcall_finish() after regs->ax is already set.
1733 * This allows the hypervisor handler to overwrite it again if
1734 * necessary.
1735 */
1736 if (x86_platform.hyper.sev_es_hcall_finish &&
1737 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1738 return ES_VMM_ERROR;
1739
1740 return ES_OK;
1741 }
1742
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1743 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1744 struct es_em_ctxt *ctxt)
1745 {
1746 /*
1747 * Calling ecx_alignment_check() directly does not work, because it
1748 * enables IRQs and the GHCB is active. Forward the exception and call
1749 * it later from vc_forward_exception().
1750 */
1751 ctxt->fi.vector = X86_TRAP_AC;
1752 ctxt->fi.error_code = 0;
1753 return ES_EXCEPTION;
1754 }
1755
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1756 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1757 struct ghcb *ghcb,
1758 unsigned long exit_code)
1759 {
1760 enum es_result result;
1761
1762 switch (exit_code) {
1763 case SVM_EXIT_READ_DR7:
1764 result = vc_handle_dr7_read(ghcb, ctxt);
1765 break;
1766 case SVM_EXIT_WRITE_DR7:
1767 result = vc_handle_dr7_write(ghcb, ctxt);
1768 break;
1769 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1770 result = vc_handle_trap_ac(ghcb, ctxt);
1771 break;
1772 case SVM_EXIT_RDTSC:
1773 case SVM_EXIT_RDTSCP:
1774 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1775 break;
1776 case SVM_EXIT_RDPMC:
1777 result = vc_handle_rdpmc(ghcb, ctxt);
1778 break;
1779 case SVM_EXIT_INVD:
1780 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1781 result = ES_UNSUPPORTED;
1782 break;
1783 case SVM_EXIT_CPUID:
1784 result = vc_handle_cpuid(ghcb, ctxt);
1785 break;
1786 case SVM_EXIT_IOIO:
1787 result = vc_handle_ioio(ghcb, ctxt);
1788 break;
1789 case SVM_EXIT_MSR:
1790 result = vc_handle_msr(ghcb, ctxt);
1791 break;
1792 case SVM_EXIT_VMMCALL:
1793 result = vc_handle_vmmcall(ghcb, ctxt);
1794 break;
1795 case SVM_EXIT_WBINVD:
1796 result = vc_handle_wbinvd(ghcb, ctxt);
1797 break;
1798 case SVM_EXIT_MONITOR:
1799 result = vc_handle_monitor(ghcb, ctxt);
1800 break;
1801 case SVM_EXIT_MWAIT:
1802 result = vc_handle_mwait(ghcb, ctxt);
1803 break;
1804 case SVM_EXIT_NPF:
1805 result = vc_handle_mmio(ghcb, ctxt);
1806 break;
1807 default:
1808 /*
1809 * Unexpected #VC exception
1810 */
1811 result = ES_UNSUPPORTED;
1812 }
1813
1814 return result;
1815 }
1816
vc_forward_exception(struct es_em_ctxt * ctxt)1817 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1818 {
1819 long error_code = ctxt->fi.error_code;
1820 int trapnr = ctxt->fi.vector;
1821
1822 ctxt->regs->orig_ax = ctxt->fi.error_code;
1823
1824 switch (trapnr) {
1825 case X86_TRAP_GP:
1826 exc_general_protection(ctxt->regs, error_code);
1827 break;
1828 case X86_TRAP_UD:
1829 exc_invalid_op(ctxt->regs);
1830 break;
1831 case X86_TRAP_PF:
1832 write_cr2(ctxt->fi.cr2);
1833 exc_page_fault(ctxt->regs, error_code);
1834 break;
1835 case X86_TRAP_AC:
1836 exc_alignment_check(ctxt->regs, error_code);
1837 break;
1838 default:
1839 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1840 BUG();
1841 }
1842 }
1843
is_vc2_stack(unsigned long sp)1844 static __always_inline bool is_vc2_stack(unsigned long sp)
1845 {
1846 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1847 }
1848
vc_from_invalid_context(struct pt_regs * regs)1849 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1850 {
1851 unsigned long sp, prev_sp;
1852
1853 sp = (unsigned long)regs;
1854 prev_sp = regs->sp;
1855
1856 /*
1857 * If the code was already executing on the VC2 stack when the #VC
1858 * happened, let it proceed to the normal handling routine. This way the
1859 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1860 */
1861 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1862 }
1863
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1864 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1865 {
1866 struct ghcb_state state;
1867 struct es_em_ctxt ctxt;
1868 enum es_result result;
1869 struct ghcb *ghcb;
1870 bool ret = true;
1871
1872 ghcb = __sev_get_ghcb(&state);
1873
1874 vc_ghcb_invalidate(ghcb);
1875 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1876
1877 if (result == ES_OK)
1878 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1879
1880 __sev_put_ghcb(&state);
1881
1882 /* Done - now check the result */
1883 switch (result) {
1884 case ES_OK:
1885 vc_finish_insn(&ctxt);
1886 break;
1887 case ES_UNSUPPORTED:
1888 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1889 error_code, regs->ip);
1890 ret = false;
1891 break;
1892 case ES_VMM_ERROR:
1893 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1894 error_code, regs->ip);
1895 ret = false;
1896 break;
1897 case ES_DECODE_FAILED:
1898 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1899 error_code, regs->ip);
1900 ret = false;
1901 break;
1902 case ES_EXCEPTION:
1903 vc_forward_exception(&ctxt);
1904 break;
1905 case ES_RETRY:
1906 /* Nothing to do */
1907 break;
1908 default:
1909 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1910 /*
1911 * Emulating the instruction which caused the #VC exception
1912 * failed - can't continue so print debug information
1913 */
1914 BUG();
1915 }
1916
1917 return ret;
1918 }
1919
vc_is_db(unsigned long error_code)1920 static __always_inline bool vc_is_db(unsigned long error_code)
1921 {
1922 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1923 }
1924
1925 /*
1926 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1927 * and will panic when an error happens.
1928 */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1929 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1930 {
1931 irqentry_state_t irq_state;
1932
1933 /*
1934 * With the current implementation it is always possible to switch to a
1935 * safe stack because #VC exceptions only happen at known places, like
1936 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1937 * also happen with code instrumentation when the hypervisor intercepts
1938 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1939 * exceptions currently also only happen in safe places.
1940 *
1941 * But keep this here in case the noinstr annotations are violated due
1942 * to bug elsewhere.
1943 */
1944 if (unlikely(vc_from_invalid_context(regs))) {
1945 instrumentation_begin();
1946 panic("Can't handle #VC exception from unsupported context\n");
1947 instrumentation_end();
1948 }
1949
1950 /*
1951 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1952 */
1953 if (vc_is_db(error_code)) {
1954 exc_debug(regs);
1955 return;
1956 }
1957
1958 irq_state = irqentry_nmi_enter(regs);
1959
1960 instrumentation_begin();
1961
1962 if (!vc_raw_handle_exception(regs, error_code)) {
1963 /* Show some debug info */
1964 show_regs(regs);
1965
1966 /* Ask hypervisor to sev_es_terminate */
1967 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1968
1969 /* If that fails and we get here - just panic */
1970 panic("Returned from Terminate-Request to Hypervisor\n");
1971 }
1972
1973 instrumentation_end();
1974 irqentry_nmi_exit(regs, irq_state);
1975 }
1976
1977 /*
1978 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1979 * and will kill the current task with SIGBUS when an error happens.
1980 */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1981 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1982 {
1983 /*
1984 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1985 */
1986 if (vc_is_db(error_code)) {
1987 noist_exc_debug(regs);
1988 return;
1989 }
1990
1991 irqentry_enter_from_user_mode(regs);
1992 instrumentation_begin();
1993
1994 if (!vc_raw_handle_exception(regs, error_code)) {
1995 /*
1996 * Do not kill the machine if user-space triggered the
1997 * exception. Send SIGBUS instead and let user-space deal with
1998 * it.
1999 */
2000 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2001 }
2002
2003 instrumentation_end();
2004 irqentry_exit_to_user_mode(regs);
2005 }
2006
handle_vc_boot_ghcb(struct pt_regs * regs)2007 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2008 {
2009 unsigned long exit_code = regs->orig_ax;
2010 struct es_em_ctxt ctxt;
2011 enum es_result result;
2012
2013 vc_ghcb_invalidate(boot_ghcb);
2014
2015 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2016 if (result == ES_OK)
2017 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2018
2019 /* Done - now check the result */
2020 switch (result) {
2021 case ES_OK:
2022 vc_finish_insn(&ctxt);
2023 break;
2024 case ES_UNSUPPORTED:
2025 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2026 exit_code, regs->ip);
2027 goto fail;
2028 case ES_VMM_ERROR:
2029 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2030 exit_code, regs->ip);
2031 goto fail;
2032 case ES_DECODE_FAILED:
2033 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2034 exit_code, regs->ip);
2035 goto fail;
2036 case ES_EXCEPTION:
2037 vc_early_forward_exception(&ctxt);
2038 break;
2039 case ES_RETRY:
2040 /* Nothing to do */
2041 break;
2042 default:
2043 BUG();
2044 }
2045
2046 return true;
2047
2048 fail:
2049 show_regs(regs);
2050
2051 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2052 }
2053
2054 /*
2055 * Initial set up of SNP relies on information provided by the
2056 * Confidential Computing blob, which can be passed to the kernel
2057 * in the following ways, depending on how it is booted:
2058 *
2059 * - when booted via the boot/decompress kernel:
2060 * - via boot_params
2061 *
2062 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2063 * - via a setup_data entry, as defined by the Linux Boot Protocol
2064 *
2065 * Scan for the blob in that order.
2066 */
find_cc_blob(struct boot_params * bp)2067 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2068 {
2069 struct cc_blob_sev_info *cc_info;
2070
2071 /* Boot kernel would have passed the CC blob via boot_params. */
2072 if (bp->cc_blob_address) {
2073 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2074 goto found_cc_info;
2075 }
2076
2077 /*
2078 * If kernel was booted directly, without the use of the
2079 * boot/decompression kernel, the CC blob may have been passed via
2080 * setup_data instead.
2081 */
2082 cc_info = find_cc_blob_setup_data(bp);
2083 if (!cc_info)
2084 return NULL;
2085
2086 found_cc_info:
2087 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2088 snp_abort();
2089
2090 return cc_info;
2091 }
2092
snp_init(struct boot_params * bp)2093 bool __init snp_init(struct boot_params *bp)
2094 {
2095 struct cc_blob_sev_info *cc_info;
2096
2097 if (!bp)
2098 return false;
2099
2100 cc_info = find_cc_blob(bp);
2101 if (!cc_info)
2102 return false;
2103
2104 setup_cpuid_table(cc_info);
2105
2106 /*
2107 * The CC blob will be used later to access the secrets page. Cache
2108 * it here like the boot kernel does.
2109 */
2110 bp->cc_blob_address = (u32)(unsigned long)cc_info;
2111
2112 return true;
2113 }
2114
snp_abort(void)2115 void __init __noreturn snp_abort(void)
2116 {
2117 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2118 }
2119
dump_cpuid_table(void)2120 static void dump_cpuid_table(void)
2121 {
2122 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2123 int i = 0;
2124
2125 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2126 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2127
2128 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2129 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2130
2131 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2132 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2133 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2134 }
2135 }
2136
2137 /*
2138 * It is useful from an auditing/testing perspective to provide an easy way
2139 * for the guest owner to know that the CPUID table has been initialized as
2140 * expected, but that initialization happens too early in boot to print any
2141 * sort of indicator, and there's not really any other good place to do it,
2142 * so do it here.
2143 */
report_cpuid_table(void)2144 static int __init report_cpuid_table(void)
2145 {
2146 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2147
2148 if (!cpuid_table->count)
2149 return 0;
2150
2151 pr_info("Using SNP CPUID table, %d entries present.\n",
2152 cpuid_table->count);
2153
2154 if (sev_cfg.debug)
2155 dump_cpuid_table();
2156
2157 return 0;
2158 }
2159 arch_initcall(report_cpuid_table);
2160
init_sev_config(char * str)2161 static int __init init_sev_config(char *str)
2162 {
2163 char *s;
2164
2165 while ((s = strsep(&str, ","))) {
2166 if (!strcmp(s, "debug")) {
2167 sev_cfg.debug = true;
2168 continue;
2169 }
2170
2171 pr_info("SEV command-line option '%s' was not recognized\n", s);
2172 }
2173
2174 return 1;
2175 }
2176 __setup("sev=", init_sev_config);
2177
snp_issue_guest_request(u64 exit_code,struct snp_req_data * input,unsigned long * fw_err)2178 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err)
2179 {
2180 struct ghcb_state state;
2181 struct es_em_ctxt ctxt;
2182 unsigned long flags;
2183 struct ghcb *ghcb;
2184 int ret;
2185
2186 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2187 return -ENODEV;
2188
2189 if (!fw_err)
2190 return -EINVAL;
2191
2192 /*
2193 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2194 * a per-CPU GHCB.
2195 */
2196 local_irq_save(flags);
2197
2198 ghcb = __sev_get_ghcb(&state);
2199 if (!ghcb) {
2200 ret = -EIO;
2201 goto e_restore_irq;
2202 }
2203
2204 vc_ghcb_invalidate(ghcb);
2205
2206 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2207 ghcb_set_rax(ghcb, input->data_gpa);
2208 ghcb_set_rbx(ghcb, input->data_npages);
2209 }
2210
2211 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2212 if (ret)
2213 goto e_put;
2214
2215 if (ghcb->save.sw_exit_info_2) {
2216 /* Number of expected pages are returned in RBX */
2217 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST &&
2218 ghcb->save.sw_exit_info_2 == SNP_GUEST_REQ_INVALID_LEN)
2219 input->data_npages = ghcb_get_rbx(ghcb);
2220
2221 *fw_err = ghcb->save.sw_exit_info_2;
2222
2223 ret = -EIO;
2224 }
2225
2226 e_put:
2227 __sev_put_ghcb(&state);
2228 e_restore_irq:
2229 local_irq_restore(flags);
2230
2231 return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2234
2235 static struct platform_device sev_guest_device = {
2236 .name = "sev-guest",
2237 .id = -1,
2238 };
2239
snp_init_platform_device(void)2240 static int __init snp_init_platform_device(void)
2241 {
2242 struct sev_guest_platform_data data;
2243 u64 gpa;
2244
2245 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2246 return -ENODEV;
2247
2248 gpa = get_secrets_page();
2249 if (!gpa)
2250 return -ENODEV;
2251
2252 data.secrets_gpa = gpa;
2253 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2254 return -ENODEV;
2255
2256 if (platform_device_register(&sev_guest_device))
2257 return -ENODEV;
2258
2259 pr_info("SNP guest platform device initialized.\n");
2260 return 0;
2261 }
2262 device_initcall(snp_init_platform_device);
2263