1 /*
2  * SN Platform GRU Driver
3  *
4  *            DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/spinlock.h>
27 #include <linux/sched.h>
28 #include <linux/device.h>
29 #include <linux/list.h>
30 #include <linux/err.h>
31 #include <asm/uv/uv_hub.h>
32 #include "gru.h"
33 #include "grutables.h"
34 #include "gruhandles.h"
35 
36 unsigned long gru_options __read_mostly;
37 
38 static struct device_driver gru_driver = {
39 	.name = "gru"
40 };
41 
42 static struct device gru_device = {
43 	.init_name = "",
44 	.driver = &gru_driver,
45 };
46 
47 struct device *grudev = &gru_device;
48 
49 /*
50  * Select a gru fault map to be used by the current cpu. Note that
51  * multiple cpus may be using the same map.
52  *	ZZZ should be inline but did not work on emulator
53  */
gru_cpu_fault_map_id(void)54 int gru_cpu_fault_map_id(void)
55 {
56 #ifdef CONFIG_IA64
57 	return uv_blade_processor_id() % GRU_NUM_TFM;
58 #else
59 	int cpu = smp_processor_id();
60 	int id, core;
61 
62 	core = uv_cpu_core_number(cpu);
63 	id = core + UV_MAX_INT_CORES * uv_cpu_socket_number(cpu);
64 	return id;
65 #endif
66 }
67 
68 /*--------- ASID Management -------------------------------------------
69  *
70  *  Initially, assign asids sequentially from MIN_ASID .. MAX_ASID.
71  *  Once MAX is reached, flush the TLB & start over. However,
72  *  some asids may still be in use. There won't be many (percentage wise) still
73  *  in use. Search active contexts & determine the value of the first
74  *  asid in use ("x"s below). Set "limit" to this value.
75  *  This defines a block of assignable asids.
76  *
77  *  When "limit" is reached, search forward from limit+1 and determine the
78  *  next block of assignable asids.
79  *
80  *  Repeat until MAX_ASID is reached, then start over again.
81  *
82  *  Each time MAX_ASID is reached, increment the asid generation. Since
83  *  the search for in-use asids only checks contexts with GRUs currently
84  *  assigned, asids in some contexts will be missed. Prior to loading
85  *  a context, the asid generation of the GTS asid is rechecked. If it
86  *  doesn't match the current generation, a new asid will be assigned.
87  *
88  *   	0---------------x------------x---------------------x----|
89  *	  ^-next	^-limit	   				^-MAX_ASID
90  *
91  * All asid manipulation & context loading/unloading is protected by the
92  * gs_lock.
93  */
94 
95 /* Hit the asid limit. Start over */
gru_wrap_asid(struct gru_state * gru)96 static int gru_wrap_asid(struct gru_state *gru)
97 {
98 	gru_dbg(grudev, "gid %d\n", gru->gs_gid);
99 	STAT(asid_wrap);
100 	gru->gs_asid_gen++;
101 	return MIN_ASID;
102 }
103 
104 /* Find the next chunk of unused asids */
gru_reset_asid_limit(struct gru_state * gru,int asid)105 static int gru_reset_asid_limit(struct gru_state *gru, int asid)
106 {
107 	int i, gid, inuse_asid, limit;
108 
109 	gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
110 	STAT(asid_next);
111 	limit = MAX_ASID;
112 	if (asid >= limit)
113 		asid = gru_wrap_asid(gru);
114 	gru_flush_all_tlb(gru);
115 	gid = gru->gs_gid;
116 again:
117 	for (i = 0; i < GRU_NUM_CCH; i++) {
118 		if (!gru->gs_gts[i] || is_kernel_context(gru->gs_gts[i]))
119 			continue;
120 		inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid;
121 		gru_dbg(grudev, "gid %d, gts %p, gms %p, inuse 0x%x, cxt %d\n",
122 			gru->gs_gid, gru->gs_gts[i], gru->gs_gts[i]->ts_gms,
123 			inuse_asid, i);
124 		if (inuse_asid == asid) {
125 			asid += ASID_INC;
126 			if (asid >= limit) {
127 				/*
128 				 * empty range: reset the range limit and
129 				 * start over
130 				 */
131 				limit = MAX_ASID;
132 				if (asid >= MAX_ASID)
133 					asid = gru_wrap_asid(gru);
134 				goto again;
135 			}
136 		}
137 
138 		if ((inuse_asid > asid) && (inuse_asid < limit))
139 			limit = inuse_asid;
140 	}
141 	gru->gs_asid_limit = limit;
142 	gru->gs_asid = asid;
143 	gru_dbg(grudev, "gid %d, new asid 0x%x, new_limit 0x%x\n", gru->gs_gid,
144 					asid, limit);
145 	return asid;
146 }
147 
148 /* Assign a new ASID to a thread context.  */
gru_assign_asid(struct gru_state * gru)149 static int gru_assign_asid(struct gru_state *gru)
150 {
151 	int asid;
152 
153 	gru->gs_asid += ASID_INC;
154 	asid = gru->gs_asid;
155 	if (asid >= gru->gs_asid_limit)
156 		asid = gru_reset_asid_limit(gru, asid);
157 
158 	gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
159 	return asid;
160 }
161 
162 /*
163  * Clear n bits in a word. Return a word indicating the bits that were cleared.
164  * Optionally, build an array of chars that contain the bit numbers allocated.
165  */
reserve_resources(unsigned long * p,int n,int mmax,char * idx)166 static unsigned long reserve_resources(unsigned long *p, int n, int mmax,
167 				       char *idx)
168 {
169 	unsigned long bits = 0;
170 	int i;
171 
172 	while (n--) {
173 		i = find_first_bit(p, mmax);
174 		if (i == mmax)
175 			BUG();
176 		__clear_bit(i, p);
177 		__set_bit(i, &bits);
178 		if (idx)
179 			*idx++ = i;
180 	}
181 	return bits;
182 }
183 
gru_reserve_cb_resources(struct gru_state * gru,int cbr_au_count,char * cbmap)184 unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count,
185 				       char *cbmap)
186 {
187 	return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
188 				 cbmap);
189 }
190 
gru_reserve_ds_resources(struct gru_state * gru,int dsr_au_count,char * dsmap)191 unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count,
192 				       char *dsmap)
193 {
194 	return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
195 				 dsmap);
196 }
197 
reserve_gru_resources(struct gru_state * gru,struct gru_thread_state * gts)198 static void reserve_gru_resources(struct gru_state *gru,
199 				  struct gru_thread_state *gts)
200 {
201 	gru->gs_active_contexts++;
202 	gts->ts_cbr_map =
203 	    gru_reserve_cb_resources(gru, gts->ts_cbr_au_count,
204 				     gts->ts_cbr_idx);
205 	gts->ts_dsr_map =
206 	    gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL);
207 }
208 
free_gru_resources(struct gru_state * gru,struct gru_thread_state * gts)209 static void free_gru_resources(struct gru_state *gru,
210 			       struct gru_thread_state *gts)
211 {
212 	gru->gs_active_contexts--;
213 	gru->gs_cbr_map |= gts->ts_cbr_map;
214 	gru->gs_dsr_map |= gts->ts_dsr_map;
215 }
216 
217 /*
218  * Check if a GRU has sufficient free resources to satisfy an allocation
219  * request. Note: GRU locks may or may not be held when this is called. If
220  * not held, recheck after acquiring the appropriate locks.
221  *
222  * Returns 1 if sufficient resources, 0 if not
223  */
check_gru_resources(struct gru_state * gru,int cbr_au_count,int dsr_au_count,int max_active_contexts)224 static int check_gru_resources(struct gru_state *gru, int cbr_au_count,
225 			       int dsr_au_count, int max_active_contexts)
226 {
227 	return hweight64(gru->gs_cbr_map) >= cbr_au_count
228 		&& hweight64(gru->gs_dsr_map) >= dsr_au_count
229 		&& gru->gs_active_contexts < max_active_contexts;
230 }
231 
232 /*
233  * TLB manangment requires tracking all GRU chiplets that have loaded a GSEG
234  * context.
235  */
gru_load_mm_tracker(struct gru_state * gru,struct gru_thread_state * gts)236 static int gru_load_mm_tracker(struct gru_state *gru,
237 					struct gru_thread_state *gts)
238 {
239 	struct gru_mm_struct *gms = gts->ts_gms;
240 	struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid];
241 	unsigned short ctxbitmap = (1 << gts->ts_ctxnum);
242 	int asid;
243 
244 	spin_lock(&gms->ms_asid_lock);
245 	asid = asids->mt_asid;
246 
247 	spin_lock(&gru->gs_asid_lock);
248 	if (asid == 0 || (asids->mt_ctxbitmap == 0 && asids->mt_asid_gen !=
249 			  gru->gs_asid_gen)) {
250 		asid = gru_assign_asid(gru);
251 		asids->mt_asid = asid;
252 		asids->mt_asid_gen = gru->gs_asid_gen;
253 		STAT(asid_new);
254 	} else {
255 		STAT(asid_reuse);
256 	}
257 	spin_unlock(&gru->gs_asid_lock);
258 
259 	BUG_ON(asids->mt_ctxbitmap & ctxbitmap);
260 	asids->mt_ctxbitmap |= ctxbitmap;
261 	if (!test_bit(gru->gs_gid, gms->ms_asidmap))
262 		__set_bit(gru->gs_gid, gms->ms_asidmap);
263 	spin_unlock(&gms->ms_asid_lock);
264 
265 	gru_dbg(grudev,
266 		"gid %d, gts %p, gms %p, ctxnum %d, asid 0x%x, asidmap 0x%lx\n",
267 		gru->gs_gid, gts, gms, gts->ts_ctxnum, asid,
268 		gms->ms_asidmap[0]);
269 	return asid;
270 }
271 
gru_unload_mm_tracker(struct gru_state * gru,struct gru_thread_state * gts)272 static void gru_unload_mm_tracker(struct gru_state *gru,
273 					struct gru_thread_state *gts)
274 {
275 	struct gru_mm_struct *gms = gts->ts_gms;
276 	struct gru_mm_tracker *asids;
277 	unsigned short ctxbitmap;
278 
279 	asids = &gms->ms_asids[gru->gs_gid];
280 	ctxbitmap = (1 << gts->ts_ctxnum);
281 	spin_lock(&gms->ms_asid_lock);
282 	spin_lock(&gru->gs_asid_lock);
283 	BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap);
284 	asids->mt_ctxbitmap ^= ctxbitmap;
285 	gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum 0x%d, asidmap 0x%lx\n",
286 		gru->gs_gid, gts, gms, gts->ts_ctxnum, gms->ms_asidmap[0]);
287 	spin_unlock(&gru->gs_asid_lock);
288 	spin_unlock(&gms->ms_asid_lock);
289 }
290 
291 /*
292  * Decrement the reference count on a GTS structure. Free the structure
293  * if the reference count goes to zero.
294  */
gts_drop(struct gru_thread_state * gts)295 void gts_drop(struct gru_thread_state *gts)
296 {
297 	if (gts && atomic_dec_return(&gts->ts_refcnt) == 0) {
298 		if (gts->ts_gms)
299 			gru_drop_mmu_notifier(gts->ts_gms);
300 		kfree(gts);
301 		STAT(gts_free);
302 	}
303 }
304 
305 /*
306  * Locate the GTS structure for the current thread.
307  */
gru_find_current_gts_nolock(struct gru_vma_data * vdata,int tsid)308 static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data
309 			    *vdata, int tsid)
310 {
311 	struct gru_thread_state *gts;
312 
313 	list_for_each_entry(gts, &vdata->vd_head, ts_next)
314 	    if (gts->ts_tsid == tsid)
315 		return gts;
316 	return NULL;
317 }
318 
319 /*
320  * Allocate a thread state structure.
321  */
gru_alloc_gts(struct vm_area_struct * vma,int cbr_au_count,int dsr_au_count,unsigned char tlb_preload_count,int options,int tsid)322 struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
323 		int cbr_au_count, int dsr_au_count,
324 		unsigned char tlb_preload_count, int options, int tsid)
325 {
326 	struct gru_thread_state *gts;
327 	struct gru_mm_struct *gms;
328 	int bytes;
329 
330 	bytes = DSR_BYTES(dsr_au_count) + CBR_BYTES(cbr_au_count);
331 	bytes += sizeof(struct gru_thread_state);
332 	gts = kmalloc(bytes, GFP_KERNEL);
333 	if (!gts)
334 		return ERR_PTR(-ENOMEM);
335 
336 	STAT(gts_alloc);
337 	memset(gts, 0, sizeof(struct gru_thread_state)); /* zero out header */
338 	atomic_set(&gts->ts_refcnt, 1);
339 	mutex_init(&gts->ts_ctxlock);
340 	gts->ts_cbr_au_count = cbr_au_count;
341 	gts->ts_dsr_au_count = dsr_au_count;
342 	gts->ts_tlb_preload_count = tlb_preload_count;
343 	gts->ts_user_options = options;
344 	gts->ts_user_blade_id = -1;
345 	gts->ts_user_chiplet_id = -1;
346 	gts->ts_tsid = tsid;
347 	gts->ts_ctxnum = NULLCTX;
348 	gts->ts_tlb_int_select = -1;
349 	gts->ts_cch_req_slice = -1;
350 	gts->ts_sizeavail = GRU_SIZEAVAIL(PAGE_SHIFT);
351 	if (vma) {
352 		gts->ts_mm = current->mm;
353 		gts->ts_vma = vma;
354 		gms = gru_register_mmu_notifier();
355 		if (IS_ERR(gms))
356 			goto err;
357 		gts->ts_gms = gms;
358 	}
359 
360 	gru_dbg(grudev, "alloc gts %p\n", gts);
361 	return gts;
362 
363 err:
364 	gts_drop(gts);
365 	return ERR_CAST(gms);
366 }
367 
368 /*
369  * Allocate a vma private data structure.
370  */
gru_alloc_vma_data(struct vm_area_struct * vma,int tsid)371 struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid)
372 {
373 	struct gru_vma_data *vdata = NULL;
374 
375 	vdata = kmalloc(sizeof(*vdata), GFP_KERNEL);
376 	if (!vdata)
377 		return NULL;
378 
379 	STAT(vdata_alloc);
380 	INIT_LIST_HEAD(&vdata->vd_head);
381 	spin_lock_init(&vdata->vd_lock);
382 	gru_dbg(grudev, "alloc vdata %p\n", vdata);
383 	return vdata;
384 }
385 
386 /*
387  * Find the thread state structure for the current thread.
388  */
gru_find_thread_state(struct vm_area_struct * vma,int tsid)389 struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma,
390 					int tsid)
391 {
392 	struct gru_vma_data *vdata = vma->vm_private_data;
393 	struct gru_thread_state *gts;
394 
395 	spin_lock(&vdata->vd_lock);
396 	gts = gru_find_current_gts_nolock(vdata, tsid);
397 	spin_unlock(&vdata->vd_lock);
398 	gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
399 	return gts;
400 }
401 
402 /*
403  * Allocate a new thread state for a GSEG. Note that races may allow
404  * another thread to race to create a gts.
405  */
gru_alloc_thread_state(struct vm_area_struct * vma,int tsid)406 struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma,
407 					int tsid)
408 {
409 	struct gru_vma_data *vdata = vma->vm_private_data;
410 	struct gru_thread_state *gts, *ngts;
411 
412 	gts = gru_alloc_gts(vma, vdata->vd_cbr_au_count,
413 			    vdata->vd_dsr_au_count,
414 			    vdata->vd_tlb_preload_count,
415 			    vdata->vd_user_options, tsid);
416 	if (IS_ERR(gts))
417 		return gts;
418 
419 	spin_lock(&vdata->vd_lock);
420 	ngts = gru_find_current_gts_nolock(vdata, tsid);
421 	if (ngts) {
422 		gts_drop(gts);
423 		gts = ngts;
424 		STAT(gts_double_allocate);
425 	} else {
426 		list_add(&gts->ts_next, &vdata->vd_head);
427 	}
428 	spin_unlock(&vdata->vd_lock);
429 	gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
430 	return gts;
431 }
432 
433 /*
434  * Free the GRU context assigned to the thread state.
435  */
gru_free_gru_context(struct gru_thread_state * gts)436 static void gru_free_gru_context(struct gru_thread_state *gts)
437 {
438 	struct gru_state *gru;
439 
440 	gru = gts->ts_gru;
441 	gru_dbg(grudev, "gts %p, gid %d\n", gts, gru->gs_gid);
442 
443 	spin_lock(&gru->gs_lock);
444 	gru->gs_gts[gts->ts_ctxnum] = NULL;
445 	free_gru_resources(gru, gts);
446 	BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0);
447 	__clear_bit(gts->ts_ctxnum, &gru->gs_context_map);
448 	gts->ts_ctxnum = NULLCTX;
449 	gts->ts_gru = NULL;
450 	gts->ts_blade = -1;
451 	spin_unlock(&gru->gs_lock);
452 
453 	gts_drop(gts);
454 	STAT(free_context);
455 }
456 
457 /*
458  * Prefetching cachelines help hardware performance.
459  * (Strictly a performance enhancement. Not functionally required).
460  */
prefetch_data(void * p,int num,int stride)461 static void prefetch_data(void *p, int num, int stride)
462 {
463 	while (num-- > 0) {
464 		prefetchw(p);
465 		p += stride;
466 	}
467 }
468 
gru_copy_handle(void * d,void * s)469 static inline long gru_copy_handle(void *d, void *s)
470 {
471 	memcpy(d, s, GRU_HANDLE_BYTES);
472 	return GRU_HANDLE_BYTES;
473 }
474 
gru_prefetch_context(void * gseg,void * cb,void * cbe,unsigned long cbrmap,unsigned long length)475 static void gru_prefetch_context(void *gseg, void *cb, void *cbe,
476 				unsigned long cbrmap, unsigned long length)
477 {
478 	int i, scr;
479 
480 	prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES,
481 		      GRU_CACHE_LINE_BYTES);
482 
483 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
484 		prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES);
485 		prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1,
486 			      GRU_CACHE_LINE_BYTES);
487 		cb += GRU_HANDLE_STRIDE;
488 	}
489 }
490 
gru_load_context_data(void * save,void * grubase,int ctxnum,unsigned long cbrmap,unsigned long dsrmap,int data_valid)491 static void gru_load_context_data(void *save, void *grubase, int ctxnum,
492 				  unsigned long cbrmap, unsigned long dsrmap,
493 				  int data_valid)
494 {
495 	void *gseg, *cb, *cbe;
496 	unsigned long length;
497 	int i, scr;
498 
499 	gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
500 	cb = gseg + GRU_CB_BASE;
501 	cbe = grubase + GRU_CBE_BASE;
502 	length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
503 	gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
504 
505 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
506 		if (data_valid) {
507 			save += gru_copy_handle(cb, save);
508 			save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE,
509 						save);
510 		} else {
511 			memset(cb, 0, GRU_CACHE_LINE_BYTES);
512 			memset(cbe + i * GRU_HANDLE_STRIDE, 0,
513 						GRU_CACHE_LINE_BYTES);
514 		}
515 		/* Flush CBE to hide race in context restart */
516 		mb();
517 		gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
518 		cb += GRU_HANDLE_STRIDE;
519 	}
520 
521 	if (data_valid)
522 		memcpy(gseg + GRU_DS_BASE, save, length);
523 	else
524 		memset(gseg + GRU_DS_BASE, 0, length);
525 }
526 
gru_unload_context_data(void * save,void * grubase,int ctxnum,unsigned long cbrmap,unsigned long dsrmap)527 static void gru_unload_context_data(void *save, void *grubase, int ctxnum,
528 				    unsigned long cbrmap, unsigned long dsrmap)
529 {
530 	void *gseg, *cb, *cbe;
531 	unsigned long length;
532 	int i, scr;
533 
534 	gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
535 	cb = gseg + GRU_CB_BASE;
536 	cbe = grubase + GRU_CBE_BASE;
537 	length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
538 
539 	/* CBEs may not be coherent. Flush them from cache */
540 	for_each_cbr_in_allocation_map(i, &cbrmap, scr)
541 		gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
542 	mb();		/* Let the CL flush complete */
543 
544 	gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
545 
546 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
547 		save += gru_copy_handle(save, cb);
548 		save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE);
549 		cb += GRU_HANDLE_STRIDE;
550 	}
551 	memcpy(save, gseg + GRU_DS_BASE, length);
552 }
553 
gru_unload_context(struct gru_thread_state * gts,int savestate)554 void gru_unload_context(struct gru_thread_state *gts, int savestate)
555 {
556 	struct gru_state *gru = gts->ts_gru;
557 	struct gru_context_configuration_handle *cch;
558 	int ctxnum = gts->ts_ctxnum;
559 
560 	if (!is_kernel_context(gts))
561 		zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE);
562 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
563 
564 	gru_dbg(grudev, "gts %p, cbrmap 0x%lx, dsrmap 0x%lx\n",
565 		gts, gts->ts_cbr_map, gts->ts_dsr_map);
566 	lock_cch_handle(cch);
567 	if (cch_interrupt_sync(cch))
568 		BUG();
569 
570 	if (!is_kernel_context(gts))
571 		gru_unload_mm_tracker(gru, gts);
572 	if (savestate) {
573 		gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr,
574 					ctxnum, gts->ts_cbr_map,
575 					gts->ts_dsr_map);
576 		gts->ts_data_valid = 1;
577 	}
578 
579 	if (cch_deallocate(cch))
580 		BUG();
581 	unlock_cch_handle(cch);
582 
583 	gru_free_gru_context(gts);
584 }
585 
586 /*
587  * Load a GRU context by copying it from the thread data structure in memory
588  * to the GRU.
589  */
gru_load_context(struct gru_thread_state * gts)590 void gru_load_context(struct gru_thread_state *gts)
591 {
592 	struct gru_state *gru = gts->ts_gru;
593 	struct gru_context_configuration_handle *cch;
594 	int i, err, asid, ctxnum = gts->ts_ctxnum;
595 
596 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
597 	lock_cch_handle(cch);
598 	cch->tfm_fault_bit_enable =
599 	    (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
600 	     || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
601 	cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
602 	if (cch->tlb_int_enable) {
603 		gts->ts_tlb_int_select = gru_cpu_fault_map_id();
604 		cch->tlb_int_select = gts->ts_tlb_int_select;
605 	}
606 	if (gts->ts_cch_req_slice >= 0) {
607 		cch->req_slice_set_enable = 1;
608 		cch->req_slice = gts->ts_cch_req_slice;
609 	} else {
610 		cch->req_slice_set_enable =0;
611 	}
612 	cch->tfm_done_bit_enable = 0;
613 	cch->dsr_allocation_map = gts->ts_dsr_map;
614 	cch->cbr_allocation_map = gts->ts_cbr_map;
615 
616 	if (is_kernel_context(gts)) {
617 		cch->unmap_enable = 1;
618 		cch->tfm_done_bit_enable = 1;
619 		cch->cb_int_enable = 1;
620 		cch->tlb_int_select = 0;	/* For now, ints go to cpu 0 */
621 	} else {
622 		cch->unmap_enable = 0;
623 		cch->tfm_done_bit_enable = 0;
624 		cch->cb_int_enable = 0;
625 		asid = gru_load_mm_tracker(gru, gts);
626 		for (i = 0; i < 8; i++) {
627 			cch->asid[i] = asid + i;
628 			cch->sizeavail[i] = gts->ts_sizeavail;
629 		}
630 	}
631 
632 	err = cch_allocate(cch);
633 	if (err) {
634 		gru_dbg(grudev,
635 			"err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n",
636 			err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map);
637 		BUG();
638 	}
639 
640 	gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum,
641 			gts->ts_cbr_map, gts->ts_dsr_map, gts->ts_data_valid);
642 
643 	if (cch_start(cch))
644 		BUG();
645 	unlock_cch_handle(cch);
646 
647 	gru_dbg(grudev, "gid %d, gts %p, cbrmap 0x%lx, dsrmap 0x%lx, tie %d, tis %d\n",
648 		gts->ts_gru->gs_gid, gts, gts->ts_cbr_map, gts->ts_dsr_map,
649 		(gts->ts_user_options == GRU_OPT_MISS_FMM_INTR), gts->ts_tlb_int_select);
650 }
651 
652 /*
653  * Update fields in an active CCH:
654  * 	- retarget interrupts on local blade
655  * 	- update sizeavail mask
656  */
gru_update_cch(struct gru_thread_state * gts)657 int gru_update_cch(struct gru_thread_state *gts)
658 {
659 	struct gru_context_configuration_handle *cch;
660 	struct gru_state *gru = gts->ts_gru;
661 	int i, ctxnum = gts->ts_ctxnum, ret = 0;
662 
663 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
664 
665 	lock_cch_handle(cch);
666 	if (cch->state == CCHSTATE_ACTIVE) {
667 		if (gru->gs_gts[gts->ts_ctxnum] != gts)
668 			goto exit;
669 		if (cch_interrupt(cch))
670 			BUG();
671 		for (i = 0; i < 8; i++)
672 			cch->sizeavail[i] = gts->ts_sizeavail;
673 		gts->ts_tlb_int_select = gru_cpu_fault_map_id();
674 		cch->tlb_int_select = gru_cpu_fault_map_id();
675 		cch->tfm_fault_bit_enable =
676 		  (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
677 		    || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
678 		if (cch_start(cch))
679 			BUG();
680 		ret = 1;
681 	}
682 exit:
683 	unlock_cch_handle(cch);
684 	return ret;
685 }
686 
687 /*
688  * Update CCH tlb interrupt select. Required when all the following is true:
689  * 	- task's GRU context is loaded into a GRU
690  * 	- task is using interrupt notification for TLB faults
691  * 	- task has migrated to a different cpu on the same blade where
692  * 	  it was previously running.
693  */
gru_retarget_intr(struct gru_thread_state * gts)694 static int gru_retarget_intr(struct gru_thread_state *gts)
695 {
696 	if (gts->ts_tlb_int_select < 0
697 	    || gts->ts_tlb_int_select == gru_cpu_fault_map_id())
698 		return 0;
699 
700 	gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select,
701 		gru_cpu_fault_map_id());
702 	return gru_update_cch(gts);
703 }
704 
705 /*
706  * Check if a GRU context is allowed to use a specific chiplet. By default
707  * a context is assigned to any blade-local chiplet. However, users can
708  * override this.
709  * 	Returns 1 if assignment allowed, 0 otherwise
710  */
gru_check_chiplet_assignment(struct gru_state * gru,struct gru_thread_state * gts)711 static int gru_check_chiplet_assignment(struct gru_state *gru,
712 					struct gru_thread_state *gts)
713 {
714 	int blade_id;
715 	int chiplet_id;
716 
717 	blade_id = gts->ts_user_blade_id;
718 	if (blade_id < 0)
719 		blade_id = uv_numa_blade_id();
720 
721 	chiplet_id = gts->ts_user_chiplet_id;
722 	return gru->gs_blade_id == blade_id &&
723 		(chiplet_id < 0 || chiplet_id == gru->gs_chiplet_id);
724 }
725 
726 /*
727  * Unload the gru context if it is not assigned to the correct blade or
728  * chiplet. Misassignment can occur if the process migrates to a different
729  * blade or if the user changes the selected blade/chiplet.
730  */
gru_check_context_placement(struct gru_thread_state * gts)731 void gru_check_context_placement(struct gru_thread_state *gts)
732 {
733 	struct gru_state *gru;
734 
735 	/*
736 	 * If the current task is the context owner, verify that the
737 	 * context is correctly placed. This test is skipped for non-owner
738 	 * references. Pthread apps use non-owner references to the CBRs.
739 	 */
740 	gru = gts->ts_gru;
741 	if (!gru || gts->ts_tgid_owner != current->tgid)
742 		return;
743 
744 	if (!gru_check_chiplet_assignment(gru, gts)) {
745 		STAT(check_context_unload);
746 		gru_unload_context(gts, 1);
747 	} else if (gru_retarget_intr(gts)) {
748 		STAT(check_context_retarget_intr);
749 	}
750 }
751 
752 
753 /*
754  * Insufficient GRU resources available on the local blade. Steal a context from
755  * a process. This is a hack until a _real_ resource scheduler is written....
756  */
757 #define next_ctxnum(n)	((n) <  GRU_NUM_CCH - 2 ? (n) + 1 : 0)
758 #define next_gru(b, g)	(((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ?  \
759 				 ((g)+1) : &(b)->bs_grus[0])
760 
is_gts_stealable(struct gru_thread_state * gts,struct gru_blade_state * bs)761 static int is_gts_stealable(struct gru_thread_state *gts,
762 		struct gru_blade_state *bs)
763 {
764 	if (is_kernel_context(gts))
765 		return down_write_trylock(&bs->bs_kgts_sema);
766 	else
767 		return mutex_trylock(&gts->ts_ctxlock);
768 }
769 
gts_stolen(struct gru_thread_state * gts,struct gru_blade_state * bs)770 static void gts_stolen(struct gru_thread_state *gts,
771 		struct gru_blade_state *bs)
772 {
773 	if (is_kernel_context(gts)) {
774 		up_write(&bs->bs_kgts_sema);
775 		STAT(steal_kernel_context);
776 	} else {
777 		mutex_unlock(&gts->ts_ctxlock);
778 		STAT(steal_user_context);
779 	}
780 }
781 
gru_steal_context(struct gru_thread_state * gts)782 void gru_steal_context(struct gru_thread_state *gts)
783 {
784 	struct gru_blade_state *blade;
785 	struct gru_state *gru, *gru0;
786 	struct gru_thread_state *ngts = NULL;
787 	int ctxnum, ctxnum0, flag = 0, cbr, dsr;
788 	int blade_id;
789 
790 	blade_id = gts->ts_user_blade_id;
791 	if (blade_id < 0)
792 		blade_id = uv_numa_blade_id();
793 	cbr = gts->ts_cbr_au_count;
794 	dsr = gts->ts_dsr_au_count;
795 
796 	blade = gru_base[blade_id];
797 	spin_lock(&blade->bs_lock);
798 
799 	ctxnum = next_ctxnum(blade->bs_lru_ctxnum);
800 	gru = blade->bs_lru_gru;
801 	if (ctxnum == 0)
802 		gru = next_gru(blade, gru);
803 	blade->bs_lru_gru = gru;
804 	blade->bs_lru_ctxnum = ctxnum;
805 	ctxnum0 = ctxnum;
806 	gru0 = gru;
807 	while (1) {
808 		if (gru_check_chiplet_assignment(gru, gts)) {
809 			if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH))
810 				break;
811 			spin_lock(&gru->gs_lock);
812 			for (; ctxnum < GRU_NUM_CCH; ctxnum++) {
813 				if (flag && gru == gru0 && ctxnum == ctxnum0)
814 					break;
815 				ngts = gru->gs_gts[ctxnum];
816 				/*
817 			 	* We are grabbing locks out of order, so trylock is
818 			 	* needed. GTSs are usually not locked, so the odds of
819 			 	* success are high. If trylock fails, try to steal a
820 			 	* different GSEG.
821 			 	*/
822 				if (ngts && is_gts_stealable(ngts, blade))
823 					break;
824 				ngts = NULL;
825 			}
826 			spin_unlock(&gru->gs_lock);
827 			if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0))
828 				break;
829 		}
830 		if (flag && gru == gru0)
831 			break;
832 		flag = 1;
833 		ctxnum = 0;
834 		gru = next_gru(blade, gru);
835 	}
836 	spin_unlock(&blade->bs_lock);
837 
838 	if (ngts) {
839 		gts->ustats.context_stolen++;
840 		ngts->ts_steal_jiffies = jiffies;
841 		gru_unload_context(ngts, is_kernel_context(ngts) ? 0 : 1);
842 		gts_stolen(ngts, blade);
843 	} else {
844 		STAT(steal_context_failed);
845 	}
846 	gru_dbg(grudev,
847 		"stole gid %d, ctxnum %d from gts %p. Need cb %d, ds %d;"
848 		" avail cb %ld, ds %ld\n",
849 		gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map),
850 		hweight64(gru->gs_dsr_map));
851 }
852 
853 /*
854  * Assign a gru context.
855  */
gru_assign_context_number(struct gru_state * gru)856 static int gru_assign_context_number(struct gru_state *gru)
857 {
858 	int ctxnum;
859 
860 	ctxnum = find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH);
861 	__set_bit(ctxnum, &gru->gs_context_map);
862 	return ctxnum;
863 }
864 
865 /*
866  * Scan the GRUs on the local blade & assign a GRU context.
867  */
gru_assign_gru_context(struct gru_thread_state * gts)868 struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts)
869 {
870 	struct gru_state *gru, *grux;
871 	int i, max_active_contexts;
872 	int blade_id = gts->ts_user_blade_id;
873 
874 	if (blade_id < 0)
875 		blade_id = uv_numa_blade_id();
876 again:
877 	gru = NULL;
878 	max_active_contexts = GRU_NUM_CCH;
879 	for_each_gru_on_blade(grux, blade_id, i) {
880 		if (!gru_check_chiplet_assignment(grux, gts))
881 			continue;
882 		if (check_gru_resources(grux, gts->ts_cbr_au_count,
883 					gts->ts_dsr_au_count,
884 					max_active_contexts)) {
885 			gru = grux;
886 			max_active_contexts = grux->gs_active_contexts;
887 			if (max_active_contexts == 0)
888 				break;
889 		}
890 	}
891 
892 	if (gru) {
893 		spin_lock(&gru->gs_lock);
894 		if (!check_gru_resources(gru, gts->ts_cbr_au_count,
895 					 gts->ts_dsr_au_count, GRU_NUM_CCH)) {
896 			spin_unlock(&gru->gs_lock);
897 			goto again;
898 		}
899 		reserve_gru_resources(gru, gts);
900 		gts->ts_gru = gru;
901 		gts->ts_blade = gru->gs_blade_id;
902 		gts->ts_ctxnum = gru_assign_context_number(gru);
903 		atomic_inc(&gts->ts_refcnt);
904 		gru->gs_gts[gts->ts_ctxnum] = gts;
905 		spin_unlock(&gru->gs_lock);
906 
907 		STAT(assign_context);
908 		gru_dbg(grudev,
909 			"gseg %p, gts %p, gid %d, ctx %d, cbr %d, dsr %d\n",
910 			gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts,
911 			gts->ts_gru->gs_gid, gts->ts_ctxnum,
912 			gts->ts_cbr_au_count, gts->ts_dsr_au_count);
913 	} else {
914 		gru_dbg(grudev, "failed to allocate a GTS %s\n", "");
915 		STAT(assign_context_failed);
916 	}
917 
918 	return gru;
919 }
920 
921 /*
922  * gru_nopage
923  *
924  * Map the user's GRU segment
925  *
926  * 	Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries.
927  */
gru_fault(struct vm_area_struct * vma,struct vm_fault * vmf)928 int gru_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
929 {
930 	struct gru_thread_state *gts;
931 	unsigned long paddr, vaddr;
932 
933 	vaddr = (unsigned long)vmf->virtual_address;
934 	gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n",
935 		vma, vaddr, GSEG_BASE(vaddr));
936 	STAT(nopfn);
937 
938 	/* The following check ensures vaddr is a valid address in the VMA */
939 	gts = gru_find_thread_state(vma, TSID(vaddr, vma));
940 	if (!gts)
941 		return VM_FAULT_SIGBUS;
942 
943 again:
944 	mutex_lock(&gts->ts_ctxlock);
945 	preempt_disable();
946 
947 	gru_check_context_placement(gts);
948 
949 	if (!gts->ts_gru) {
950 		STAT(load_user_context);
951 		if (!gru_assign_gru_context(gts)) {
952 			preempt_enable();
953 			mutex_unlock(&gts->ts_ctxlock);
954 			set_current_state(TASK_INTERRUPTIBLE);
955 			schedule_timeout(GRU_ASSIGN_DELAY);  /* true hack ZZZ */
956 			if (gts->ts_steal_jiffies + GRU_STEAL_DELAY < jiffies)
957 				gru_steal_context(gts);
958 			goto again;
959 		}
960 		gru_load_context(gts);
961 		paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum);
962 		remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1),
963 				paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE,
964 				vma->vm_page_prot);
965 	}
966 
967 	preempt_enable();
968 	mutex_unlock(&gts->ts_ctxlock);
969 
970 	return VM_FAULT_NOPAGE;
971 }
972 
973