1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2020
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/page.h>
25 #include <asm/tlb.h>
26
27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
28
gmap_alloc_crst(void)29 static struct page *gmap_alloc_crst(void)
30 {
31 struct page *page;
32
33 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
34 if (!page)
35 return NULL;
36 arch_set_page_dat(page, CRST_ALLOC_ORDER);
37 return page;
38 }
39
40 /**
41 * gmap_alloc - allocate and initialize a guest address space
42 * @limit: maximum address of the gmap address space
43 *
44 * Returns a guest address space structure.
45 */
gmap_alloc(unsigned long limit)46 static struct gmap *gmap_alloc(unsigned long limit)
47 {
48 struct gmap *gmap;
49 struct page *page;
50 unsigned long *table;
51 unsigned long etype, atype;
52
53 if (limit < _REGION3_SIZE) {
54 limit = _REGION3_SIZE - 1;
55 atype = _ASCE_TYPE_SEGMENT;
56 etype = _SEGMENT_ENTRY_EMPTY;
57 } else if (limit < _REGION2_SIZE) {
58 limit = _REGION2_SIZE - 1;
59 atype = _ASCE_TYPE_REGION3;
60 etype = _REGION3_ENTRY_EMPTY;
61 } else if (limit < _REGION1_SIZE) {
62 limit = _REGION1_SIZE - 1;
63 atype = _ASCE_TYPE_REGION2;
64 etype = _REGION2_ENTRY_EMPTY;
65 } else {
66 limit = -1UL;
67 atype = _ASCE_TYPE_REGION1;
68 etype = _REGION1_ENTRY_EMPTY;
69 }
70 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
71 if (!gmap)
72 goto out;
73 INIT_LIST_HEAD(&gmap->crst_list);
74 INIT_LIST_HEAD(&gmap->children);
75 INIT_LIST_HEAD(&gmap->pt_list);
76 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
77 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
78 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
79 spin_lock_init(&gmap->guest_table_lock);
80 spin_lock_init(&gmap->shadow_lock);
81 refcount_set(&gmap->ref_count, 1);
82 page = gmap_alloc_crst();
83 if (!page)
84 goto out_free;
85 page->index = 0;
86 list_add(&page->lru, &gmap->crst_list);
87 table = page_to_virt(page);
88 crst_table_init(table, etype);
89 gmap->table = table;
90 gmap->asce = atype | _ASCE_TABLE_LENGTH |
91 _ASCE_USER_BITS | __pa(table);
92 gmap->asce_end = limit;
93 return gmap;
94
95 out_free:
96 kfree(gmap);
97 out:
98 return NULL;
99 }
100
101 /**
102 * gmap_create - create a guest address space
103 * @mm: pointer to the parent mm_struct
104 * @limit: maximum size of the gmap address space
105 *
106 * Returns a guest address space structure.
107 */
gmap_create(struct mm_struct * mm,unsigned long limit)108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
109 {
110 struct gmap *gmap;
111 unsigned long gmap_asce;
112
113 gmap = gmap_alloc(limit);
114 if (!gmap)
115 return NULL;
116 gmap->mm = mm;
117 spin_lock(&mm->context.lock);
118 list_add_rcu(&gmap->list, &mm->context.gmap_list);
119 if (list_is_singular(&mm->context.gmap_list))
120 gmap_asce = gmap->asce;
121 else
122 gmap_asce = -1UL;
123 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
124 spin_unlock(&mm->context.lock);
125 return gmap;
126 }
127 EXPORT_SYMBOL_GPL(gmap_create);
128
gmap_flush_tlb(struct gmap * gmap)129 static void gmap_flush_tlb(struct gmap *gmap)
130 {
131 if (MACHINE_HAS_IDTE)
132 __tlb_flush_idte(gmap->asce);
133 else
134 __tlb_flush_global();
135 }
136
gmap_radix_tree_free(struct radix_tree_root * root)137 static void gmap_radix_tree_free(struct radix_tree_root *root)
138 {
139 struct radix_tree_iter iter;
140 unsigned long indices[16];
141 unsigned long index;
142 void __rcu **slot;
143 int i, nr;
144
145 /* A radix tree is freed by deleting all of its entries */
146 index = 0;
147 do {
148 nr = 0;
149 radix_tree_for_each_slot(slot, root, &iter, index) {
150 indices[nr] = iter.index;
151 if (++nr == 16)
152 break;
153 }
154 for (i = 0; i < nr; i++) {
155 index = indices[i];
156 radix_tree_delete(root, index);
157 }
158 } while (nr > 0);
159 }
160
gmap_rmap_radix_tree_free(struct radix_tree_root * root)161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
162 {
163 struct gmap_rmap *rmap, *rnext, *head;
164 struct radix_tree_iter iter;
165 unsigned long indices[16];
166 unsigned long index;
167 void __rcu **slot;
168 int i, nr;
169
170 /* A radix tree is freed by deleting all of its entries */
171 index = 0;
172 do {
173 nr = 0;
174 radix_tree_for_each_slot(slot, root, &iter, index) {
175 indices[nr] = iter.index;
176 if (++nr == 16)
177 break;
178 }
179 for (i = 0; i < nr; i++) {
180 index = indices[i];
181 head = radix_tree_delete(root, index);
182 gmap_for_each_rmap_safe(rmap, rnext, head)
183 kfree(rmap);
184 }
185 } while (nr > 0);
186 }
187
188 /**
189 * gmap_free - free a guest address space
190 * @gmap: pointer to the guest address space structure
191 *
192 * No locks required. There are no references to this gmap anymore.
193 */
gmap_free(struct gmap * gmap)194 static void gmap_free(struct gmap *gmap)
195 {
196 struct page *page, *next;
197
198 /* Flush tlb of all gmaps (if not already done for shadows) */
199 if (!(gmap_is_shadow(gmap) && gmap->removed))
200 gmap_flush_tlb(gmap);
201 /* Free all segment & region tables. */
202 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
203 __free_pages(page, CRST_ALLOC_ORDER);
204 gmap_radix_tree_free(&gmap->guest_to_host);
205 gmap_radix_tree_free(&gmap->host_to_guest);
206
207 /* Free additional data for a shadow gmap */
208 if (gmap_is_shadow(gmap)) {
209 /* Free all page tables. */
210 list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
211 page_table_free_pgste(page);
212 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
213 /* Release reference to the parent */
214 gmap_put(gmap->parent);
215 }
216
217 kfree(gmap);
218 }
219
220 /**
221 * gmap_get - increase reference counter for guest address space
222 * @gmap: pointer to the guest address space structure
223 *
224 * Returns the gmap pointer
225 */
gmap_get(struct gmap * gmap)226 struct gmap *gmap_get(struct gmap *gmap)
227 {
228 refcount_inc(&gmap->ref_count);
229 return gmap;
230 }
231 EXPORT_SYMBOL_GPL(gmap_get);
232
233 /**
234 * gmap_put - decrease reference counter for guest address space
235 * @gmap: pointer to the guest address space structure
236 *
237 * If the reference counter reaches zero the guest address space is freed.
238 */
gmap_put(struct gmap * gmap)239 void gmap_put(struct gmap *gmap)
240 {
241 if (refcount_dec_and_test(&gmap->ref_count))
242 gmap_free(gmap);
243 }
244 EXPORT_SYMBOL_GPL(gmap_put);
245
246 /**
247 * gmap_remove - remove a guest address space but do not free it yet
248 * @gmap: pointer to the guest address space structure
249 */
gmap_remove(struct gmap * gmap)250 void gmap_remove(struct gmap *gmap)
251 {
252 struct gmap *sg, *next;
253 unsigned long gmap_asce;
254
255 /* Remove all shadow gmaps linked to this gmap */
256 if (!list_empty(&gmap->children)) {
257 spin_lock(&gmap->shadow_lock);
258 list_for_each_entry_safe(sg, next, &gmap->children, list) {
259 list_del(&sg->list);
260 gmap_put(sg);
261 }
262 spin_unlock(&gmap->shadow_lock);
263 }
264 /* Remove gmap from the pre-mm list */
265 spin_lock(&gmap->mm->context.lock);
266 list_del_rcu(&gmap->list);
267 if (list_empty(&gmap->mm->context.gmap_list))
268 gmap_asce = 0;
269 else if (list_is_singular(&gmap->mm->context.gmap_list))
270 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
271 struct gmap, list)->asce;
272 else
273 gmap_asce = -1UL;
274 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
275 spin_unlock(&gmap->mm->context.lock);
276 synchronize_rcu();
277 /* Put reference */
278 gmap_put(gmap);
279 }
280 EXPORT_SYMBOL_GPL(gmap_remove);
281
282 /**
283 * gmap_enable - switch primary space to the guest address space
284 * @gmap: pointer to the guest address space structure
285 */
gmap_enable(struct gmap * gmap)286 void gmap_enable(struct gmap *gmap)
287 {
288 S390_lowcore.gmap = (unsigned long) gmap;
289 }
290 EXPORT_SYMBOL_GPL(gmap_enable);
291
292 /**
293 * gmap_disable - switch back to the standard primary address space
294 * @gmap: pointer to the guest address space structure
295 */
gmap_disable(struct gmap * gmap)296 void gmap_disable(struct gmap *gmap)
297 {
298 S390_lowcore.gmap = 0UL;
299 }
300 EXPORT_SYMBOL_GPL(gmap_disable);
301
302 /**
303 * gmap_get_enabled - get a pointer to the currently enabled gmap
304 *
305 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
306 */
gmap_get_enabled(void)307 struct gmap *gmap_get_enabled(void)
308 {
309 return (struct gmap *) S390_lowcore.gmap;
310 }
311 EXPORT_SYMBOL_GPL(gmap_get_enabled);
312
313 /*
314 * gmap_alloc_table is assumed to be called with mmap_lock held
315 */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)316 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
317 unsigned long init, unsigned long gaddr)
318 {
319 struct page *page;
320 unsigned long *new;
321
322 /* since we dont free the gmap table until gmap_free we can unlock */
323 page = gmap_alloc_crst();
324 if (!page)
325 return -ENOMEM;
326 new = page_to_virt(page);
327 crst_table_init(new, init);
328 spin_lock(&gmap->guest_table_lock);
329 if (*table & _REGION_ENTRY_INVALID) {
330 list_add(&page->lru, &gmap->crst_list);
331 *table = __pa(new) | _REGION_ENTRY_LENGTH |
332 (*table & _REGION_ENTRY_TYPE_MASK);
333 page->index = gaddr;
334 page = NULL;
335 }
336 spin_unlock(&gmap->guest_table_lock);
337 if (page)
338 __free_pages(page, CRST_ALLOC_ORDER);
339 return 0;
340 }
341
342 /**
343 * __gmap_segment_gaddr - find virtual address from segment pointer
344 * @entry: pointer to a segment table entry in the guest address space
345 *
346 * Returns the virtual address in the guest address space for the segment
347 */
__gmap_segment_gaddr(unsigned long * entry)348 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
349 {
350 struct page *page;
351 unsigned long offset;
352
353 offset = (unsigned long) entry / sizeof(unsigned long);
354 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
355 page = pmd_pgtable_page((pmd_t *) entry);
356 return page->index + offset;
357 }
358
359 /**
360 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
361 * @gmap: pointer to the guest address space structure
362 * @vmaddr: address in the host process address space
363 *
364 * Returns 1 if a TLB flush is required
365 */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)366 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
367 {
368 unsigned long *entry;
369 int flush = 0;
370
371 BUG_ON(gmap_is_shadow(gmap));
372 spin_lock(&gmap->guest_table_lock);
373 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
374 if (entry) {
375 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
376 *entry = _SEGMENT_ENTRY_EMPTY;
377 }
378 spin_unlock(&gmap->guest_table_lock);
379 return flush;
380 }
381
382 /**
383 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
384 * @gmap: pointer to the guest address space structure
385 * @gaddr: address in the guest address space
386 *
387 * Returns 1 if a TLB flush is required
388 */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)389 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
390 {
391 unsigned long vmaddr;
392
393 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
394 gaddr >> PMD_SHIFT);
395 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
396 }
397
398 /**
399 * gmap_unmap_segment - unmap segment from the guest address space
400 * @gmap: pointer to the guest address space structure
401 * @to: address in the guest address space
402 * @len: length of the memory area to unmap
403 *
404 * Returns 0 if the unmap succeeded, -EINVAL if not.
405 */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)406 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
407 {
408 unsigned long off;
409 int flush;
410
411 BUG_ON(gmap_is_shadow(gmap));
412 if ((to | len) & (PMD_SIZE - 1))
413 return -EINVAL;
414 if (len == 0 || to + len < to)
415 return -EINVAL;
416
417 flush = 0;
418 mmap_write_lock(gmap->mm);
419 for (off = 0; off < len; off += PMD_SIZE)
420 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
421 mmap_write_unlock(gmap->mm);
422 if (flush)
423 gmap_flush_tlb(gmap);
424 return 0;
425 }
426 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
427
428 /**
429 * gmap_map_segment - map a segment to the guest address space
430 * @gmap: pointer to the guest address space structure
431 * @from: source address in the parent address space
432 * @to: target address in the guest address space
433 * @len: length of the memory area to map
434 *
435 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
436 */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)437 int gmap_map_segment(struct gmap *gmap, unsigned long from,
438 unsigned long to, unsigned long len)
439 {
440 unsigned long off;
441 int flush;
442
443 BUG_ON(gmap_is_shadow(gmap));
444 if ((from | to | len) & (PMD_SIZE - 1))
445 return -EINVAL;
446 if (len == 0 || from + len < from || to + len < to ||
447 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
448 return -EINVAL;
449
450 flush = 0;
451 mmap_write_lock(gmap->mm);
452 for (off = 0; off < len; off += PMD_SIZE) {
453 /* Remove old translation */
454 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
455 /* Store new translation */
456 if (radix_tree_insert(&gmap->guest_to_host,
457 (to + off) >> PMD_SHIFT,
458 (void *) from + off))
459 break;
460 }
461 mmap_write_unlock(gmap->mm);
462 if (flush)
463 gmap_flush_tlb(gmap);
464 if (off >= len)
465 return 0;
466 gmap_unmap_segment(gmap, to, len);
467 return -ENOMEM;
468 }
469 EXPORT_SYMBOL_GPL(gmap_map_segment);
470
471 /**
472 * __gmap_translate - translate a guest address to a user space address
473 * @gmap: pointer to guest mapping meta data structure
474 * @gaddr: guest address
475 *
476 * Returns user space address which corresponds to the guest address or
477 * -EFAULT if no such mapping exists.
478 * This function does not establish potentially missing page table entries.
479 * The mmap_lock of the mm that belongs to the address space must be held
480 * when this function gets called.
481 *
482 * Note: Can also be called for shadow gmaps.
483 */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)484 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
485 {
486 unsigned long vmaddr;
487
488 vmaddr = (unsigned long)
489 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
490 /* Note: guest_to_host is empty for a shadow gmap */
491 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
492 }
493 EXPORT_SYMBOL_GPL(__gmap_translate);
494
495 /**
496 * gmap_translate - translate a guest address to a user space address
497 * @gmap: pointer to guest mapping meta data structure
498 * @gaddr: guest address
499 *
500 * Returns user space address which corresponds to the guest address or
501 * -EFAULT if no such mapping exists.
502 * This function does not establish potentially missing page table entries.
503 */
gmap_translate(struct gmap * gmap,unsigned long gaddr)504 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
505 {
506 unsigned long rc;
507
508 mmap_read_lock(gmap->mm);
509 rc = __gmap_translate(gmap, gaddr);
510 mmap_read_unlock(gmap->mm);
511 return rc;
512 }
513 EXPORT_SYMBOL_GPL(gmap_translate);
514
515 /**
516 * gmap_unlink - disconnect a page table from the gmap shadow tables
517 * @mm: pointer to the parent mm_struct
518 * @table: pointer to the host page table
519 * @vmaddr: vm address associated with the host page table
520 */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)521 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
522 unsigned long vmaddr)
523 {
524 struct gmap *gmap;
525 int flush;
526
527 rcu_read_lock();
528 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
529 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
530 if (flush)
531 gmap_flush_tlb(gmap);
532 }
533 rcu_read_unlock();
534 }
535
536 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
537 unsigned long gaddr);
538
539 /**
540 * __gmap_link - set up shadow page tables to connect a host to a guest address
541 * @gmap: pointer to guest mapping meta data structure
542 * @gaddr: guest address
543 * @vmaddr: vm address
544 *
545 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
546 * if the vm address is already mapped to a different guest segment.
547 * The mmap_lock of the mm that belongs to the address space must be held
548 * when this function gets called.
549 */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)550 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
551 {
552 struct mm_struct *mm;
553 unsigned long *table;
554 spinlock_t *ptl;
555 pgd_t *pgd;
556 p4d_t *p4d;
557 pud_t *pud;
558 pmd_t *pmd;
559 u64 unprot;
560 int rc;
561
562 BUG_ON(gmap_is_shadow(gmap));
563 /* Create higher level tables in the gmap page table */
564 table = gmap->table;
565 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
566 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
567 if ((*table & _REGION_ENTRY_INVALID) &&
568 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
569 gaddr & _REGION1_MASK))
570 return -ENOMEM;
571 table = __va(*table & _REGION_ENTRY_ORIGIN);
572 }
573 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
574 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
575 if ((*table & _REGION_ENTRY_INVALID) &&
576 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
577 gaddr & _REGION2_MASK))
578 return -ENOMEM;
579 table = __va(*table & _REGION_ENTRY_ORIGIN);
580 }
581 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
582 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
583 if ((*table & _REGION_ENTRY_INVALID) &&
584 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
585 gaddr & _REGION3_MASK))
586 return -ENOMEM;
587 table = __va(*table & _REGION_ENTRY_ORIGIN);
588 }
589 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
590 /* Walk the parent mm page table */
591 mm = gmap->mm;
592 pgd = pgd_offset(mm, vmaddr);
593 VM_BUG_ON(pgd_none(*pgd));
594 p4d = p4d_offset(pgd, vmaddr);
595 VM_BUG_ON(p4d_none(*p4d));
596 pud = pud_offset(p4d, vmaddr);
597 VM_BUG_ON(pud_none(*pud));
598 /* large puds cannot yet be handled */
599 if (pud_large(*pud))
600 return -EFAULT;
601 pmd = pmd_offset(pud, vmaddr);
602 VM_BUG_ON(pmd_none(*pmd));
603 /* Are we allowed to use huge pages? */
604 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
605 return -EFAULT;
606 /* Link gmap segment table entry location to page table. */
607 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
608 if (rc)
609 return rc;
610 ptl = pmd_lock(mm, pmd);
611 spin_lock(&gmap->guest_table_lock);
612 if (*table == _SEGMENT_ENTRY_EMPTY) {
613 rc = radix_tree_insert(&gmap->host_to_guest,
614 vmaddr >> PMD_SHIFT, table);
615 if (!rc) {
616 if (pmd_large(*pmd)) {
617 *table = (pmd_val(*pmd) &
618 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
619 | _SEGMENT_ENTRY_GMAP_UC;
620 } else
621 *table = pmd_val(*pmd) &
622 _SEGMENT_ENTRY_HARDWARE_BITS;
623 }
624 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
625 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
626 unprot = (u64)*table;
627 unprot &= ~_SEGMENT_ENTRY_PROTECT;
628 unprot |= _SEGMENT_ENTRY_GMAP_UC;
629 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
630 }
631 spin_unlock(&gmap->guest_table_lock);
632 spin_unlock(ptl);
633 radix_tree_preload_end();
634 return rc;
635 }
636
637 /**
638 * gmap_fault - resolve a fault on a guest address
639 * @gmap: pointer to guest mapping meta data structure
640 * @gaddr: guest address
641 * @fault_flags: flags to pass down to handle_mm_fault()
642 *
643 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
644 * if the vm address is already mapped to a different guest segment.
645 */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)646 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
647 unsigned int fault_flags)
648 {
649 unsigned long vmaddr;
650 int rc;
651 bool unlocked;
652
653 mmap_read_lock(gmap->mm);
654
655 retry:
656 unlocked = false;
657 vmaddr = __gmap_translate(gmap, gaddr);
658 if (IS_ERR_VALUE(vmaddr)) {
659 rc = vmaddr;
660 goto out_up;
661 }
662 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
663 &unlocked)) {
664 rc = -EFAULT;
665 goto out_up;
666 }
667 /*
668 * In the case that fixup_user_fault unlocked the mmap_lock during
669 * faultin redo __gmap_translate to not race with a map/unmap_segment.
670 */
671 if (unlocked)
672 goto retry;
673
674 rc = __gmap_link(gmap, gaddr, vmaddr);
675 out_up:
676 mmap_read_unlock(gmap->mm);
677 return rc;
678 }
679 EXPORT_SYMBOL_GPL(gmap_fault);
680
681 /*
682 * this function is assumed to be called with mmap_lock held
683 */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)684 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
685 {
686 struct vm_area_struct *vma;
687 unsigned long vmaddr;
688 spinlock_t *ptl;
689 pte_t *ptep;
690
691 /* Find the vm address for the guest address */
692 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
693 gaddr >> PMD_SHIFT);
694 if (vmaddr) {
695 vmaddr |= gaddr & ~PMD_MASK;
696
697 vma = vma_lookup(gmap->mm, vmaddr);
698 if (!vma || is_vm_hugetlb_page(vma))
699 return;
700
701 /* Get pointer to the page table entry */
702 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
703 if (likely(ptep)) {
704 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
705 pte_unmap_unlock(ptep, ptl);
706 }
707 }
708 }
709 EXPORT_SYMBOL_GPL(__gmap_zap);
710
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)711 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
712 {
713 unsigned long gaddr, vmaddr, size;
714 struct vm_area_struct *vma;
715
716 mmap_read_lock(gmap->mm);
717 for (gaddr = from; gaddr < to;
718 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
719 /* Find the vm address for the guest address */
720 vmaddr = (unsigned long)
721 radix_tree_lookup(&gmap->guest_to_host,
722 gaddr >> PMD_SHIFT);
723 if (!vmaddr)
724 continue;
725 vmaddr |= gaddr & ~PMD_MASK;
726 /* Find vma in the parent mm */
727 vma = find_vma(gmap->mm, vmaddr);
728 if (!vma)
729 continue;
730 /*
731 * We do not discard pages that are backed by
732 * hugetlbfs, so we don't have to refault them.
733 */
734 if (is_vm_hugetlb_page(vma))
735 continue;
736 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
737 zap_page_range_single(vma, vmaddr, size, NULL);
738 }
739 mmap_read_unlock(gmap->mm);
740 }
741 EXPORT_SYMBOL_GPL(gmap_discard);
742
743 static LIST_HEAD(gmap_notifier_list);
744 static DEFINE_SPINLOCK(gmap_notifier_lock);
745
746 /**
747 * gmap_register_pte_notifier - register a pte invalidation callback
748 * @nb: pointer to the gmap notifier block
749 */
gmap_register_pte_notifier(struct gmap_notifier * nb)750 void gmap_register_pte_notifier(struct gmap_notifier *nb)
751 {
752 spin_lock(&gmap_notifier_lock);
753 list_add_rcu(&nb->list, &gmap_notifier_list);
754 spin_unlock(&gmap_notifier_lock);
755 }
756 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
757
758 /**
759 * gmap_unregister_pte_notifier - remove a pte invalidation callback
760 * @nb: pointer to the gmap notifier block
761 */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)762 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
763 {
764 spin_lock(&gmap_notifier_lock);
765 list_del_rcu(&nb->list);
766 spin_unlock(&gmap_notifier_lock);
767 synchronize_rcu();
768 }
769 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
770
771 /**
772 * gmap_call_notifier - call all registered invalidation callbacks
773 * @gmap: pointer to guest mapping meta data structure
774 * @start: start virtual address in the guest address space
775 * @end: end virtual address in the guest address space
776 */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)777 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
778 unsigned long end)
779 {
780 struct gmap_notifier *nb;
781
782 list_for_each_entry(nb, &gmap_notifier_list, list)
783 nb->notifier_call(gmap, start, end);
784 }
785
786 /**
787 * gmap_table_walk - walk the gmap page tables
788 * @gmap: pointer to guest mapping meta data structure
789 * @gaddr: virtual address in the guest address space
790 * @level: page table level to stop at
791 *
792 * Returns a table entry pointer for the given guest address and @level
793 * @level=0 : returns a pointer to a page table table entry (or NULL)
794 * @level=1 : returns a pointer to a segment table entry (or NULL)
795 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
796 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
797 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
798 *
799 * Returns NULL if the gmap page tables could not be walked to the
800 * requested level.
801 *
802 * Note: Can also be called for shadow gmaps.
803 */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)804 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
805 unsigned long gaddr, int level)
806 {
807 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
808 unsigned long *table = gmap->table;
809
810 if (gmap_is_shadow(gmap) && gmap->removed)
811 return NULL;
812
813 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
814 return NULL;
815
816 if (asce_type != _ASCE_TYPE_REGION1 &&
817 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
818 return NULL;
819
820 switch (asce_type) {
821 case _ASCE_TYPE_REGION1:
822 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
823 if (level == 4)
824 break;
825 if (*table & _REGION_ENTRY_INVALID)
826 return NULL;
827 table = __va(*table & _REGION_ENTRY_ORIGIN);
828 fallthrough;
829 case _ASCE_TYPE_REGION2:
830 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
831 if (level == 3)
832 break;
833 if (*table & _REGION_ENTRY_INVALID)
834 return NULL;
835 table = __va(*table & _REGION_ENTRY_ORIGIN);
836 fallthrough;
837 case _ASCE_TYPE_REGION3:
838 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
839 if (level == 2)
840 break;
841 if (*table & _REGION_ENTRY_INVALID)
842 return NULL;
843 table = __va(*table & _REGION_ENTRY_ORIGIN);
844 fallthrough;
845 case _ASCE_TYPE_SEGMENT:
846 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
847 if (level == 1)
848 break;
849 if (*table & _REGION_ENTRY_INVALID)
850 return NULL;
851 table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
852 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
853 }
854 return table;
855 }
856
857 /**
858 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
859 * and return the pte pointer
860 * @gmap: pointer to guest mapping meta data structure
861 * @gaddr: virtual address in the guest address space
862 * @ptl: pointer to the spinlock pointer
863 *
864 * Returns a pointer to the locked pte for a guest address, or NULL
865 */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)866 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
867 spinlock_t **ptl)
868 {
869 unsigned long *table;
870
871 BUG_ON(gmap_is_shadow(gmap));
872 /* Walk the gmap page table, lock and get pte pointer */
873 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
874 if (!table || *table & _SEGMENT_ENTRY_INVALID)
875 return NULL;
876 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
877 }
878
879 /**
880 * gmap_pte_op_fixup - force a page in and connect the gmap page table
881 * @gmap: pointer to guest mapping meta data structure
882 * @gaddr: virtual address in the guest address space
883 * @vmaddr: address in the host process address space
884 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
885 *
886 * Returns 0 if the caller can retry __gmap_translate (might fail again),
887 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
888 * up or connecting the gmap page table.
889 */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)890 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
891 unsigned long vmaddr, int prot)
892 {
893 struct mm_struct *mm = gmap->mm;
894 unsigned int fault_flags;
895 bool unlocked = false;
896
897 BUG_ON(gmap_is_shadow(gmap));
898 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
899 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
900 return -EFAULT;
901 if (unlocked)
902 /* lost mmap_lock, caller has to retry __gmap_translate */
903 return 0;
904 /* Connect the page tables */
905 return __gmap_link(gmap, gaddr, vmaddr);
906 }
907
908 /**
909 * gmap_pte_op_end - release the page table lock
910 * @ptep: pointer to the locked pte
911 * @ptl: pointer to the page table spinlock
912 */
gmap_pte_op_end(pte_t * ptep,spinlock_t * ptl)913 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
914 {
915 pte_unmap_unlock(ptep, ptl);
916 }
917
918 /**
919 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
920 * and return the pmd pointer
921 * @gmap: pointer to guest mapping meta data structure
922 * @gaddr: virtual address in the guest address space
923 *
924 * Returns a pointer to the pmd for a guest address, or NULL
925 */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)926 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
927 {
928 pmd_t *pmdp;
929
930 BUG_ON(gmap_is_shadow(gmap));
931 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
932 if (!pmdp)
933 return NULL;
934
935 /* without huge pages, there is no need to take the table lock */
936 if (!gmap->mm->context.allow_gmap_hpage_1m)
937 return pmd_none(*pmdp) ? NULL : pmdp;
938
939 spin_lock(&gmap->guest_table_lock);
940 if (pmd_none(*pmdp)) {
941 spin_unlock(&gmap->guest_table_lock);
942 return NULL;
943 }
944
945 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
946 if (!pmd_large(*pmdp))
947 spin_unlock(&gmap->guest_table_lock);
948 return pmdp;
949 }
950
951 /**
952 * gmap_pmd_op_end - release the guest_table_lock if needed
953 * @gmap: pointer to the guest mapping meta data structure
954 * @pmdp: pointer to the pmd
955 */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)956 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
957 {
958 if (pmd_large(*pmdp))
959 spin_unlock(&gmap->guest_table_lock);
960 }
961
962 /*
963 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
964 * @pmdp: pointer to the pmd to be protected
965 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
966 * @bits: notification bits to set
967 *
968 * Returns:
969 * 0 if successfully protected
970 * -EAGAIN if a fixup is needed
971 * -EINVAL if unsupported notifier bits have been specified
972 *
973 * Expected to be called with sg->mm->mmap_lock in read and
974 * guest_table_lock held.
975 */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)976 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
977 pmd_t *pmdp, int prot, unsigned long bits)
978 {
979 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
980 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
981 pmd_t new = *pmdp;
982
983 /* Fixup needed */
984 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
985 return -EAGAIN;
986
987 if (prot == PROT_NONE && !pmd_i) {
988 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
989 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
990 }
991
992 if (prot == PROT_READ && !pmd_p) {
993 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
994 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
995 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
996 }
997
998 if (bits & GMAP_NOTIFY_MPROT)
999 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1000
1001 /* Shadow GMAP protection needs split PMDs */
1002 if (bits & GMAP_NOTIFY_SHADOW)
1003 return -EINVAL;
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * gmap_protect_pte - remove access rights to memory and set pgste bits
1010 * @gmap: pointer to guest mapping meta data structure
1011 * @gaddr: virtual address in the guest address space
1012 * @pmdp: pointer to the pmd associated with the pte
1013 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1014 * @bits: notification bits to set
1015 *
1016 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1017 * -EAGAIN if a fixup is needed.
1018 *
1019 * Expected to be called with sg->mm->mmap_lock in read
1020 */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1021 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1022 pmd_t *pmdp, int prot, unsigned long bits)
1023 {
1024 int rc;
1025 pte_t *ptep;
1026 spinlock_t *ptl;
1027 unsigned long pbits = 0;
1028
1029 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1030 return -EAGAIN;
1031
1032 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1033 if (!ptep)
1034 return -ENOMEM;
1035
1036 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1037 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1038 /* Protect and unlock. */
1039 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1040 gmap_pte_op_end(ptep, ptl);
1041 return rc;
1042 }
1043
1044 /*
1045 * gmap_protect_range - remove access rights to memory and set pgste bits
1046 * @gmap: pointer to guest mapping meta data structure
1047 * @gaddr: virtual address in the guest address space
1048 * @len: size of area
1049 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1050 * @bits: pgste notification bits to set
1051 *
1052 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1053 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1054 *
1055 * Called with sg->mm->mmap_lock in read.
1056 */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1057 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1058 unsigned long len, int prot, unsigned long bits)
1059 {
1060 unsigned long vmaddr, dist;
1061 pmd_t *pmdp;
1062 int rc;
1063
1064 BUG_ON(gmap_is_shadow(gmap));
1065 while (len) {
1066 rc = -EAGAIN;
1067 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1068 if (pmdp) {
1069 if (!pmd_large(*pmdp)) {
1070 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1071 bits);
1072 if (!rc) {
1073 len -= PAGE_SIZE;
1074 gaddr += PAGE_SIZE;
1075 }
1076 } else {
1077 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1078 bits);
1079 if (!rc) {
1080 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1081 len = len < dist ? 0 : len - dist;
1082 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1083 }
1084 }
1085 gmap_pmd_op_end(gmap, pmdp);
1086 }
1087 if (rc) {
1088 if (rc == -EINVAL)
1089 return rc;
1090
1091 /* -EAGAIN, fixup of userspace mm and gmap */
1092 vmaddr = __gmap_translate(gmap, gaddr);
1093 if (IS_ERR_VALUE(vmaddr))
1094 return vmaddr;
1095 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1096 if (rc)
1097 return rc;
1098 }
1099 }
1100 return 0;
1101 }
1102
1103 /**
1104 * gmap_mprotect_notify - change access rights for a range of ptes and
1105 * call the notifier if any pte changes again
1106 * @gmap: pointer to guest mapping meta data structure
1107 * @gaddr: virtual address in the guest address space
1108 * @len: size of area
1109 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1110 *
1111 * Returns 0 if for each page in the given range a gmap mapping exists,
1112 * the new access rights could be set and the notifier could be armed.
1113 * If the gmap mapping is missing for one or more pages -EFAULT is
1114 * returned. If no memory could be allocated -ENOMEM is returned.
1115 * This function establishes missing page table entries.
1116 */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1117 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1118 unsigned long len, int prot)
1119 {
1120 int rc;
1121
1122 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1123 return -EINVAL;
1124 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1125 return -EINVAL;
1126 mmap_read_lock(gmap->mm);
1127 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1128 mmap_read_unlock(gmap->mm);
1129 return rc;
1130 }
1131 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1132
1133 /**
1134 * gmap_read_table - get an unsigned long value from a guest page table using
1135 * absolute addressing, without marking the page referenced.
1136 * @gmap: pointer to guest mapping meta data structure
1137 * @gaddr: virtual address in the guest address space
1138 * @val: pointer to the unsigned long value to return
1139 *
1140 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1141 * if reading using the virtual address failed. -EINVAL if called on a gmap
1142 * shadow.
1143 *
1144 * Called with gmap->mm->mmap_lock in read.
1145 */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1146 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1147 {
1148 unsigned long address, vmaddr;
1149 spinlock_t *ptl;
1150 pte_t *ptep, pte;
1151 int rc;
1152
1153 if (gmap_is_shadow(gmap))
1154 return -EINVAL;
1155
1156 while (1) {
1157 rc = -EAGAIN;
1158 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1159 if (ptep) {
1160 pte = *ptep;
1161 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1162 address = pte_val(pte) & PAGE_MASK;
1163 address += gaddr & ~PAGE_MASK;
1164 *val = *(unsigned long *)__va(address);
1165 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1166 /* Do *NOT* clear the _PAGE_INVALID bit! */
1167 rc = 0;
1168 }
1169 gmap_pte_op_end(ptep, ptl);
1170 }
1171 if (!rc)
1172 break;
1173 vmaddr = __gmap_translate(gmap, gaddr);
1174 if (IS_ERR_VALUE(vmaddr)) {
1175 rc = vmaddr;
1176 break;
1177 }
1178 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1179 if (rc)
1180 break;
1181 }
1182 return rc;
1183 }
1184 EXPORT_SYMBOL_GPL(gmap_read_table);
1185
1186 /**
1187 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1188 * @sg: pointer to the shadow guest address space structure
1189 * @vmaddr: vm address associated with the rmap
1190 * @rmap: pointer to the rmap structure
1191 *
1192 * Called with the sg->guest_table_lock
1193 */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1194 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1195 struct gmap_rmap *rmap)
1196 {
1197 struct gmap_rmap *temp;
1198 void __rcu **slot;
1199
1200 BUG_ON(!gmap_is_shadow(sg));
1201 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1202 if (slot) {
1203 rmap->next = radix_tree_deref_slot_protected(slot,
1204 &sg->guest_table_lock);
1205 for (temp = rmap->next; temp; temp = temp->next) {
1206 if (temp->raddr == rmap->raddr) {
1207 kfree(rmap);
1208 return;
1209 }
1210 }
1211 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1212 } else {
1213 rmap->next = NULL;
1214 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1215 rmap);
1216 }
1217 }
1218
1219 /**
1220 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1221 * @sg: pointer to the shadow guest address space structure
1222 * @raddr: rmap address in the shadow gmap
1223 * @paddr: address in the parent guest address space
1224 * @len: length of the memory area to protect
1225 *
1226 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1227 * if out of memory and -EFAULT if paddr is invalid.
1228 */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1229 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1230 unsigned long paddr, unsigned long len)
1231 {
1232 struct gmap *parent;
1233 struct gmap_rmap *rmap;
1234 unsigned long vmaddr;
1235 spinlock_t *ptl;
1236 pte_t *ptep;
1237 int rc;
1238
1239 BUG_ON(!gmap_is_shadow(sg));
1240 parent = sg->parent;
1241 while (len) {
1242 vmaddr = __gmap_translate(parent, paddr);
1243 if (IS_ERR_VALUE(vmaddr))
1244 return vmaddr;
1245 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1246 if (!rmap)
1247 return -ENOMEM;
1248 rmap->raddr = raddr;
1249 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1250 if (rc) {
1251 kfree(rmap);
1252 return rc;
1253 }
1254 rc = -EAGAIN;
1255 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1256 if (ptep) {
1257 spin_lock(&sg->guest_table_lock);
1258 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1259 PGSTE_VSIE_BIT);
1260 if (!rc)
1261 gmap_insert_rmap(sg, vmaddr, rmap);
1262 spin_unlock(&sg->guest_table_lock);
1263 gmap_pte_op_end(ptep, ptl);
1264 }
1265 radix_tree_preload_end();
1266 if (rc) {
1267 kfree(rmap);
1268 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1269 if (rc)
1270 return rc;
1271 continue;
1272 }
1273 paddr += PAGE_SIZE;
1274 len -= PAGE_SIZE;
1275 }
1276 return 0;
1277 }
1278
1279 #define _SHADOW_RMAP_MASK 0x7
1280 #define _SHADOW_RMAP_REGION1 0x5
1281 #define _SHADOW_RMAP_REGION2 0x4
1282 #define _SHADOW_RMAP_REGION3 0x3
1283 #define _SHADOW_RMAP_SEGMENT 0x2
1284 #define _SHADOW_RMAP_PGTABLE 0x1
1285
1286 /**
1287 * gmap_idte_one - invalidate a single region or segment table entry
1288 * @asce: region or segment table *origin* + table-type bits
1289 * @vaddr: virtual address to identify the table entry to flush
1290 *
1291 * The invalid bit of a single region or segment table entry is set
1292 * and the associated TLB entries depending on the entry are flushed.
1293 * The table-type of the @asce identifies the portion of the @vaddr
1294 * that is used as the invalidation index.
1295 */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1296 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1297 {
1298 asm volatile(
1299 " idte %0,0,%1"
1300 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1301 }
1302
1303 /**
1304 * gmap_unshadow_page - remove a page from a shadow page table
1305 * @sg: pointer to the shadow guest address space structure
1306 * @raddr: rmap address in the shadow guest address space
1307 *
1308 * Called with the sg->guest_table_lock
1309 */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1310 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1311 {
1312 unsigned long *table;
1313
1314 BUG_ON(!gmap_is_shadow(sg));
1315 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1316 if (!table || *table & _PAGE_INVALID)
1317 return;
1318 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1319 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1320 }
1321
1322 /**
1323 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1324 * @sg: pointer to the shadow guest address space structure
1325 * @raddr: rmap address in the shadow guest address space
1326 * @pgt: pointer to the start of a shadow page table
1327 *
1328 * Called with the sg->guest_table_lock
1329 */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1330 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1331 unsigned long *pgt)
1332 {
1333 int i;
1334
1335 BUG_ON(!gmap_is_shadow(sg));
1336 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1337 pgt[i] = _PAGE_INVALID;
1338 }
1339
1340 /**
1341 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1342 * @sg: pointer to the shadow guest address space structure
1343 * @raddr: address in the shadow guest address space
1344 *
1345 * Called with the sg->guest_table_lock
1346 */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1347 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1348 {
1349 unsigned long *ste;
1350 phys_addr_t sto, pgt;
1351 struct page *page;
1352
1353 BUG_ON(!gmap_is_shadow(sg));
1354 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1355 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1356 return;
1357 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1358 sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1359 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1360 pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1361 *ste = _SEGMENT_ENTRY_EMPTY;
1362 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1363 /* Free page table */
1364 page = phys_to_page(pgt);
1365 list_del(&page->lru);
1366 page_table_free_pgste(page);
1367 }
1368
1369 /**
1370 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1371 * @sg: pointer to the shadow guest address space structure
1372 * @raddr: rmap address in the shadow guest address space
1373 * @sgt: pointer to the start of a shadow segment table
1374 *
1375 * Called with the sg->guest_table_lock
1376 */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1377 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1378 unsigned long *sgt)
1379 {
1380 struct page *page;
1381 phys_addr_t pgt;
1382 int i;
1383
1384 BUG_ON(!gmap_is_shadow(sg));
1385 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1386 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1387 continue;
1388 pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1389 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1390 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1391 /* Free page table */
1392 page = phys_to_page(pgt);
1393 list_del(&page->lru);
1394 page_table_free_pgste(page);
1395 }
1396 }
1397
1398 /**
1399 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1400 * @sg: pointer to the shadow guest address space structure
1401 * @raddr: rmap address in the shadow guest address space
1402 *
1403 * Called with the shadow->guest_table_lock
1404 */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1405 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1406 {
1407 unsigned long r3o, *r3e;
1408 phys_addr_t sgt;
1409 struct page *page;
1410
1411 BUG_ON(!gmap_is_shadow(sg));
1412 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1413 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1414 return;
1415 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1416 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1417 gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1418 sgt = *r3e & _REGION_ENTRY_ORIGIN;
1419 *r3e = _REGION3_ENTRY_EMPTY;
1420 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1421 /* Free segment table */
1422 page = phys_to_page(sgt);
1423 list_del(&page->lru);
1424 __free_pages(page, CRST_ALLOC_ORDER);
1425 }
1426
1427 /**
1428 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1429 * @sg: pointer to the shadow guest address space structure
1430 * @raddr: address in the shadow guest address space
1431 * @r3t: pointer to the start of a shadow region-3 table
1432 *
1433 * Called with the sg->guest_table_lock
1434 */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1435 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1436 unsigned long *r3t)
1437 {
1438 struct page *page;
1439 phys_addr_t sgt;
1440 int i;
1441
1442 BUG_ON(!gmap_is_shadow(sg));
1443 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1444 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1445 continue;
1446 sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1447 r3t[i] = _REGION3_ENTRY_EMPTY;
1448 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1449 /* Free segment table */
1450 page = phys_to_page(sgt);
1451 list_del(&page->lru);
1452 __free_pages(page, CRST_ALLOC_ORDER);
1453 }
1454 }
1455
1456 /**
1457 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1458 * @sg: pointer to the shadow guest address space structure
1459 * @raddr: rmap address in the shadow guest address space
1460 *
1461 * Called with the sg->guest_table_lock
1462 */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1463 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1464 {
1465 unsigned long r2o, *r2e;
1466 phys_addr_t r3t;
1467 struct page *page;
1468
1469 BUG_ON(!gmap_is_shadow(sg));
1470 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1471 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1472 return;
1473 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1474 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1475 gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1476 r3t = *r2e & _REGION_ENTRY_ORIGIN;
1477 *r2e = _REGION2_ENTRY_EMPTY;
1478 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1479 /* Free region 3 table */
1480 page = phys_to_page(r3t);
1481 list_del(&page->lru);
1482 __free_pages(page, CRST_ALLOC_ORDER);
1483 }
1484
1485 /**
1486 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1487 * @sg: pointer to the shadow guest address space structure
1488 * @raddr: rmap address in the shadow guest address space
1489 * @r2t: pointer to the start of a shadow region-2 table
1490 *
1491 * Called with the sg->guest_table_lock
1492 */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1493 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1494 unsigned long *r2t)
1495 {
1496 phys_addr_t r3t;
1497 struct page *page;
1498 int i;
1499
1500 BUG_ON(!gmap_is_shadow(sg));
1501 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1502 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1503 continue;
1504 r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1505 r2t[i] = _REGION2_ENTRY_EMPTY;
1506 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1507 /* Free region 3 table */
1508 page = phys_to_page(r3t);
1509 list_del(&page->lru);
1510 __free_pages(page, CRST_ALLOC_ORDER);
1511 }
1512 }
1513
1514 /**
1515 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1516 * @sg: pointer to the shadow guest address space structure
1517 * @raddr: rmap address in the shadow guest address space
1518 *
1519 * Called with the sg->guest_table_lock
1520 */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1521 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1522 {
1523 unsigned long r1o, *r1e;
1524 struct page *page;
1525 phys_addr_t r2t;
1526
1527 BUG_ON(!gmap_is_shadow(sg));
1528 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1529 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1530 return;
1531 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1532 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1533 gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1534 r2t = *r1e & _REGION_ENTRY_ORIGIN;
1535 *r1e = _REGION1_ENTRY_EMPTY;
1536 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1537 /* Free region 2 table */
1538 page = phys_to_page(r2t);
1539 list_del(&page->lru);
1540 __free_pages(page, CRST_ALLOC_ORDER);
1541 }
1542
1543 /**
1544 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1545 * @sg: pointer to the shadow guest address space structure
1546 * @raddr: rmap address in the shadow guest address space
1547 * @r1t: pointer to the start of a shadow region-1 table
1548 *
1549 * Called with the shadow->guest_table_lock
1550 */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1551 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1552 unsigned long *r1t)
1553 {
1554 unsigned long asce;
1555 struct page *page;
1556 phys_addr_t r2t;
1557 int i;
1558
1559 BUG_ON(!gmap_is_shadow(sg));
1560 asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1561 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1562 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1563 continue;
1564 r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1565 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1566 /* Clear entry and flush translation r1t -> r2t */
1567 gmap_idte_one(asce, raddr);
1568 r1t[i] = _REGION1_ENTRY_EMPTY;
1569 /* Free region 2 table */
1570 page = phys_to_page(r2t);
1571 list_del(&page->lru);
1572 __free_pages(page, CRST_ALLOC_ORDER);
1573 }
1574 }
1575
1576 /**
1577 * gmap_unshadow - remove a shadow page table completely
1578 * @sg: pointer to the shadow guest address space structure
1579 *
1580 * Called with sg->guest_table_lock
1581 */
gmap_unshadow(struct gmap * sg)1582 static void gmap_unshadow(struct gmap *sg)
1583 {
1584 unsigned long *table;
1585
1586 BUG_ON(!gmap_is_shadow(sg));
1587 if (sg->removed)
1588 return;
1589 sg->removed = 1;
1590 gmap_call_notifier(sg, 0, -1UL);
1591 gmap_flush_tlb(sg);
1592 table = __va(sg->asce & _ASCE_ORIGIN);
1593 switch (sg->asce & _ASCE_TYPE_MASK) {
1594 case _ASCE_TYPE_REGION1:
1595 __gmap_unshadow_r1t(sg, 0, table);
1596 break;
1597 case _ASCE_TYPE_REGION2:
1598 __gmap_unshadow_r2t(sg, 0, table);
1599 break;
1600 case _ASCE_TYPE_REGION3:
1601 __gmap_unshadow_r3t(sg, 0, table);
1602 break;
1603 case _ASCE_TYPE_SEGMENT:
1604 __gmap_unshadow_sgt(sg, 0, table);
1605 break;
1606 }
1607 }
1608
1609 /**
1610 * gmap_find_shadow - find a specific asce in the list of shadow tables
1611 * @parent: pointer to the parent gmap
1612 * @asce: ASCE for which the shadow table is created
1613 * @edat_level: edat level to be used for the shadow translation
1614 *
1615 * Returns the pointer to a gmap if a shadow table with the given asce is
1616 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1617 * otherwise NULL
1618 */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1619 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1620 int edat_level)
1621 {
1622 struct gmap *sg;
1623
1624 list_for_each_entry(sg, &parent->children, list) {
1625 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1626 sg->removed)
1627 continue;
1628 if (!sg->initialized)
1629 return ERR_PTR(-EAGAIN);
1630 refcount_inc(&sg->ref_count);
1631 return sg;
1632 }
1633 return NULL;
1634 }
1635
1636 /**
1637 * gmap_shadow_valid - check if a shadow guest address space matches the
1638 * given properties and is still valid
1639 * @sg: pointer to the shadow guest address space structure
1640 * @asce: ASCE for which the shadow table is requested
1641 * @edat_level: edat level to be used for the shadow translation
1642 *
1643 * Returns 1 if the gmap shadow is still valid and matches the given
1644 * properties, the caller can continue using it. Returns 0 otherwise, the
1645 * caller has to request a new shadow gmap in this case.
1646 *
1647 */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1648 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1649 {
1650 if (sg->removed)
1651 return 0;
1652 return sg->orig_asce == asce && sg->edat_level == edat_level;
1653 }
1654 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1655
1656 /**
1657 * gmap_shadow - create/find a shadow guest address space
1658 * @parent: pointer to the parent gmap
1659 * @asce: ASCE for which the shadow table is created
1660 * @edat_level: edat level to be used for the shadow translation
1661 *
1662 * The pages of the top level page table referred by the asce parameter
1663 * will be set to read-only and marked in the PGSTEs of the kvm process.
1664 * The shadow table will be removed automatically on any change to the
1665 * PTE mapping for the source table.
1666 *
1667 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1668 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1669 * parent gmap table could not be protected.
1670 */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1671 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1672 int edat_level)
1673 {
1674 struct gmap *sg, *new;
1675 unsigned long limit;
1676 int rc;
1677
1678 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1679 BUG_ON(gmap_is_shadow(parent));
1680 spin_lock(&parent->shadow_lock);
1681 sg = gmap_find_shadow(parent, asce, edat_level);
1682 spin_unlock(&parent->shadow_lock);
1683 if (sg)
1684 return sg;
1685 /* Create a new shadow gmap */
1686 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1687 if (asce & _ASCE_REAL_SPACE)
1688 limit = -1UL;
1689 new = gmap_alloc(limit);
1690 if (!new)
1691 return ERR_PTR(-ENOMEM);
1692 new->mm = parent->mm;
1693 new->parent = gmap_get(parent);
1694 new->orig_asce = asce;
1695 new->edat_level = edat_level;
1696 new->initialized = false;
1697 spin_lock(&parent->shadow_lock);
1698 /* Recheck if another CPU created the same shadow */
1699 sg = gmap_find_shadow(parent, asce, edat_level);
1700 if (sg) {
1701 spin_unlock(&parent->shadow_lock);
1702 gmap_free(new);
1703 return sg;
1704 }
1705 if (asce & _ASCE_REAL_SPACE) {
1706 /* only allow one real-space gmap shadow */
1707 list_for_each_entry(sg, &parent->children, list) {
1708 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1709 spin_lock(&sg->guest_table_lock);
1710 gmap_unshadow(sg);
1711 spin_unlock(&sg->guest_table_lock);
1712 list_del(&sg->list);
1713 gmap_put(sg);
1714 break;
1715 }
1716 }
1717 }
1718 refcount_set(&new->ref_count, 2);
1719 list_add(&new->list, &parent->children);
1720 if (asce & _ASCE_REAL_SPACE) {
1721 /* nothing to protect, return right away */
1722 new->initialized = true;
1723 spin_unlock(&parent->shadow_lock);
1724 return new;
1725 }
1726 spin_unlock(&parent->shadow_lock);
1727 /* protect after insertion, so it will get properly invalidated */
1728 mmap_read_lock(parent->mm);
1729 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1730 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1731 PROT_READ, GMAP_NOTIFY_SHADOW);
1732 mmap_read_unlock(parent->mm);
1733 spin_lock(&parent->shadow_lock);
1734 new->initialized = true;
1735 if (rc) {
1736 list_del(&new->list);
1737 gmap_free(new);
1738 new = ERR_PTR(rc);
1739 }
1740 spin_unlock(&parent->shadow_lock);
1741 return new;
1742 }
1743 EXPORT_SYMBOL_GPL(gmap_shadow);
1744
1745 /**
1746 * gmap_shadow_r2t - create an empty shadow region 2 table
1747 * @sg: pointer to the shadow guest address space structure
1748 * @saddr: faulting address in the shadow gmap
1749 * @r2t: parent gmap address of the region 2 table to get shadowed
1750 * @fake: r2t references contiguous guest memory block, not a r2t
1751 *
1752 * The r2t parameter specifies the address of the source table. The
1753 * four pages of the source table are made read-only in the parent gmap
1754 * address space. A write to the source table area @r2t will automatically
1755 * remove the shadow r2 table and all of its descendants.
1756 *
1757 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1758 * shadow table structure is incomplete, -ENOMEM if out of memory and
1759 * -EFAULT if an address in the parent gmap could not be resolved.
1760 *
1761 * Called with sg->mm->mmap_lock in read.
1762 */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1763 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1764 int fake)
1765 {
1766 unsigned long raddr, origin, offset, len;
1767 unsigned long *table;
1768 phys_addr_t s_r2t;
1769 struct page *page;
1770 int rc;
1771
1772 BUG_ON(!gmap_is_shadow(sg));
1773 /* Allocate a shadow region second table */
1774 page = gmap_alloc_crst();
1775 if (!page)
1776 return -ENOMEM;
1777 page->index = r2t & _REGION_ENTRY_ORIGIN;
1778 if (fake)
1779 page->index |= GMAP_SHADOW_FAKE_TABLE;
1780 s_r2t = page_to_phys(page);
1781 /* Install shadow region second table */
1782 spin_lock(&sg->guest_table_lock);
1783 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1784 if (!table) {
1785 rc = -EAGAIN; /* Race with unshadow */
1786 goto out_free;
1787 }
1788 if (!(*table & _REGION_ENTRY_INVALID)) {
1789 rc = 0; /* Already established */
1790 goto out_free;
1791 } else if (*table & _REGION_ENTRY_ORIGIN) {
1792 rc = -EAGAIN; /* Race with shadow */
1793 goto out_free;
1794 }
1795 crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1796 /* mark as invalid as long as the parent table is not protected */
1797 *table = s_r2t | _REGION_ENTRY_LENGTH |
1798 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1799 if (sg->edat_level >= 1)
1800 *table |= (r2t & _REGION_ENTRY_PROTECT);
1801 list_add(&page->lru, &sg->crst_list);
1802 if (fake) {
1803 /* nothing to protect for fake tables */
1804 *table &= ~_REGION_ENTRY_INVALID;
1805 spin_unlock(&sg->guest_table_lock);
1806 return 0;
1807 }
1808 spin_unlock(&sg->guest_table_lock);
1809 /* Make r2t read-only in parent gmap page table */
1810 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1811 origin = r2t & _REGION_ENTRY_ORIGIN;
1812 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1813 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1814 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1815 spin_lock(&sg->guest_table_lock);
1816 if (!rc) {
1817 table = gmap_table_walk(sg, saddr, 4);
1818 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1819 rc = -EAGAIN; /* Race with unshadow */
1820 else
1821 *table &= ~_REGION_ENTRY_INVALID;
1822 } else {
1823 gmap_unshadow_r2t(sg, raddr);
1824 }
1825 spin_unlock(&sg->guest_table_lock);
1826 return rc;
1827 out_free:
1828 spin_unlock(&sg->guest_table_lock);
1829 __free_pages(page, CRST_ALLOC_ORDER);
1830 return rc;
1831 }
1832 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1833
1834 /**
1835 * gmap_shadow_r3t - create a shadow region 3 table
1836 * @sg: pointer to the shadow guest address space structure
1837 * @saddr: faulting address in the shadow gmap
1838 * @r3t: parent gmap address of the region 3 table to get shadowed
1839 * @fake: r3t references contiguous guest memory block, not a r3t
1840 *
1841 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1842 * shadow table structure is incomplete, -ENOMEM if out of memory and
1843 * -EFAULT if an address in the parent gmap could not be resolved.
1844 *
1845 * Called with sg->mm->mmap_lock in read.
1846 */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1847 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1848 int fake)
1849 {
1850 unsigned long raddr, origin, offset, len;
1851 unsigned long *table;
1852 phys_addr_t s_r3t;
1853 struct page *page;
1854 int rc;
1855
1856 BUG_ON(!gmap_is_shadow(sg));
1857 /* Allocate a shadow region second table */
1858 page = gmap_alloc_crst();
1859 if (!page)
1860 return -ENOMEM;
1861 page->index = r3t & _REGION_ENTRY_ORIGIN;
1862 if (fake)
1863 page->index |= GMAP_SHADOW_FAKE_TABLE;
1864 s_r3t = page_to_phys(page);
1865 /* Install shadow region second table */
1866 spin_lock(&sg->guest_table_lock);
1867 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1868 if (!table) {
1869 rc = -EAGAIN; /* Race with unshadow */
1870 goto out_free;
1871 }
1872 if (!(*table & _REGION_ENTRY_INVALID)) {
1873 rc = 0; /* Already established */
1874 goto out_free;
1875 } else if (*table & _REGION_ENTRY_ORIGIN) {
1876 rc = -EAGAIN; /* Race with shadow */
1877 goto out_free;
1878 }
1879 crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1880 /* mark as invalid as long as the parent table is not protected */
1881 *table = s_r3t | _REGION_ENTRY_LENGTH |
1882 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1883 if (sg->edat_level >= 1)
1884 *table |= (r3t & _REGION_ENTRY_PROTECT);
1885 list_add(&page->lru, &sg->crst_list);
1886 if (fake) {
1887 /* nothing to protect for fake tables */
1888 *table &= ~_REGION_ENTRY_INVALID;
1889 spin_unlock(&sg->guest_table_lock);
1890 return 0;
1891 }
1892 spin_unlock(&sg->guest_table_lock);
1893 /* Make r3t read-only in parent gmap page table */
1894 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1895 origin = r3t & _REGION_ENTRY_ORIGIN;
1896 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1897 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1898 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1899 spin_lock(&sg->guest_table_lock);
1900 if (!rc) {
1901 table = gmap_table_walk(sg, saddr, 3);
1902 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1903 rc = -EAGAIN; /* Race with unshadow */
1904 else
1905 *table &= ~_REGION_ENTRY_INVALID;
1906 } else {
1907 gmap_unshadow_r3t(sg, raddr);
1908 }
1909 spin_unlock(&sg->guest_table_lock);
1910 return rc;
1911 out_free:
1912 spin_unlock(&sg->guest_table_lock);
1913 __free_pages(page, CRST_ALLOC_ORDER);
1914 return rc;
1915 }
1916 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1917
1918 /**
1919 * gmap_shadow_sgt - create a shadow segment table
1920 * @sg: pointer to the shadow guest address space structure
1921 * @saddr: faulting address in the shadow gmap
1922 * @sgt: parent gmap address of the segment table to get shadowed
1923 * @fake: sgt references contiguous guest memory block, not a sgt
1924 *
1925 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1926 * shadow table structure is incomplete, -ENOMEM if out of memory and
1927 * -EFAULT if an address in the parent gmap could not be resolved.
1928 *
1929 * Called with sg->mm->mmap_lock in read.
1930 */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1931 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1932 int fake)
1933 {
1934 unsigned long raddr, origin, offset, len;
1935 unsigned long *table;
1936 phys_addr_t s_sgt;
1937 struct page *page;
1938 int rc;
1939
1940 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1941 /* Allocate a shadow segment table */
1942 page = gmap_alloc_crst();
1943 if (!page)
1944 return -ENOMEM;
1945 page->index = sgt & _REGION_ENTRY_ORIGIN;
1946 if (fake)
1947 page->index |= GMAP_SHADOW_FAKE_TABLE;
1948 s_sgt = page_to_phys(page);
1949 /* Install shadow region second table */
1950 spin_lock(&sg->guest_table_lock);
1951 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1952 if (!table) {
1953 rc = -EAGAIN; /* Race with unshadow */
1954 goto out_free;
1955 }
1956 if (!(*table & _REGION_ENTRY_INVALID)) {
1957 rc = 0; /* Already established */
1958 goto out_free;
1959 } else if (*table & _REGION_ENTRY_ORIGIN) {
1960 rc = -EAGAIN; /* Race with shadow */
1961 goto out_free;
1962 }
1963 crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1964 /* mark as invalid as long as the parent table is not protected */
1965 *table = s_sgt | _REGION_ENTRY_LENGTH |
1966 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1967 if (sg->edat_level >= 1)
1968 *table |= sgt & _REGION_ENTRY_PROTECT;
1969 list_add(&page->lru, &sg->crst_list);
1970 if (fake) {
1971 /* nothing to protect for fake tables */
1972 *table &= ~_REGION_ENTRY_INVALID;
1973 spin_unlock(&sg->guest_table_lock);
1974 return 0;
1975 }
1976 spin_unlock(&sg->guest_table_lock);
1977 /* Make sgt read-only in parent gmap page table */
1978 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1979 origin = sgt & _REGION_ENTRY_ORIGIN;
1980 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1981 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1982 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1983 spin_lock(&sg->guest_table_lock);
1984 if (!rc) {
1985 table = gmap_table_walk(sg, saddr, 2);
1986 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1987 rc = -EAGAIN; /* Race with unshadow */
1988 else
1989 *table &= ~_REGION_ENTRY_INVALID;
1990 } else {
1991 gmap_unshadow_sgt(sg, raddr);
1992 }
1993 spin_unlock(&sg->guest_table_lock);
1994 return rc;
1995 out_free:
1996 spin_unlock(&sg->guest_table_lock);
1997 __free_pages(page, CRST_ALLOC_ORDER);
1998 return rc;
1999 }
2000 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2001
2002 /**
2003 * gmap_shadow_pgt_lookup - find a shadow page table
2004 * @sg: pointer to the shadow guest address space structure
2005 * @saddr: the address in the shadow aguest address space
2006 * @pgt: parent gmap address of the page table to get shadowed
2007 * @dat_protection: if the pgtable is marked as protected by dat
2008 * @fake: pgt references contiguous guest memory block, not a pgtable
2009 *
2010 * Returns 0 if the shadow page table was found and -EAGAIN if the page
2011 * table was not found.
2012 *
2013 * Called with sg->mm->mmap_lock in read.
2014 */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)2015 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2016 unsigned long *pgt, int *dat_protection,
2017 int *fake)
2018 {
2019 unsigned long *table;
2020 struct page *page;
2021 int rc;
2022
2023 BUG_ON(!gmap_is_shadow(sg));
2024 spin_lock(&sg->guest_table_lock);
2025 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2026 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2027 /* Shadow page tables are full pages (pte+pgste) */
2028 page = pfn_to_page(*table >> PAGE_SHIFT);
2029 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2030 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2031 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2032 rc = 0;
2033 } else {
2034 rc = -EAGAIN;
2035 }
2036 spin_unlock(&sg->guest_table_lock);
2037 return rc;
2038
2039 }
2040 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2041
2042 /**
2043 * gmap_shadow_pgt - instantiate a shadow page table
2044 * @sg: pointer to the shadow guest address space structure
2045 * @saddr: faulting address in the shadow gmap
2046 * @pgt: parent gmap address of the page table to get shadowed
2047 * @fake: pgt references contiguous guest memory block, not a pgtable
2048 *
2049 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2050 * shadow table structure is incomplete, -ENOMEM if out of memory,
2051 * -EFAULT if an address in the parent gmap could not be resolved and
2052 *
2053 * Called with gmap->mm->mmap_lock in read
2054 */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2055 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2056 int fake)
2057 {
2058 unsigned long raddr, origin;
2059 unsigned long *table;
2060 struct page *page;
2061 phys_addr_t s_pgt;
2062 int rc;
2063
2064 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2065 /* Allocate a shadow page table */
2066 page = page_table_alloc_pgste(sg->mm);
2067 if (!page)
2068 return -ENOMEM;
2069 page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2070 if (fake)
2071 page->index |= GMAP_SHADOW_FAKE_TABLE;
2072 s_pgt = page_to_phys(page);
2073 /* Install shadow page table */
2074 spin_lock(&sg->guest_table_lock);
2075 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2076 if (!table) {
2077 rc = -EAGAIN; /* Race with unshadow */
2078 goto out_free;
2079 }
2080 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2081 rc = 0; /* Already established */
2082 goto out_free;
2083 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2084 rc = -EAGAIN; /* Race with shadow */
2085 goto out_free;
2086 }
2087 /* mark as invalid as long as the parent table is not protected */
2088 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2089 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2090 list_add(&page->lru, &sg->pt_list);
2091 if (fake) {
2092 /* nothing to protect for fake tables */
2093 *table &= ~_SEGMENT_ENTRY_INVALID;
2094 spin_unlock(&sg->guest_table_lock);
2095 return 0;
2096 }
2097 spin_unlock(&sg->guest_table_lock);
2098 /* Make pgt read-only in parent gmap page table (not the pgste) */
2099 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2100 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2101 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2102 spin_lock(&sg->guest_table_lock);
2103 if (!rc) {
2104 table = gmap_table_walk(sg, saddr, 1);
2105 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2106 rc = -EAGAIN; /* Race with unshadow */
2107 else
2108 *table &= ~_SEGMENT_ENTRY_INVALID;
2109 } else {
2110 gmap_unshadow_pgt(sg, raddr);
2111 }
2112 spin_unlock(&sg->guest_table_lock);
2113 return rc;
2114 out_free:
2115 spin_unlock(&sg->guest_table_lock);
2116 page_table_free_pgste(page);
2117 return rc;
2118
2119 }
2120 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2121
2122 /**
2123 * gmap_shadow_page - create a shadow page mapping
2124 * @sg: pointer to the shadow guest address space structure
2125 * @saddr: faulting address in the shadow gmap
2126 * @pte: pte in parent gmap address space to get shadowed
2127 *
2128 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2129 * shadow table structure is incomplete, -ENOMEM if out of memory and
2130 * -EFAULT if an address in the parent gmap could not be resolved.
2131 *
2132 * Called with sg->mm->mmap_lock in read.
2133 */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2134 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2135 {
2136 struct gmap *parent;
2137 struct gmap_rmap *rmap;
2138 unsigned long vmaddr, paddr;
2139 spinlock_t *ptl;
2140 pte_t *sptep, *tptep;
2141 int prot;
2142 int rc;
2143
2144 BUG_ON(!gmap_is_shadow(sg));
2145 parent = sg->parent;
2146 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2147
2148 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2149 if (!rmap)
2150 return -ENOMEM;
2151 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2152
2153 while (1) {
2154 paddr = pte_val(pte) & PAGE_MASK;
2155 vmaddr = __gmap_translate(parent, paddr);
2156 if (IS_ERR_VALUE(vmaddr)) {
2157 rc = vmaddr;
2158 break;
2159 }
2160 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2161 if (rc)
2162 break;
2163 rc = -EAGAIN;
2164 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2165 if (sptep) {
2166 spin_lock(&sg->guest_table_lock);
2167 /* Get page table pointer */
2168 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2169 if (!tptep) {
2170 spin_unlock(&sg->guest_table_lock);
2171 gmap_pte_op_end(sptep, ptl);
2172 radix_tree_preload_end();
2173 break;
2174 }
2175 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2176 if (rc > 0) {
2177 /* Success and a new mapping */
2178 gmap_insert_rmap(sg, vmaddr, rmap);
2179 rmap = NULL;
2180 rc = 0;
2181 }
2182 gmap_pte_op_end(sptep, ptl);
2183 spin_unlock(&sg->guest_table_lock);
2184 }
2185 radix_tree_preload_end();
2186 if (!rc)
2187 break;
2188 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2189 if (rc)
2190 break;
2191 }
2192 kfree(rmap);
2193 return rc;
2194 }
2195 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2196
2197 /*
2198 * gmap_shadow_notify - handle notifications for shadow gmap
2199 *
2200 * Called with sg->parent->shadow_lock.
2201 */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2202 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2203 unsigned long gaddr)
2204 {
2205 struct gmap_rmap *rmap, *rnext, *head;
2206 unsigned long start, end, bits, raddr;
2207
2208 BUG_ON(!gmap_is_shadow(sg));
2209
2210 spin_lock(&sg->guest_table_lock);
2211 if (sg->removed) {
2212 spin_unlock(&sg->guest_table_lock);
2213 return;
2214 }
2215 /* Check for top level table */
2216 start = sg->orig_asce & _ASCE_ORIGIN;
2217 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2218 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2219 gaddr < end) {
2220 /* The complete shadow table has to go */
2221 gmap_unshadow(sg);
2222 spin_unlock(&sg->guest_table_lock);
2223 list_del(&sg->list);
2224 gmap_put(sg);
2225 return;
2226 }
2227 /* Remove the page table tree from on specific entry */
2228 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2229 gmap_for_each_rmap_safe(rmap, rnext, head) {
2230 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2231 raddr = rmap->raddr ^ bits;
2232 switch (bits) {
2233 case _SHADOW_RMAP_REGION1:
2234 gmap_unshadow_r2t(sg, raddr);
2235 break;
2236 case _SHADOW_RMAP_REGION2:
2237 gmap_unshadow_r3t(sg, raddr);
2238 break;
2239 case _SHADOW_RMAP_REGION3:
2240 gmap_unshadow_sgt(sg, raddr);
2241 break;
2242 case _SHADOW_RMAP_SEGMENT:
2243 gmap_unshadow_pgt(sg, raddr);
2244 break;
2245 case _SHADOW_RMAP_PGTABLE:
2246 gmap_unshadow_page(sg, raddr);
2247 break;
2248 }
2249 kfree(rmap);
2250 }
2251 spin_unlock(&sg->guest_table_lock);
2252 }
2253
2254 /**
2255 * ptep_notify - call all invalidation callbacks for a specific pte.
2256 * @mm: pointer to the process mm_struct
2257 * @vmaddr: virtual address in the process address space
2258 * @pte: pointer to the page table entry
2259 * @bits: bits from the pgste that caused the notify call
2260 *
2261 * This function is assumed to be called with the page table lock held
2262 * for the pte to notify.
2263 */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2264 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2265 pte_t *pte, unsigned long bits)
2266 {
2267 unsigned long offset, gaddr = 0;
2268 unsigned long *table;
2269 struct gmap *gmap, *sg, *next;
2270
2271 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2272 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2273 rcu_read_lock();
2274 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2275 spin_lock(&gmap->guest_table_lock);
2276 table = radix_tree_lookup(&gmap->host_to_guest,
2277 vmaddr >> PMD_SHIFT);
2278 if (table)
2279 gaddr = __gmap_segment_gaddr(table) + offset;
2280 spin_unlock(&gmap->guest_table_lock);
2281 if (!table)
2282 continue;
2283
2284 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2285 spin_lock(&gmap->shadow_lock);
2286 list_for_each_entry_safe(sg, next,
2287 &gmap->children, list)
2288 gmap_shadow_notify(sg, vmaddr, gaddr);
2289 spin_unlock(&gmap->shadow_lock);
2290 }
2291 if (bits & PGSTE_IN_BIT)
2292 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2293 }
2294 rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(ptep_notify);
2297
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2298 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2299 unsigned long gaddr)
2300 {
2301 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2302 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2303 }
2304
2305 /**
2306 * gmap_pmdp_xchg - exchange a gmap pmd with another
2307 * @gmap: pointer to the guest address space structure
2308 * @pmdp: pointer to the pmd entry
2309 * @new: replacement entry
2310 * @gaddr: the affected guest address
2311 *
2312 * This function is assumed to be called with the guest_table_lock
2313 * held.
2314 */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2315 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2316 unsigned long gaddr)
2317 {
2318 gaddr &= HPAGE_MASK;
2319 pmdp_notify_gmap(gmap, pmdp, gaddr);
2320 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2321 if (MACHINE_HAS_TLB_GUEST)
2322 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2323 IDTE_GLOBAL);
2324 else if (MACHINE_HAS_IDTE)
2325 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2326 else
2327 __pmdp_csp(pmdp);
2328 set_pmd(pmdp, new);
2329 }
2330
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2331 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2332 int purge)
2333 {
2334 pmd_t *pmdp;
2335 struct gmap *gmap;
2336 unsigned long gaddr;
2337
2338 rcu_read_lock();
2339 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2340 spin_lock(&gmap->guest_table_lock);
2341 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2342 vmaddr >> PMD_SHIFT);
2343 if (pmdp) {
2344 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2345 pmdp_notify_gmap(gmap, pmdp, gaddr);
2346 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2347 _SEGMENT_ENTRY_GMAP_UC));
2348 if (purge)
2349 __pmdp_csp(pmdp);
2350 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2351 }
2352 spin_unlock(&gmap->guest_table_lock);
2353 }
2354 rcu_read_unlock();
2355 }
2356
2357 /**
2358 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2359 * flushing
2360 * @mm: pointer to the process mm_struct
2361 * @vmaddr: virtual address in the process address space
2362 */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2363 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2364 {
2365 gmap_pmdp_clear(mm, vmaddr, 0);
2366 }
2367 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2368
2369 /**
2370 * gmap_pmdp_csp - csp all affected guest pmd entries
2371 * @mm: pointer to the process mm_struct
2372 * @vmaddr: virtual address in the process address space
2373 */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2374 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2375 {
2376 gmap_pmdp_clear(mm, vmaddr, 1);
2377 }
2378 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2379
2380 /**
2381 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2382 * @mm: pointer to the process mm_struct
2383 * @vmaddr: virtual address in the process address space
2384 */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2385 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2386 {
2387 unsigned long *entry, gaddr;
2388 struct gmap *gmap;
2389 pmd_t *pmdp;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2393 spin_lock(&gmap->guest_table_lock);
2394 entry = radix_tree_delete(&gmap->host_to_guest,
2395 vmaddr >> PMD_SHIFT);
2396 if (entry) {
2397 pmdp = (pmd_t *)entry;
2398 gaddr = __gmap_segment_gaddr(entry);
2399 pmdp_notify_gmap(gmap, pmdp, gaddr);
2400 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2401 _SEGMENT_ENTRY_GMAP_UC));
2402 if (MACHINE_HAS_TLB_GUEST)
2403 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2404 gmap->asce, IDTE_LOCAL);
2405 else if (MACHINE_HAS_IDTE)
2406 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2407 *entry = _SEGMENT_ENTRY_EMPTY;
2408 }
2409 spin_unlock(&gmap->guest_table_lock);
2410 }
2411 rcu_read_unlock();
2412 }
2413 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2414
2415 /**
2416 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2417 * @mm: pointer to the process mm_struct
2418 * @vmaddr: virtual address in the process address space
2419 */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2420 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2421 {
2422 unsigned long *entry, gaddr;
2423 struct gmap *gmap;
2424 pmd_t *pmdp;
2425
2426 rcu_read_lock();
2427 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2428 spin_lock(&gmap->guest_table_lock);
2429 entry = radix_tree_delete(&gmap->host_to_guest,
2430 vmaddr >> PMD_SHIFT);
2431 if (entry) {
2432 pmdp = (pmd_t *)entry;
2433 gaddr = __gmap_segment_gaddr(entry);
2434 pmdp_notify_gmap(gmap, pmdp, gaddr);
2435 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2436 _SEGMENT_ENTRY_GMAP_UC));
2437 if (MACHINE_HAS_TLB_GUEST)
2438 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2439 gmap->asce, IDTE_GLOBAL);
2440 else if (MACHINE_HAS_IDTE)
2441 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2442 else
2443 __pmdp_csp(pmdp);
2444 *entry = _SEGMENT_ENTRY_EMPTY;
2445 }
2446 spin_unlock(&gmap->guest_table_lock);
2447 }
2448 rcu_read_unlock();
2449 }
2450 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2451
2452 /**
2453 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2454 * @gmap: pointer to guest address space
2455 * @pmdp: pointer to the pmd to be tested
2456 * @gaddr: virtual address in the guest address space
2457 *
2458 * This function is assumed to be called with the guest_table_lock
2459 * held.
2460 */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2461 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2462 unsigned long gaddr)
2463 {
2464 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2465 return false;
2466
2467 /* Already protected memory, which did not change is clean */
2468 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2469 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2470 return false;
2471
2472 /* Clear UC indication and reset protection */
2473 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2474 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2475 return true;
2476 }
2477
2478 /**
2479 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2480 * @gmap: pointer to guest address space
2481 * @bitmap: dirty bitmap for this pmd
2482 * @gaddr: virtual address in the guest address space
2483 * @vmaddr: virtual address in the host address space
2484 *
2485 * This function is assumed to be called with the guest_table_lock
2486 * held.
2487 */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2488 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2489 unsigned long gaddr, unsigned long vmaddr)
2490 {
2491 int i;
2492 pmd_t *pmdp;
2493 pte_t *ptep;
2494 spinlock_t *ptl;
2495
2496 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2497 if (!pmdp)
2498 return;
2499
2500 if (pmd_large(*pmdp)) {
2501 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2502 bitmap_fill(bitmap, _PAGE_ENTRIES);
2503 } else {
2504 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2505 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2506 if (!ptep)
2507 continue;
2508 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2509 set_bit(i, bitmap);
2510 pte_unmap_unlock(ptep, ptl);
2511 }
2512 }
2513 gmap_pmd_op_end(gmap, pmdp);
2514 }
2515 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2516
2517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2518 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2519 unsigned long end, struct mm_walk *walk)
2520 {
2521 struct vm_area_struct *vma = walk->vma;
2522
2523 split_huge_pmd(vma, pmd, addr);
2524 return 0;
2525 }
2526
2527 static const struct mm_walk_ops thp_split_walk_ops = {
2528 .pmd_entry = thp_split_walk_pmd_entry,
2529 .walk_lock = PGWALK_WRLOCK_VERIFY,
2530 };
2531
thp_split_mm(struct mm_struct * mm)2532 static inline void thp_split_mm(struct mm_struct *mm)
2533 {
2534 struct vm_area_struct *vma;
2535 VMA_ITERATOR(vmi, mm, 0);
2536
2537 for_each_vma(vmi, vma) {
2538 vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2539 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2540 }
2541 mm->def_flags |= VM_NOHUGEPAGE;
2542 }
2543 #else
thp_split_mm(struct mm_struct * mm)2544 static inline void thp_split_mm(struct mm_struct *mm)
2545 {
2546 }
2547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2548
2549 /*
2550 * Remove all empty zero pages from the mapping for lazy refaulting
2551 * - This must be called after mm->context.has_pgste is set, to avoid
2552 * future creation of zero pages
2553 * - This must be called after THP was disabled.
2554 *
2555 * mm contracts with s390, that even if mm were to remove a page table,
2556 * racing with the loop below and so causing pte_offset_map_lock() to fail,
2557 * it will never insert a page table containing empty zero pages once
2558 * mm_forbids_zeropage(mm) i.e. mm->context.has_pgste is set.
2559 */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2560 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2561 unsigned long end, struct mm_walk *walk)
2562 {
2563 unsigned long addr;
2564
2565 for (addr = start; addr != end; addr += PAGE_SIZE) {
2566 pte_t *ptep;
2567 spinlock_t *ptl;
2568
2569 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2570 if (!ptep)
2571 break;
2572 if (is_zero_pfn(pte_pfn(*ptep)))
2573 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2574 pte_unmap_unlock(ptep, ptl);
2575 }
2576 return 0;
2577 }
2578
2579 static const struct mm_walk_ops zap_zero_walk_ops = {
2580 .pmd_entry = __zap_zero_pages,
2581 .walk_lock = PGWALK_WRLOCK,
2582 };
2583
2584 /*
2585 * switch on pgstes for its userspace process (for kvm)
2586 */
s390_enable_sie(void)2587 int s390_enable_sie(void)
2588 {
2589 struct mm_struct *mm = current->mm;
2590
2591 /* Do we have pgstes? if yes, we are done */
2592 if (mm_has_pgste(mm))
2593 return 0;
2594 /* Fail if the page tables are 2K */
2595 if (!mm_alloc_pgste(mm))
2596 return -EINVAL;
2597 mmap_write_lock(mm);
2598 mm->context.has_pgste = 1;
2599 /* split thp mappings and disable thp for future mappings */
2600 thp_split_mm(mm);
2601 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2602 mmap_write_unlock(mm);
2603 return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(s390_enable_sie);
2606
gmap_mark_unmergeable(void)2607 int gmap_mark_unmergeable(void)
2608 {
2609 /*
2610 * Make sure to disable KSM (if enabled for the whole process or
2611 * individual VMAs). Note that nothing currently hinders user space
2612 * from re-enabling it.
2613 */
2614 return ksm_disable(current->mm);
2615 }
2616 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2617
2618 /*
2619 * Enable storage key handling from now on and initialize the storage
2620 * keys with the default key.
2621 */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2622 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2623 unsigned long next, struct mm_walk *walk)
2624 {
2625 /* Clear storage key */
2626 ptep_zap_key(walk->mm, addr, pte);
2627 return 0;
2628 }
2629
2630 /*
2631 * Give a chance to schedule after setting a key to 256 pages.
2632 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2633 * Both can sleep.
2634 */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2635 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2636 unsigned long next, struct mm_walk *walk)
2637 {
2638 cond_resched();
2639 return 0;
2640 }
2641
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2642 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2643 unsigned long hmask, unsigned long next,
2644 struct mm_walk *walk)
2645 {
2646 pmd_t *pmd = (pmd_t *)pte;
2647 unsigned long start, end;
2648 struct page *page = pmd_page(*pmd);
2649
2650 /*
2651 * The write check makes sure we do not set a key on shared
2652 * memory. This is needed as the walker does not differentiate
2653 * between actual guest memory and the process executable or
2654 * shared libraries.
2655 */
2656 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2657 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2658 return 0;
2659
2660 start = pmd_val(*pmd) & HPAGE_MASK;
2661 end = start + HPAGE_SIZE - 1;
2662 __storage_key_init_range(start, end);
2663 set_bit(PG_arch_1, &page->flags);
2664 cond_resched();
2665 return 0;
2666 }
2667
2668 static const struct mm_walk_ops enable_skey_walk_ops = {
2669 .hugetlb_entry = __s390_enable_skey_hugetlb,
2670 .pte_entry = __s390_enable_skey_pte,
2671 .pmd_entry = __s390_enable_skey_pmd,
2672 .walk_lock = PGWALK_WRLOCK,
2673 };
2674
s390_enable_skey(void)2675 int s390_enable_skey(void)
2676 {
2677 struct mm_struct *mm = current->mm;
2678 int rc = 0;
2679
2680 mmap_write_lock(mm);
2681 if (mm_uses_skeys(mm))
2682 goto out_up;
2683
2684 mm->context.uses_skeys = 1;
2685 rc = gmap_mark_unmergeable();
2686 if (rc) {
2687 mm->context.uses_skeys = 0;
2688 goto out_up;
2689 }
2690 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2691
2692 out_up:
2693 mmap_write_unlock(mm);
2694 return rc;
2695 }
2696 EXPORT_SYMBOL_GPL(s390_enable_skey);
2697
2698 /*
2699 * Reset CMMA state, make all pages stable again.
2700 */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2701 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2702 unsigned long next, struct mm_walk *walk)
2703 {
2704 ptep_zap_unused(walk->mm, addr, pte, 1);
2705 return 0;
2706 }
2707
2708 static const struct mm_walk_ops reset_cmma_walk_ops = {
2709 .pte_entry = __s390_reset_cmma,
2710 .walk_lock = PGWALK_WRLOCK,
2711 };
2712
s390_reset_cmma(struct mm_struct * mm)2713 void s390_reset_cmma(struct mm_struct *mm)
2714 {
2715 mmap_write_lock(mm);
2716 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2717 mmap_write_unlock(mm);
2718 }
2719 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2720
2721 #define GATHER_GET_PAGES 32
2722
2723 struct reset_walk_state {
2724 unsigned long next;
2725 unsigned long count;
2726 unsigned long pfns[GATHER_GET_PAGES];
2727 };
2728
s390_gather_pages(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2729 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2730 unsigned long next, struct mm_walk *walk)
2731 {
2732 struct reset_walk_state *p = walk->private;
2733 pte_t pte = READ_ONCE(*ptep);
2734
2735 if (pte_present(pte)) {
2736 /* we have a reference from the mapping, take an extra one */
2737 get_page(phys_to_page(pte_val(pte)));
2738 p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2739 p->next = next;
2740 p->count++;
2741 }
2742 return p->count >= GATHER_GET_PAGES;
2743 }
2744
2745 static const struct mm_walk_ops gather_pages_ops = {
2746 .pte_entry = s390_gather_pages,
2747 .walk_lock = PGWALK_RDLOCK,
2748 };
2749
2750 /*
2751 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2752 * Each page needs to have an extra reference, which will be released here.
2753 */
s390_uv_destroy_pfns(unsigned long count,unsigned long * pfns)2754 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2755 {
2756 unsigned long i;
2757
2758 for (i = 0; i < count; i++) {
2759 /* we always have an extra reference */
2760 uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2761 /* get rid of the extra reference */
2762 put_page(pfn_to_page(pfns[i]));
2763 cond_resched();
2764 }
2765 }
2766 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2767
2768 /**
2769 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2770 * in the given range of the given address space.
2771 * @mm: the mm to operate on
2772 * @start: the start of the range
2773 * @end: the end of the range
2774 * @interruptible: if not 0, stop when a fatal signal is received
2775 *
2776 * Walk the given range of the given address space and call the destroy
2777 * secure page UVC on each page. Optionally exit early if a fatal signal is
2778 * pending.
2779 *
2780 * Return: 0 on success, -EINTR if the function stopped before completing
2781 */
__s390_uv_destroy_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool interruptible)2782 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2783 unsigned long end, bool interruptible)
2784 {
2785 struct reset_walk_state state = { .next = start };
2786 int r = 1;
2787
2788 while (r > 0) {
2789 state.count = 0;
2790 mmap_read_lock(mm);
2791 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2792 mmap_read_unlock(mm);
2793 cond_resched();
2794 s390_uv_destroy_pfns(state.count, state.pfns);
2795 if (interruptible && fatal_signal_pending(current))
2796 return -EINTR;
2797 }
2798 return 0;
2799 }
2800 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2801
2802 /**
2803 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2804 * list of page tables of the gmap.
2805 * @gmap: the gmap whose table is to be removed
2806 *
2807 * On s390x, KVM keeps a list of all pages containing the page tables of the
2808 * gmap (the CRST list). This list is used at tear down time to free all
2809 * pages that are now not needed anymore.
2810 *
2811 * This function removes the topmost page of the tree (the one pointed to by
2812 * the ASCE) from the CRST list.
2813 *
2814 * This means that it will not be freed when the VM is torn down, and needs
2815 * to be handled separately by the caller, unless a leak is actually
2816 * intended. Notice that this function will only remove the page from the
2817 * list, the page will still be used as a top level page table (and ASCE).
2818 */
s390_unlist_old_asce(struct gmap * gmap)2819 void s390_unlist_old_asce(struct gmap *gmap)
2820 {
2821 struct page *old;
2822
2823 old = virt_to_page(gmap->table);
2824 spin_lock(&gmap->guest_table_lock);
2825 list_del(&old->lru);
2826 /*
2827 * Sometimes the topmost page might need to be "removed" multiple
2828 * times, for example if the VM is rebooted into secure mode several
2829 * times concurrently, or if s390_replace_asce fails after calling
2830 * s390_remove_old_asce and is attempted again later. In that case
2831 * the old asce has been removed from the list, and therefore it
2832 * will not be freed when the VM terminates, but the ASCE is still
2833 * in use and still pointed to.
2834 * A subsequent call to replace_asce will follow the pointer and try
2835 * to remove the same page from the list again.
2836 * Therefore it's necessary that the page of the ASCE has valid
2837 * pointers, so list_del can work (and do nothing) without
2838 * dereferencing stale or invalid pointers.
2839 */
2840 INIT_LIST_HEAD(&old->lru);
2841 spin_unlock(&gmap->guest_table_lock);
2842 }
2843 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2844
2845 /**
2846 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2847 * @gmap: the gmap whose ASCE needs to be replaced
2848 *
2849 * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2850 * otherwise the pointers in the host_to_guest radix tree will keep pointing
2851 * to the wrong pages, causing use-after-free and memory corruption.
2852 * If the allocation of the new top level page table fails, the ASCE is not
2853 * replaced.
2854 * In any case, the old ASCE is always removed from the gmap CRST list.
2855 * Therefore the caller has to make sure to save a pointer to it
2856 * beforehand, unless a leak is actually intended.
2857 */
s390_replace_asce(struct gmap * gmap)2858 int s390_replace_asce(struct gmap *gmap)
2859 {
2860 unsigned long asce;
2861 struct page *page;
2862 void *table;
2863
2864 s390_unlist_old_asce(gmap);
2865
2866 /* Replacing segment type ASCEs would cause serious issues */
2867 if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2868 return -EINVAL;
2869
2870 page = gmap_alloc_crst();
2871 if (!page)
2872 return -ENOMEM;
2873 page->index = 0;
2874 table = page_to_virt(page);
2875 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2876
2877 /*
2878 * The caller has to deal with the old ASCE, but here we make sure
2879 * the new one is properly added to the CRST list, so that
2880 * it will be freed when the VM is torn down.
2881 */
2882 spin_lock(&gmap->guest_table_lock);
2883 list_add(&page->lru, &gmap->crst_list);
2884 spin_unlock(&gmap->guest_table_lock);
2885
2886 /* Set new table origin while preserving existing ASCE control bits */
2887 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2888 WRITE_ONCE(gmap->asce, asce);
2889 WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2890 WRITE_ONCE(gmap->table, table);
2891
2892 return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(s390_replace_asce);
2895