1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Ultravisor functions and initialization
4 *
5 * Copyright IBM Corp. 2019, 2020
6 */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25
26 struct uv_info __bootdata_preserved(uv_info);
27
28 #if IS_ENABLED(CONFIG_KVM)
29 int __bootdata_preserved(prot_virt_host);
30 EXPORT_SYMBOL(prot_virt_host);
31 EXPORT_SYMBOL(uv_info);
32
uv_init(phys_addr_t stor_base,unsigned long stor_len)33 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
34 {
35 struct uv_cb_init uvcb = {
36 .header.cmd = UVC_CMD_INIT_UV,
37 .header.len = sizeof(uvcb),
38 .stor_origin = stor_base,
39 .stor_len = stor_len,
40 };
41
42 if (uv_call(0, (uint64_t)&uvcb)) {
43 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
44 uvcb.header.rc, uvcb.header.rrc);
45 return -1;
46 }
47 return 0;
48 }
49
setup_uv(void)50 void __init setup_uv(void)
51 {
52 void *uv_stor_base;
53
54 if (!is_prot_virt_host())
55 return;
56
57 uv_stor_base = memblock_alloc_try_nid(
58 uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
59 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
60 if (!uv_stor_base) {
61 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
62 uv_info.uv_base_stor_len);
63 goto fail;
64 }
65
66 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
67 memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
68 goto fail;
69 }
70
71 pr_info("Reserving %luMB as ultravisor base storage\n",
72 uv_info.uv_base_stor_len >> 20);
73 return;
74 fail:
75 pr_info("Disabling support for protected virtualization");
76 prot_virt_host = 0;
77 }
78
79 /*
80 * Requests the Ultravisor to pin the page in the shared state. This will
81 * cause an intercept when the guest attempts to unshare the pinned page.
82 */
uv_pin_shared(unsigned long paddr)83 static int uv_pin_shared(unsigned long paddr)
84 {
85 struct uv_cb_cfs uvcb = {
86 .header.cmd = UVC_CMD_PIN_PAGE_SHARED,
87 .header.len = sizeof(uvcb),
88 .paddr = paddr,
89 };
90
91 if (uv_call(0, (u64)&uvcb))
92 return -EINVAL;
93 return 0;
94 }
95
96 /*
97 * Requests the Ultravisor to destroy a guest page and make it
98 * accessible to the host. The destroy clears the page instead of
99 * exporting.
100 *
101 * @paddr: Absolute host address of page to be destroyed
102 */
uv_destroy_page(unsigned long paddr)103 static int uv_destroy_page(unsigned long paddr)
104 {
105 struct uv_cb_cfs uvcb = {
106 .header.cmd = UVC_CMD_DESTR_SEC_STOR,
107 .header.len = sizeof(uvcb),
108 .paddr = paddr
109 };
110
111 if (uv_call(0, (u64)&uvcb)) {
112 /*
113 * Older firmware uses 107/d as an indication of a non secure
114 * page. Let us emulate the newer variant (no-op).
115 */
116 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
117 return 0;
118 return -EINVAL;
119 }
120 return 0;
121 }
122
123 /*
124 * The caller must already hold a reference to the page
125 */
uv_destroy_owned_page(unsigned long paddr)126 int uv_destroy_owned_page(unsigned long paddr)
127 {
128 struct page *page = phys_to_page(paddr);
129 int rc;
130
131 get_page(page);
132 rc = uv_destroy_page(paddr);
133 if (!rc)
134 clear_bit(PG_arch_1, &page->flags);
135 put_page(page);
136 return rc;
137 }
138
139 /*
140 * Requests the Ultravisor to encrypt a guest page and make it
141 * accessible to the host for paging (export).
142 *
143 * @paddr: Absolute host address of page to be exported
144 */
uv_convert_from_secure(unsigned long paddr)145 int uv_convert_from_secure(unsigned long paddr)
146 {
147 struct uv_cb_cfs uvcb = {
148 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
149 .header.len = sizeof(uvcb),
150 .paddr = paddr
151 };
152
153 if (uv_call(0, (u64)&uvcb))
154 return -EINVAL;
155 return 0;
156 }
157
158 /*
159 * The caller must already hold a reference to the page
160 */
uv_convert_owned_from_secure(unsigned long paddr)161 int uv_convert_owned_from_secure(unsigned long paddr)
162 {
163 struct page *page = phys_to_page(paddr);
164 int rc;
165
166 get_page(page);
167 rc = uv_convert_from_secure(paddr);
168 if (!rc)
169 clear_bit(PG_arch_1, &page->flags);
170 put_page(page);
171 return rc;
172 }
173
174 /*
175 * Calculate the expected ref_count for a page that would otherwise have no
176 * further pins. This was cribbed from similar functions in other places in
177 * the kernel, but with some slight modifications. We know that a secure
178 * page can not be a huge page for example.
179 */
expected_page_refs(struct page * page)180 static int expected_page_refs(struct page *page)
181 {
182 int res;
183
184 res = page_mapcount(page);
185 if (PageSwapCache(page)) {
186 res++;
187 } else if (page_mapping(page)) {
188 res++;
189 if (page_has_private(page))
190 res++;
191 }
192 return res;
193 }
194
make_secure_pte(pte_t * ptep,unsigned long addr,struct page * exp_page,struct uv_cb_header * uvcb)195 static int make_secure_pte(pte_t *ptep, unsigned long addr,
196 struct page *exp_page, struct uv_cb_header *uvcb)
197 {
198 pte_t entry = READ_ONCE(*ptep);
199 struct page *page;
200 int expected, cc = 0;
201
202 if (!pte_present(entry))
203 return -ENXIO;
204 if (pte_val(entry) & _PAGE_INVALID)
205 return -ENXIO;
206
207 page = pte_page(entry);
208 if (page != exp_page)
209 return -ENXIO;
210 if (PageWriteback(page))
211 return -EAGAIN;
212 expected = expected_page_refs(page);
213 if (!page_ref_freeze(page, expected))
214 return -EBUSY;
215 set_bit(PG_arch_1, &page->flags);
216 /*
217 * If the UVC does not succeed or fail immediately, we don't want to
218 * loop for long, or we might get stall notifications.
219 * On the other hand, this is a complex scenario and we are holding a lot of
220 * locks, so we can't easily sleep and reschedule. We try only once,
221 * and if the UVC returned busy or partial completion, we return
222 * -EAGAIN and we let the callers deal with it.
223 */
224 cc = __uv_call(0, (u64)uvcb);
225 page_ref_unfreeze(page, expected);
226 /*
227 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
228 * If busy or partially completed, return -EAGAIN.
229 */
230 if (cc == UVC_CC_OK)
231 return 0;
232 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
233 return -EAGAIN;
234 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
235 }
236
237 /**
238 * should_export_before_import - Determine whether an export is needed
239 * before an import-like operation
240 * @uvcb: the Ultravisor control block of the UVC to be performed
241 * @mm: the mm of the process
242 *
243 * Returns whether an export is needed before every import-like operation.
244 * This is needed for shared pages, which don't trigger a secure storage
245 * exception when accessed from a different guest.
246 *
247 * Although considered as one, the Unpin Page UVC is not an actual import,
248 * so it is not affected.
249 *
250 * No export is needed also when there is only one protected VM, because the
251 * page cannot belong to the wrong VM in that case (there is no "other VM"
252 * it can belong to).
253 *
254 * Return: true if an export is needed before every import, otherwise false.
255 */
should_export_before_import(struct uv_cb_header * uvcb,struct mm_struct * mm)256 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
257 {
258 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
259 return false;
260 return atomic_read(&mm->context.protected_count) > 1;
261 }
262
263 /*
264 * Requests the Ultravisor to make a page accessible to a guest.
265 * If it's brought in the first time, it will be cleared. If
266 * it has been exported before, it will be decrypted and integrity
267 * checked.
268 */
gmap_make_secure(struct gmap * gmap,unsigned long gaddr,void * uvcb)269 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
270 {
271 struct vm_area_struct *vma;
272 bool local_drain = false;
273 spinlock_t *ptelock;
274 unsigned long uaddr;
275 struct page *page;
276 pte_t *ptep;
277 int rc;
278
279 again:
280 rc = -EFAULT;
281 mmap_read_lock(gmap->mm);
282
283 uaddr = __gmap_translate(gmap, gaddr);
284 if (IS_ERR_VALUE(uaddr))
285 goto out;
286 vma = vma_lookup(gmap->mm, uaddr);
287 if (!vma)
288 goto out;
289 /*
290 * Secure pages cannot be huge and userspace should not combine both.
291 * In case userspace does it anyway this will result in an -EFAULT for
292 * the unpack. The guest is thus never reaching secure mode. If
293 * userspace is playing dirty tricky with mapping huge pages later
294 * on this will result in a segmentation fault.
295 */
296 if (is_vm_hugetlb_page(vma))
297 goto out;
298
299 rc = -ENXIO;
300 page = follow_page(vma, uaddr, FOLL_WRITE);
301 if (IS_ERR_OR_NULL(page))
302 goto out;
303
304 lock_page(page);
305 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
306 if (should_export_before_import(uvcb, gmap->mm))
307 uv_convert_from_secure(page_to_phys(page));
308 rc = make_secure_pte(ptep, uaddr, page, uvcb);
309 pte_unmap_unlock(ptep, ptelock);
310 unlock_page(page);
311 out:
312 mmap_read_unlock(gmap->mm);
313
314 if (rc == -EAGAIN) {
315 /*
316 * If we are here because the UVC returned busy or partial
317 * completion, this is just a useless check, but it is safe.
318 */
319 wait_on_page_writeback(page);
320 } else if (rc == -EBUSY) {
321 /*
322 * If we have tried a local drain and the page refcount
323 * still does not match our expected safe value, try with a
324 * system wide drain. This is needed if the pagevecs holding
325 * the page are on a different CPU.
326 */
327 if (local_drain) {
328 lru_add_drain_all();
329 /* We give up here, and let the caller try again */
330 return -EAGAIN;
331 }
332 /*
333 * We are here if the page refcount does not match the
334 * expected safe value. The main culprits are usually
335 * pagevecs. With lru_add_drain() we drain the pagevecs
336 * on the local CPU so that hopefully the refcount will
337 * reach the expected safe value.
338 */
339 lru_add_drain();
340 local_drain = true;
341 /* And now we try again immediately after draining */
342 goto again;
343 } else if (rc == -ENXIO) {
344 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
345 return -EFAULT;
346 return -EAGAIN;
347 }
348 return rc;
349 }
350 EXPORT_SYMBOL_GPL(gmap_make_secure);
351
gmap_convert_to_secure(struct gmap * gmap,unsigned long gaddr)352 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
353 {
354 struct uv_cb_cts uvcb = {
355 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
356 .header.len = sizeof(uvcb),
357 .guest_handle = gmap->guest_handle,
358 .gaddr = gaddr,
359 };
360
361 return gmap_make_secure(gmap, gaddr, &uvcb);
362 }
363 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
364
365 /**
366 * gmap_destroy_page - Destroy a guest page.
367 * @gmap: the gmap of the guest
368 * @gaddr: the guest address to destroy
369 *
370 * An attempt will be made to destroy the given guest page. If the attempt
371 * fails, an attempt is made to export the page. If both attempts fail, an
372 * appropriate error is returned.
373 */
gmap_destroy_page(struct gmap * gmap,unsigned long gaddr)374 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
375 {
376 struct vm_area_struct *vma;
377 unsigned long uaddr;
378 struct page *page;
379 int rc;
380
381 rc = -EFAULT;
382 mmap_read_lock(gmap->mm);
383
384 uaddr = __gmap_translate(gmap, gaddr);
385 if (IS_ERR_VALUE(uaddr))
386 goto out;
387 vma = vma_lookup(gmap->mm, uaddr);
388 if (!vma)
389 goto out;
390 /*
391 * Huge pages should not be able to become secure
392 */
393 if (is_vm_hugetlb_page(vma))
394 goto out;
395
396 rc = 0;
397 /* we take an extra reference here */
398 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
399 if (IS_ERR_OR_NULL(page))
400 goto out;
401 rc = uv_destroy_owned_page(page_to_phys(page));
402 /*
403 * Fault handlers can race; it is possible that two CPUs will fault
404 * on the same secure page. One CPU can destroy the page, reboot,
405 * re-enter secure mode and import it, while the second CPU was
406 * stuck at the beginning of the handler. At some point the second
407 * CPU will be able to progress, and it will not be able to destroy
408 * the page. In that case we do not want to terminate the process,
409 * we instead try to export the page.
410 */
411 if (rc)
412 rc = uv_convert_owned_from_secure(page_to_phys(page));
413 put_page(page);
414 out:
415 mmap_read_unlock(gmap->mm);
416 return rc;
417 }
418 EXPORT_SYMBOL_GPL(gmap_destroy_page);
419
420 /*
421 * To be called with the page locked or with an extra reference! This will
422 * prevent gmap_make_secure from touching the page concurrently. Having 2
423 * parallel make_page_accessible is fine, as the UV calls will become a
424 * no-op if the page is already exported.
425 */
arch_make_page_accessible(struct page * page)426 int arch_make_page_accessible(struct page *page)
427 {
428 int rc = 0;
429
430 /* Hugepage cannot be protected, so nothing to do */
431 if (PageHuge(page))
432 return 0;
433
434 /*
435 * PG_arch_1 is used in 3 places:
436 * 1. for kernel page tables during early boot
437 * 2. for storage keys of huge pages and KVM
438 * 3. As an indication that this page might be secure. This can
439 * overindicate, e.g. we set the bit before calling
440 * convert_to_secure.
441 * As secure pages are never huge, all 3 variants can co-exists.
442 */
443 if (!test_bit(PG_arch_1, &page->flags))
444 return 0;
445
446 rc = uv_pin_shared(page_to_phys(page));
447 if (!rc) {
448 clear_bit(PG_arch_1, &page->flags);
449 return 0;
450 }
451
452 rc = uv_convert_from_secure(page_to_phys(page));
453 if (!rc) {
454 clear_bit(PG_arch_1, &page->flags);
455 return 0;
456 }
457
458 return rc;
459 }
460 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
461
462 #endif
463
464 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * page)465 static ssize_t uv_query_facilities(struct kobject *kobj,
466 struct kobj_attribute *attr, char *page)
467 {
468 return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
469 uv_info.inst_calls_list[0],
470 uv_info.inst_calls_list[1],
471 uv_info.inst_calls_list[2],
472 uv_info.inst_calls_list[3]);
473 }
474
475 static struct kobj_attribute uv_query_facilities_attr =
476 __ATTR(facilities, 0444, uv_query_facilities, NULL);
477
uv_query_supp_se_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)478 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
479 struct kobj_attribute *attr, char *buf)
480 {
481 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
482 }
483
484 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
485 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
486
uv_query_supp_se_hdr_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)487 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
488 struct kobj_attribute *attr, char *buf)
489 {
490 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
491 }
492
493 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
494 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
495
uv_query_dump_cpu_len(struct kobject * kobj,struct kobj_attribute * attr,char * page)496 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
497 struct kobj_attribute *attr, char *page)
498 {
499 return scnprintf(page, PAGE_SIZE, "%lx\n",
500 uv_info.guest_cpu_stor_len);
501 }
502
503 static struct kobj_attribute uv_query_dump_cpu_len_attr =
504 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
505
uv_query_dump_storage_state_len(struct kobject * kobj,struct kobj_attribute * attr,char * page)506 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
507 struct kobj_attribute *attr, char *page)
508 {
509 return scnprintf(page, PAGE_SIZE, "%lx\n",
510 uv_info.conf_dump_storage_state_len);
511 }
512
513 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
514 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
515
uv_query_dump_finalize_len(struct kobject * kobj,struct kobj_attribute * attr,char * page)516 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
517 struct kobj_attribute *attr, char *page)
518 {
519 return scnprintf(page, PAGE_SIZE, "%lx\n",
520 uv_info.conf_dump_finalize_len);
521 }
522
523 static struct kobj_attribute uv_query_dump_finalize_len_attr =
524 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
525
uv_query_feature_indications(struct kobject * kobj,struct kobj_attribute * attr,char * buf)526 static ssize_t uv_query_feature_indications(struct kobject *kobj,
527 struct kobj_attribute *attr, char *buf)
528 {
529 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
530 }
531
532 static struct kobj_attribute uv_query_feature_indications_attr =
533 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
534
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * page)535 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
536 struct kobj_attribute *attr, char *page)
537 {
538 return scnprintf(page, PAGE_SIZE, "%d\n",
539 uv_info.max_guest_cpu_id + 1);
540 }
541
542 static struct kobj_attribute uv_query_max_guest_cpus_attr =
543 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
544
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * page)545 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
546 struct kobj_attribute *attr, char *page)
547 {
548 return scnprintf(page, PAGE_SIZE, "%d\n",
549 uv_info.max_num_sec_conf);
550 }
551
552 static struct kobj_attribute uv_query_max_guest_vms_attr =
553 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
554
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * page)555 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
556 struct kobj_attribute *attr, char *page)
557 {
558 return scnprintf(page, PAGE_SIZE, "%lx\n",
559 uv_info.max_sec_stor_addr);
560 }
561
562 static struct kobj_attribute uv_query_max_guest_addr_attr =
563 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
564
uv_query_supp_att_req_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * page)565 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
566 struct kobj_attribute *attr, char *page)
567 {
568 return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_req_hdr_ver);
569 }
570
571 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
572 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
573
uv_query_supp_att_pflags(struct kobject * kobj,struct kobj_attribute * attr,char * page)574 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
575 struct kobj_attribute *attr, char *page)
576 {
577 return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_pflags);
578 }
579
580 static struct kobj_attribute uv_query_supp_att_pflags_attr =
581 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
582
583 static struct attribute *uv_query_attrs[] = {
584 &uv_query_facilities_attr.attr,
585 &uv_query_feature_indications_attr.attr,
586 &uv_query_max_guest_cpus_attr.attr,
587 &uv_query_max_guest_vms_attr.attr,
588 &uv_query_max_guest_addr_attr.attr,
589 &uv_query_supp_se_hdr_ver_attr.attr,
590 &uv_query_supp_se_hdr_pcf_attr.attr,
591 &uv_query_dump_storage_state_len_attr.attr,
592 &uv_query_dump_finalize_len_attr.attr,
593 &uv_query_dump_cpu_len_attr.attr,
594 &uv_query_supp_att_req_hdr_ver_attr.attr,
595 &uv_query_supp_att_pflags_attr.attr,
596 NULL,
597 };
598
599 static struct attribute_group uv_query_attr_group = {
600 .attrs = uv_query_attrs,
601 };
602
uv_is_prot_virt_guest(struct kobject * kobj,struct kobj_attribute * attr,char * page)603 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
604 struct kobj_attribute *attr, char *page)
605 {
606 int val = 0;
607
608 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
609 val = prot_virt_guest;
610 #endif
611 return scnprintf(page, PAGE_SIZE, "%d\n", val);
612 }
613
uv_is_prot_virt_host(struct kobject * kobj,struct kobj_attribute * attr,char * page)614 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
615 struct kobj_attribute *attr, char *page)
616 {
617 int val = 0;
618
619 #if IS_ENABLED(CONFIG_KVM)
620 val = prot_virt_host;
621 #endif
622
623 return scnprintf(page, PAGE_SIZE, "%d\n", val);
624 }
625
626 static struct kobj_attribute uv_prot_virt_guest =
627 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
628
629 static struct kobj_attribute uv_prot_virt_host =
630 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
631
632 static const struct attribute *uv_prot_virt_attrs[] = {
633 &uv_prot_virt_guest.attr,
634 &uv_prot_virt_host.attr,
635 NULL,
636 };
637
638 static struct kset *uv_query_kset;
639 static struct kobject *uv_kobj;
640
uv_info_init(void)641 static int __init uv_info_init(void)
642 {
643 int rc = -ENOMEM;
644
645 if (!test_facility(158))
646 return 0;
647
648 uv_kobj = kobject_create_and_add("uv", firmware_kobj);
649 if (!uv_kobj)
650 return -ENOMEM;
651
652 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
653 if (rc)
654 goto out_kobj;
655
656 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
657 if (!uv_query_kset) {
658 rc = -ENOMEM;
659 goto out_ind_files;
660 }
661
662 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
663 if (!rc)
664 return 0;
665
666 kset_unregister(uv_query_kset);
667 out_ind_files:
668 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
669 out_kobj:
670 kobject_del(uv_kobj);
671 kobject_put(uv_kobj);
672 return rc;
673 }
674 device_initcall(uv_info_init);
675 #endif
676