1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15
16 /*
17 * Capability management
18 *
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
24 *
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
27 *
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
32 *
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
35 *
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
40 */
41
42
43 /*
44 * Generate readable cap strings for debugging output.
45 */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50
gcap_string(char * s,int c)51 static char *gcap_string(char *s, int c)
52 {
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
68 }
69
ceph_cap_string(int caps)70 const char *ceph_cap_string(int caps)
71 {
72 int i;
73 char *s;
74 int c;
75
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
81
82 s = cap_str[i];
83
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
86
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
91 }
92
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
97 }
98
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
103 }
104
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
109 }
110
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
115 }
116
ceph_caps_init(struct ceph_mds_client * mdsc)117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
121 }
122
ceph_caps_finalize(struct ceph_mds_client * mdsc)123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 struct ceph_cap *cap;
126
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
133 }
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
140 }
141
ceph_adjust_min_caps(struct ceph_mds_client * mdsc,int delta)142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
148 }
149
ceph_reserve_caps(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx,int need)150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
152 {
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
158 int ret = 0;
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap) {
178 ret = -ENOMEM;
179 goto out_alloc_count;
180 }
181 list_add(&cap->caps_item, &newcaps);
182 alloc++;
183 }
184 BUG_ON(have + alloc != need);
185
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
190
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
195
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 return 0;
201
202 out_alloc_count:
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 ctx, need, have);
206 return ret;
207 }
208
ceph_unreserve_caps(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx)209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 struct ceph_cap_reservation *ctx)
211 {
212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 if (ctx->count) {
214 spin_lock(&mdsc->caps_list_lock);
215 BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 mdsc->caps_reserve_count -= ctx->count;
217 mdsc->caps_avail_count += ctx->count;
218 ctx->count = 0;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc->caps_total_count, mdsc->caps_use_count,
221 mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 mdsc->caps_reserve_count +
224 mdsc->caps_avail_count);
225 spin_unlock(&mdsc->caps_list_lock);
226 }
227 return 0;
228 }
229
get_cap(struct ceph_mds_client * mdsc,struct ceph_cap_reservation * ctx)230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 struct ceph_cap_reservation *ctx)
232 {
233 struct ceph_cap *cap = NULL;
234
235 /* temporary, until we do something about cap import/export */
236 if (!ctx) {
237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 if (cap) {
239 mdsc->caps_use_count++;
240 mdsc->caps_total_count++;
241 }
242 return cap;
243 }
244
245 spin_lock(&mdsc->caps_list_lock);
246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
248 mdsc->caps_reserve_count, mdsc->caps_avail_count);
249 BUG_ON(!ctx->count);
250 BUG_ON(ctx->count > mdsc->caps_reserve_count);
251 BUG_ON(list_empty(&mdsc->caps_list));
252
253 ctx->count--;
254 mdsc->caps_reserve_count--;
255 mdsc->caps_use_count++;
256
257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
258 list_del(&cap->caps_item);
259
260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
261 mdsc->caps_reserve_count + mdsc->caps_avail_count);
262 spin_unlock(&mdsc->caps_list_lock);
263 return cap;
264 }
265
ceph_put_cap(struct ceph_mds_client * mdsc,struct ceph_cap * cap)266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
267 {
268 spin_lock(&mdsc->caps_list_lock);
269 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
270 cap, mdsc->caps_total_count, mdsc->caps_use_count,
271 mdsc->caps_reserve_count, mdsc->caps_avail_count);
272 mdsc->caps_use_count--;
273 /*
274 * Keep some preallocated caps around (ceph_min_count), to
275 * avoid lots of free/alloc churn.
276 */
277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
278 mdsc->caps_min_count) {
279 mdsc->caps_total_count--;
280 kmem_cache_free(ceph_cap_cachep, cap);
281 } else {
282 mdsc->caps_avail_count++;
283 list_add(&cap->caps_item, &mdsc->caps_list);
284 }
285
286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
287 mdsc->caps_reserve_count + mdsc->caps_avail_count);
288 spin_unlock(&mdsc->caps_list_lock);
289 }
290
ceph_reservation_status(struct ceph_fs_client * fsc,int * total,int * avail,int * used,int * reserved,int * min)291 void ceph_reservation_status(struct ceph_fs_client *fsc,
292 int *total, int *avail, int *used, int *reserved,
293 int *min)
294 {
295 struct ceph_mds_client *mdsc = fsc->mdsc;
296
297 if (total)
298 *total = mdsc->caps_total_count;
299 if (avail)
300 *avail = mdsc->caps_avail_count;
301 if (used)
302 *used = mdsc->caps_use_count;
303 if (reserved)
304 *reserved = mdsc->caps_reserve_count;
305 if (min)
306 *min = mdsc->caps_min_count;
307 }
308
309 /*
310 * Find ceph_cap for given mds, if any.
311 *
312 * Called with i_lock held.
313 */
__get_cap_for_mds(struct ceph_inode_info * ci,int mds)314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316 struct ceph_cap *cap;
317 struct rb_node *n = ci->i_caps.rb_node;
318
319 while (n) {
320 cap = rb_entry(n, struct ceph_cap, ci_node);
321 if (mds < cap->mds)
322 n = n->rb_left;
323 else if (mds > cap->mds)
324 n = n->rb_right;
325 else
326 return cap;
327 }
328 return NULL;
329 }
330
ceph_get_cap_for_mds(struct ceph_inode_info * ci,int mds)331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
332 {
333 struct ceph_cap *cap;
334
335 spin_lock(&ci->vfs_inode.i_lock);
336 cap = __get_cap_for_mds(ci, mds);
337 spin_unlock(&ci->vfs_inode.i_lock);
338 return cap;
339 }
340
341 /*
342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
343 */
__ceph_get_cap_mds(struct ceph_inode_info * ci)344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
345 {
346 struct ceph_cap *cap;
347 int mds = -1;
348 struct rb_node *p;
349
350 /* prefer mds with WR|BUFFER|EXCL caps */
351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
352 cap = rb_entry(p, struct ceph_cap, ci_node);
353 mds = cap->mds;
354 if (cap->issued & (CEPH_CAP_FILE_WR |
355 CEPH_CAP_FILE_BUFFER |
356 CEPH_CAP_FILE_EXCL))
357 break;
358 }
359 return mds;
360 }
361
ceph_get_cap_mds(struct inode * inode)362 int ceph_get_cap_mds(struct inode *inode)
363 {
364 int mds;
365 spin_lock(&inode->i_lock);
366 mds = __ceph_get_cap_mds(ceph_inode(inode));
367 spin_unlock(&inode->i_lock);
368 return mds;
369 }
370
371 /*
372 * Called under i_lock.
373 */
__insert_cap_node(struct ceph_inode_info * ci,struct ceph_cap * new)374 static void __insert_cap_node(struct ceph_inode_info *ci,
375 struct ceph_cap *new)
376 {
377 struct rb_node **p = &ci->i_caps.rb_node;
378 struct rb_node *parent = NULL;
379 struct ceph_cap *cap = NULL;
380
381 while (*p) {
382 parent = *p;
383 cap = rb_entry(parent, struct ceph_cap, ci_node);
384 if (new->mds < cap->mds)
385 p = &(*p)->rb_left;
386 else if (new->mds > cap->mds)
387 p = &(*p)->rb_right;
388 else
389 BUG();
390 }
391
392 rb_link_node(&new->ci_node, parent, p);
393 rb_insert_color(&new->ci_node, &ci->i_caps);
394 }
395
396 /*
397 * (re)set cap hold timeouts, which control the delayed release
398 * of unused caps back to the MDS. Should be called on cap use.
399 */
__cap_set_timeouts(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)400 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
401 struct ceph_inode_info *ci)
402 {
403 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
404
405 ci->i_hold_caps_min = round_jiffies(jiffies +
406 ma->caps_wanted_delay_min * HZ);
407 ci->i_hold_caps_max = round_jiffies(jiffies +
408 ma->caps_wanted_delay_max * HZ);
409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
410 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
411 }
412
413 /*
414 * (Re)queue cap at the end of the delayed cap release list.
415 *
416 * If I_FLUSH is set, leave the inode at the front of the list.
417 *
418 * Caller holds i_lock
419 * -> we take mdsc->cap_delay_lock
420 */
__cap_delay_requeue(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)421 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
422 struct ceph_inode_info *ci)
423 {
424 __cap_set_timeouts(mdsc, ci);
425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
426 ci->i_ceph_flags, ci->i_hold_caps_max);
427 if (!mdsc->stopping) {
428 spin_lock(&mdsc->cap_delay_lock);
429 if (!list_empty(&ci->i_cap_delay_list)) {
430 if (ci->i_ceph_flags & CEPH_I_FLUSH)
431 goto no_change;
432 list_del_init(&ci->i_cap_delay_list);
433 }
434 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
435 no_change:
436 spin_unlock(&mdsc->cap_delay_lock);
437 }
438 }
439
440 /*
441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
442 * indicating we should send a cap message to flush dirty metadata
443 * asap, and move to the front of the delayed cap list.
444 */
__cap_delay_requeue_front(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)445 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
446 struct ceph_inode_info *ci)
447 {
448 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
449 spin_lock(&mdsc->cap_delay_lock);
450 ci->i_ceph_flags |= CEPH_I_FLUSH;
451 if (!list_empty(&ci->i_cap_delay_list))
452 list_del_init(&ci->i_cap_delay_list);
453 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
454 spin_unlock(&mdsc->cap_delay_lock);
455 }
456
457 /*
458 * Cancel delayed work on cap.
459 *
460 * Caller must hold i_lock.
461 */
__cap_delay_cancel(struct ceph_mds_client * mdsc,struct ceph_inode_info * ci)462 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
463 struct ceph_inode_info *ci)
464 {
465 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
466 if (list_empty(&ci->i_cap_delay_list))
467 return;
468 spin_lock(&mdsc->cap_delay_lock);
469 list_del_init(&ci->i_cap_delay_list);
470 spin_unlock(&mdsc->cap_delay_lock);
471 }
472
473 /*
474 * Common issue checks for add_cap, handle_cap_grant.
475 */
__check_cap_issue(struct ceph_inode_info * ci,struct ceph_cap * cap,unsigned issued)476 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
477 unsigned issued)
478 {
479 unsigned had = __ceph_caps_issued(ci, NULL);
480
481 /*
482 * Each time we receive FILE_CACHE anew, we increment
483 * i_rdcache_gen.
484 */
485 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
486 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
487 ci->i_rdcache_gen++;
488
489 /*
490 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
491 * don't know what happened to this directory while we didn't
492 * have the cap.
493 */
494 if ((issued & CEPH_CAP_FILE_SHARED) &&
495 (had & CEPH_CAP_FILE_SHARED) == 0) {
496 ci->i_shared_gen++;
497 if (S_ISDIR(ci->vfs_inode.i_mode)) {
498 dout(" marking %p NOT complete\n", &ci->vfs_inode);
499 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
500 }
501 }
502 }
503
504 /*
505 * Add a capability under the given MDS session.
506 *
507 * Caller should hold session snap_rwsem (read) and s_mutex.
508 *
509 * @fmode is the open file mode, if we are opening a file, otherwise
510 * it is < 0. (This is so we can atomically add the cap and add an
511 * open file reference to it.)
512 */
ceph_add_cap(struct inode * inode,struct ceph_mds_session * session,u64 cap_id,int fmode,unsigned issued,unsigned wanted,unsigned seq,unsigned mseq,u64 realmino,int flags,struct ceph_cap_reservation * caps_reservation)513 int ceph_add_cap(struct inode *inode,
514 struct ceph_mds_session *session, u64 cap_id,
515 int fmode, unsigned issued, unsigned wanted,
516 unsigned seq, unsigned mseq, u64 realmino, int flags,
517 struct ceph_cap_reservation *caps_reservation)
518 {
519 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
520 struct ceph_inode_info *ci = ceph_inode(inode);
521 struct ceph_cap *new_cap = NULL;
522 struct ceph_cap *cap;
523 int mds = session->s_mds;
524 int actual_wanted;
525
526 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
527 session->s_mds, cap_id, ceph_cap_string(issued), seq);
528
529 /*
530 * If we are opening the file, include file mode wanted bits
531 * in wanted.
532 */
533 if (fmode >= 0)
534 wanted |= ceph_caps_for_mode(fmode);
535
536 retry:
537 spin_lock(&inode->i_lock);
538 cap = __get_cap_for_mds(ci, mds);
539 if (!cap) {
540 if (new_cap) {
541 cap = new_cap;
542 new_cap = NULL;
543 } else {
544 spin_unlock(&inode->i_lock);
545 new_cap = get_cap(mdsc, caps_reservation);
546 if (new_cap == NULL)
547 return -ENOMEM;
548 goto retry;
549 }
550
551 cap->issued = 0;
552 cap->implemented = 0;
553 cap->mds = mds;
554 cap->mds_wanted = 0;
555
556 cap->ci = ci;
557 __insert_cap_node(ci, cap);
558
559 /* clear out old exporting info? (i.e. on cap import) */
560 if (ci->i_cap_exporting_mds == mds) {
561 ci->i_cap_exporting_issued = 0;
562 ci->i_cap_exporting_mseq = 0;
563 ci->i_cap_exporting_mds = -1;
564 }
565
566 /* add to session cap list */
567 cap->session = session;
568 spin_lock(&session->s_cap_lock);
569 list_add_tail(&cap->session_caps, &session->s_caps);
570 session->s_nr_caps++;
571 spin_unlock(&session->s_cap_lock);
572 }
573
574 if (!ci->i_snap_realm) {
575 /*
576 * add this inode to the appropriate snap realm
577 */
578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
579 realmino);
580 if (realm) {
581 ceph_get_snap_realm(mdsc, realm);
582 spin_lock(&realm->inodes_with_caps_lock);
583 ci->i_snap_realm = realm;
584 list_add(&ci->i_snap_realm_item,
585 &realm->inodes_with_caps);
586 spin_unlock(&realm->inodes_with_caps_lock);
587 } else {
588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589 realmino);
590 WARN_ON(!realm);
591 }
592 }
593
594 __check_cap_issue(ci, cap, issued);
595
596 /*
597 * If we are issued caps we don't want, or the mds' wanted
598 * value appears to be off, queue a check so we'll release
599 * later and/or update the mds wanted value.
600 */
601 actual_wanted = __ceph_caps_wanted(ci);
602 if ((wanted & ~actual_wanted) ||
603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 ceph_cap_string(issued), ceph_cap_string(wanted),
606 ceph_cap_string(actual_wanted));
607 __cap_delay_requeue(mdsc, ci);
608 }
609
610 if (flags & CEPH_CAP_FLAG_AUTH)
611 ci->i_auth_cap = cap;
612 else if (ci->i_auth_cap == cap)
613 ci->i_auth_cap = NULL;
614
615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
617 ceph_cap_string(issued|cap->issued), seq, mds);
618 cap->cap_id = cap_id;
619 cap->issued = issued;
620 cap->implemented |= issued;
621 cap->mds_wanted |= wanted;
622 cap->seq = seq;
623 cap->issue_seq = seq;
624 cap->mseq = mseq;
625 cap->cap_gen = session->s_cap_gen;
626
627 if (fmode >= 0)
628 __ceph_get_fmode(ci, fmode);
629 spin_unlock(&inode->i_lock);
630 wake_up_all(&ci->i_cap_wq);
631 return 0;
632 }
633
634 /*
635 * Return true if cap has not timed out and belongs to the current
636 * generation of the MDS session (i.e. has not gone 'stale' due to
637 * us losing touch with the mds).
638 */
__cap_is_valid(struct ceph_cap * cap)639 static int __cap_is_valid(struct ceph_cap *cap)
640 {
641 unsigned long ttl;
642 u32 gen;
643
644 spin_lock(&cap->session->s_cap_lock);
645 gen = cap->session->s_cap_gen;
646 ttl = cap->session->s_cap_ttl;
647 spin_unlock(&cap->session->s_cap_lock);
648
649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
650 dout("__cap_is_valid %p cap %p issued %s "
651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
653 return 0;
654 }
655
656 return 1;
657 }
658
659 /*
660 * Return set of valid cap bits issued to us. Note that caps time
661 * out, and may be invalidated in bulk if the client session times out
662 * and session->s_cap_gen is bumped.
663 */
__ceph_caps_issued(struct ceph_inode_info * ci,int * implemented)664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
665 {
666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
667 struct ceph_cap *cap;
668 struct rb_node *p;
669
670 if (implemented)
671 *implemented = 0;
672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
673 cap = rb_entry(p, struct ceph_cap, ci_node);
674 if (!__cap_is_valid(cap))
675 continue;
676 dout("__ceph_caps_issued %p cap %p issued %s\n",
677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
678 have |= cap->issued;
679 if (implemented)
680 *implemented |= cap->implemented;
681 }
682 return have;
683 }
684
685 /*
686 * Get cap bits issued by caps other than @ocap
687 */
__ceph_caps_issued_other(struct ceph_inode_info * ci,struct ceph_cap * ocap)688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
689 {
690 int have = ci->i_snap_caps;
691 struct ceph_cap *cap;
692 struct rb_node *p;
693
694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695 cap = rb_entry(p, struct ceph_cap, ci_node);
696 if (cap == ocap)
697 continue;
698 if (!__cap_is_valid(cap))
699 continue;
700 have |= cap->issued;
701 }
702 return have;
703 }
704
705 /*
706 * Move a cap to the end of the LRU (oldest caps at list head, newest
707 * at list tail).
708 */
__touch_cap(struct ceph_cap * cap)709 static void __touch_cap(struct ceph_cap *cap)
710 {
711 struct ceph_mds_session *s = cap->session;
712
713 spin_lock(&s->s_cap_lock);
714 if (s->s_cap_iterator == NULL) {
715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
716 s->s_mds);
717 list_move_tail(&cap->session_caps, &s->s_caps);
718 } else {
719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720 &cap->ci->vfs_inode, cap, s->s_mds);
721 }
722 spin_unlock(&s->s_cap_lock);
723 }
724
725 /*
726 * Check if we hold the given mask. If so, move the cap(s) to the
727 * front of their respective LRUs. (This is the preferred way for
728 * callers to check for caps they want.)
729 */
__ceph_caps_issued_mask(struct ceph_inode_info * ci,int mask,int touch)730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
731 {
732 struct ceph_cap *cap;
733 struct rb_node *p;
734 int have = ci->i_snap_caps;
735
736 if ((have & mask) == mask) {
737 dout("__ceph_caps_issued_mask %p snap issued %s"
738 " (mask %s)\n", &ci->vfs_inode,
739 ceph_cap_string(have),
740 ceph_cap_string(mask));
741 return 1;
742 }
743
744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
745 cap = rb_entry(p, struct ceph_cap, ci_node);
746 if (!__cap_is_valid(cap))
747 continue;
748 if ((cap->issued & mask) == mask) {
749 dout("__ceph_caps_issued_mask %p cap %p issued %s"
750 " (mask %s)\n", &ci->vfs_inode, cap,
751 ceph_cap_string(cap->issued),
752 ceph_cap_string(mask));
753 if (touch)
754 __touch_cap(cap);
755 return 1;
756 }
757
758 /* does a combination of caps satisfy mask? */
759 have |= cap->issued;
760 if ((have & mask) == mask) {
761 dout("__ceph_caps_issued_mask %p combo issued %s"
762 " (mask %s)\n", &ci->vfs_inode,
763 ceph_cap_string(cap->issued),
764 ceph_cap_string(mask));
765 if (touch) {
766 struct rb_node *q;
767
768 /* touch this + preceding caps */
769 __touch_cap(cap);
770 for (q = rb_first(&ci->i_caps); q != p;
771 q = rb_next(q)) {
772 cap = rb_entry(q, struct ceph_cap,
773 ci_node);
774 if (!__cap_is_valid(cap))
775 continue;
776 __touch_cap(cap);
777 }
778 }
779 return 1;
780 }
781 }
782
783 return 0;
784 }
785
786 /*
787 * Return true if mask caps are currently being revoked by an MDS.
788 */
ceph_caps_revoking(struct ceph_inode_info * ci,int mask)789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
790 {
791 struct inode *inode = &ci->vfs_inode;
792 struct ceph_cap *cap;
793 struct rb_node *p;
794 int ret = 0;
795
796 spin_lock(&inode->i_lock);
797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
798 cap = rb_entry(p, struct ceph_cap, ci_node);
799 if (__cap_is_valid(cap) &&
800 (cap->implemented & ~cap->issued & mask)) {
801 ret = 1;
802 break;
803 }
804 }
805 spin_unlock(&inode->i_lock);
806 dout("ceph_caps_revoking %p %s = %d\n", inode,
807 ceph_cap_string(mask), ret);
808 return ret;
809 }
810
__ceph_caps_used(struct ceph_inode_info * ci)811 int __ceph_caps_used(struct ceph_inode_info *ci)
812 {
813 int used = 0;
814 if (ci->i_pin_ref)
815 used |= CEPH_CAP_PIN;
816 if (ci->i_rd_ref)
817 used |= CEPH_CAP_FILE_RD;
818 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
819 used |= CEPH_CAP_FILE_CACHE;
820 if (ci->i_wr_ref)
821 used |= CEPH_CAP_FILE_WR;
822 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
823 used |= CEPH_CAP_FILE_BUFFER;
824 return used;
825 }
826
827 /*
828 * wanted, by virtue of open file modes
829 */
__ceph_caps_file_wanted(struct ceph_inode_info * ci)830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
831 {
832 int want = 0;
833 int mode;
834 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
835 if (ci->i_nr_by_mode[mode])
836 want |= ceph_caps_for_mode(mode);
837 return want;
838 }
839
840 /*
841 * Return caps we have registered with the MDS(s) as 'wanted'.
842 */
__ceph_caps_mds_wanted(struct ceph_inode_info * ci)843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
844 {
845 struct ceph_cap *cap;
846 struct rb_node *p;
847 int mds_wanted = 0;
848
849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
850 cap = rb_entry(p, struct ceph_cap, ci_node);
851 if (!__cap_is_valid(cap))
852 continue;
853 mds_wanted |= cap->mds_wanted;
854 }
855 return mds_wanted;
856 }
857
858 /*
859 * called under i_lock
860 */
__ceph_is_any_caps(struct ceph_inode_info * ci)861 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
862 {
863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
864 }
865
866 /*
867 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
868 *
869 * caller should hold i_lock.
870 * caller will not hold session s_mutex if called from destroy_inode.
871 */
__ceph_remove_cap(struct ceph_cap * cap)872 void __ceph_remove_cap(struct ceph_cap *cap)
873 {
874 struct ceph_mds_session *session = cap->session;
875 struct ceph_inode_info *ci = cap->ci;
876 struct ceph_mds_client *mdsc =
877 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
878 int removed = 0;
879
880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
881
882 /* remove from session list */
883 spin_lock(&session->s_cap_lock);
884 if (session->s_cap_iterator == cap) {
885 /* not yet, we are iterating over this very cap */
886 dout("__ceph_remove_cap delaying %p removal from session %p\n",
887 cap, cap->session);
888 } else {
889 list_del_init(&cap->session_caps);
890 session->s_nr_caps--;
891 cap->session = NULL;
892 removed = 1;
893 }
894 /* protect backpointer with s_cap_lock: see iterate_session_caps */
895 cap->ci = NULL;
896 spin_unlock(&session->s_cap_lock);
897
898 /* remove from inode list */
899 rb_erase(&cap->ci_node, &ci->i_caps);
900 if (ci->i_auth_cap == cap)
901 ci->i_auth_cap = NULL;
902
903 if (removed)
904 ceph_put_cap(mdsc, cap);
905
906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
907 struct ceph_snap_realm *realm = ci->i_snap_realm;
908 spin_lock(&realm->inodes_with_caps_lock);
909 list_del_init(&ci->i_snap_realm_item);
910 ci->i_snap_realm_counter++;
911 ci->i_snap_realm = NULL;
912 spin_unlock(&realm->inodes_with_caps_lock);
913 ceph_put_snap_realm(mdsc, realm);
914 }
915 if (!__ceph_is_any_real_caps(ci))
916 __cap_delay_cancel(mdsc, ci);
917 }
918
919 /*
920 * Build and send a cap message to the given MDS.
921 *
922 * Caller should be holding s_mutex.
923 */
send_cap_msg(struct ceph_mds_session * session,u64 ino,u64 cid,int op,int caps,int wanted,int dirty,u32 seq,u64 flush_tid,u32 issue_seq,u32 mseq,u64 size,u64 max_size,struct timespec * mtime,struct timespec * atime,u64 time_warp_seq,uid_t uid,gid_t gid,mode_t mode,u64 xattr_version,struct ceph_buffer * xattrs_buf,u64 follows)924 static int send_cap_msg(struct ceph_mds_session *session,
925 u64 ino, u64 cid, int op,
926 int caps, int wanted, int dirty,
927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
928 u64 size, u64 max_size,
929 struct timespec *mtime, struct timespec *atime,
930 u64 time_warp_seq,
931 uid_t uid, gid_t gid, mode_t mode,
932 u64 xattr_version,
933 struct ceph_buffer *xattrs_buf,
934 u64 follows)
935 {
936 struct ceph_mds_caps *fc;
937 struct ceph_msg *msg;
938
939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940 " seq %u/%u mseq %u follows %lld size %llu/%llu"
941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
943 ceph_cap_string(dirty),
944 seq, issue_seq, mseq, follows, size, max_size,
945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
946
947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
948 if (!msg)
949 return -ENOMEM;
950
951 msg->hdr.tid = cpu_to_le64(flush_tid);
952
953 fc = msg->front.iov_base;
954 memset(fc, 0, sizeof(*fc));
955
956 fc->cap_id = cpu_to_le64(cid);
957 fc->op = cpu_to_le32(op);
958 fc->seq = cpu_to_le32(seq);
959 fc->issue_seq = cpu_to_le32(issue_seq);
960 fc->migrate_seq = cpu_to_le32(mseq);
961 fc->caps = cpu_to_le32(caps);
962 fc->wanted = cpu_to_le32(wanted);
963 fc->dirty = cpu_to_le32(dirty);
964 fc->ino = cpu_to_le64(ino);
965 fc->snap_follows = cpu_to_le64(follows);
966
967 fc->size = cpu_to_le64(size);
968 fc->max_size = cpu_to_le64(max_size);
969 if (mtime)
970 ceph_encode_timespec(&fc->mtime, mtime);
971 if (atime)
972 ceph_encode_timespec(&fc->atime, atime);
973 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
974
975 fc->uid = cpu_to_le32(uid);
976 fc->gid = cpu_to_le32(gid);
977 fc->mode = cpu_to_le32(mode);
978
979 fc->xattr_version = cpu_to_le64(xattr_version);
980 if (xattrs_buf) {
981 msg->middle = ceph_buffer_get(xattrs_buf);
982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
984 }
985
986 ceph_con_send(&session->s_con, msg);
987 return 0;
988 }
989
__queue_cap_release(struct ceph_mds_session * session,u64 ino,u64 cap_id,u32 migrate_seq,u32 issue_seq)990 static void __queue_cap_release(struct ceph_mds_session *session,
991 u64 ino, u64 cap_id, u32 migrate_seq,
992 u32 issue_seq)
993 {
994 struct ceph_msg *msg;
995 struct ceph_mds_cap_release *head;
996 struct ceph_mds_cap_item *item;
997
998 spin_lock(&session->s_cap_lock);
999 BUG_ON(!session->s_num_cap_releases);
1000 msg = list_first_entry(&session->s_cap_releases,
1001 struct ceph_msg, list_head);
1002
1003 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004 ino, session->s_mds, msg, session->s_num_cap_releases);
1005
1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1007 head = msg->front.iov_base;
1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1009 item = msg->front.iov_base + msg->front.iov_len;
1010 item->ino = cpu_to_le64(ino);
1011 item->cap_id = cpu_to_le64(cap_id);
1012 item->migrate_seq = cpu_to_le32(migrate_seq);
1013 item->seq = cpu_to_le32(issue_seq);
1014
1015 session->s_num_cap_releases--;
1016
1017 msg->front.iov_len += sizeof(*item);
1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1019 dout(" release msg %p full\n", msg);
1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1021 } else {
1022 dout(" release msg %p at %d/%d (%d)\n", msg,
1023 (int)le32_to_cpu(head->num),
1024 (int)CEPH_CAPS_PER_RELEASE,
1025 (int)msg->front.iov_len);
1026 }
1027 spin_unlock(&session->s_cap_lock);
1028 }
1029
1030 /*
1031 * Queue cap releases when an inode is dropped from our cache. Since
1032 * inode is about to be destroyed, there is no need for i_lock.
1033 */
ceph_queue_caps_release(struct inode * inode)1034 void ceph_queue_caps_release(struct inode *inode)
1035 {
1036 struct ceph_inode_info *ci = ceph_inode(inode);
1037 struct rb_node *p;
1038
1039 p = rb_first(&ci->i_caps);
1040 while (p) {
1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1042 struct ceph_mds_session *session = cap->session;
1043
1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1045 cap->mseq, cap->issue_seq);
1046 p = rb_next(p);
1047 __ceph_remove_cap(cap);
1048 }
1049 }
1050
1051 /*
1052 * Send a cap msg on the given inode. Update our caps state, then
1053 * drop i_lock and send the message.
1054 *
1055 * Make note of max_size reported/requested from mds, revoked caps
1056 * that have now been implemented.
1057 *
1058 * Make half-hearted attempt ot to invalidate page cache if we are
1059 * dropping RDCACHE. Note that this will leave behind locked pages
1060 * that we'll then need to deal with elsewhere.
1061 *
1062 * Return non-zero if delayed release, or we experienced an error
1063 * such that the caller should requeue + retry later.
1064 *
1065 * called with i_lock, then drops it.
1066 * caller should hold snap_rwsem (read), s_mutex.
1067 */
__send_cap(struct ceph_mds_client * mdsc,struct ceph_cap * cap,int op,int used,int want,int retain,int flushing,unsigned * pflush_tid)1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1069 int op, int used, int want, int retain, int flushing,
1070 unsigned *pflush_tid)
1071 __releases(cap->ci->vfs_inode->i_lock)
1072 {
1073 struct ceph_inode_info *ci = cap->ci;
1074 struct inode *inode = &ci->vfs_inode;
1075 u64 cap_id = cap->cap_id;
1076 int held, revoking, dropping, keep;
1077 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1078 u64 size, max_size;
1079 struct timespec mtime, atime;
1080 int wake = 0;
1081 mode_t mode;
1082 uid_t uid;
1083 gid_t gid;
1084 struct ceph_mds_session *session;
1085 u64 xattr_version = 0;
1086 struct ceph_buffer *xattr_blob = NULL;
1087 int delayed = 0;
1088 u64 flush_tid = 0;
1089 int i;
1090 int ret;
1091
1092 held = cap->issued | cap->implemented;
1093 revoking = cap->implemented & ~cap->issued;
1094 retain &= ~revoking;
1095 dropping = cap->issued & ~retain;
1096
1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1098 inode, cap, cap->session,
1099 ceph_cap_string(held), ceph_cap_string(held & retain),
1100 ceph_cap_string(revoking));
1101 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1102
1103 session = cap->session;
1104
1105 /* don't release wanted unless we've waited a bit. */
1106 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1107 time_before(jiffies, ci->i_hold_caps_min)) {
1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1109 ceph_cap_string(cap->issued),
1110 ceph_cap_string(cap->issued & retain),
1111 ceph_cap_string(cap->mds_wanted),
1112 ceph_cap_string(want));
1113 want |= cap->mds_wanted;
1114 retain |= cap->issued;
1115 delayed = 1;
1116 }
1117 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1118
1119 cap->issued &= retain; /* drop bits we don't want */
1120 if (cap->implemented & ~cap->issued) {
1121 /*
1122 * Wake up any waiters on wanted -> needed transition.
1123 * This is due to the weird transition from buffered
1124 * to sync IO... we need to flush dirty pages _before_
1125 * allowing sync writes to avoid reordering.
1126 */
1127 wake = 1;
1128 }
1129 cap->implemented &= cap->issued | used;
1130 cap->mds_wanted = want;
1131
1132 if (flushing) {
1133 /*
1134 * assign a tid for flush operations so we can avoid
1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1136 * clean type races. track latest tid for every bit
1137 * so we can handle flush AxFw, flush Fw, and have the
1138 * first ack clean Ax.
1139 */
1140 flush_tid = ++ci->i_cap_flush_last_tid;
1141 if (pflush_tid)
1142 *pflush_tid = flush_tid;
1143 dout(" cap_flush_tid %d\n", (int)flush_tid);
1144 for (i = 0; i < CEPH_CAP_BITS; i++)
1145 if (flushing & (1 << i))
1146 ci->i_cap_flush_tid[i] = flush_tid;
1147
1148 follows = ci->i_head_snapc->seq;
1149 } else {
1150 follows = 0;
1151 }
1152
1153 keep = cap->implemented;
1154 seq = cap->seq;
1155 issue_seq = cap->issue_seq;
1156 mseq = cap->mseq;
1157 size = inode->i_size;
1158 ci->i_reported_size = size;
1159 max_size = ci->i_wanted_max_size;
1160 ci->i_requested_max_size = max_size;
1161 mtime = inode->i_mtime;
1162 atime = inode->i_atime;
1163 time_warp_seq = ci->i_time_warp_seq;
1164 uid = inode->i_uid;
1165 gid = inode->i_gid;
1166 mode = inode->i_mode;
1167
1168 if (flushing & CEPH_CAP_XATTR_EXCL) {
1169 __ceph_build_xattrs_blob(ci);
1170 xattr_blob = ci->i_xattrs.blob;
1171 xattr_version = ci->i_xattrs.version;
1172 }
1173
1174 spin_unlock(&inode->i_lock);
1175
1176 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1177 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1178 size, max_size, &mtime, &atime, time_warp_seq,
1179 uid, gid, mode, xattr_version, xattr_blob,
1180 follows);
1181 if (ret < 0) {
1182 dout("error sending cap msg, must requeue %p\n", inode);
1183 delayed = 1;
1184 }
1185
1186 if (wake)
1187 wake_up_all(&ci->i_cap_wq);
1188
1189 return delayed;
1190 }
1191
1192 /*
1193 * When a snapshot is taken, clients accumulate dirty metadata on
1194 * inodes with capabilities in ceph_cap_snaps to describe the file
1195 * state at the time the snapshot was taken. This must be flushed
1196 * asynchronously back to the MDS once sync writes complete and dirty
1197 * data is written out.
1198 *
1199 * Unless @again is true, skip cap_snaps that were already sent to
1200 * the MDS (i.e., during this session).
1201 *
1202 * Called under i_lock. Takes s_mutex as needed.
1203 */
__ceph_flush_snaps(struct ceph_inode_info * ci,struct ceph_mds_session ** psession,int again)1204 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1205 struct ceph_mds_session **psession,
1206 int again)
1207 __releases(ci->vfs_inode->i_lock)
1208 __acquires(ci->vfs_inode->i_lock)
1209 {
1210 struct inode *inode = &ci->vfs_inode;
1211 int mds;
1212 struct ceph_cap_snap *capsnap;
1213 u32 mseq;
1214 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1215 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1216 session->s_mutex */
1217 u64 next_follows = 0; /* keep track of how far we've gotten through the
1218 i_cap_snaps list, and skip these entries next time
1219 around to avoid an infinite loop */
1220
1221 if (psession)
1222 session = *psession;
1223
1224 dout("__flush_snaps %p\n", inode);
1225 retry:
1226 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1227 /* avoid an infiniute loop after retry */
1228 if (capsnap->follows < next_follows)
1229 continue;
1230 /*
1231 * we need to wait for sync writes to complete and for dirty
1232 * pages to be written out.
1233 */
1234 if (capsnap->dirty_pages || capsnap->writing)
1235 break;
1236
1237 /*
1238 * if cap writeback already occurred, we should have dropped
1239 * the capsnap in ceph_put_wrbuffer_cap_refs.
1240 */
1241 BUG_ON(capsnap->dirty == 0);
1242
1243 /* pick mds, take s_mutex */
1244 if (ci->i_auth_cap == NULL) {
1245 dout("no auth cap (migrating?), doing nothing\n");
1246 goto out;
1247 }
1248
1249 /* only flush each capsnap once */
1250 if (!again && !list_empty(&capsnap->flushing_item)) {
1251 dout("already flushed %p, skipping\n", capsnap);
1252 continue;
1253 }
1254
1255 mds = ci->i_auth_cap->session->s_mds;
1256 mseq = ci->i_auth_cap->mseq;
1257
1258 if (session && session->s_mds != mds) {
1259 dout("oops, wrong session %p mutex\n", session);
1260 mutex_unlock(&session->s_mutex);
1261 ceph_put_mds_session(session);
1262 session = NULL;
1263 }
1264 if (!session) {
1265 spin_unlock(&inode->i_lock);
1266 mutex_lock(&mdsc->mutex);
1267 session = __ceph_lookup_mds_session(mdsc, mds);
1268 mutex_unlock(&mdsc->mutex);
1269 if (session) {
1270 dout("inverting session/ino locks on %p\n",
1271 session);
1272 mutex_lock(&session->s_mutex);
1273 }
1274 /*
1275 * if session == NULL, we raced against a cap
1276 * deletion or migration. retry, and we'll
1277 * get a better @mds value next time.
1278 */
1279 spin_lock(&inode->i_lock);
1280 goto retry;
1281 }
1282
1283 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1284 atomic_inc(&capsnap->nref);
1285 if (!list_empty(&capsnap->flushing_item))
1286 list_del_init(&capsnap->flushing_item);
1287 list_add_tail(&capsnap->flushing_item,
1288 &session->s_cap_snaps_flushing);
1289 spin_unlock(&inode->i_lock);
1290
1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1292 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1293 send_cap_msg(session, ceph_vino(inode).ino, 0,
1294 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1295 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1296 capsnap->size, 0,
1297 &capsnap->mtime, &capsnap->atime,
1298 capsnap->time_warp_seq,
1299 capsnap->uid, capsnap->gid, capsnap->mode,
1300 capsnap->xattr_version, capsnap->xattr_blob,
1301 capsnap->follows);
1302
1303 next_follows = capsnap->follows + 1;
1304 ceph_put_cap_snap(capsnap);
1305
1306 spin_lock(&inode->i_lock);
1307 goto retry;
1308 }
1309
1310 /* we flushed them all; remove this inode from the queue */
1311 spin_lock(&mdsc->snap_flush_lock);
1312 list_del_init(&ci->i_snap_flush_item);
1313 spin_unlock(&mdsc->snap_flush_lock);
1314
1315 out:
1316 if (psession)
1317 *psession = session;
1318 else if (session) {
1319 mutex_unlock(&session->s_mutex);
1320 ceph_put_mds_session(session);
1321 }
1322 }
1323
ceph_flush_snaps(struct ceph_inode_info * ci)1324 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1325 {
1326 struct inode *inode = &ci->vfs_inode;
1327
1328 spin_lock(&inode->i_lock);
1329 __ceph_flush_snaps(ci, NULL, 0);
1330 spin_unlock(&inode->i_lock);
1331 }
1332
1333 /*
1334 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1335 * Caller is then responsible for calling __mark_inode_dirty with the
1336 * returned flags value.
1337 */
__ceph_mark_dirty_caps(struct ceph_inode_info * ci,int mask)1338 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1339 {
1340 struct ceph_mds_client *mdsc =
1341 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1342 struct inode *inode = &ci->vfs_inode;
1343 int was = ci->i_dirty_caps;
1344 int dirty = 0;
1345
1346 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1347 ceph_cap_string(mask), ceph_cap_string(was),
1348 ceph_cap_string(was | mask));
1349 ci->i_dirty_caps |= mask;
1350 if (was == 0) {
1351 if (!ci->i_head_snapc)
1352 ci->i_head_snapc = ceph_get_snap_context(
1353 ci->i_snap_realm->cached_context);
1354 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
1355 ci->i_head_snapc);
1356 BUG_ON(!list_empty(&ci->i_dirty_item));
1357 spin_lock(&mdsc->cap_dirty_lock);
1358 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1359 spin_unlock(&mdsc->cap_dirty_lock);
1360 if (ci->i_flushing_caps == 0) {
1361 ihold(inode);
1362 dirty |= I_DIRTY_SYNC;
1363 }
1364 }
1365 BUG_ON(list_empty(&ci->i_dirty_item));
1366 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1367 (mask & CEPH_CAP_FILE_BUFFER))
1368 dirty |= I_DIRTY_DATASYNC;
1369 __cap_delay_requeue(mdsc, ci);
1370 return dirty;
1371 }
1372
1373 /*
1374 * Add dirty inode to the flushing list. Assigned a seq number so we
1375 * can wait for caps to flush without starving.
1376 *
1377 * Called under i_lock.
1378 */
__mark_caps_flushing(struct inode * inode,struct ceph_mds_session * session)1379 static int __mark_caps_flushing(struct inode *inode,
1380 struct ceph_mds_session *session)
1381 {
1382 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1383 struct ceph_inode_info *ci = ceph_inode(inode);
1384 int flushing;
1385
1386 BUG_ON(ci->i_dirty_caps == 0);
1387 BUG_ON(list_empty(&ci->i_dirty_item));
1388
1389 flushing = ci->i_dirty_caps;
1390 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1391 ceph_cap_string(flushing),
1392 ceph_cap_string(ci->i_flushing_caps),
1393 ceph_cap_string(ci->i_flushing_caps | flushing));
1394 ci->i_flushing_caps |= flushing;
1395 ci->i_dirty_caps = 0;
1396 dout(" inode %p now !dirty\n", inode);
1397
1398 spin_lock(&mdsc->cap_dirty_lock);
1399 list_del_init(&ci->i_dirty_item);
1400
1401 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1402 if (list_empty(&ci->i_flushing_item)) {
1403 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1404 mdsc->num_cap_flushing++;
1405 dout(" inode %p now flushing seq %lld\n", inode,
1406 ci->i_cap_flush_seq);
1407 } else {
1408 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1409 dout(" inode %p now flushing (more) seq %lld\n", inode,
1410 ci->i_cap_flush_seq);
1411 }
1412 spin_unlock(&mdsc->cap_dirty_lock);
1413
1414 return flushing;
1415 }
1416
1417 /*
1418 * try to invalidate mapping pages without blocking.
1419 */
try_nonblocking_invalidate(struct inode * inode)1420 static int try_nonblocking_invalidate(struct inode *inode)
1421 {
1422 struct ceph_inode_info *ci = ceph_inode(inode);
1423 u32 invalidating_gen = ci->i_rdcache_gen;
1424
1425 spin_unlock(&inode->i_lock);
1426 invalidate_mapping_pages(&inode->i_data, 0, -1);
1427 spin_lock(&inode->i_lock);
1428
1429 if (inode->i_data.nrpages == 0 &&
1430 invalidating_gen == ci->i_rdcache_gen) {
1431 /* success. */
1432 dout("try_nonblocking_invalidate %p success\n", inode);
1433 /* save any racing async invalidate some trouble */
1434 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1435 return 0;
1436 }
1437 dout("try_nonblocking_invalidate %p failed\n", inode);
1438 return -1;
1439 }
1440
1441 /*
1442 * Swiss army knife function to examine currently used and wanted
1443 * versus held caps. Release, flush, ack revoked caps to mds as
1444 * appropriate.
1445 *
1446 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1447 * cap release further.
1448 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1449 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1450 * further delay.
1451 */
ceph_check_caps(struct ceph_inode_info * ci,int flags,struct ceph_mds_session * session)1452 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1453 struct ceph_mds_session *session)
1454 {
1455 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1456 struct ceph_mds_client *mdsc = fsc->mdsc;
1457 struct inode *inode = &ci->vfs_inode;
1458 struct ceph_cap *cap;
1459 int file_wanted, used;
1460 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1461 int issued, implemented, want, retain, revoking, flushing = 0;
1462 int mds = -1; /* keep track of how far we've gone through i_caps list
1463 to avoid an infinite loop on retry */
1464 struct rb_node *p;
1465 int tried_invalidate = 0;
1466 int delayed = 0, sent = 0, force_requeue = 0, num;
1467 int queue_invalidate = 0;
1468 int is_delayed = flags & CHECK_CAPS_NODELAY;
1469
1470 /* if we are unmounting, flush any unused caps immediately. */
1471 if (mdsc->stopping)
1472 is_delayed = 1;
1473
1474 spin_lock(&inode->i_lock);
1475
1476 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1477 flags |= CHECK_CAPS_FLUSH;
1478
1479 /* flush snaps first time around only */
1480 if (!list_empty(&ci->i_cap_snaps))
1481 __ceph_flush_snaps(ci, &session, 0);
1482 goto retry_locked;
1483 retry:
1484 spin_lock(&inode->i_lock);
1485 retry_locked:
1486 file_wanted = __ceph_caps_file_wanted(ci);
1487 used = __ceph_caps_used(ci);
1488 want = file_wanted | used;
1489 issued = __ceph_caps_issued(ci, &implemented);
1490 revoking = implemented & ~issued;
1491
1492 retain = want | CEPH_CAP_PIN;
1493 if (!mdsc->stopping && inode->i_nlink > 0) {
1494 if (want) {
1495 retain |= CEPH_CAP_ANY; /* be greedy */
1496 } else {
1497 retain |= CEPH_CAP_ANY_SHARED;
1498 /*
1499 * keep RD only if we didn't have the file open RW,
1500 * because then the mds would revoke it anyway to
1501 * journal max_size=0.
1502 */
1503 if (ci->i_max_size == 0)
1504 retain |= CEPH_CAP_ANY_RD;
1505 }
1506 }
1507
1508 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1509 " issued %s revoking %s retain %s %s%s%s\n", inode,
1510 ceph_cap_string(file_wanted),
1511 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1512 ceph_cap_string(ci->i_flushing_caps),
1513 ceph_cap_string(issued), ceph_cap_string(revoking),
1514 ceph_cap_string(retain),
1515 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1516 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1517 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1518
1519 /*
1520 * If we no longer need to hold onto old our caps, and we may
1521 * have cached pages, but don't want them, then try to invalidate.
1522 * If we fail, it's because pages are locked.... try again later.
1523 */
1524 if ((!is_delayed || mdsc->stopping) &&
1525 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1526 inode->i_data.nrpages && /* have cached pages */
1527 (file_wanted == 0 || /* no open files */
1528 (revoking & (CEPH_CAP_FILE_CACHE|
1529 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1530 !tried_invalidate) {
1531 dout("check_caps trying to invalidate on %p\n", inode);
1532 if (try_nonblocking_invalidate(inode) < 0) {
1533 if (revoking & (CEPH_CAP_FILE_CACHE|
1534 CEPH_CAP_FILE_LAZYIO)) {
1535 dout("check_caps queuing invalidate\n");
1536 queue_invalidate = 1;
1537 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1538 } else {
1539 dout("check_caps failed to invalidate pages\n");
1540 /* we failed to invalidate pages. check these
1541 caps again later. */
1542 force_requeue = 1;
1543 __cap_set_timeouts(mdsc, ci);
1544 }
1545 }
1546 tried_invalidate = 1;
1547 goto retry_locked;
1548 }
1549
1550 num = 0;
1551 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1552 cap = rb_entry(p, struct ceph_cap, ci_node);
1553 num++;
1554
1555 /* avoid looping forever */
1556 if (mds >= cap->mds ||
1557 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1558 continue;
1559
1560 /* NOTE: no side-effects allowed, until we take s_mutex */
1561
1562 revoking = cap->implemented & ~cap->issued;
1563 dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1564 cap->mds, cap, ceph_cap_string(cap->issued),
1565 ceph_cap_string(cap->implemented),
1566 ceph_cap_string(revoking));
1567
1568 if (cap == ci->i_auth_cap &&
1569 (cap->issued & CEPH_CAP_FILE_WR)) {
1570 /* request larger max_size from MDS? */
1571 if (ci->i_wanted_max_size > ci->i_max_size &&
1572 ci->i_wanted_max_size > ci->i_requested_max_size) {
1573 dout("requesting new max_size\n");
1574 goto ack;
1575 }
1576
1577 /* approaching file_max? */
1578 if ((inode->i_size << 1) >= ci->i_max_size &&
1579 (ci->i_reported_size << 1) < ci->i_max_size) {
1580 dout("i_size approaching max_size\n");
1581 goto ack;
1582 }
1583 }
1584 /* flush anything dirty? */
1585 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1586 ci->i_dirty_caps) {
1587 dout("flushing dirty caps\n");
1588 goto ack;
1589 }
1590
1591 /* completed revocation? going down and there are no caps? */
1592 if (revoking && (revoking & used) == 0) {
1593 dout("completed revocation of %s\n",
1594 ceph_cap_string(cap->implemented & ~cap->issued));
1595 goto ack;
1596 }
1597
1598 /* want more caps from mds? */
1599 if (want & ~(cap->mds_wanted | cap->issued))
1600 goto ack;
1601
1602 /* things we might delay */
1603 if ((cap->issued & ~retain) == 0 &&
1604 cap->mds_wanted == want)
1605 continue; /* nope, all good */
1606
1607 if (is_delayed)
1608 goto ack;
1609
1610 /* delay? */
1611 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1612 time_before(jiffies, ci->i_hold_caps_max)) {
1613 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1614 ceph_cap_string(cap->issued),
1615 ceph_cap_string(cap->issued & retain),
1616 ceph_cap_string(cap->mds_wanted),
1617 ceph_cap_string(want));
1618 delayed++;
1619 continue;
1620 }
1621
1622 ack:
1623 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1624 dout(" skipping %p I_NOFLUSH set\n", inode);
1625 continue;
1626 }
1627
1628 if (session && session != cap->session) {
1629 dout("oops, wrong session %p mutex\n", session);
1630 mutex_unlock(&session->s_mutex);
1631 session = NULL;
1632 }
1633 if (!session) {
1634 session = cap->session;
1635 if (mutex_trylock(&session->s_mutex) == 0) {
1636 dout("inverting session/ino locks on %p\n",
1637 session);
1638 spin_unlock(&inode->i_lock);
1639 if (took_snap_rwsem) {
1640 up_read(&mdsc->snap_rwsem);
1641 took_snap_rwsem = 0;
1642 }
1643 mutex_lock(&session->s_mutex);
1644 goto retry;
1645 }
1646 }
1647 /* take snap_rwsem after session mutex */
1648 if (!took_snap_rwsem) {
1649 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1650 dout("inverting snap/in locks on %p\n",
1651 inode);
1652 spin_unlock(&inode->i_lock);
1653 down_read(&mdsc->snap_rwsem);
1654 took_snap_rwsem = 1;
1655 goto retry;
1656 }
1657 took_snap_rwsem = 1;
1658 }
1659
1660 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1661 flushing = __mark_caps_flushing(inode, session);
1662 else
1663 flushing = 0;
1664
1665 mds = cap->mds; /* remember mds, so we don't repeat */
1666 sent++;
1667
1668 /* __send_cap drops i_lock */
1669 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1670 retain, flushing, NULL);
1671 goto retry; /* retake i_lock and restart our cap scan. */
1672 }
1673
1674 /*
1675 * Reschedule delayed caps release if we delayed anything,
1676 * otherwise cancel.
1677 */
1678 if (delayed && is_delayed)
1679 force_requeue = 1; /* __send_cap delayed release; requeue */
1680 if (!delayed && !is_delayed)
1681 __cap_delay_cancel(mdsc, ci);
1682 else if (!is_delayed || force_requeue)
1683 __cap_delay_requeue(mdsc, ci);
1684
1685 spin_unlock(&inode->i_lock);
1686
1687 if (queue_invalidate)
1688 ceph_queue_invalidate(inode);
1689
1690 if (session)
1691 mutex_unlock(&session->s_mutex);
1692 if (took_snap_rwsem)
1693 up_read(&mdsc->snap_rwsem);
1694 }
1695
1696 /*
1697 * Try to flush dirty caps back to the auth mds.
1698 */
try_flush_caps(struct inode * inode,struct ceph_mds_session * session,unsigned * flush_tid)1699 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1700 unsigned *flush_tid)
1701 {
1702 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1703 struct ceph_inode_info *ci = ceph_inode(inode);
1704 int unlock_session = session ? 0 : 1;
1705 int flushing = 0;
1706
1707 retry:
1708 spin_lock(&inode->i_lock);
1709 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1710 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1711 goto out;
1712 }
1713 if (ci->i_dirty_caps && ci->i_auth_cap) {
1714 struct ceph_cap *cap = ci->i_auth_cap;
1715 int used = __ceph_caps_used(ci);
1716 int want = __ceph_caps_wanted(ci);
1717 int delayed;
1718
1719 if (!session) {
1720 spin_unlock(&inode->i_lock);
1721 session = cap->session;
1722 mutex_lock(&session->s_mutex);
1723 goto retry;
1724 }
1725 BUG_ON(session != cap->session);
1726 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1727 goto out;
1728
1729 flushing = __mark_caps_flushing(inode, session);
1730
1731 /* __send_cap drops i_lock */
1732 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1733 cap->issued | cap->implemented, flushing,
1734 flush_tid);
1735 if (!delayed)
1736 goto out_unlocked;
1737
1738 spin_lock(&inode->i_lock);
1739 __cap_delay_requeue(mdsc, ci);
1740 }
1741 out:
1742 spin_unlock(&inode->i_lock);
1743 out_unlocked:
1744 if (session && unlock_session)
1745 mutex_unlock(&session->s_mutex);
1746 return flushing;
1747 }
1748
1749 /*
1750 * Return true if we've flushed caps through the given flush_tid.
1751 */
caps_are_flushed(struct inode * inode,unsigned tid)1752 static int caps_are_flushed(struct inode *inode, unsigned tid)
1753 {
1754 struct ceph_inode_info *ci = ceph_inode(inode);
1755 int i, ret = 1;
1756
1757 spin_lock(&inode->i_lock);
1758 for (i = 0; i < CEPH_CAP_BITS; i++)
1759 if ((ci->i_flushing_caps & (1 << i)) &&
1760 ci->i_cap_flush_tid[i] <= tid) {
1761 /* still flushing this bit */
1762 ret = 0;
1763 break;
1764 }
1765 spin_unlock(&inode->i_lock);
1766 return ret;
1767 }
1768
1769 /*
1770 * Wait on any unsafe replies for the given inode. First wait on the
1771 * newest request, and make that the upper bound. Then, if there are
1772 * more requests, keep waiting on the oldest as long as it is still older
1773 * than the original request.
1774 */
sync_write_wait(struct inode * inode)1775 static void sync_write_wait(struct inode *inode)
1776 {
1777 struct ceph_inode_info *ci = ceph_inode(inode);
1778 struct list_head *head = &ci->i_unsafe_writes;
1779 struct ceph_osd_request *req;
1780 u64 last_tid;
1781
1782 spin_lock(&ci->i_unsafe_lock);
1783 if (list_empty(head))
1784 goto out;
1785
1786 /* set upper bound as _last_ entry in chain */
1787 req = list_entry(head->prev, struct ceph_osd_request,
1788 r_unsafe_item);
1789 last_tid = req->r_tid;
1790
1791 do {
1792 ceph_osdc_get_request(req);
1793 spin_unlock(&ci->i_unsafe_lock);
1794 dout("sync_write_wait on tid %llu (until %llu)\n",
1795 req->r_tid, last_tid);
1796 wait_for_completion(&req->r_safe_completion);
1797 spin_lock(&ci->i_unsafe_lock);
1798 ceph_osdc_put_request(req);
1799
1800 /*
1801 * from here on look at first entry in chain, since we
1802 * only want to wait for anything older than last_tid
1803 */
1804 if (list_empty(head))
1805 break;
1806 req = list_entry(head->next, struct ceph_osd_request,
1807 r_unsafe_item);
1808 } while (req->r_tid < last_tid);
1809 out:
1810 spin_unlock(&ci->i_unsafe_lock);
1811 }
1812
ceph_fsync(struct file * file,int datasync)1813 int ceph_fsync(struct file *file, int datasync)
1814 {
1815 struct inode *inode = file->f_mapping->host;
1816 struct ceph_inode_info *ci = ceph_inode(inode);
1817 unsigned flush_tid;
1818 int ret;
1819 int dirty;
1820
1821 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1822 sync_write_wait(inode);
1823
1824 ret = filemap_write_and_wait(inode->i_mapping);
1825 if (ret < 0)
1826 return ret;
1827
1828 dirty = try_flush_caps(inode, NULL, &flush_tid);
1829 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1830
1831 /*
1832 * only wait on non-file metadata writeback (the mds
1833 * can recover size and mtime, so we don't need to
1834 * wait for that)
1835 */
1836 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1837 dout("fsync waiting for flush_tid %u\n", flush_tid);
1838 ret = wait_event_interruptible(ci->i_cap_wq,
1839 caps_are_flushed(inode, flush_tid));
1840 }
1841
1842 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1843 return ret;
1844 }
1845
1846 /*
1847 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1848 * queue inode for flush but don't do so immediately, because we can
1849 * get by with fewer MDS messages if we wait for data writeback to
1850 * complete first.
1851 */
ceph_write_inode(struct inode * inode,struct writeback_control * wbc)1852 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1853 {
1854 struct ceph_inode_info *ci = ceph_inode(inode);
1855 unsigned flush_tid;
1856 int err = 0;
1857 int dirty;
1858 int wait = wbc->sync_mode == WB_SYNC_ALL;
1859
1860 dout("write_inode %p wait=%d\n", inode, wait);
1861 if (wait) {
1862 dirty = try_flush_caps(inode, NULL, &flush_tid);
1863 if (dirty)
1864 err = wait_event_interruptible(ci->i_cap_wq,
1865 caps_are_flushed(inode, flush_tid));
1866 } else {
1867 struct ceph_mds_client *mdsc =
1868 ceph_sb_to_client(inode->i_sb)->mdsc;
1869
1870 spin_lock(&inode->i_lock);
1871 if (__ceph_caps_dirty(ci))
1872 __cap_delay_requeue_front(mdsc, ci);
1873 spin_unlock(&inode->i_lock);
1874 }
1875 return err;
1876 }
1877
1878 /*
1879 * After a recovering MDS goes active, we need to resend any caps
1880 * we were flushing.
1881 *
1882 * Caller holds session->s_mutex.
1883 */
kick_flushing_capsnaps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1884 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1885 struct ceph_mds_session *session)
1886 {
1887 struct ceph_cap_snap *capsnap;
1888
1889 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1890 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1891 flushing_item) {
1892 struct ceph_inode_info *ci = capsnap->ci;
1893 struct inode *inode = &ci->vfs_inode;
1894 struct ceph_cap *cap;
1895
1896 spin_lock(&inode->i_lock);
1897 cap = ci->i_auth_cap;
1898 if (cap && cap->session == session) {
1899 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1900 cap, capsnap);
1901 __ceph_flush_snaps(ci, &session, 1);
1902 } else {
1903 pr_err("%p auth cap %p not mds%d ???\n", inode,
1904 cap, session->s_mds);
1905 }
1906 spin_unlock(&inode->i_lock);
1907 }
1908 }
1909
ceph_kick_flushing_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1910 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1911 struct ceph_mds_session *session)
1912 {
1913 struct ceph_inode_info *ci;
1914
1915 kick_flushing_capsnaps(mdsc, session);
1916
1917 dout("kick_flushing_caps mds%d\n", session->s_mds);
1918 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1919 struct inode *inode = &ci->vfs_inode;
1920 struct ceph_cap *cap;
1921 int delayed = 0;
1922
1923 spin_lock(&inode->i_lock);
1924 cap = ci->i_auth_cap;
1925 if (cap && cap->session == session) {
1926 dout("kick_flushing_caps %p cap %p %s\n", inode,
1927 cap, ceph_cap_string(ci->i_flushing_caps));
1928 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1929 __ceph_caps_used(ci),
1930 __ceph_caps_wanted(ci),
1931 cap->issued | cap->implemented,
1932 ci->i_flushing_caps, NULL);
1933 if (delayed) {
1934 spin_lock(&inode->i_lock);
1935 __cap_delay_requeue(mdsc, ci);
1936 spin_unlock(&inode->i_lock);
1937 }
1938 } else {
1939 pr_err("%p auth cap %p not mds%d ???\n", inode,
1940 cap, session->s_mds);
1941 spin_unlock(&inode->i_lock);
1942 }
1943 }
1944 }
1945
kick_flushing_inode_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct inode * inode)1946 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1947 struct ceph_mds_session *session,
1948 struct inode *inode)
1949 {
1950 struct ceph_inode_info *ci = ceph_inode(inode);
1951 struct ceph_cap *cap;
1952 int delayed = 0;
1953
1954 spin_lock(&inode->i_lock);
1955 cap = ci->i_auth_cap;
1956 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1957 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1958 __ceph_flush_snaps(ci, &session, 1);
1959 if (ci->i_flushing_caps) {
1960 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1961 __ceph_caps_used(ci),
1962 __ceph_caps_wanted(ci),
1963 cap->issued | cap->implemented,
1964 ci->i_flushing_caps, NULL);
1965 if (delayed) {
1966 spin_lock(&inode->i_lock);
1967 __cap_delay_requeue(mdsc, ci);
1968 spin_unlock(&inode->i_lock);
1969 }
1970 } else {
1971 spin_unlock(&inode->i_lock);
1972 }
1973 }
1974
1975
1976 /*
1977 * Take references to capabilities we hold, so that we don't release
1978 * them to the MDS prematurely.
1979 *
1980 * Protected by i_lock.
1981 */
__take_cap_refs(struct ceph_inode_info * ci,int got)1982 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1983 {
1984 if (got & CEPH_CAP_PIN)
1985 ci->i_pin_ref++;
1986 if (got & CEPH_CAP_FILE_RD)
1987 ci->i_rd_ref++;
1988 if (got & CEPH_CAP_FILE_CACHE)
1989 ci->i_rdcache_ref++;
1990 if (got & CEPH_CAP_FILE_WR)
1991 ci->i_wr_ref++;
1992 if (got & CEPH_CAP_FILE_BUFFER) {
1993 if (ci->i_wb_ref == 0)
1994 ihold(&ci->vfs_inode);
1995 ci->i_wb_ref++;
1996 dout("__take_cap_refs %p wb %d -> %d (?)\n",
1997 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
1998 }
1999 }
2000
2001 /*
2002 * Try to grab cap references. Specify those refs we @want, and the
2003 * minimal set we @need. Also include the larger offset we are writing
2004 * to (when applicable), and check against max_size here as well.
2005 * Note that caller is responsible for ensuring max_size increases are
2006 * requested from the MDS.
2007 */
try_get_cap_refs(struct ceph_inode_info * ci,int need,int want,int * got,loff_t endoff,int * check_max,int * err)2008 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2009 int *got, loff_t endoff, int *check_max, int *err)
2010 {
2011 struct inode *inode = &ci->vfs_inode;
2012 int ret = 0;
2013 int have, implemented;
2014 int file_wanted;
2015
2016 dout("get_cap_refs %p need %s want %s\n", inode,
2017 ceph_cap_string(need), ceph_cap_string(want));
2018 spin_lock(&inode->i_lock);
2019
2020 /* make sure file is actually open */
2021 file_wanted = __ceph_caps_file_wanted(ci);
2022 if ((file_wanted & need) == 0) {
2023 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2024 ceph_cap_string(need), ceph_cap_string(file_wanted));
2025 *err = -EBADF;
2026 ret = 1;
2027 goto out;
2028 }
2029
2030 if (need & CEPH_CAP_FILE_WR) {
2031 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2032 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2033 inode, endoff, ci->i_max_size);
2034 if (endoff > ci->i_wanted_max_size) {
2035 *check_max = 1;
2036 ret = 1;
2037 }
2038 goto out;
2039 }
2040 /*
2041 * If a sync write is in progress, we must wait, so that we
2042 * can get a final snapshot value for size+mtime.
2043 */
2044 if (__ceph_have_pending_cap_snap(ci)) {
2045 dout("get_cap_refs %p cap_snap_pending\n", inode);
2046 goto out;
2047 }
2048 }
2049 have = __ceph_caps_issued(ci, &implemented);
2050
2051 /*
2052 * disallow writes while a truncate is pending
2053 */
2054 if (ci->i_truncate_pending)
2055 have &= ~CEPH_CAP_FILE_WR;
2056
2057 if ((have & need) == need) {
2058 /*
2059 * Look at (implemented & ~have & not) so that we keep waiting
2060 * on transition from wanted -> needed caps. This is needed
2061 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2062 * going before a prior buffered writeback happens.
2063 */
2064 int not = want & ~(have & need);
2065 int revoking = implemented & ~have;
2066 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2067 inode, ceph_cap_string(have), ceph_cap_string(not),
2068 ceph_cap_string(revoking));
2069 if ((revoking & not) == 0) {
2070 *got = need | (have & want);
2071 __take_cap_refs(ci, *got);
2072 ret = 1;
2073 }
2074 } else {
2075 dout("get_cap_refs %p have %s needed %s\n", inode,
2076 ceph_cap_string(have), ceph_cap_string(need));
2077 }
2078 out:
2079 spin_unlock(&inode->i_lock);
2080 dout("get_cap_refs %p ret %d got %s\n", inode,
2081 ret, ceph_cap_string(*got));
2082 return ret;
2083 }
2084
2085 /*
2086 * Check the offset we are writing up to against our current
2087 * max_size. If necessary, tell the MDS we want to write to
2088 * a larger offset.
2089 */
check_max_size(struct inode * inode,loff_t endoff)2090 static void check_max_size(struct inode *inode, loff_t endoff)
2091 {
2092 struct ceph_inode_info *ci = ceph_inode(inode);
2093 int check = 0;
2094
2095 /* do we need to explicitly request a larger max_size? */
2096 spin_lock(&inode->i_lock);
2097 if ((endoff >= ci->i_max_size ||
2098 endoff > (inode->i_size << 1)) &&
2099 endoff > ci->i_wanted_max_size) {
2100 dout("write %p at large endoff %llu, req max_size\n",
2101 inode, endoff);
2102 ci->i_wanted_max_size = endoff;
2103 check = 1;
2104 }
2105 spin_unlock(&inode->i_lock);
2106 if (check)
2107 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2108 }
2109
2110 /*
2111 * Wait for caps, and take cap references. If we can't get a WR cap
2112 * due to a small max_size, make sure we check_max_size (and possibly
2113 * ask the mds) so we don't get hung up indefinitely.
2114 */
ceph_get_caps(struct ceph_inode_info * ci,int need,int want,int * got,loff_t endoff)2115 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2116 loff_t endoff)
2117 {
2118 int check_max, ret, err;
2119
2120 retry:
2121 if (endoff > 0)
2122 check_max_size(&ci->vfs_inode, endoff);
2123 check_max = 0;
2124 err = 0;
2125 ret = wait_event_interruptible(ci->i_cap_wq,
2126 try_get_cap_refs(ci, need, want,
2127 got, endoff,
2128 &check_max, &err));
2129 if (err)
2130 ret = err;
2131 if (check_max)
2132 goto retry;
2133 return ret;
2134 }
2135
2136 /*
2137 * Take cap refs. Caller must already know we hold at least one ref
2138 * on the caps in question or we don't know this is safe.
2139 */
ceph_get_cap_refs(struct ceph_inode_info * ci,int caps)2140 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2141 {
2142 spin_lock(&ci->vfs_inode.i_lock);
2143 __take_cap_refs(ci, caps);
2144 spin_unlock(&ci->vfs_inode.i_lock);
2145 }
2146
2147 /*
2148 * Release cap refs.
2149 *
2150 * If we released the last ref on any given cap, call ceph_check_caps
2151 * to release (or schedule a release).
2152 *
2153 * If we are releasing a WR cap (from a sync write), finalize any affected
2154 * cap_snap, and wake up any waiters.
2155 */
ceph_put_cap_refs(struct ceph_inode_info * ci,int had)2156 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2157 {
2158 struct inode *inode = &ci->vfs_inode;
2159 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2160 struct ceph_cap_snap *capsnap;
2161
2162 spin_lock(&inode->i_lock);
2163 if (had & CEPH_CAP_PIN)
2164 --ci->i_pin_ref;
2165 if (had & CEPH_CAP_FILE_RD)
2166 if (--ci->i_rd_ref == 0)
2167 last++;
2168 if (had & CEPH_CAP_FILE_CACHE)
2169 if (--ci->i_rdcache_ref == 0)
2170 last++;
2171 if (had & CEPH_CAP_FILE_BUFFER) {
2172 if (--ci->i_wb_ref == 0) {
2173 last++;
2174 put++;
2175 }
2176 dout("put_cap_refs %p wb %d -> %d (?)\n",
2177 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2178 }
2179 if (had & CEPH_CAP_FILE_WR)
2180 if (--ci->i_wr_ref == 0) {
2181 last++;
2182 if (!list_empty(&ci->i_cap_snaps)) {
2183 capsnap = list_first_entry(&ci->i_cap_snaps,
2184 struct ceph_cap_snap,
2185 ci_item);
2186 if (capsnap->writing) {
2187 capsnap->writing = 0;
2188 flushsnaps =
2189 __ceph_finish_cap_snap(ci,
2190 capsnap);
2191 wake = 1;
2192 }
2193 }
2194 }
2195 spin_unlock(&inode->i_lock);
2196
2197 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2198 last ? " last" : "", put ? " put" : "");
2199
2200 if (last && !flushsnaps)
2201 ceph_check_caps(ci, 0, NULL);
2202 else if (flushsnaps)
2203 ceph_flush_snaps(ci);
2204 if (wake)
2205 wake_up_all(&ci->i_cap_wq);
2206 if (put)
2207 iput(inode);
2208 }
2209
2210 /*
2211 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2212 * context. Adjust per-snap dirty page accounting as appropriate.
2213 * Once all dirty data for a cap_snap is flushed, flush snapped file
2214 * metadata back to the MDS. If we dropped the last ref, call
2215 * ceph_check_caps.
2216 */
ceph_put_wrbuffer_cap_refs(struct ceph_inode_info * ci,int nr,struct ceph_snap_context * snapc)2217 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2218 struct ceph_snap_context *snapc)
2219 {
2220 struct inode *inode = &ci->vfs_inode;
2221 int last = 0;
2222 int complete_capsnap = 0;
2223 int drop_capsnap = 0;
2224 int found = 0;
2225 struct ceph_cap_snap *capsnap = NULL;
2226
2227 spin_lock(&inode->i_lock);
2228 ci->i_wrbuffer_ref -= nr;
2229 last = !ci->i_wrbuffer_ref;
2230
2231 if (ci->i_head_snapc == snapc) {
2232 ci->i_wrbuffer_ref_head -= nr;
2233 if (ci->i_wrbuffer_ref_head == 0 &&
2234 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2235 BUG_ON(!ci->i_head_snapc);
2236 ceph_put_snap_context(ci->i_head_snapc);
2237 ci->i_head_snapc = NULL;
2238 }
2239 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2240 inode,
2241 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2242 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2243 last ? " LAST" : "");
2244 } else {
2245 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2246 if (capsnap->context == snapc) {
2247 found = 1;
2248 break;
2249 }
2250 }
2251 BUG_ON(!found);
2252 capsnap->dirty_pages -= nr;
2253 if (capsnap->dirty_pages == 0) {
2254 complete_capsnap = 1;
2255 if (capsnap->dirty == 0)
2256 /* cap writeback completed before we created
2257 * the cap_snap; no FLUSHSNAP is needed */
2258 drop_capsnap = 1;
2259 }
2260 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2261 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2262 inode, capsnap, capsnap->context->seq,
2263 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2264 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2265 last ? " (wrbuffer last)" : "",
2266 complete_capsnap ? " (complete capsnap)" : "",
2267 drop_capsnap ? " (drop capsnap)" : "");
2268 if (drop_capsnap) {
2269 ceph_put_snap_context(capsnap->context);
2270 list_del(&capsnap->ci_item);
2271 list_del(&capsnap->flushing_item);
2272 ceph_put_cap_snap(capsnap);
2273 }
2274 }
2275
2276 spin_unlock(&inode->i_lock);
2277
2278 if (last) {
2279 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2280 iput(inode);
2281 } else if (complete_capsnap) {
2282 ceph_flush_snaps(ci);
2283 wake_up_all(&ci->i_cap_wq);
2284 }
2285 if (drop_capsnap)
2286 iput(inode);
2287 }
2288
2289 /*
2290 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2291 * actually be a revocation if it specifies a smaller cap set.)
2292 *
2293 * caller holds s_mutex and i_lock, we drop both.
2294 *
2295 * return value:
2296 * 0 - ok
2297 * 1 - check_caps on auth cap only (writeback)
2298 * 2 - check_caps (ack revoke)
2299 */
handle_cap_grant(struct inode * inode,struct ceph_mds_caps * grant,struct ceph_mds_session * session,struct ceph_cap * cap,struct ceph_buffer * xattr_buf)2300 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2301 struct ceph_mds_session *session,
2302 struct ceph_cap *cap,
2303 struct ceph_buffer *xattr_buf)
2304 __releases(inode->i_lock)
2305 {
2306 struct ceph_inode_info *ci = ceph_inode(inode);
2307 int mds = session->s_mds;
2308 int seq = le32_to_cpu(grant->seq);
2309 int newcaps = le32_to_cpu(grant->caps);
2310 int issued, implemented, used, wanted, dirty;
2311 u64 size = le64_to_cpu(grant->size);
2312 u64 max_size = le64_to_cpu(grant->max_size);
2313 struct timespec mtime, atime, ctime;
2314 int check_caps = 0;
2315 int wake = 0;
2316 int writeback = 0;
2317 int revoked_rdcache = 0;
2318 int queue_invalidate = 0;
2319
2320 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2321 inode, cap, mds, seq, ceph_cap_string(newcaps));
2322 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2323 inode->i_size);
2324
2325 /*
2326 * If CACHE is being revoked, and we have no dirty buffers,
2327 * try to invalidate (once). (If there are dirty buffers, we
2328 * will invalidate _after_ writeback.)
2329 */
2330 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2331 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2332 !ci->i_wrbuffer_ref) {
2333 if (try_nonblocking_invalidate(inode) == 0) {
2334 revoked_rdcache = 1;
2335 } else {
2336 /* there were locked pages.. invalidate later
2337 in a separate thread. */
2338 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2339 queue_invalidate = 1;
2340 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2341 }
2342 }
2343 }
2344
2345 /* side effects now are allowed */
2346
2347 issued = __ceph_caps_issued(ci, &implemented);
2348 issued |= implemented | __ceph_caps_dirty(ci);
2349
2350 cap->cap_gen = session->s_cap_gen;
2351
2352 __check_cap_issue(ci, cap, newcaps);
2353
2354 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2355 inode->i_mode = le32_to_cpu(grant->mode);
2356 inode->i_uid = le32_to_cpu(grant->uid);
2357 inode->i_gid = le32_to_cpu(grant->gid);
2358 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2359 inode->i_uid, inode->i_gid);
2360 }
2361
2362 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2363 inode->i_nlink = le32_to_cpu(grant->nlink);
2364
2365 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2366 int len = le32_to_cpu(grant->xattr_len);
2367 u64 version = le64_to_cpu(grant->xattr_version);
2368
2369 if (version > ci->i_xattrs.version) {
2370 dout(" got new xattrs v%llu on %p len %d\n",
2371 version, inode, len);
2372 if (ci->i_xattrs.blob)
2373 ceph_buffer_put(ci->i_xattrs.blob);
2374 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2375 ci->i_xattrs.version = version;
2376 }
2377 }
2378
2379 /* size/ctime/mtime/atime? */
2380 ceph_fill_file_size(inode, issued,
2381 le32_to_cpu(grant->truncate_seq),
2382 le64_to_cpu(grant->truncate_size), size);
2383 ceph_decode_timespec(&mtime, &grant->mtime);
2384 ceph_decode_timespec(&atime, &grant->atime);
2385 ceph_decode_timespec(&ctime, &grant->ctime);
2386 ceph_fill_file_time(inode, issued,
2387 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2388 &atime);
2389
2390 /* max size increase? */
2391 if (max_size != ci->i_max_size) {
2392 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2393 ci->i_max_size = max_size;
2394 if (max_size >= ci->i_wanted_max_size) {
2395 ci->i_wanted_max_size = 0; /* reset */
2396 ci->i_requested_max_size = 0;
2397 }
2398 wake = 1;
2399 }
2400
2401 /* check cap bits */
2402 wanted = __ceph_caps_wanted(ci);
2403 used = __ceph_caps_used(ci);
2404 dirty = __ceph_caps_dirty(ci);
2405 dout(" my wanted = %s, used = %s, dirty %s\n",
2406 ceph_cap_string(wanted),
2407 ceph_cap_string(used),
2408 ceph_cap_string(dirty));
2409 if (wanted != le32_to_cpu(grant->wanted)) {
2410 dout("mds wanted %s -> %s\n",
2411 ceph_cap_string(le32_to_cpu(grant->wanted)),
2412 ceph_cap_string(wanted));
2413 grant->wanted = cpu_to_le32(wanted);
2414 }
2415
2416 cap->seq = seq;
2417
2418 /* file layout may have changed */
2419 ci->i_layout = grant->layout;
2420
2421 /* revocation, grant, or no-op? */
2422 if (cap->issued & ~newcaps) {
2423 int revoking = cap->issued & ~newcaps;
2424
2425 dout("revocation: %s -> %s (revoking %s)\n",
2426 ceph_cap_string(cap->issued),
2427 ceph_cap_string(newcaps),
2428 ceph_cap_string(revoking));
2429 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2430 writeback = 1; /* initiate writeback; will delay ack */
2431 else if (revoking == CEPH_CAP_FILE_CACHE &&
2432 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2433 queue_invalidate)
2434 ; /* do nothing yet, invalidation will be queued */
2435 else if (cap == ci->i_auth_cap)
2436 check_caps = 1; /* check auth cap only */
2437 else
2438 check_caps = 2; /* check all caps */
2439 cap->issued = newcaps;
2440 cap->implemented |= newcaps;
2441 } else if (cap->issued == newcaps) {
2442 dout("caps unchanged: %s -> %s\n",
2443 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2444 } else {
2445 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2446 ceph_cap_string(newcaps));
2447 cap->issued = newcaps;
2448 cap->implemented |= newcaps; /* add bits only, to
2449 * avoid stepping on a
2450 * pending revocation */
2451 wake = 1;
2452 }
2453 BUG_ON(cap->issued & ~cap->implemented);
2454
2455 spin_unlock(&inode->i_lock);
2456 if (writeback)
2457 /*
2458 * queue inode for writeback: we can't actually call
2459 * filemap_write_and_wait, etc. from message handler
2460 * context.
2461 */
2462 ceph_queue_writeback(inode);
2463 if (queue_invalidate)
2464 ceph_queue_invalidate(inode);
2465 if (wake)
2466 wake_up_all(&ci->i_cap_wq);
2467
2468 if (check_caps == 1)
2469 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2470 session);
2471 else if (check_caps == 2)
2472 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2473 else
2474 mutex_unlock(&session->s_mutex);
2475 }
2476
2477 /*
2478 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2479 * MDS has been safely committed.
2480 */
handle_cap_flush_ack(struct inode * inode,u64 flush_tid,struct ceph_mds_caps * m,struct ceph_mds_session * session,struct ceph_cap * cap)2481 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2482 struct ceph_mds_caps *m,
2483 struct ceph_mds_session *session,
2484 struct ceph_cap *cap)
2485 __releases(inode->i_lock)
2486 {
2487 struct ceph_inode_info *ci = ceph_inode(inode);
2488 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2489 unsigned seq = le32_to_cpu(m->seq);
2490 int dirty = le32_to_cpu(m->dirty);
2491 int cleaned = 0;
2492 int drop = 0;
2493 int i;
2494
2495 for (i = 0; i < CEPH_CAP_BITS; i++)
2496 if ((dirty & (1 << i)) &&
2497 flush_tid == ci->i_cap_flush_tid[i])
2498 cleaned |= 1 << i;
2499
2500 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2501 " flushing %s -> %s\n",
2502 inode, session->s_mds, seq, ceph_cap_string(dirty),
2503 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2504 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2505
2506 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2507 goto out;
2508
2509 ci->i_flushing_caps &= ~cleaned;
2510
2511 spin_lock(&mdsc->cap_dirty_lock);
2512 if (ci->i_flushing_caps == 0) {
2513 list_del_init(&ci->i_flushing_item);
2514 if (!list_empty(&session->s_cap_flushing))
2515 dout(" mds%d still flushing cap on %p\n",
2516 session->s_mds,
2517 &list_entry(session->s_cap_flushing.next,
2518 struct ceph_inode_info,
2519 i_flushing_item)->vfs_inode);
2520 mdsc->num_cap_flushing--;
2521 wake_up_all(&mdsc->cap_flushing_wq);
2522 dout(" inode %p now !flushing\n", inode);
2523
2524 if (ci->i_dirty_caps == 0) {
2525 dout(" inode %p now clean\n", inode);
2526 BUG_ON(!list_empty(&ci->i_dirty_item));
2527 drop = 1;
2528 if (ci->i_wrbuffer_ref_head == 0) {
2529 BUG_ON(!ci->i_head_snapc);
2530 ceph_put_snap_context(ci->i_head_snapc);
2531 ci->i_head_snapc = NULL;
2532 }
2533 } else {
2534 BUG_ON(list_empty(&ci->i_dirty_item));
2535 }
2536 }
2537 spin_unlock(&mdsc->cap_dirty_lock);
2538 wake_up_all(&ci->i_cap_wq);
2539
2540 out:
2541 spin_unlock(&inode->i_lock);
2542 if (drop)
2543 iput(inode);
2544 }
2545
2546 /*
2547 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2548 * throw away our cap_snap.
2549 *
2550 * Caller hold s_mutex.
2551 */
handle_cap_flushsnap_ack(struct inode * inode,u64 flush_tid,struct ceph_mds_caps * m,struct ceph_mds_session * session)2552 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2553 struct ceph_mds_caps *m,
2554 struct ceph_mds_session *session)
2555 {
2556 struct ceph_inode_info *ci = ceph_inode(inode);
2557 u64 follows = le64_to_cpu(m->snap_follows);
2558 struct ceph_cap_snap *capsnap;
2559 int drop = 0;
2560
2561 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2562 inode, ci, session->s_mds, follows);
2563
2564 spin_lock(&inode->i_lock);
2565 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2566 if (capsnap->follows == follows) {
2567 if (capsnap->flush_tid != flush_tid) {
2568 dout(" cap_snap %p follows %lld tid %lld !="
2569 " %lld\n", capsnap, follows,
2570 flush_tid, capsnap->flush_tid);
2571 break;
2572 }
2573 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2574 dout(" removing %p cap_snap %p follows %lld\n",
2575 inode, capsnap, follows);
2576 ceph_put_snap_context(capsnap->context);
2577 list_del(&capsnap->ci_item);
2578 list_del(&capsnap->flushing_item);
2579 ceph_put_cap_snap(capsnap);
2580 drop = 1;
2581 break;
2582 } else {
2583 dout(" skipping cap_snap %p follows %lld\n",
2584 capsnap, capsnap->follows);
2585 }
2586 }
2587 spin_unlock(&inode->i_lock);
2588 if (drop)
2589 iput(inode);
2590 }
2591
2592 /*
2593 * Handle TRUNC from MDS, indicating file truncation.
2594 *
2595 * caller hold s_mutex.
2596 */
handle_cap_trunc(struct inode * inode,struct ceph_mds_caps * trunc,struct ceph_mds_session * session)2597 static void handle_cap_trunc(struct inode *inode,
2598 struct ceph_mds_caps *trunc,
2599 struct ceph_mds_session *session)
2600 __releases(inode->i_lock)
2601 {
2602 struct ceph_inode_info *ci = ceph_inode(inode);
2603 int mds = session->s_mds;
2604 int seq = le32_to_cpu(trunc->seq);
2605 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2606 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2607 u64 size = le64_to_cpu(trunc->size);
2608 int implemented = 0;
2609 int dirty = __ceph_caps_dirty(ci);
2610 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2611 int queue_trunc = 0;
2612
2613 issued |= implemented | dirty;
2614
2615 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2616 inode, mds, seq, truncate_size, truncate_seq);
2617 queue_trunc = ceph_fill_file_size(inode, issued,
2618 truncate_seq, truncate_size, size);
2619 spin_unlock(&inode->i_lock);
2620
2621 if (queue_trunc)
2622 ceph_queue_vmtruncate(inode);
2623 }
2624
2625 /*
2626 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2627 * different one. If we are the most recent migration we've seen (as
2628 * indicated by mseq), make note of the migrating cap bits for the
2629 * duration (until we see the corresponding IMPORT).
2630 *
2631 * caller holds s_mutex
2632 */
handle_cap_export(struct inode * inode,struct ceph_mds_caps * ex,struct ceph_mds_session * session,int * open_target_sessions)2633 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2634 struct ceph_mds_session *session,
2635 int *open_target_sessions)
2636 {
2637 struct ceph_inode_info *ci = ceph_inode(inode);
2638 int mds = session->s_mds;
2639 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2640 struct ceph_cap *cap = NULL, *t;
2641 struct rb_node *p;
2642 int remember = 1;
2643
2644 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2645 inode, ci, mds, mseq);
2646
2647 spin_lock(&inode->i_lock);
2648
2649 /* make sure we haven't seen a higher mseq */
2650 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2651 t = rb_entry(p, struct ceph_cap, ci_node);
2652 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2653 dout(" higher mseq on cap from mds%d\n",
2654 t->session->s_mds);
2655 remember = 0;
2656 }
2657 if (t->session->s_mds == mds)
2658 cap = t;
2659 }
2660
2661 if (cap) {
2662 if (remember) {
2663 /* make note */
2664 ci->i_cap_exporting_mds = mds;
2665 ci->i_cap_exporting_mseq = mseq;
2666 ci->i_cap_exporting_issued = cap->issued;
2667
2668 /*
2669 * make sure we have open sessions with all possible
2670 * export targets, so that we get the matching IMPORT
2671 */
2672 *open_target_sessions = 1;
2673 }
2674 __ceph_remove_cap(cap);
2675 }
2676 /* else, we already released it */
2677
2678 spin_unlock(&inode->i_lock);
2679 }
2680
2681 /*
2682 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2683 * clean them up.
2684 *
2685 * caller holds s_mutex.
2686 */
handle_cap_import(struct ceph_mds_client * mdsc,struct inode * inode,struct ceph_mds_caps * im,struct ceph_mds_session * session,void * snaptrace,int snaptrace_len)2687 static void handle_cap_import(struct ceph_mds_client *mdsc,
2688 struct inode *inode, struct ceph_mds_caps *im,
2689 struct ceph_mds_session *session,
2690 void *snaptrace, int snaptrace_len)
2691 {
2692 struct ceph_inode_info *ci = ceph_inode(inode);
2693 int mds = session->s_mds;
2694 unsigned issued = le32_to_cpu(im->caps);
2695 unsigned wanted = le32_to_cpu(im->wanted);
2696 unsigned seq = le32_to_cpu(im->seq);
2697 unsigned mseq = le32_to_cpu(im->migrate_seq);
2698 u64 realmino = le64_to_cpu(im->realm);
2699 u64 cap_id = le64_to_cpu(im->cap_id);
2700
2701 if (ci->i_cap_exporting_mds >= 0 &&
2702 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2703 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2704 " - cleared exporting from mds%d\n",
2705 inode, ci, mds, mseq,
2706 ci->i_cap_exporting_mds);
2707 ci->i_cap_exporting_issued = 0;
2708 ci->i_cap_exporting_mseq = 0;
2709 ci->i_cap_exporting_mds = -1;
2710 } else {
2711 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2712 inode, ci, mds, mseq);
2713 }
2714
2715 down_write(&mdsc->snap_rwsem);
2716 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2717 false);
2718 downgrade_write(&mdsc->snap_rwsem);
2719 ceph_add_cap(inode, session, cap_id, -1,
2720 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2721 NULL /* no caps context */);
2722 kick_flushing_inode_caps(mdsc, session, inode);
2723 up_read(&mdsc->snap_rwsem);
2724
2725 /* make sure we re-request max_size, if necessary */
2726 spin_lock(&inode->i_lock);
2727 ci->i_requested_max_size = 0;
2728 spin_unlock(&inode->i_lock);
2729 }
2730
2731 /*
2732 * Handle a caps message from the MDS.
2733 *
2734 * Identify the appropriate session, inode, and call the right handler
2735 * based on the cap op.
2736 */
ceph_handle_caps(struct ceph_mds_session * session,struct ceph_msg * msg)2737 void ceph_handle_caps(struct ceph_mds_session *session,
2738 struct ceph_msg *msg)
2739 {
2740 struct ceph_mds_client *mdsc = session->s_mdsc;
2741 struct super_block *sb = mdsc->fsc->sb;
2742 struct inode *inode;
2743 struct ceph_cap *cap;
2744 struct ceph_mds_caps *h;
2745 int mds = session->s_mds;
2746 int op;
2747 u32 seq, mseq;
2748 struct ceph_vino vino;
2749 u64 cap_id;
2750 u64 size, max_size;
2751 u64 tid;
2752 void *snaptrace;
2753 size_t snaptrace_len;
2754 void *flock;
2755 u32 flock_len;
2756 int open_target_sessions = 0;
2757
2758 dout("handle_caps from mds%d\n", mds);
2759
2760 /* decode */
2761 tid = le64_to_cpu(msg->hdr.tid);
2762 if (msg->front.iov_len < sizeof(*h))
2763 goto bad;
2764 h = msg->front.iov_base;
2765 op = le32_to_cpu(h->op);
2766 vino.ino = le64_to_cpu(h->ino);
2767 vino.snap = CEPH_NOSNAP;
2768 cap_id = le64_to_cpu(h->cap_id);
2769 seq = le32_to_cpu(h->seq);
2770 mseq = le32_to_cpu(h->migrate_seq);
2771 size = le64_to_cpu(h->size);
2772 max_size = le64_to_cpu(h->max_size);
2773
2774 snaptrace = h + 1;
2775 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2776
2777 if (le16_to_cpu(msg->hdr.version) >= 2) {
2778 void *p, *end;
2779
2780 p = snaptrace + snaptrace_len;
2781 end = msg->front.iov_base + msg->front.iov_len;
2782 ceph_decode_32_safe(&p, end, flock_len, bad);
2783 flock = p;
2784 } else {
2785 flock = NULL;
2786 flock_len = 0;
2787 }
2788
2789 mutex_lock(&session->s_mutex);
2790 session->s_seq++;
2791 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2792 (unsigned)seq);
2793
2794 /* lookup ino */
2795 inode = ceph_find_inode(sb, vino);
2796 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2797 vino.snap, inode);
2798 if (!inode) {
2799 dout(" i don't have ino %llx\n", vino.ino);
2800
2801 if (op == CEPH_CAP_OP_IMPORT)
2802 __queue_cap_release(session, vino.ino, cap_id,
2803 mseq, seq);
2804 goto flush_cap_releases;
2805 }
2806
2807 /* these will work even if we don't have a cap yet */
2808 switch (op) {
2809 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2810 handle_cap_flushsnap_ack(inode, tid, h, session);
2811 goto done;
2812
2813 case CEPH_CAP_OP_EXPORT:
2814 handle_cap_export(inode, h, session, &open_target_sessions);
2815 goto done;
2816
2817 case CEPH_CAP_OP_IMPORT:
2818 handle_cap_import(mdsc, inode, h, session,
2819 snaptrace, snaptrace_len);
2820 ceph_check_caps(ceph_inode(inode), 0, session);
2821 goto done_unlocked;
2822 }
2823
2824 /* the rest require a cap */
2825 spin_lock(&inode->i_lock);
2826 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2827 if (!cap) {
2828 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2829 inode, ceph_ino(inode), ceph_snap(inode), mds);
2830 spin_unlock(&inode->i_lock);
2831 goto flush_cap_releases;
2832 }
2833
2834 /* note that each of these drops i_lock for us */
2835 switch (op) {
2836 case CEPH_CAP_OP_REVOKE:
2837 case CEPH_CAP_OP_GRANT:
2838 handle_cap_grant(inode, h, session, cap, msg->middle);
2839 goto done_unlocked;
2840
2841 case CEPH_CAP_OP_FLUSH_ACK:
2842 handle_cap_flush_ack(inode, tid, h, session, cap);
2843 break;
2844
2845 case CEPH_CAP_OP_TRUNC:
2846 handle_cap_trunc(inode, h, session);
2847 break;
2848
2849 default:
2850 spin_unlock(&inode->i_lock);
2851 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2852 ceph_cap_op_name(op));
2853 }
2854
2855 goto done;
2856
2857 flush_cap_releases:
2858 /*
2859 * send any full release message to try to move things
2860 * along for the mds (who clearly thinks we still have this
2861 * cap).
2862 */
2863 ceph_add_cap_releases(mdsc, session);
2864 ceph_send_cap_releases(mdsc, session);
2865
2866 done:
2867 mutex_unlock(&session->s_mutex);
2868 done_unlocked:
2869 if (inode)
2870 iput(inode);
2871 if (open_target_sessions)
2872 ceph_mdsc_open_export_target_sessions(mdsc, session);
2873 return;
2874
2875 bad:
2876 pr_err("ceph_handle_caps: corrupt message\n");
2877 ceph_msg_dump(msg);
2878 return;
2879 }
2880
2881 /*
2882 * Delayed work handler to process end of delayed cap release LRU list.
2883 */
ceph_check_delayed_caps(struct ceph_mds_client * mdsc)2884 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2885 {
2886 struct ceph_inode_info *ci;
2887 int flags = CHECK_CAPS_NODELAY;
2888
2889 dout("check_delayed_caps\n");
2890 while (1) {
2891 spin_lock(&mdsc->cap_delay_lock);
2892 if (list_empty(&mdsc->cap_delay_list))
2893 break;
2894 ci = list_first_entry(&mdsc->cap_delay_list,
2895 struct ceph_inode_info,
2896 i_cap_delay_list);
2897 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2898 time_before(jiffies, ci->i_hold_caps_max))
2899 break;
2900 list_del_init(&ci->i_cap_delay_list);
2901 spin_unlock(&mdsc->cap_delay_lock);
2902 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2903 ceph_check_caps(ci, flags, NULL);
2904 }
2905 spin_unlock(&mdsc->cap_delay_lock);
2906 }
2907
2908 /*
2909 * Flush all dirty caps to the mds
2910 */
ceph_flush_dirty_caps(struct ceph_mds_client * mdsc)2911 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2912 {
2913 struct ceph_inode_info *ci, *nci = NULL;
2914 struct inode *inode, *ninode = NULL;
2915 struct list_head *p, *n;
2916
2917 dout("flush_dirty_caps\n");
2918 spin_lock(&mdsc->cap_dirty_lock);
2919 list_for_each_safe(p, n, &mdsc->cap_dirty) {
2920 if (nci) {
2921 ci = nci;
2922 inode = ninode;
2923 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2924 dout("flush_dirty_caps inode %p (was next inode)\n",
2925 inode);
2926 } else {
2927 ci = list_entry(p, struct ceph_inode_info,
2928 i_dirty_item);
2929 inode = igrab(&ci->vfs_inode);
2930 BUG_ON(!inode);
2931 dout("flush_dirty_caps inode %p\n", inode);
2932 }
2933 if (n != &mdsc->cap_dirty) {
2934 nci = list_entry(n, struct ceph_inode_info,
2935 i_dirty_item);
2936 ninode = igrab(&nci->vfs_inode);
2937 BUG_ON(!ninode);
2938 nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2939 dout("flush_dirty_caps next inode %p, noflush\n",
2940 ninode);
2941 } else {
2942 nci = NULL;
2943 ninode = NULL;
2944 }
2945 spin_unlock(&mdsc->cap_dirty_lock);
2946 if (inode) {
2947 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2948 NULL);
2949 iput(inode);
2950 }
2951 spin_lock(&mdsc->cap_dirty_lock);
2952 }
2953 spin_unlock(&mdsc->cap_dirty_lock);
2954 }
2955
2956 /*
2957 * Drop open file reference. If we were the last open file,
2958 * we may need to release capabilities to the MDS (or schedule
2959 * their delayed release).
2960 */
ceph_put_fmode(struct ceph_inode_info * ci,int fmode)2961 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2962 {
2963 struct inode *inode = &ci->vfs_inode;
2964 int last = 0;
2965
2966 spin_lock(&inode->i_lock);
2967 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2968 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2969 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2970 if (--ci->i_nr_by_mode[fmode] == 0)
2971 last++;
2972 spin_unlock(&inode->i_lock);
2973
2974 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2975 ceph_check_caps(ci, 0, NULL);
2976 }
2977
2978 /*
2979 * Helpers for embedding cap and dentry lease releases into mds
2980 * requests.
2981 *
2982 * @force is used by dentry_release (below) to force inclusion of a
2983 * record for the directory inode, even when there aren't any caps to
2984 * drop.
2985 */
ceph_encode_inode_release(void ** p,struct inode * inode,int mds,int drop,int unless,int force)2986 int ceph_encode_inode_release(void **p, struct inode *inode,
2987 int mds, int drop, int unless, int force)
2988 {
2989 struct ceph_inode_info *ci = ceph_inode(inode);
2990 struct ceph_cap *cap;
2991 struct ceph_mds_request_release *rel = *p;
2992 int used, dirty;
2993 int ret = 0;
2994
2995 spin_lock(&inode->i_lock);
2996 used = __ceph_caps_used(ci);
2997 dirty = __ceph_caps_dirty(ci);
2998
2999 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3000 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3001 ceph_cap_string(unless));
3002
3003 /* only drop unused, clean caps */
3004 drop &= ~(used | dirty);
3005
3006 cap = __get_cap_for_mds(ci, mds);
3007 if (cap && __cap_is_valid(cap)) {
3008 if (force ||
3009 ((cap->issued & drop) &&
3010 (cap->issued & unless) == 0)) {
3011 if ((cap->issued & drop) &&
3012 (cap->issued & unless) == 0) {
3013 dout("encode_inode_release %p cap %p %s -> "
3014 "%s\n", inode, cap,
3015 ceph_cap_string(cap->issued),
3016 ceph_cap_string(cap->issued & ~drop));
3017 cap->issued &= ~drop;
3018 cap->implemented &= ~drop;
3019 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3020 int wanted = __ceph_caps_wanted(ci);
3021 dout(" wanted %s -> %s (act %s)\n",
3022 ceph_cap_string(cap->mds_wanted),
3023 ceph_cap_string(cap->mds_wanted &
3024 ~wanted),
3025 ceph_cap_string(wanted));
3026 cap->mds_wanted &= wanted;
3027 }
3028 } else {
3029 dout("encode_inode_release %p cap %p %s"
3030 " (force)\n", inode, cap,
3031 ceph_cap_string(cap->issued));
3032 }
3033
3034 rel->ino = cpu_to_le64(ceph_ino(inode));
3035 rel->cap_id = cpu_to_le64(cap->cap_id);
3036 rel->seq = cpu_to_le32(cap->seq);
3037 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3038 rel->mseq = cpu_to_le32(cap->mseq);
3039 rel->caps = cpu_to_le32(cap->issued);
3040 rel->wanted = cpu_to_le32(cap->mds_wanted);
3041 rel->dname_len = 0;
3042 rel->dname_seq = 0;
3043 *p += sizeof(*rel);
3044 ret = 1;
3045 } else {
3046 dout("encode_inode_release %p cap %p %s\n",
3047 inode, cap, ceph_cap_string(cap->issued));
3048 }
3049 }
3050 spin_unlock(&inode->i_lock);
3051 return ret;
3052 }
3053
ceph_encode_dentry_release(void ** p,struct dentry * dentry,int mds,int drop,int unless)3054 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3055 int mds, int drop, int unless)
3056 {
3057 struct inode *dir = dentry->d_parent->d_inode;
3058 struct ceph_mds_request_release *rel = *p;
3059 struct ceph_dentry_info *di = ceph_dentry(dentry);
3060 int force = 0;
3061 int ret;
3062
3063 /*
3064 * force an record for the directory caps if we have a dentry lease.
3065 * this is racy (can't take i_lock and d_lock together), but it
3066 * doesn't have to be perfect; the mds will revoke anything we don't
3067 * release.
3068 */
3069 spin_lock(&dentry->d_lock);
3070 if (di->lease_session && di->lease_session->s_mds == mds)
3071 force = 1;
3072 spin_unlock(&dentry->d_lock);
3073
3074 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3075
3076 spin_lock(&dentry->d_lock);
3077 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3078 dout("encode_dentry_release %p mds%d seq %d\n",
3079 dentry, mds, (int)di->lease_seq);
3080 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3081 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3082 *p += dentry->d_name.len;
3083 rel->dname_seq = cpu_to_le32(di->lease_seq);
3084 __ceph_mdsc_drop_dentry_lease(dentry);
3085 }
3086 spin_unlock(&dentry->d_lock);
3087 return ret;
3088 }
3089