1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2022 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25
26 /**
27 * DOC: The IPA Generic Software Interface
28 *
29 * The generic software interface (GSI) is an integral component of the IPA,
30 * providing a well-defined communication layer between the AP subsystem
31 * and the IPA core. The modem uses the GSI layer as well.
32 *
33 * -------- ---------
34 * | | | |
35 * | AP +<---. .----+ Modem |
36 * | +--. | | .->+ |
37 * | | | | | | | |
38 * -------- | | | | ---------
39 * v | v |
40 * --+-+---+-+--
41 * | GSI |
42 * |-----------|
43 * | |
44 * | IPA |
45 * | |
46 * -------------
47 *
48 * In the above diagram, the AP and Modem represent "execution environments"
49 * (EEs), which are independent operating environments that use the IPA for
50 * data transfer.
51 *
52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53 * of data to or from the IPA. A channel is implemented as a ring buffer,
54 * with a DRAM-resident array of "transfer elements" (TREs) available to
55 * describe transfers to or from other EEs through the IPA. A transfer
56 * element can also contain an immediate command, requesting the IPA perform
57 * actions other than data transfer.
58 *
59 * Each TRE refers to a block of data--also located in DRAM. After writing
60 * one or more TREs to a channel, the writer (either the IPA or an EE) writes
61 * a doorbell register to inform the receiving side how many elements have
62 * been written.
63 *
64 * Each channel has a GSI "event ring" associated with it. An event ring
65 * is implemented very much like a channel ring, but is always directed from
66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
67 * events by adding an entry to the event ring associated with the channel.
68 * The GSI then writes its doorbell for the event ring, causing the target
69 * EE to be interrupted. Each entry in an event ring contains a pointer
70 * to the channel TRE whose completion the event represents.
71 *
72 * Each TRE in a channel ring has a set of flags. One flag indicates whether
73 * the completion of the transfer operation generates an entry (and possibly
74 * an interrupt) in the channel's event ring. Other flags allow transfer
75 * elements to be chained together, forming a single logical transaction.
76 * TRE flags are used to control whether and when interrupts are generated
77 * to signal completion of channel transfers.
78 *
79 * Elements in channel and event rings are completed (or consumed) strictly
80 * in order. Completion of one entry implies the completion of all preceding
81 * entries. A single completion interrupt can therefore communicate the
82 * completion of many transfers.
83 *
84 * Note that all GSI registers are little-endian, which is the assumed
85 * endianness of I/O space accesses. The accessor functions perform byte
86 * swapping if needed (i.e., for a big endian CPU).
87 */
88
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
91
92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */
93
94 #define GSI_CHANNEL_STOP_RETRIES 10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10
96 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */
97
98 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
99 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
100
101 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
102
103 /* An entry in an event ring */
104 struct gsi_event {
105 __le64 xfer_ptr;
106 __le16 len;
107 u8 reserved1;
108 u8 code;
109 __le16 reserved2;
110 u8 type;
111 u8 chid;
112 };
113
114 /** gsi_channel_scratch_gpi - GPI protocol scratch register
115 * @max_outstanding_tre:
116 * Defines the maximum number of TREs allowed in a single transaction
117 * on a channel (in bytes). This determines the amount of prefetch
118 * performed by the hardware. We configure this to equal the size of
119 * the TLV FIFO for the channel.
120 * @outstanding_threshold:
121 * Defines the threshold (in bytes) determining when the sequencer
122 * should update the channel doorbell. We configure this to equal
123 * the size of two TREs.
124 */
125 struct gsi_channel_scratch_gpi {
126 u64 reserved1;
127 u16 reserved2;
128 u16 max_outstanding_tre;
129 u16 reserved3;
130 u16 outstanding_threshold;
131 };
132
133 /** gsi_channel_scratch - channel scratch configuration area
134 *
135 * The exact interpretation of this register is protocol-specific.
136 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
137 */
138 union gsi_channel_scratch {
139 struct gsi_channel_scratch_gpi gpi;
140 struct {
141 u32 word1;
142 u32 word2;
143 u32 word3;
144 u32 word4;
145 } data;
146 };
147
148 /* Check things that can be validated at build time. */
gsi_validate_build(void)149 static void gsi_validate_build(void)
150 {
151 /* This is used as a divisor */
152 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
153
154 /* Code assumes the size of channel and event ring element are
155 * the same (and fixed). Make sure the size of an event ring
156 * element is what's expected.
157 */
158 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
159
160 /* Hardware requires a 2^n ring size. We ensure the number of
161 * elements in an event ring is a power of 2 elsewhere; this
162 * ensure the elements themselves meet the requirement.
163 */
164 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
165
166 /* The channel element size must fit in this field */
167 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
168
169 /* The event ring element size must fit in this field */
170 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
171 }
172
173 /* Return the channel id associated with a given channel */
gsi_channel_id(struct gsi_channel * channel)174 static u32 gsi_channel_id(struct gsi_channel *channel)
175 {
176 return channel - &channel->gsi->channel[0];
177 }
178
179 /* An initialized channel has a non-null GSI pointer */
gsi_channel_initialized(struct gsi_channel * channel)180 static bool gsi_channel_initialized(struct gsi_channel *channel)
181 {
182 return !!channel->gsi;
183 }
184
185 /* Update the GSI IRQ type register with the cached value */
gsi_irq_type_update(struct gsi * gsi,u32 val)186 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
187 {
188 gsi->type_enabled_bitmap = val;
189 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
190 }
191
gsi_irq_type_enable(struct gsi * gsi,enum gsi_irq_type_id type_id)192 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
193 {
194 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
195 }
196
gsi_irq_type_disable(struct gsi * gsi,enum gsi_irq_type_id type_id)197 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
198 {
199 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
200 }
201
202 /* Event ring commands are performed one at a time. Their completion
203 * is signaled by the event ring control GSI interrupt type, which is
204 * only enabled when we issue an event ring command. Only the event
205 * ring being operated on has this interrupt enabled.
206 */
gsi_irq_ev_ctrl_enable(struct gsi * gsi,u32 evt_ring_id)207 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
208 {
209 u32 val = BIT(evt_ring_id);
210
211 /* There's a small chance that a previous command completed
212 * after the interrupt was disabled, so make sure we have no
213 * pending interrupts before we enable them.
214 */
215 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
216
217 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
218 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
219 }
220
221 /* Disable event ring control interrupts */
gsi_irq_ev_ctrl_disable(struct gsi * gsi)222 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
223 {
224 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
225 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
226 }
227
228 /* Channel commands are performed one at a time. Their completion is
229 * signaled by the channel control GSI interrupt type, which is only
230 * enabled when we issue a channel command. Only the channel being
231 * operated on has this interrupt enabled.
232 */
gsi_irq_ch_ctrl_enable(struct gsi * gsi,u32 channel_id)233 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
234 {
235 u32 val = BIT(channel_id);
236
237 /* There's a small chance that a previous command completed
238 * after the interrupt was disabled, so make sure we have no
239 * pending interrupts before we enable them.
240 */
241 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
242
243 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
244 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
245 }
246
247 /* Disable channel control interrupts */
gsi_irq_ch_ctrl_disable(struct gsi * gsi)248 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
249 {
250 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
251 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
252 }
253
gsi_irq_ieob_enable_one(struct gsi * gsi,u32 evt_ring_id)254 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
255 {
256 bool enable_ieob = !gsi->ieob_enabled_bitmap;
257 u32 val;
258
259 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
260 val = gsi->ieob_enabled_bitmap;
261 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
262
263 /* Enable the interrupt type if this is the first channel enabled */
264 if (enable_ieob)
265 gsi_irq_type_enable(gsi, GSI_IEOB);
266 }
267
gsi_irq_ieob_disable(struct gsi * gsi,u32 event_mask)268 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
269 {
270 u32 val;
271
272 gsi->ieob_enabled_bitmap &= ~event_mask;
273
274 /* Disable the interrupt type if this was the last enabled channel */
275 if (!gsi->ieob_enabled_bitmap)
276 gsi_irq_type_disable(gsi, GSI_IEOB);
277
278 val = gsi->ieob_enabled_bitmap;
279 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
280 }
281
gsi_irq_ieob_disable_one(struct gsi * gsi,u32 evt_ring_id)282 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
283 {
284 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
285 }
286
287 /* Enable all GSI_interrupt types */
gsi_irq_enable(struct gsi * gsi)288 static void gsi_irq_enable(struct gsi *gsi)
289 {
290 u32 val;
291
292 /* Global interrupts include hardware error reports. Enable
293 * that so we can at least report the error should it occur.
294 */
295 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
296 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
297
298 /* General GSI interrupts are reported to all EEs; if they occur
299 * they are unrecoverable (without reset). A breakpoint interrupt
300 * also exists, but we don't support that. We want to be notified
301 * of errors so we can report them, even if they can't be handled.
302 */
303 val = BIT(BUS_ERROR);
304 val |= BIT(CMD_FIFO_OVRFLOW);
305 val |= BIT(MCS_STACK_OVRFLOW);
306 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
307 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
308 }
309
310 /* Disable all GSI interrupt types */
gsi_irq_disable(struct gsi * gsi)311 static void gsi_irq_disable(struct gsi *gsi)
312 {
313 gsi_irq_type_update(gsi, 0);
314
315 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */
316 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
317 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
318 }
319
320 /* Return the virtual address associated with a ring index */
gsi_ring_virt(struct gsi_ring * ring,u32 index)321 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
322 {
323 /* Note: index *must* be used modulo the ring count here */
324 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
325 }
326
327 /* Return the 32-bit DMA address associated with a ring index */
gsi_ring_addr(struct gsi_ring * ring,u32 index)328 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
329 {
330 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
331 }
332
333 /* Return the ring index of a 32-bit ring offset */
gsi_ring_index(struct gsi_ring * ring,u32 offset)334 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
335 {
336 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
337 }
338
339 /* Issue a GSI command by writing a value to a register, then wait for
340 * completion to be signaled. Returns true if the command completes
341 * or false if it times out.
342 */
gsi_command(struct gsi * gsi,u32 reg,u32 val)343 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
344 {
345 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
346 struct completion *completion = &gsi->completion;
347
348 reinit_completion(completion);
349
350 iowrite32(val, gsi->virt + reg);
351
352 return !!wait_for_completion_timeout(completion, timeout);
353 }
354
355 /* Return the hardware's notion of the current state of an event ring */
356 static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi * gsi,u32 evt_ring_id)357 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
358 {
359 u32 val;
360
361 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
362
363 return u32_get_bits(val, EV_CHSTATE_FMASK);
364 }
365
366 /* Issue an event ring command and wait for it to complete */
gsi_evt_ring_command(struct gsi * gsi,u32 evt_ring_id,enum gsi_evt_cmd_opcode opcode)367 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
368 enum gsi_evt_cmd_opcode opcode)
369 {
370 struct device *dev = gsi->dev;
371 bool timeout;
372 u32 val;
373
374 /* Enable the completion interrupt for the command */
375 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
376
377 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
378 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
379
380 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val);
381
382 gsi_irq_ev_ctrl_disable(gsi);
383
384 if (!timeout)
385 return;
386
387 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
388 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
389 }
390
391 /* Allocate an event ring in NOT_ALLOCATED state */
gsi_evt_ring_alloc_command(struct gsi * gsi,u32 evt_ring_id)392 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
393 {
394 enum gsi_evt_ring_state state;
395
396 /* Get initial event ring state */
397 state = gsi_evt_ring_state(gsi, evt_ring_id);
398 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
399 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
400 evt_ring_id, state);
401 return -EINVAL;
402 }
403
404 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
405
406 /* If successful the event ring state will have changed */
407 state = gsi_evt_ring_state(gsi, evt_ring_id);
408 if (state == GSI_EVT_RING_STATE_ALLOCATED)
409 return 0;
410
411 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
412 evt_ring_id, state);
413
414 return -EIO;
415 }
416
417 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
gsi_evt_ring_reset_command(struct gsi * gsi,u32 evt_ring_id)418 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
419 {
420 enum gsi_evt_ring_state state;
421
422 state = gsi_evt_ring_state(gsi, evt_ring_id);
423 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
424 state != GSI_EVT_RING_STATE_ERROR) {
425 dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
426 evt_ring_id, state);
427 return;
428 }
429
430 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
431
432 /* If successful the event ring state will have changed */
433 state = gsi_evt_ring_state(gsi, evt_ring_id);
434 if (state == GSI_EVT_RING_STATE_ALLOCATED)
435 return;
436
437 dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
438 evt_ring_id, state);
439 }
440
441 /* Issue a hardware de-allocation request for an allocated event ring */
gsi_evt_ring_de_alloc_command(struct gsi * gsi,u32 evt_ring_id)442 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
443 {
444 enum gsi_evt_ring_state state;
445
446 state = gsi_evt_ring_state(gsi, evt_ring_id);
447 if (state != GSI_EVT_RING_STATE_ALLOCATED) {
448 dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
449 evt_ring_id, state);
450 return;
451 }
452
453 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
454
455 /* If successful the event ring state will have changed */
456 state = gsi_evt_ring_state(gsi, evt_ring_id);
457 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
458 return;
459
460 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
461 evt_ring_id, state);
462 }
463
464 /* Fetch the current state of a channel from hardware */
gsi_channel_state(struct gsi_channel * channel)465 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
466 {
467 u32 channel_id = gsi_channel_id(channel);
468 void __iomem *virt = channel->gsi->virt;
469 u32 val;
470
471 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
472
473 return u32_get_bits(val, CHSTATE_FMASK);
474 }
475
476 /* Issue a channel command and wait for it to complete */
477 static void
gsi_channel_command(struct gsi_channel * channel,enum gsi_ch_cmd_opcode opcode)478 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
479 {
480 u32 channel_id = gsi_channel_id(channel);
481 struct gsi *gsi = channel->gsi;
482 struct device *dev = gsi->dev;
483 bool timeout;
484 u32 val;
485
486 /* Enable the completion interrupt for the command */
487 gsi_irq_ch_ctrl_enable(gsi, channel_id);
488
489 val = u32_encode_bits(channel_id, CH_CHID_FMASK);
490 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
491 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val);
492
493 gsi_irq_ch_ctrl_disable(gsi);
494
495 if (!timeout)
496 return;
497
498 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
499 opcode, channel_id, gsi_channel_state(channel));
500 }
501
502 /* Allocate GSI channel in NOT_ALLOCATED state */
gsi_channel_alloc_command(struct gsi * gsi,u32 channel_id)503 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
504 {
505 struct gsi_channel *channel = &gsi->channel[channel_id];
506 struct device *dev = gsi->dev;
507 enum gsi_channel_state state;
508
509 /* Get initial channel state */
510 state = gsi_channel_state(channel);
511 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
512 dev_err(dev, "channel %u bad state %u before alloc\n",
513 channel_id, state);
514 return -EINVAL;
515 }
516
517 gsi_channel_command(channel, GSI_CH_ALLOCATE);
518
519 /* If successful the channel state will have changed */
520 state = gsi_channel_state(channel);
521 if (state == GSI_CHANNEL_STATE_ALLOCATED)
522 return 0;
523
524 dev_err(dev, "channel %u bad state %u after alloc\n",
525 channel_id, state);
526
527 return -EIO;
528 }
529
530 /* Start an ALLOCATED channel */
gsi_channel_start_command(struct gsi_channel * channel)531 static int gsi_channel_start_command(struct gsi_channel *channel)
532 {
533 struct device *dev = channel->gsi->dev;
534 enum gsi_channel_state state;
535
536 state = gsi_channel_state(channel);
537 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
538 state != GSI_CHANNEL_STATE_STOPPED) {
539 dev_err(dev, "channel %u bad state %u before start\n",
540 gsi_channel_id(channel), state);
541 return -EINVAL;
542 }
543
544 gsi_channel_command(channel, GSI_CH_START);
545
546 /* If successful the channel state will have changed */
547 state = gsi_channel_state(channel);
548 if (state == GSI_CHANNEL_STATE_STARTED)
549 return 0;
550
551 dev_err(dev, "channel %u bad state %u after start\n",
552 gsi_channel_id(channel), state);
553
554 return -EIO;
555 }
556
557 /* Stop a GSI channel in STARTED state */
gsi_channel_stop_command(struct gsi_channel * channel)558 static int gsi_channel_stop_command(struct gsi_channel *channel)
559 {
560 struct device *dev = channel->gsi->dev;
561 enum gsi_channel_state state;
562
563 state = gsi_channel_state(channel);
564
565 /* Channel could have entered STOPPED state since last call
566 * if it timed out. If so, we're done.
567 */
568 if (state == GSI_CHANNEL_STATE_STOPPED)
569 return 0;
570
571 if (state != GSI_CHANNEL_STATE_STARTED &&
572 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
573 dev_err(dev, "channel %u bad state %u before stop\n",
574 gsi_channel_id(channel), state);
575 return -EINVAL;
576 }
577
578 gsi_channel_command(channel, GSI_CH_STOP);
579
580 /* If successful the channel state will have changed */
581 state = gsi_channel_state(channel);
582 if (state == GSI_CHANNEL_STATE_STOPPED)
583 return 0;
584
585 /* We may have to try again if stop is in progress */
586 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
587 return -EAGAIN;
588
589 dev_err(dev, "channel %u bad state %u after stop\n",
590 gsi_channel_id(channel), state);
591
592 return -EIO;
593 }
594
595 /* Reset a GSI channel in ALLOCATED or ERROR state. */
gsi_channel_reset_command(struct gsi_channel * channel)596 static void gsi_channel_reset_command(struct gsi_channel *channel)
597 {
598 struct device *dev = channel->gsi->dev;
599 enum gsi_channel_state state;
600
601 /* A short delay is required before a RESET command */
602 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
603
604 state = gsi_channel_state(channel);
605 if (state != GSI_CHANNEL_STATE_STOPPED &&
606 state != GSI_CHANNEL_STATE_ERROR) {
607 /* No need to reset a channel already in ALLOCATED state */
608 if (state != GSI_CHANNEL_STATE_ALLOCATED)
609 dev_err(dev, "channel %u bad state %u before reset\n",
610 gsi_channel_id(channel), state);
611 return;
612 }
613
614 gsi_channel_command(channel, GSI_CH_RESET);
615
616 /* If successful the channel state will have changed */
617 state = gsi_channel_state(channel);
618 if (state != GSI_CHANNEL_STATE_ALLOCATED)
619 dev_err(dev, "channel %u bad state %u after reset\n",
620 gsi_channel_id(channel), state);
621 }
622
623 /* Deallocate an ALLOCATED GSI channel */
gsi_channel_de_alloc_command(struct gsi * gsi,u32 channel_id)624 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
625 {
626 struct gsi_channel *channel = &gsi->channel[channel_id];
627 struct device *dev = gsi->dev;
628 enum gsi_channel_state state;
629
630 state = gsi_channel_state(channel);
631 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
632 dev_err(dev, "channel %u bad state %u before dealloc\n",
633 channel_id, state);
634 return;
635 }
636
637 gsi_channel_command(channel, GSI_CH_DE_ALLOC);
638
639 /* If successful the channel state will have changed */
640 state = gsi_channel_state(channel);
641
642 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
643 dev_err(dev, "channel %u bad state %u after dealloc\n",
644 channel_id, state);
645 }
646
647 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
648 * The index argument (modulo the ring count) is the first unfilled entry, so
649 * we supply one less than that with the doorbell. Update the event ring
650 * index field with the value provided.
651 */
gsi_evt_ring_doorbell(struct gsi * gsi,u32 evt_ring_id,u32 index)652 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
653 {
654 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
655 u32 val;
656
657 ring->index = index; /* Next unused entry */
658
659 /* Note: index *must* be used modulo the ring count here */
660 val = gsi_ring_addr(ring, (index - 1) % ring->count);
661 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
662 }
663
664 /* Program an event ring for use */
gsi_evt_ring_program(struct gsi * gsi,u32 evt_ring_id)665 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
666 {
667 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
668 struct gsi_ring *ring = &evt_ring->ring;
669 size_t size;
670 u32 val;
671
672 /* We program all event rings as GPI type/protocol */
673 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
674 val |= EV_INTYPE_FMASK;
675 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
676 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
677
678 size = ring->count * GSI_RING_ELEMENT_SIZE;
679 val = ev_r_length_encoded(gsi->version, size);
680 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
681
682 /* The context 2 and 3 registers store the low-order and
683 * high-order 32 bits of the address of the event ring,
684 * respectively.
685 */
686 val = lower_32_bits(ring->addr);
687 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
688 val = upper_32_bits(ring->addr);
689 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
690
691 /* Enable interrupt moderation by setting the moderation delay */
692 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
693 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
694 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
695
696 /* No MSI write data, and MSI address high and low address is 0 */
697 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
698 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
699 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
700
701 /* We don't need to get event read pointer updates */
702 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
703 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
704
705 /* Finally, tell the hardware our "last processed" event (arbitrary) */
706 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
707 }
708
709 /* Find the transaction whose completion indicates a channel is quiesced */
gsi_channel_trans_last(struct gsi_channel * channel)710 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
711 {
712 struct gsi_trans_info *trans_info = &channel->trans_info;
713 u32 pending_id = trans_info->pending_id;
714 struct gsi_trans *trans;
715 u16 trans_id;
716
717 if (channel->toward_ipa && pending_id != trans_info->free_id) {
718 /* There is a small chance a TX transaction got allocated
719 * just before we disabled transmits, so check for that.
720 * The last allocated, committed, or pending transaction
721 * precedes the first free transaction.
722 */
723 trans_id = trans_info->free_id - 1;
724 } else if (trans_info->polled_id != pending_id) {
725 /* Otherwise (TX or RX) we want to wait for anything that
726 * has completed, or has been polled but not released yet.
727 *
728 * The last completed or polled transaction precedes the
729 * first pending transaction.
730 */
731 trans_id = pending_id - 1;
732 } else {
733 return NULL;
734 }
735
736 /* Caller will wait for this, so take a reference */
737 trans = &trans_info->trans[trans_id % channel->tre_count];
738 refcount_inc(&trans->refcount);
739
740 return trans;
741 }
742
743 /* Wait for transaction activity on a channel to complete */
gsi_channel_trans_quiesce(struct gsi_channel * channel)744 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
745 {
746 struct gsi_trans *trans;
747
748 /* Get the last transaction, and wait for it to complete */
749 trans = gsi_channel_trans_last(channel);
750 if (trans) {
751 wait_for_completion(&trans->completion);
752 gsi_trans_free(trans);
753 }
754 }
755
756 /* Program a channel for use; there is no gsi_channel_deprogram() */
gsi_channel_program(struct gsi_channel * channel,bool doorbell)757 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
758 {
759 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
760 u32 channel_id = gsi_channel_id(channel);
761 union gsi_channel_scratch scr = { };
762 struct gsi_channel_scratch_gpi *gpi;
763 struct gsi *gsi = channel->gsi;
764 u32 wrr_weight = 0;
765 u32 val;
766
767 /* We program all channels as GPI type/protocol */
768 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
769 if (channel->toward_ipa)
770 val |= CHTYPE_DIR_FMASK;
771 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
772 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
773 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
774
775 val = r_length_encoded(gsi->version, size);
776 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
777
778 /* The context 2 and 3 registers store the low-order and
779 * high-order 32 bits of the address of the channel ring,
780 * respectively.
781 */
782 val = lower_32_bits(channel->tre_ring.addr);
783 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
784 val = upper_32_bits(channel->tre_ring.addr);
785 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
786
787 /* Command channel gets low weighted round-robin priority */
788 if (channel->command)
789 wrr_weight = field_max(WRR_WEIGHT_FMASK);
790 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
791
792 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
793
794 /* No need to use the doorbell engine starting at IPA v4.0 */
795 if (gsi->version < IPA_VERSION_4_0 && doorbell)
796 val |= USE_DB_ENG_FMASK;
797
798 /* v4.0 introduces an escape buffer for prefetch. We use it
799 * on all but the AP command channel.
800 */
801 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
802 /* If not otherwise set, prefetch buffers are used */
803 if (gsi->version < IPA_VERSION_4_5)
804 val |= USE_ESCAPE_BUF_ONLY_FMASK;
805 else
806 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
807 PREFETCH_MODE_FMASK);
808 }
809 /* All channels set DB_IN_BYTES */
810 if (gsi->version >= IPA_VERSION_4_9)
811 val |= DB_IN_BYTES;
812
813 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
814
815 /* Now update the scratch registers for GPI protocol */
816 gpi = &scr.gpi;
817 gpi->max_outstanding_tre = channel->trans_tre_max *
818 GSI_RING_ELEMENT_SIZE;
819 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
820
821 val = scr.data.word1;
822 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
823
824 val = scr.data.word2;
825 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
826
827 val = scr.data.word3;
828 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
829
830 /* We must preserve the upper 16 bits of the last scratch register.
831 * The next sequence assumes those bits remain unchanged between the
832 * read and the write.
833 */
834 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
835 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
836 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
837
838 /* All done! */
839 }
840
__gsi_channel_start(struct gsi_channel * channel,bool resume)841 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
842 {
843 struct gsi *gsi = channel->gsi;
844 int ret;
845
846 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
847 if (resume && gsi->version < IPA_VERSION_4_0)
848 return 0;
849
850 mutex_lock(&gsi->mutex);
851
852 ret = gsi_channel_start_command(channel);
853
854 mutex_unlock(&gsi->mutex);
855
856 return ret;
857 }
858
859 /* Start an allocated GSI channel */
gsi_channel_start(struct gsi * gsi,u32 channel_id)860 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
861 {
862 struct gsi_channel *channel = &gsi->channel[channel_id];
863 int ret;
864
865 /* Enable NAPI and the completion interrupt */
866 napi_enable(&channel->napi);
867 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
868
869 ret = __gsi_channel_start(channel, false);
870 if (ret) {
871 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
872 napi_disable(&channel->napi);
873 }
874
875 return ret;
876 }
877
gsi_channel_stop_retry(struct gsi_channel * channel)878 static int gsi_channel_stop_retry(struct gsi_channel *channel)
879 {
880 u32 retries = GSI_CHANNEL_STOP_RETRIES;
881 int ret;
882
883 do {
884 ret = gsi_channel_stop_command(channel);
885 if (ret != -EAGAIN)
886 break;
887 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
888 } while (retries--);
889
890 return ret;
891 }
892
__gsi_channel_stop(struct gsi_channel * channel,bool suspend)893 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
894 {
895 struct gsi *gsi = channel->gsi;
896 int ret;
897
898 /* Wait for any underway transactions to complete before stopping. */
899 gsi_channel_trans_quiesce(channel);
900
901 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
902 if (suspend && gsi->version < IPA_VERSION_4_0)
903 return 0;
904
905 mutex_lock(&gsi->mutex);
906
907 ret = gsi_channel_stop_retry(channel);
908
909 mutex_unlock(&gsi->mutex);
910
911 return ret;
912 }
913
914 /* Stop a started channel */
gsi_channel_stop(struct gsi * gsi,u32 channel_id)915 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
916 {
917 struct gsi_channel *channel = &gsi->channel[channel_id];
918 int ret;
919
920 ret = __gsi_channel_stop(channel, false);
921 if (ret)
922 return ret;
923
924 /* Disable the completion interrupt and NAPI if successful */
925 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
926 napi_disable(&channel->napi);
927
928 return 0;
929 }
930
931 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
gsi_channel_reset(struct gsi * gsi,u32 channel_id,bool doorbell)932 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
933 {
934 struct gsi_channel *channel = &gsi->channel[channel_id];
935
936 mutex_lock(&gsi->mutex);
937
938 gsi_channel_reset_command(channel);
939 /* Due to a hardware quirk we may need to reset RX channels twice. */
940 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
941 gsi_channel_reset_command(channel);
942
943 /* Hardware assumes this is 0 following reset */
944 channel->tre_ring.index = 0;
945 gsi_channel_program(channel, doorbell);
946 gsi_channel_trans_cancel_pending(channel);
947
948 mutex_unlock(&gsi->mutex);
949 }
950
951 /* Stop a started channel for suspend */
gsi_channel_suspend(struct gsi * gsi,u32 channel_id)952 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
953 {
954 struct gsi_channel *channel = &gsi->channel[channel_id];
955 int ret;
956
957 ret = __gsi_channel_stop(channel, true);
958 if (ret)
959 return ret;
960
961 /* Ensure NAPI polling has finished. */
962 napi_synchronize(&channel->napi);
963
964 return 0;
965 }
966
967 /* Resume a suspended channel (starting if stopped) */
gsi_channel_resume(struct gsi * gsi,u32 channel_id)968 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
969 {
970 struct gsi_channel *channel = &gsi->channel[channel_id];
971
972 return __gsi_channel_start(channel, true);
973 }
974
975 /* Prevent all GSI interrupts while suspended */
gsi_suspend(struct gsi * gsi)976 void gsi_suspend(struct gsi *gsi)
977 {
978 disable_irq(gsi->irq);
979 }
980
981 /* Allow all GSI interrupts again when resuming */
gsi_resume(struct gsi * gsi)982 void gsi_resume(struct gsi *gsi)
983 {
984 enable_irq(gsi->irq);
985 }
986
gsi_trans_tx_committed(struct gsi_trans * trans)987 void gsi_trans_tx_committed(struct gsi_trans *trans)
988 {
989 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
990
991 channel->trans_count++;
992 channel->byte_count += trans->len;
993
994 trans->trans_count = channel->trans_count;
995 trans->byte_count = channel->byte_count;
996 }
997
gsi_trans_tx_queued(struct gsi_trans * trans)998 void gsi_trans_tx_queued(struct gsi_trans *trans)
999 {
1000 u32 channel_id = trans->channel_id;
1001 struct gsi *gsi = trans->gsi;
1002 struct gsi_channel *channel;
1003 u32 trans_count;
1004 u32 byte_count;
1005
1006 channel = &gsi->channel[channel_id];
1007
1008 byte_count = channel->byte_count - channel->queued_byte_count;
1009 trans_count = channel->trans_count - channel->queued_trans_count;
1010 channel->queued_byte_count = channel->byte_count;
1011 channel->queued_trans_count = channel->trans_count;
1012
1013 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1014 }
1015
1016 /**
1017 * gsi_trans_tx_completed() - Report completed TX transactions
1018 * @trans: TX channel transaction that has completed
1019 *
1020 * Report that a transaction on a TX channel has completed. At the time a
1021 * transaction is committed, we record *in the transaction* its channel's
1022 * committed transaction and byte counts. Transactions are completed in
1023 * order, and the difference between the channel's byte/transaction count
1024 * when the transaction was committed and when it completes tells us
1025 * exactly how much data has been transferred while the transaction was
1026 * pending.
1027 *
1028 * We report this information to the network stack, which uses it to manage
1029 * the rate at which data is sent to hardware.
1030 */
gsi_trans_tx_completed(struct gsi_trans * trans)1031 static void gsi_trans_tx_completed(struct gsi_trans *trans)
1032 {
1033 u32 channel_id = trans->channel_id;
1034 struct gsi *gsi = trans->gsi;
1035 struct gsi_channel *channel;
1036 u32 trans_count;
1037 u32 byte_count;
1038
1039 channel = &gsi->channel[channel_id];
1040 trans_count = trans->trans_count - channel->compl_trans_count;
1041 byte_count = trans->byte_count - channel->compl_byte_count;
1042
1043 channel->compl_trans_count += trans_count;
1044 channel->compl_byte_count += byte_count;
1045
1046 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1047 }
1048
1049 /* Channel control interrupt handler */
gsi_isr_chan_ctrl(struct gsi * gsi)1050 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1051 {
1052 u32 channel_mask;
1053
1054 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1055 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1056
1057 while (channel_mask) {
1058 u32 channel_id = __ffs(channel_mask);
1059
1060 channel_mask ^= BIT(channel_id);
1061
1062 complete(&gsi->completion);
1063 }
1064 }
1065
1066 /* Event ring control interrupt handler */
gsi_isr_evt_ctrl(struct gsi * gsi)1067 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1068 {
1069 u32 event_mask;
1070
1071 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1072 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1073
1074 while (event_mask) {
1075 u32 evt_ring_id = __ffs(event_mask);
1076
1077 event_mask ^= BIT(evt_ring_id);
1078
1079 complete(&gsi->completion);
1080 }
1081 }
1082
1083 /* Global channel error interrupt handler */
1084 static void
gsi_isr_glob_chan_err(struct gsi * gsi,u32 err_ee,u32 channel_id,u32 code)1085 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1086 {
1087 if (code == GSI_OUT_OF_RESOURCES) {
1088 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1089 complete(&gsi->completion);
1090 return;
1091 }
1092
1093 /* Report, but otherwise ignore all other error codes */
1094 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1095 channel_id, err_ee, code);
1096 }
1097
1098 /* Global event error interrupt handler */
1099 static void
gsi_isr_glob_evt_err(struct gsi * gsi,u32 err_ee,u32 evt_ring_id,u32 code)1100 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1101 {
1102 if (code == GSI_OUT_OF_RESOURCES) {
1103 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1104 u32 channel_id = gsi_channel_id(evt_ring->channel);
1105
1106 complete(&gsi->completion);
1107 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1108 channel_id);
1109 return;
1110 }
1111
1112 /* Report, but otherwise ignore all other error codes */
1113 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1114 evt_ring_id, err_ee, code);
1115 }
1116
1117 /* Global error interrupt handler */
gsi_isr_glob_err(struct gsi * gsi)1118 static void gsi_isr_glob_err(struct gsi *gsi)
1119 {
1120 enum gsi_err_type type;
1121 enum gsi_err_code code;
1122 u32 which;
1123 u32 val;
1124 u32 ee;
1125
1126 /* Get the logged error, then reinitialize the log */
1127 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1128 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1129 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1130
1131 ee = u32_get_bits(val, ERR_EE_FMASK);
1132 type = u32_get_bits(val, ERR_TYPE_FMASK);
1133 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1134 code = u32_get_bits(val, ERR_CODE_FMASK);
1135
1136 if (type == GSI_ERR_TYPE_CHAN)
1137 gsi_isr_glob_chan_err(gsi, ee, which, code);
1138 else if (type == GSI_ERR_TYPE_EVT)
1139 gsi_isr_glob_evt_err(gsi, ee, which, code);
1140 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1141 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1142 }
1143
1144 /* Generic EE interrupt handler */
gsi_isr_gp_int1(struct gsi * gsi)1145 static void gsi_isr_gp_int1(struct gsi *gsi)
1146 {
1147 u32 result;
1148 u32 val;
1149
1150 /* This interrupt is used to handle completions of GENERIC GSI
1151 * commands. We use these to allocate and halt channels on the
1152 * modem's behalf due to a hardware quirk on IPA v4.2. The modem
1153 * "owns" channels even when the AP allocates them, and have no
1154 * way of knowing whether a modem channel's state has been changed.
1155 *
1156 * We also use GENERIC commands to enable/disable channel flow
1157 * control for IPA v4.2+.
1158 *
1159 * It is recommended that we halt the modem channels we allocated
1160 * when shutting down, but it's possible the channel isn't running
1161 * at the time we issue the HALT command. We'll get an error in
1162 * that case, but it's harmless (the channel is already halted).
1163 * Similarly, we could get an error back when updating flow control
1164 * on a channel because it's not in the proper state.
1165 *
1166 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1167 * error if we receive it.
1168 */
1169 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1170 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1171
1172 switch (result) {
1173 case GENERIC_EE_SUCCESS:
1174 case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1175 gsi->result = 0;
1176 break;
1177
1178 case GENERIC_EE_RETRY:
1179 gsi->result = -EAGAIN;
1180 break;
1181
1182 default:
1183 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1184 gsi->result = -EIO;
1185 break;
1186 }
1187
1188 complete(&gsi->completion);
1189 }
1190
1191 /* Inter-EE interrupt handler */
gsi_isr_glob_ee(struct gsi * gsi)1192 static void gsi_isr_glob_ee(struct gsi *gsi)
1193 {
1194 u32 val;
1195
1196 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1197
1198 if (val & BIT(ERROR_INT))
1199 gsi_isr_glob_err(gsi);
1200
1201 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1202
1203 val &= ~BIT(ERROR_INT);
1204
1205 if (val & BIT(GP_INT1)) {
1206 val ^= BIT(GP_INT1);
1207 gsi_isr_gp_int1(gsi);
1208 }
1209
1210 if (val)
1211 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1212 }
1213
1214 /* I/O completion interrupt event */
gsi_isr_ieob(struct gsi * gsi)1215 static void gsi_isr_ieob(struct gsi *gsi)
1216 {
1217 u32 event_mask;
1218
1219 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1220 gsi_irq_ieob_disable(gsi, event_mask);
1221 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1222
1223 while (event_mask) {
1224 u32 evt_ring_id = __ffs(event_mask);
1225
1226 event_mask ^= BIT(evt_ring_id);
1227
1228 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1229 }
1230 }
1231
1232 /* General event interrupts represent serious problems, so report them */
gsi_isr_general(struct gsi * gsi)1233 static void gsi_isr_general(struct gsi *gsi)
1234 {
1235 struct device *dev = gsi->dev;
1236 u32 val;
1237
1238 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1239 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1240
1241 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1242 }
1243
1244 /**
1245 * gsi_isr() - Top level GSI interrupt service routine
1246 * @irq: Interrupt number (ignored)
1247 * @dev_id: GSI pointer supplied to request_irq()
1248 *
1249 * This is the main handler function registered for the GSI IRQ. Each type
1250 * of interrupt has a separate handler function that is called from here.
1251 */
gsi_isr(int irq,void * dev_id)1252 static irqreturn_t gsi_isr(int irq, void *dev_id)
1253 {
1254 struct gsi *gsi = dev_id;
1255 u32 intr_mask;
1256 u32 cnt = 0;
1257
1258 /* enum gsi_irq_type_id defines GSI interrupt types */
1259 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1260 /* intr_mask contains bitmask of pending GSI interrupts */
1261 do {
1262 u32 gsi_intr = BIT(__ffs(intr_mask));
1263
1264 intr_mask ^= gsi_intr;
1265
1266 switch (gsi_intr) {
1267 case BIT(GSI_CH_CTRL):
1268 gsi_isr_chan_ctrl(gsi);
1269 break;
1270 case BIT(GSI_EV_CTRL):
1271 gsi_isr_evt_ctrl(gsi);
1272 break;
1273 case BIT(GSI_GLOB_EE):
1274 gsi_isr_glob_ee(gsi);
1275 break;
1276 case BIT(GSI_IEOB):
1277 gsi_isr_ieob(gsi);
1278 break;
1279 case BIT(GSI_GENERAL):
1280 gsi_isr_general(gsi);
1281 break;
1282 default:
1283 dev_err(gsi->dev,
1284 "unrecognized interrupt type 0x%08x\n",
1285 gsi_intr);
1286 break;
1287 }
1288 } while (intr_mask);
1289
1290 if (++cnt > GSI_ISR_MAX_ITER) {
1291 dev_err(gsi->dev, "interrupt flood\n");
1292 break;
1293 }
1294 }
1295
1296 return IRQ_HANDLED;
1297 }
1298
1299 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
gsi_irq_init(struct gsi * gsi,struct platform_device * pdev)1300 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1301 {
1302 int ret;
1303
1304 ret = platform_get_irq_byname(pdev, "gsi");
1305 if (ret <= 0)
1306 return ret ? : -EINVAL;
1307
1308 gsi->irq = ret;
1309
1310 return 0;
1311 }
1312
1313 /* Return the transaction associated with a transfer completion event */
1314 static struct gsi_trans *
gsi_event_trans(struct gsi * gsi,struct gsi_event * event)1315 gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1316 {
1317 u32 channel_id = event->chid;
1318 struct gsi_channel *channel;
1319 struct gsi_trans *trans;
1320 u32 tre_offset;
1321 u32 tre_index;
1322
1323 channel = &gsi->channel[channel_id];
1324 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1325 return NULL;
1326
1327 /* Event xfer_ptr records the TRE it's associated with */
1328 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1329 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1330
1331 trans = gsi_channel_trans_mapped(channel, tre_index);
1332
1333 if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1334 return NULL;
1335
1336 return trans;
1337 }
1338
1339 /**
1340 * gsi_evt_ring_update() - Update transaction state from hardware
1341 * @gsi: GSI pointer
1342 * @evt_ring_id: Event ring ID
1343 * @index: Event index in ring reported by hardware
1344 *
1345 * Events for RX channels contain the actual number of bytes received into
1346 * the buffer. Every event has a transaction associated with it, and here
1347 * we update transactions to record their actual received lengths.
1348 *
1349 * When an event for a TX channel arrives we use information in the
1350 * transaction to report the number of requests and bytes that have
1351 * been transferred.
1352 *
1353 * This function is called whenever we learn that the GSI hardware has filled
1354 * new events since the last time we checked. The ring's index field tells
1355 * the first entry in need of processing. The index provided is the
1356 * first *unfilled* event in the ring (following the last filled one).
1357 *
1358 * Events are sequential within the event ring, and transactions are
1359 * sequential within the transaction array.
1360 *
1361 * Note that @index always refers to an element *within* the event ring.
1362 */
gsi_evt_ring_update(struct gsi * gsi,u32 evt_ring_id,u32 index)1363 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1364 {
1365 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1366 struct gsi_ring *ring = &evt_ring->ring;
1367 struct gsi_event *event_done;
1368 struct gsi_event *event;
1369 u32 event_avail;
1370 u32 old_index;
1371
1372 /* Starting with the oldest un-processed event, determine which
1373 * transaction (and which channel) is associated with the event.
1374 * For RX channels, update each completed transaction with the
1375 * number of bytes that were actually received. For TX channels
1376 * associated with a network device, report to the network stack
1377 * the number of transfers and bytes this completion represents.
1378 */
1379 old_index = ring->index;
1380 event = gsi_ring_virt(ring, old_index);
1381
1382 /* Compute the number of events to process before we wrap,
1383 * and determine when we'll be done processing events.
1384 */
1385 event_avail = ring->count - old_index % ring->count;
1386 event_done = gsi_ring_virt(ring, index);
1387 do {
1388 struct gsi_trans *trans;
1389
1390 trans = gsi_event_trans(gsi, event);
1391 if (!trans)
1392 return;
1393
1394 if (trans->direction == DMA_FROM_DEVICE)
1395 trans->len = __le16_to_cpu(event->len);
1396 else
1397 gsi_trans_tx_completed(trans);
1398
1399 gsi_trans_move_complete(trans);
1400
1401 /* Move on to the next event and transaction */
1402 if (--event_avail)
1403 event++;
1404 else
1405 event = gsi_ring_virt(ring, 0);
1406 } while (event != event_done);
1407
1408 /* Tell the hardware we've handled these events */
1409 gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1410 }
1411
1412 /* Initialize a ring, including allocating DMA memory for its entries */
gsi_ring_alloc(struct gsi * gsi,struct gsi_ring * ring,u32 count)1413 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1414 {
1415 u32 size = count * GSI_RING_ELEMENT_SIZE;
1416 struct device *dev = gsi->dev;
1417 dma_addr_t addr;
1418
1419 /* Hardware requires a 2^n ring size, with alignment equal to size.
1420 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1421 * be a power-of-2 number of pages, which satisfies the requirement.
1422 */
1423 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1424 if (!ring->virt)
1425 return -ENOMEM;
1426
1427 ring->addr = addr;
1428 ring->count = count;
1429 ring->index = 0;
1430
1431 return 0;
1432 }
1433
1434 /* Free a previously-allocated ring */
gsi_ring_free(struct gsi * gsi,struct gsi_ring * ring)1435 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1436 {
1437 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1438
1439 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1440 }
1441
1442 /* Allocate an available event ring id */
gsi_evt_ring_id_alloc(struct gsi * gsi)1443 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1444 {
1445 u32 evt_ring_id;
1446
1447 if (gsi->event_bitmap == ~0U) {
1448 dev_err(gsi->dev, "event rings exhausted\n");
1449 return -ENOSPC;
1450 }
1451
1452 evt_ring_id = ffz(gsi->event_bitmap);
1453 gsi->event_bitmap |= BIT(evt_ring_id);
1454
1455 return (int)evt_ring_id;
1456 }
1457
1458 /* Free a previously-allocated event ring id */
gsi_evt_ring_id_free(struct gsi * gsi,u32 evt_ring_id)1459 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1460 {
1461 gsi->event_bitmap &= ~BIT(evt_ring_id);
1462 }
1463
1464 /* Ring a channel doorbell, reporting the first un-filled entry */
gsi_channel_doorbell(struct gsi_channel * channel)1465 void gsi_channel_doorbell(struct gsi_channel *channel)
1466 {
1467 struct gsi_ring *tre_ring = &channel->tre_ring;
1468 u32 channel_id = gsi_channel_id(channel);
1469 struct gsi *gsi = channel->gsi;
1470 u32 val;
1471
1472 /* Note: index *must* be used modulo the ring count here */
1473 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1474 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1475 }
1476
1477 /* Consult hardware, move newly completed transactions to completed state */
gsi_channel_update(struct gsi_channel * channel)1478 void gsi_channel_update(struct gsi_channel *channel)
1479 {
1480 u32 evt_ring_id = channel->evt_ring_id;
1481 struct gsi *gsi = channel->gsi;
1482 struct gsi_evt_ring *evt_ring;
1483 struct gsi_trans *trans;
1484 struct gsi_ring *ring;
1485 u32 offset;
1486 u32 index;
1487
1488 evt_ring = &gsi->evt_ring[evt_ring_id];
1489 ring = &evt_ring->ring;
1490
1491 /* See if there's anything new to process; if not, we're done. Note
1492 * that index always refers to an entry *within* the event ring.
1493 */
1494 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1495 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1496 if (index == ring->index % ring->count)
1497 return;
1498
1499 /* Get the transaction for the latest completed event. */
1500 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1501 if (!trans)
1502 return;
1503
1504 /* For RX channels, update each completed transaction with the number
1505 * of bytes that were actually received. For TX channels, report
1506 * the number of transactions and bytes this completion represents
1507 * up the network stack.
1508 */
1509 gsi_evt_ring_update(gsi, evt_ring_id, index);
1510 }
1511
1512 /**
1513 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1514 * @channel: Channel to be polled
1515 *
1516 * Return: Transaction pointer, or null if none are available
1517 *
1518 * This function returns the first of a channel's completed transactions.
1519 * If no transactions are in completed state, the hardware is consulted to
1520 * determine whether any new transactions have completed. If so, they're
1521 * moved to completed state and the first such transaction is returned.
1522 * If there are no more completed transactions, a null pointer is returned.
1523 */
gsi_channel_poll_one(struct gsi_channel * channel)1524 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1525 {
1526 struct gsi_trans *trans;
1527
1528 /* Get the first completed transaction */
1529 trans = gsi_channel_trans_complete(channel);
1530 if (trans)
1531 gsi_trans_move_polled(trans);
1532
1533 return trans;
1534 }
1535
1536 /**
1537 * gsi_channel_poll() - NAPI poll function for a channel
1538 * @napi: NAPI structure for the channel
1539 * @budget: Budget supplied by NAPI core
1540 *
1541 * Return: Number of items polled (<= budget)
1542 *
1543 * Single transactions completed by hardware are polled until either
1544 * the budget is exhausted, or there are no more. Each transaction
1545 * polled is passed to gsi_trans_complete(), to perform remaining
1546 * completion processing and retire/free the transaction.
1547 */
gsi_channel_poll(struct napi_struct * napi,int budget)1548 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1549 {
1550 struct gsi_channel *channel;
1551 int count;
1552
1553 channel = container_of(napi, struct gsi_channel, napi);
1554 for (count = 0; count < budget; count++) {
1555 struct gsi_trans *trans;
1556
1557 trans = gsi_channel_poll_one(channel);
1558 if (!trans)
1559 break;
1560 gsi_trans_complete(trans);
1561 }
1562
1563 if (count < budget && napi_complete(napi))
1564 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1565
1566 return count;
1567 }
1568
1569 /* The event bitmap represents which event ids are available for allocation.
1570 * Set bits are not available, clear bits can be used. This function
1571 * initializes the map so all events supported by the hardware are available,
1572 * then precludes any reserved events from being allocated.
1573 */
gsi_event_bitmap_init(u32 evt_ring_max)1574 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1575 {
1576 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1577
1578 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1579
1580 return event_bitmap;
1581 }
1582
1583 /* Setup function for a single channel */
gsi_channel_setup_one(struct gsi * gsi,u32 channel_id)1584 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1585 {
1586 struct gsi_channel *channel = &gsi->channel[channel_id];
1587 u32 evt_ring_id = channel->evt_ring_id;
1588 int ret;
1589
1590 if (!gsi_channel_initialized(channel))
1591 return 0;
1592
1593 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1594 if (ret)
1595 return ret;
1596
1597 gsi_evt_ring_program(gsi, evt_ring_id);
1598
1599 ret = gsi_channel_alloc_command(gsi, channel_id);
1600 if (ret)
1601 goto err_evt_ring_de_alloc;
1602
1603 gsi_channel_program(channel, true);
1604
1605 if (channel->toward_ipa)
1606 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
1607 gsi_channel_poll);
1608 else
1609 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1610 gsi_channel_poll);
1611
1612 return 0;
1613
1614 err_evt_ring_de_alloc:
1615 /* We've done nothing with the event ring yet so don't reset */
1616 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1617
1618 return ret;
1619 }
1620
1621 /* Inverse of gsi_channel_setup_one() */
gsi_channel_teardown_one(struct gsi * gsi,u32 channel_id)1622 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1623 {
1624 struct gsi_channel *channel = &gsi->channel[channel_id];
1625 u32 evt_ring_id = channel->evt_ring_id;
1626
1627 if (!gsi_channel_initialized(channel))
1628 return;
1629
1630 netif_napi_del(&channel->napi);
1631
1632 gsi_channel_de_alloc_command(gsi, channel_id);
1633 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1634 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1635 }
1636
1637 /* We use generic commands only to operate on modem channels. We don't have
1638 * the ability to determine channel state for a modem channel, so we simply
1639 * issue the command and wait for it to complete.
1640 */
gsi_generic_command(struct gsi * gsi,u32 channel_id,enum gsi_generic_cmd_opcode opcode,u8 params)1641 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1642 enum gsi_generic_cmd_opcode opcode,
1643 u8 params)
1644 {
1645 bool timeout;
1646 u32 val;
1647
1648 /* The error global interrupt type is always enabled (until we tear
1649 * down), so we will keep it enabled.
1650 *
1651 * A generic EE command completes with a GSI global interrupt of
1652 * type GP_INT1. We only perform one generic command at a time
1653 * (to allocate, halt, or enable/disable flow control on a modem
1654 * channel), and only from this function. So we enable the GP_INT1
1655 * IRQ type here, and disable it again after the command completes.
1656 */
1657 val = BIT(ERROR_INT) | BIT(GP_INT1);
1658 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1659
1660 /* First zero the result code field */
1661 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1662 val &= ~GENERIC_EE_RESULT_FMASK;
1663 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1664
1665 /* Now issue the command */
1666 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1667 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1668 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1669 val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK);
1670
1671 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val);
1672
1673 /* Disable the GP_INT1 IRQ type again */
1674 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1675
1676 if (!timeout)
1677 return gsi->result;
1678
1679 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1680 opcode, channel_id);
1681
1682 return -ETIMEDOUT;
1683 }
1684
gsi_modem_channel_alloc(struct gsi * gsi,u32 channel_id)1685 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1686 {
1687 return gsi_generic_command(gsi, channel_id,
1688 GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1689 }
1690
gsi_modem_channel_halt(struct gsi * gsi,u32 channel_id)1691 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1692 {
1693 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1694 int ret;
1695
1696 do
1697 ret = gsi_generic_command(gsi, channel_id,
1698 GSI_GENERIC_HALT_CHANNEL, 0);
1699 while (ret == -EAGAIN && retries--);
1700
1701 if (ret)
1702 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1703 ret, channel_id);
1704 }
1705
1706 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1707 void
gsi_modem_channel_flow_control(struct gsi * gsi,u32 channel_id,bool enable)1708 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1709 {
1710 u32 retries = 0;
1711 u32 command;
1712 int ret;
1713
1714 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1715 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1716 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1717 * is underway. In this case we need to retry the command.
1718 */
1719 if (!enable && gsi->version >= IPA_VERSION_4_11)
1720 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1721
1722 do
1723 ret = gsi_generic_command(gsi, channel_id, command, 0);
1724 while (ret == -EAGAIN && retries--);
1725
1726 if (ret)
1727 dev_err(gsi->dev,
1728 "error %d %sabling mode channel %u flow control\n",
1729 ret, enable ? "en" : "dis", channel_id);
1730 }
1731
1732 /* Setup function for channels */
gsi_channel_setup(struct gsi * gsi)1733 static int gsi_channel_setup(struct gsi *gsi)
1734 {
1735 u32 channel_id = 0;
1736 u32 mask;
1737 int ret;
1738
1739 gsi_irq_enable(gsi);
1740
1741 mutex_lock(&gsi->mutex);
1742
1743 do {
1744 ret = gsi_channel_setup_one(gsi, channel_id);
1745 if (ret)
1746 goto err_unwind;
1747 } while (++channel_id < gsi->channel_count);
1748
1749 /* Make sure no channels were defined that hardware does not support */
1750 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1751 struct gsi_channel *channel = &gsi->channel[channel_id++];
1752
1753 if (!gsi_channel_initialized(channel))
1754 continue;
1755
1756 ret = -EINVAL;
1757 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1758 channel_id - 1);
1759 channel_id = gsi->channel_count;
1760 goto err_unwind;
1761 }
1762
1763 /* Allocate modem channels if necessary */
1764 mask = gsi->modem_channel_bitmap;
1765 while (mask) {
1766 u32 modem_channel_id = __ffs(mask);
1767
1768 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1769 if (ret)
1770 goto err_unwind_modem;
1771
1772 /* Clear bit from mask only after success (for unwind) */
1773 mask ^= BIT(modem_channel_id);
1774 }
1775
1776 mutex_unlock(&gsi->mutex);
1777
1778 return 0;
1779
1780 err_unwind_modem:
1781 /* Compute which modem channels need to be deallocated */
1782 mask ^= gsi->modem_channel_bitmap;
1783 while (mask) {
1784 channel_id = __fls(mask);
1785
1786 mask ^= BIT(channel_id);
1787
1788 gsi_modem_channel_halt(gsi, channel_id);
1789 }
1790
1791 err_unwind:
1792 while (channel_id--)
1793 gsi_channel_teardown_one(gsi, channel_id);
1794
1795 mutex_unlock(&gsi->mutex);
1796
1797 gsi_irq_disable(gsi);
1798
1799 return ret;
1800 }
1801
1802 /* Inverse of gsi_channel_setup() */
gsi_channel_teardown(struct gsi * gsi)1803 static void gsi_channel_teardown(struct gsi *gsi)
1804 {
1805 u32 mask = gsi->modem_channel_bitmap;
1806 u32 channel_id;
1807
1808 mutex_lock(&gsi->mutex);
1809
1810 while (mask) {
1811 channel_id = __fls(mask);
1812
1813 mask ^= BIT(channel_id);
1814
1815 gsi_modem_channel_halt(gsi, channel_id);
1816 }
1817
1818 channel_id = gsi->channel_count - 1;
1819 do
1820 gsi_channel_teardown_one(gsi, channel_id);
1821 while (channel_id--);
1822
1823 mutex_unlock(&gsi->mutex);
1824
1825 gsi_irq_disable(gsi);
1826 }
1827
1828 /* Turn off all GSI interrupts initially */
gsi_irq_setup(struct gsi * gsi)1829 static int gsi_irq_setup(struct gsi *gsi)
1830 {
1831 int ret;
1832
1833 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1834 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1835
1836 /* Disable all interrupt types */
1837 gsi_irq_type_update(gsi, 0);
1838
1839 /* Clear all type-specific interrupt masks */
1840 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
1841 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
1842 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1843 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
1844
1845 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1846 if (gsi->version > IPA_VERSION_3_1) {
1847 u32 offset;
1848
1849 /* These registers are in the non-adjusted address range */
1850 offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET;
1851 iowrite32(0, gsi->virt_raw + offset);
1852 offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET;
1853 iowrite32(0, gsi->virt_raw + offset);
1854 }
1855
1856 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
1857
1858 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
1859 if (ret)
1860 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1861
1862 return ret;
1863 }
1864
gsi_irq_teardown(struct gsi * gsi)1865 static void gsi_irq_teardown(struct gsi *gsi)
1866 {
1867 free_irq(gsi->irq, gsi);
1868 }
1869
1870 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
gsi_ring_setup(struct gsi * gsi)1871 static int gsi_ring_setup(struct gsi *gsi)
1872 {
1873 struct device *dev = gsi->dev;
1874 u32 count;
1875 u32 val;
1876
1877 if (gsi->version < IPA_VERSION_3_5_1) {
1878 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
1879 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1880 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1881
1882 return 0;
1883 }
1884
1885 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1886
1887 count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1888 if (!count) {
1889 dev_err(dev, "GSI reports zero channels supported\n");
1890 return -EINVAL;
1891 }
1892 if (count > GSI_CHANNEL_COUNT_MAX) {
1893 dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
1894 GSI_CHANNEL_COUNT_MAX, count);
1895 count = GSI_CHANNEL_COUNT_MAX;
1896 }
1897 gsi->channel_count = count;
1898
1899 count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1900 if (!count) {
1901 dev_err(dev, "GSI reports zero event rings supported\n");
1902 return -EINVAL;
1903 }
1904 if (count > GSI_EVT_RING_COUNT_MAX) {
1905 dev_warn(dev,
1906 "limiting to %u event rings; hardware supports %u\n",
1907 GSI_EVT_RING_COUNT_MAX, count);
1908 count = GSI_EVT_RING_COUNT_MAX;
1909 }
1910 gsi->evt_ring_count = count;
1911
1912 return 0;
1913 }
1914
1915 /* Setup function for GSI. GSI firmware must be loaded and initialized */
gsi_setup(struct gsi * gsi)1916 int gsi_setup(struct gsi *gsi)
1917 {
1918 u32 val;
1919 int ret;
1920
1921 /* Here is where we first touch the GSI hardware */
1922 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1923 if (!(val & ENABLED_FMASK)) {
1924 dev_err(gsi->dev, "GSI has not been enabled\n");
1925 return -EIO;
1926 }
1927
1928 ret = gsi_irq_setup(gsi);
1929 if (ret)
1930 return ret;
1931
1932 ret = gsi_ring_setup(gsi); /* No matching teardown required */
1933 if (ret)
1934 goto err_irq_teardown;
1935
1936 /* Initialize the error log */
1937 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1938
1939 ret = gsi_channel_setup(gsi);
1940 if (ret)
1941 goto err_irq_teardown;
1942
1943 return 0;
1944
1945 err_irq_teardown:
1946 gsi_irq_teardown(gsi);
1947
1948 return ret;
1949 }
1950
1951 /* Inverse of gsi_setup() */
gsi_teardown(struct gsi * gsi)1952 void gsi_teardown(struct gsi *gsi)
1953 {
1954 gsi_channel_teardown(gsi);
1955 gsi_irq_teardown(gsi);
1956 }
1957
1958 /* Initialize a channel's event ring */
gsi_channel_evt_ring_init(struct gsi_channel * channel)1959 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1960 {
1961 struct gsi *gsi = channel->gsi;
1962 struct gsi_evt_ring *evt_ring;
1963 int ret;
1964
1965 ret = gsi_evt_ring_id_alloc(gsi);
1966 if (ret < 0)
1967 return ret;
1968 channel->evt_ring_id = ret;
1969
1970 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1971 evt_ring->channel = channel;
1972
1973 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1974 if (!ret)
1975 return 0; /* Success! */
1976
1977 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1978 ret, gsi_channel_id(channel));
1979
1980 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1981
1982 return ret;
1983 }
1984
1985 /* Inverse of gsi_channel_evt_ring_init() */
gsi_channel_evt_ring_exit(struct gsi_channel * channel)1986 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1987 {
1988 u32 evt_ring_id = channel->evt_ring_id;
1989 struct gsi *gsi = channel->gsi;
1990 struct gsi_evt_ring *evt_ring;
1991
1992 evt_ring = &gsi->evt_ring[evt_ring_id];
1993 gsi_ring_free(gsi, &evt_ring->ring);
1994 gsi_evt_ring_id_free(gsi, evt_ring_id);
1995 }
1996
gsi_channel_data_valid(struct gsi * gsi,bool command,const struct ipa_gsi_endpoint_data * data)1997 static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
1998 const struct ipa_gsi_endpoint_data *data)
1999 {
2000 const struct gsi_channel_data *channel_data;
2001 u32 channel_id = data->channel_id;
2002 struct device *dev = gsi->dev;
2003
2004 /* Make sure channel ids are in the range driver supports */
2005 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2006 dev_err(dev, "bad channel id %u; must be less than %u\n",
2007 channel_id, GSI_CHANNEL_COUNT_MAX);
2008 return false;
2009 }
2010
2011 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2012 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2013 return false;
2014 }
2015
2016 if (command && !data->toward_ipa) {
2017 dev_err(dev, "command channel %u is not TX\n", channel_id);
2018 return false;
2019 }
2020
2021 channel_data = &data->channel;
2022
2023 if (!channel_data->tlv_count ||
2024 channel_data->tlv_count > GSI_TLV_MAX) {
2025 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2026 channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2027 return false;
2028 }
2029
2030 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2031 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2032 channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2033 channel_data->tlv_count);
2034 return false;
2035 }
2036
2037 /* We have to allow at least one maximally-sized transaction to
2038 * be outstanding (which would use tlv_count TREs). Given how
2039 * gsi_channel_tre_max() is computed, tre_count has to be almost
2040 * twice the TLV FIFO size to satisfy this requirement.
2041 */
2042 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2043 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2044 channel_id, channel_data->tlv_count,
2045 channel_data->tre_count);
2046 return false;
2047 }
2048
2049 if (!is_power_of_2(channel_data->tre_count)) {
2050 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2051 channel_id, channel_data->tre_count);
2052 return false;
2053 }
2054
2055 if (!is_power_of_2(channel_data->event_count)) {
2056 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2057 channel_id, channel_data->event_count);
2058 return false;
2059 }
2060
2061 return true;
2062 }
2063
2064 /* Init function for a single channel */
gsi_channel_init_one(struct gsi * gsi,const struct ipa_gsi_endpoint_data * data,bool command)2065 static int gsi_channel_init_one(struct gsi *gsi,
2066 const struct ipa_gsi_endpoint_data *data,
2067 bool command)
2068 {
2069 struct gsi_channel *channel;
2070 u32 tre_count;
2071 int ret;
2072
2073 if (!gsi_channel_data_valid(gsi, command, data))
2074 return -EINVAL;
2075
2076 /* Worst case we need an event for every outstanding TRE */
2077 if (data->channel.tre_count > data->channel.event_count) {
2078 tre_count = data->channel.event_count;
2079 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2080 data->channel_id, tre_count);
2081 } else {
2082 tre_count = data->channel.tre_count;
2083 }
2084
2085 channel = &gsi->channel[data->channel_id];
2086 memset(channel, 0, sizeof(*channel));
2087
2088 channel->gsi = gsi;
2089 channel->toward_ipa = data->toward_ipa;
2090 channel->command = command;
2091 channel->trans_tre_max = data->channel.tlv_count;
2092 channel->tre_count = tre_count;
2093 channel->event_count = data->channel.event_count;
2094
2095 ret = gsi_channel_evt_ring_init(channel);
2096 if (ret)
2097 goto err_clear_gsi;
2098
2099 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2100 if (ret) {
2101 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2102 ret, data->channel_id);
2103 goto err_channel_evt_ring_exit;
2104 }
2105
2106 ret = gsi_channel_trans_init(gsi, data->channel_id);
2107 if (ret)
2108 goto err_ring_free;
2109
2110 if (command) {
2111 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2112
2113 ret = ipa_cmd_pool_init(channel, tre_max);
2114 }
2115 if (!ret)
2116 return 0; /* Success! */
2117
2118 gsi_channel_trans_exit(channel);
2119 err_ring_free:
2120 gsi_ring_free(gsi, &channel->tre_ring);
2121 err_channel_evt_ring_exit:
2122 gsi_channel_evt_ring_exit(channel);
2123 err_clear_gsi:
2124 channel->gsi = NULL; /* Mark it not (fully) initialized */
2125
2126 return ret;
2127 }
2128
2129 /* Inverse of gsi_channel_init_one() */
gsi_channel_exit_one(struct gsi_channel * channel)2130 static void gsi_channel_exit_one(struct gsi_channel *channel)
2131 {
2132 if (!gsi_channel_initialized(channel))
2133 return;
2134
2135 if (channel->command)
2136 ipa_cmd_pool_exit(channel);
2137 gsi_channel_trans_exit(channel);
2138 gsi_ring_free(channel->gsi, &channel->tre_ring);
2139 gsi_channel_evt_ring_exit(channel);
2140 }
2141
2142 /* Init function for channels */
gsi_channel_init(struct gsi * gsi,u32 count,const struct ipa_gsi_endpoint_data * data)2143 static int gsi_channel_init(struct gsi *gsi, u32 count,
2144 const struct ipa_gsi_endpoint_data *data)
2145 {
2146 bool modem_alloc;
2147 int ret = 0;
2148 u32 i;
2149
2150 /* IPA v4.2 requires the AP to allocate channels for the modem */
2151 modem_alloc = gsi->version == IPA_VERSION_4_2;
2152
2153 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2154 gsi->ieob_enabled_bitmap = 0;
2155
2156 /* The endpoint data array is indexed by endpoint name */
2157 for (i = 0; i < count; i++) {
2158 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2159
2160 if (ipa_gsi_endpoint_data_empty(&data[i]))
2161 continue; /* Skip over empty slots */
2162
2163 /* Mark modem channels to be allocated (hardware workaround) */
2164 if (data[i].ee_id == GSI_EE_MODEM) {
2165 if (modem_alloc)
2166 gsi->modem_channel_bitmap |=
2167 BIT(data[i].channel_id);
2168 continue;
2169 }
2170
2171 ret = gsi_channel_init_one(gsi, &data[i], command);
2172 if (ret)
2173 goto err_unwind;
2174 }
2175
2176 return ret;
2177
2178 err_unwind:
2179 while (i--) {
2180 if (ipa_gsi_endpoint_data_empty(&data[i]))
2181 continue;
2182 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2183 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2184 continue;
2185 }
2186 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2187 }
2188
2189 return ret;
2190 }
2191
2192 /* Inverse of gsi_channel_init() */
gsi_channel_exit(struct gsi * gsi)2193 static void gsi_channel_exit(struct gsi *gsi)
2194 {
2195 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2196
2197 do
2198 gsi_channel_exit_one(&gsi->channel[channel_id]);
2199 while (channel_id--);
2200 gsi->modem_channel_bitmap = 0;
2201 }
2202
2203 /* Init function for GSI. GSI hardware does not need to be "ready" */
gsi_init(struct gsi * gsi,struct platform_device * pdev,enum ipa_version version,u32 count,const struct ipa_gsi_endpoint_data * data)2204 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2205 enum ipa_version version, u32 count,
2206 const struct ipa_gsi_endpoint_data *data)
2207 {
2208 struct device *dev = &pdev->dev;
2209 struct resource *res;
2210 resource_size_t size;
2211 u32 adjust;
2212 int ret;
2213
2214 gsi_validate_build();
2215
2216 gsi->dev = dev;
2217 gsi->version = version;
2218
2219 /* GSI uses NAPI on all channels. Create a dummy network device
2220 * for the channel NAPI contexts to be associated with.
2221 */
2222 init_dummy_netdev(&gsi->dummy_dev);
2223
2224 /* Get GSI memory range and map it */
2225 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2226 if (!res) {
2227 dev_err(dev, "DT error getting \"gsi\" memory property\n");
2228 return -ENODEV;
2229 }
2230
2231 size = resource_size(res);
2232 if (res->start > U32_MAX || size > U32_MAX - res->start) {
2233 dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2234 return -EINVAL;
2235 }
2236
2237 /* Make sure we can make our pointer adjustment if necessary */
2238 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2239 if (res->start < adjust) {
2240 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2241 adjust);
2242 return -EINVAL;
2243 }
2244
2245 gsi->virt_raw = ioremap(res->start, size);
2246 if (!gsi->virt_raw) {
2247 dev_err(dev, "unable to remap \"gsi\" memory\n");
2248 return -ENOMEM;
2249 }
2250 /* Most registers are accessed using an adjusted register range */
2251 gsi->virt = gsi->virt_raw - adjust;
2252
2253 init_completion(&gsi->completion);
2254
2255 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
2256 if (ret)
2257 goto err_iounmap;
2258
2259 ret = gsi_channel_init(gsi, count, data);
2260 if (ret)
2261 goto err_iounmap;
2262
2263 mutex_init(&gsi->mutex);
2264
2265 return 0;
2266
2267 err_iounmap:
2268 iounmap(gsi->virt_raw);
2269
2270 return ret;
2271 }
2272
2273 /* Inverse of gsi_init() */
gsi_exit(struct gsi * gsi)2274 void gsi_exit(struct gsi *gsi)
2275 {
2276 mutex_destroy(&gsi->mutex);
2277 gsi_channel_exit(gsi);
2278 iounmap(gsi->virt_raw);
2279 }
2280
2281 /* The maximum number of outstanding TREs on a channel. This limits
2282 * a channel's maximum number of transactions outstanding (worst case
2283 * is one TRE per transaction).
2284 *
2285 * The absolute limit is the number of TREs in the channel's TRE ring,
2286 * and in theory we should be able use all of them. But in practice,
2287 * doing that led to the hardware reporting exhaustion of event ring
2288 * slots for writing completion information. So the hardware limit
2289 * would be (tre_count - 1).
2290 *
2291 * We reduce it a bit further though. Transaction resource pools are
2292 * sized to be a little larger than this maximum, to allow resource
2293 * allocations to always be contiguous. The number of entries in a
2294 * TRE ring buffer is a power of 2, and the extra resources in a pool
2295 * tends to nearly double the memory allocated for it. Reducing the
2296 * maximum number of outstanding TREs allows the number of entries in
2297 * a pool to avoid crossing that power-of-2 boundary, and this can
2298 * substantially reduce pool memory requirements. The number we
2299 * reduce it by matches the number added in gsi_trans_pool_init().
2300 */
gsi_channel_tre_max(struct gsi * gsi,u32 channel_id)2301 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2302 {
2303 struct gsi_channel *channel = &gsi->channel[channel_id];
2304
2305 /* Hardware limit is channel->tre_count - 1 */
2306 return channel->tre_count - (channel->trans_tre_max - 1);
2307 }
2308