1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36 struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41 };
42
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45 /**
46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @page: The (optional) page. This is looked up if @page is NULL
51 *
52 * Returns: errno
53 */
54
gfs2_unstuffer_page(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct page * page)55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 u64 block, struct page *page)
57 {
58 struct inode *inode = &ip->i_inode;
59
60 if (!PageUptodate(page)) {
61 void *kaddr = kmap(page);
62 u64 dsize = i_size_read(inode);
63
64 if (dsize > gfs2_max_stuffed_size(ip))
65 dsize = gfs2_max_stuffed_size(ip);
66
67 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
68 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
69 kunmap(page);
70
71 SetPageUptodate(page);
72 }
73
74 if (gfs2_is_jdata(ip)) {
75 struct buffer_head *bh;
76
77 if (!page_has_buffers(page))
78 create_empty_buffers(page, BIT(inode->i_blkbits),
79 BIT(BH_Uptodate));
80
81 bh = page_buffers(page);
82 if (!buffer_mapped(bh))
83 map_bh(bh, inode->i_sb, block);
84
85 set_buffer_uptodate(bh);
86 gfs2_trans_add_data(ip->i_gl, bh);
87 } else {
88 set_page_dirty(page);
89 gfs2_ordered_add_inode(ip);
90 }
91
92 return 0;
93 }
94
__gfs2_unstuff_inode(struct gfs2_inode * ip,struct page * page)95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
96 {
97 struct buffer_head *bh, *dibh;
98 struct gfs2_dinode *di;
99 u64 block = 0;
100 int isdir = gfs2_is_dir(ip);
101 int error;
102
103 error = gfs2_meta_inode_buffer(ip, &dibh);
104 if (error)
105 return error;
106
107 if (i_size_read(&ip->i_inode)) {
108 /* Get a free block, fill it with the stuffed data,
109 and write it out to disk */
110
111 unsigned int n = 1;
112 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
113 if (error)
114 goto out_brelse;
115 if (isdir) {
116 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
117 error = gfs2_dir_get_new_buffer(ip, block, &bh);
118 if (error)
119 goto out_brelse;
120 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
121 dibh, sizeof(struct gfs2_dinode));
122 brelse(bh);
123 } else {
124 error = gfs2_unstuffer_page(ip, dibh, block, page);
125 if (error)
126 goto out_brelse;
127 }
128 }
129
130 /* Set up the pointer to the new block */
131
132 gfs2_trans_add_meta(ip->i_gl, dibh);
133 di = (struct gfs2_dinode *)dibh->b_data;
134 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
135
136 if (i_size_read(&ip->i_inode)) {
137 *(__be64 *)(di + 1) = cpu_to_be64(block);
138 gfs2_add_inode_blocks(&ip->i_inode, 1);
139 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
140 }
141
142 ip->i_height = 1;
143 di->di_height = cpu_to_be16(1);
144
145 out_brelse:
146 brelse(dibh);
147 return error;
148 }
149
150 /**
151 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
152 * @ip: The GFS2 inode to unstuff
153 *
154 * This routine unstuffs a dinode and returns it to a "normal" state such
155 * that the height can be grown in the traditional way.
156 *
157 * Returns: errno
158 */
159
gfs2_unstuff_dinode(struct gfs2_inode * ip)160 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
161 {
162 struct inode *inode = &ip->i_inode;
163 struct page *page;
164 int error;
165
166 down_write(&ip->i_rw_mutex);
167 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
168 error = -ENOMEM;
169 if (!page)
170 goto out;
171 error = __gfs2_unstuff_inode(ip, page);
172 unlock_page(page);
173 put_page(page);
174 out:
175 up_write(&ip->i_rw_mutex);
176 return error;
177 }
178
179 /**
180 * find_metapath - Find path through the metadata tree
181 * @sdp: The superblock
182 * @block: The disk block to look up
183 * @mp: The metapath to return the result in
184 * @height: The pre-calculated height of the metadata tree
185 *
186 * This routine returns a struct metapath structure that defines a path
187 * through the metadata of inode "ip" to get to block "block".
188 *
189 * Example:
190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
191 * filesystem with a blocksize of 4096.
192 *
193 * find_metapath() would return a struct metapath structure set to:
194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195 *
196 * That means that in order to get to the block containing the byte at
197 * offset 101342453, we would load the indirect block pointed to by pointer
198 * 0 in the dinode. We would then load the indirect block pointed to by
199 * pointer 48 in that indirect block. We would then load the data block
200 * pointed to by pointer 165 in that indirect block.
201 *
202 * ----------------------------------------
203 * | Dinode | |
204 * | | 4|
205 * | |0 1 2 3 4 5 9|
206 * | | 6|
207 * ----------------------------------------
208 * |
209 * |
210 * V
211 * ----------------------------------------
212 * | Indirect Block |
213 * | 5|
214 * | 4 4 4 4 4 5 5 1|
215 * |0 5 6 7 8 9 0 1 2|
216 * ----------------------------------------
217 * |
218 * |
219 * V
220 * ----------------------------------------
221 * | Indirect Block |
222 * | 1 1 1 1 1 5|
223 * | 6 6 6 6 6 1|
224 * |0 3 4 5 6 7 2|
225 * ----------------------------------------
226 * |
227 * |
228 * V
229 * ----------------------------------------
230 * | Data block containing offset |
231 * | 101342453 |
232 * | |
233 * | |
234 * ----------------------------------------
235 *
236 */
237
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 struct metapath *mp, unsigned int height)
240 {
241 unsigned int i;
242
243 mp->mp_fheight = height;
244 for (i = height; i--;)
245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247
metapath_branch_start(const struct metapath * mp)248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 if (mp->mp_list[0] == 0)
251 return 2;
252 return 1;
253 }
254
255 /**
256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257 * @height: The metadata height (0 = dinode)
258 * @mp: The metapath
259 */
metaptr1(unsigned int height,const struct metapath * mp)260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 struct buffer_head *bh = mp->mp_bh[height];
263 if (height == 0)
264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267
268 /**
269 * metapointer - Return pointer to start of metadata in a buffer
270 * @height: The metadata height (0 = dinode)
271 * @mp: The metapath
272 *
273 * Return a pointer to the block number of the next height of the metadata
274 * tree given a buffer containing the pointer to the current height of the
275 * metadata tree.
276 */
277
metapointer(unsigned int height,const struct metapath * mp)278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 __be64 *p = metaptr1(height, mp);
281 return p + mp->mp_list[height];
282 }
283
metaend(unsigned int height,const struct metapath * mp)284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 const struct buffer_head *bh = mp->mp_bh[height];
287 return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289
clone_metapath(struct metapath * clone,struct metapath * mp)290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 unsigned int hgt;
293
294 *clone = *mp;
295 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 get_bh(clone->mp_bh[hgt]);
297 }
298
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 const __be64 *t;
302
303 for (t = start; t < end; t++) {
304 struct buffer_head *rabh;
305
306 if (!*t)
307 continue;
308
309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 if (trylock_buffer(rabh)) {
311 if (!buffer_uptodate(rabh)) {
312 rabh->b_end_io = end_buffer_read_sync;
313 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
314 REQ_PRIO, rabh);
315 continue;
316 }
317 unlock_buffer(rabh);
318 }
319 brelse(rabh);
320 }
321 }
322
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)323 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
324 unsigned int x, unsigned int h)
325 {
326 for (; x < h; x++) {
327 __be64 *ptr = metapointer(x, mp);
328 u64 dblock = be64_to_cpu(*ptr);
329 int ret;
330
331 if (!dblock)
332 break;
333 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
334 if (ret)
335 return ret;
336 }
337 mp->mp_aheight = x + 1;
338 return 0;
339 }
340
341 /**
342 * lookup_metapath - Walk the metadata tree to a specific point
343 * @ip: The inode
344 * @mp: The metapath
345 *
346 * Assumes that the inode's buffer has already been looked up and
347 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
348 * by find_metapath().
349 *
350 * If this function encounters part of the tree which has not been
351 * allocated, it returns the current height of the tree at the point
352 * at which it found the unallocated block. Blocks which are found are
353 * added to the mp->mp_bh[] list.
354 *
355 * Returns: error
356 */
357
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)358 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
359 {
360 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
361 }
362
363 /**
364 * fillup_metapath - fill up buffers for the metadata path to a specific height
365 * @ip: The inode
366 * @mp: The metapath
367 * @h: The height to which it should be mapped
368 *
369 * Similar to lookup_metapath, but does lookups for a range of heights
370 *
371 * Returns: error or the number of buffers filled
372 */
373
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)374 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
375 {
376 unsigned int x = 0;
377 int ret;
378
379 if (h) {
380 /* find the first buffer we need to look up. */
381 for (x = h - 1; x > 0; x--) {
382 if (mp->mp_bh[x])
383 break;
384 }
385 }
386 ret = __fillup_metapath(ip, mp, x, h);
387 if (ret)
388 return ret;
389 return mp->mp_aheight - x - 1;
390 }
391
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)392 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
393 {
394 sector_t factor = 1, block = 0;
395 int hgt;
396
397 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
398 if (hgt < mp->mp_aheight)
399 block += mp->mp_list[hgt] * factor;
400 factor *= sdp->sd_inptrs;
401 }
402 return block;
403 }
404
release_metapath(struct metapath * mp)405 static void release_metapath(struct metapath *mp)
406 {
407 int i;
408
409 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
410 if (mp->mp_bh[i] == NULL)
411 break;
412 brelse(mp->mp_bh[i]);
413 mp->mp_bh[i] = NULL;
414 }
415 }
416
417 /**
418 * gfs2_extent_length - Returns length of an extent of blocks
419 * @bh: The metadata block
420 * @ptr: Current position in @bh
421 * @limit: Max extent length to return
422 * @eob: Set to 1 if we hit "end of block"
423 *
424 * Returns: The length of the extent (minimum of one block)
425 */
426
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,size_t limit,int * eob)427 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
428 {
429 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
430 const __be64 *first = ptr;
431 u64 d = be64_to_cpu(*ptr);
432
433 *eob = 0;
434 do {
435 ptr++;
436 if (ptr >= end)
437 break;
438 d++;
439 } while(be64_to_cpu(*ptr) == d);
440 if (ptr >= end)
441 *eob = 1;
442 return ptr - first;
443 }
444
445 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
446
447 /*
448 * gfs2_metadata_walker - walk an indirect block
449 * @mp: Metapath to indirect block
450 * @ptrs: Number of pointers to look at
451 *
452 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
453 * indirect block to follow.
454 */
455 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
456 unsigned int ptrs);
457
458 /*
459 * gfs2_walk_metadata - walk a tree of indirect blocks
460 * @inode: The inode
461 * @mp: Starting point of walk
462 * @max_len: Maximum number of blocks to walk
463 * @walker: Called during the walk
464 *
465 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
466 * past the end of metadata, and a negative error code otherwise.
467 */
468
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)469 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
470 u64 max_len, gfs2_metadata_walker walker)
471 {
472 struct gfs2_inode *ip = GFS2_I(inode);
473 struct gfs2_sbd *sdp = GFS2_SB(inode);
474 u64 factor = 1;
475 unsigned int hgt;
476 int ret;
477
478 /*
479 * The walk starts in the lowest allocated indirect block, which may be
480 * before the position indicated by @mp. Adjust @max_len accordingly
481 * to avoid a short walk.
482 */
483 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
484 max_len += mp->mp_list[hgt] * factor;
485 mp->mp_list[hgt] = 0;
486 factor *= sdp->sd_inptrs;
487 }
488
489 for (;;) {
490 u16 start = mp->mp_list[hgt];
491 enum walker_status status;
492 unsigned int ptrs;
493 u64 len;
494
495 /* Walk indirect block. */
496 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
497 len = ptrs * factor;
498 if (len > max_len)
499 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
500 status = walker(mp, ptrs);
501 switch (status) {
502 case WALK_STOP:
503 return 1;
504 case WALK_FOLLOW:
505 BUG_ON(mp->mp_aheight == mp->mp_fheight);
506 ptrs = mp->mp_list[hgt] - start;
507 len = ptrs * factor;
508 break;
509 case WALK_CONTINUE:
510 break;
511 }
512 if (len >= max_len)
513 break;
514 max_len -= len;
515 if (status == WALK_FOLLOW)
516 goto fill_up_metapath;
517
518 lower_metapath:
519 /* Decrease height of metapath. */
520 brelse(mp->mp_bh[hgt]);
521 mp->mp_bh[hgt] = NULL;
522 mp->mp_list[hgt] = 0;
523 if (!hgt)
524 break;
525 hgt--;
526 factor *= sdp->sd_inptrs;
527
528 /* Advance in metadata tree. */
529 (mp->mp_list[hgt])++;
530 if (hgt) {
531 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
532 goto lower_metapath;
533 } else {
534 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
535 break;
536 }
537
538 fill_up_metapath:
539 /* Increase height of metapath. */
540 ret = fillup_metapath(ip, mp, ip->i_height - 1);
541 if (ret < 0)
542 return ret;
543 hgt += ret;
544 for (; ret; ret--)
545 do_div(factor, sdp->sd_inptrs);
546 mp->mp_aheight = hgt + 1;
547 }
548 return 0;
549 }
550
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)551 static enum walker_status gfs2_hole_walker(struct metapath *mp,
552 unsigned int ptrs)
553 {
554 const __be64 *start, *ptr, *end;
555 unsigned int hgt;
556
557 hgt = mp->mp_aheight - 1;
558 start = metapointer(hgt, mp);
559 end = start + ptrs;
560
561 for (ptr = start; ptr < end; ptr++) {
562 if (*ptr) {
563 mp->mp_list[hgt] += ptr - start;
564 if (mp->mp_aheight == mp->mp_fheight)
565 return WALK_STOP;
566 return WALK_FOLLOW;
567 }
568 }
569 return WALK_CONTINUE;
570 }
571
572 /**
573 * gfs2_hole_size - figure out the size of a hole
574 * @inode: The inode
575 * @lblock: The logical starting block number
576 * @len: How far to look (in blocks)
577 * @mp: The metapath at lblock
578 * @iomap: The iomap to store the hole size in
579 *
580 * This function modifies @mp.
581 *
582 * Returns: errno on error
583 */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)584 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
585 struct metapath *mp, struct iomap *iomap)
586 {
587 struct metapath clone;
588 u64 hole_size;
589 int ret;
590
591 clone_metapath(&clone, mp);
592 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
593 if (ret < 0)
594 goto out;
595
596 if (ret == 1)
597 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
598 else
599 hole_size = len;
600 iomap->length = hole_size << inode->i_blkbits;
601 ret = 0;
602
603 out:
604 release_metapath(&clone);
605 return ret;
606 }
607
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)608 static inline void gfs2_indirect_init(struct metapath *mp,
609 struct gfs2_glock *gl, unsigned int i,
610 unsigned offset, u64 bn)
611 {
612 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
613 ((i > 1) ? sizeof(struct gfs2_meta_header) :
614 sizeof(struct gfs2_dinode)));
615 BUG_ON(i < 1);
616 BUG_ON(mp->mp_bh[i] != NULL);
617 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
618 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
619 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
620 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
621 ptr += offset;
622 *ptr = cpu_to_be64(bn);
623 }
624
625 enum alloc_state {
626 ALLOC_DATA = 0,
627 ALLOC_GROW_DEPTH = 1,
628 ALLOC_GROW_HEIGHT = 2,
629 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
630 };
631
632 /**
633 * __gfs2_iomap_alloc - Build a metadata tree of the requested height
634 * @inode: The GFS2 inode
635 * @iomap: The iomap structure
636 * @mp: The metapath, with proper height information calculated
637 *
638 * In this routine we may have to alloc:
639 * i) Indirect blocks to grow the metadata tree height
640 * ii) Indirect blocks to fill in lower part of the metadata tree
641 * iii) Data blocks
642 *
643 * This function is called after __gfs2_iomap_get, which works out the
644 * total number of blocks which we need via gfs2_alloc_size.
645 *
646 * We then do the actual allocation asking for an extent at a time (if
647 * enough contiguous free blocks are available, there will only be one
648 * allocation request per call) and uses the state machine to initialise
649 * the blocks in order.
650 *
651 * Right now, this function will allocate at most one indirect block
652 * worth of data -- with a default block size of 4K, that's slightly
653 * less than 2M. If this limitation is ever removed to allow huge
654 * allocations, we would probably still want to limit the iomap size we
655 * return to avoid stalling other tasks during huge writes; the next
656 * iomap iteration would then find the blocks already allocated.
657 *
658 * Returns: errno on error
659 */
660
__gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,struct metapath * mp)661 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 struct metapath *mp)
663 {
664 struct gfs2_inode *ip = GFS2_I(inode);
665 struct gfs2_sbd *sdp = GFS2_SB(inode);
666 struct buffer_head *dibh = mp->mp_bh[0];
667 u64 bn;
668 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 size_t dblks = iomap->length >> inode->i_blkbits;
670 const unsigned end_of_metadata = mp->mp_fheight - 1;
671 int ret;
672 enum alloc_state state;
673 __be64 *ptr;
674 __be64 zero_bn = 0;
675
676 BUG_ON(mp->mp_aheight < 1);
677 BUG_ON(dibh == NULL);
678 BUG_ON(dblks < 1);
679
680 gfs2_trans_add_meta(ip->i_gl, dibh);
681
682 down_write(&ip->i_rw_mutex);
683
684 if (mp->mp_fheight == mp->mp_aheight) {
685 /* Bottom indirect block exists */
686 state = ALLOC_DATA;
687 } else {
688 /* Need to allocate indirect blocks */
689 if (mp->mp_fheight == ip->i_height) {
690 /* Writing into existing tree, extend tree down */
691 iblks = mp->mp_fheight - mp->mp_aheight;
692 state = ALLOC_GROW_DEPTH;
693 } else {
694 /* Building up tree height */
695 state = ALLOC_GROW_HEIGHT;
696 iblks = mp->mp_fheight - ip->i_height;
697 branch_start = metapath_branch_start(mp);
698 iblks += (mp->mp_fheight - branch_start);
699 }
700 }
701
702 /* start of the second part of the function (state machine) */
703
704 blks = dblks + iblks;
705 i = mp->mp_aheight;
706 do {
707 n = blks - alloced;
708 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
709 if (ret)
710 goto out;
711 alloced += n;
712 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 gfs2_trans_remove_revoke(sdp, bn, n);
714 switch (state) {
715 /* Growing height of tree */
716 case ALLOC_GROW_HEIGHT:
717 if (i == 1) {
718 ptr = (__be64 *)(dibh->b_data +
719 sizeof(struct gfs2_dinode));
720 zero_bn = *ptr;
721 }
722 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 i++, n--)
724 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 if (i - 1 == mp->mp_fheight - ip->i_height) {
726 i--;
727 gfs2_buffer_copy_tail(mp->mp_bh[i],
728 sizeof(struct gfs2_meta_header),
729 dibh, sizeof(struct gfs2_dinode));
730 gfs2_buffer_clear_tail(dibh,
731 sizeof(struct gfs2_dinode) +
732 sizeof(__be64));
733 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 sizeof(struct gfs2_meta_header));
735 *ptr = zero_bn;
736 state = ALLOC_GROW_DEPTH;
737 for(i = branch_start; i < mp->mp_fheight; i++) {
738 if (mp->mp_bh[i] == NULL)
739 break;
740 brelse(mp->mp_bh[i]);
741 mp->mp_bh[i] = NULL;
742 }
743 i = branch_start;
744 }
745 if (n == 0)
746 break;
747 fallthrough; /* To branching from existing tree */
748 case ALLOC_GROW_DEPTH:
749 if (i > 1 && i < mp->mp_fheight)
750 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 for (; i < mp->mp_fheight && n > 0; i++, n--)
752 gfs2_indirect_init(mp, ip->i_gl, i,
753 mp->mp_list[i-1], bn++);
754 if (i == mp->mp_fheight)
755 state = ALLOC_DATA;
756 if (n == 0)
757 break;
758 fallthrough; /* To tree complete, adding data blocks */
759 case ALLOC_DATA:
760 BUG_ON(n > dblks);
761 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 dblks = n;
764 ptr = metapointer(end_of_metadata, mp);
765 iomap->addr = bn << inode->i_blkbits;
766 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 while (n-- > 0)
768 *ptr++ = cpu_to_be64(bn++);
769 break;
770 }
771 } while (iomap->addr == IOMAP_NULL_ADDR);
772
773 iomap->type = IOMAP_MAPPED;
774 iomap->length = (u64)dblks << inode->i_blkbits;
775 ip->i_height = mp->mp_fheight;
776 gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 up_write(&ip->i_rw_mutex);
780 return ret;
781 }
782
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784
785 /**
786 * gfs2_alloc_size - Compute the maximum allocation size
787 * @inode: The inode
788 * @mp: The metapath
789 * @size: Requested size in blocks
790 *
791 * Compute the maximum size of the next allocation at @mp.
792 *
793 * Returns: size in blocks
794 */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 struct gfs2_inode *ip = GFS2_I(inode);
798 struct gfs2_sbd *sdp = GFS2_SB(inode);
799 const __be64 *first, *ptr, *end;
800
801 /*
802 * For writes to stuffed files, this function is called twice via
803 * __gfs2_iomap_get, before and after unstuffing. The size we return the
804 * first time needs to be large enough to get the reservation and
805 * allocation sizes right. The size we return the second time must
806 * be exact or else __gfs2_iomap_alloc won't do the right thing.
807 */
808
809 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 unsigned int maxsize = mp->mp_fheight > 1 ?
811 sdp->sd_inptrs : sdp->sd_diptrs;
812 maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 if (size > maxsize)
814 size = maxsize;
815 return size;
816 }
817
818 first = metapointer(ip->i_height - 1, mp);
819 end = metaend(ip->i_height - 1, mp);
820 if (end - first > size)
821 end = first + size;
822 for (ptr = first; ptr < end; ptr++) {
823 if (*ptr)
824 break;
825 }
826 return ptr - first;
827 }
828
829 /**
830 * __gfs2_iomap_get - Map blocks from an inode to disk blocks
831 * @inode: The inode
832 * @pos: Starting position in bytes
833 * @length: Length to map, in bytes
834 * @flags: iomap flags
835 * @iomap: The iomap structure
836 * @mp: The metapath
837 *
838 * Returns: errno
839 */
__gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)840 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 unsigned flags, struct iomap *iomap,
842 struct metapath *mp)
843 {
844 struct gfs2_inode *ip = GFS2_I(inode);
845 struct gfs2_sbd *sdp = GFS2_SB(inode);
846 loff_t size = i_size_read(inode);
847 __be64 *ptr;
848 sector_t lblock;
849 sector_t lblock_stop;
850 int ret;
851 int eob;
852 u64 len;
853 struct buffer_head *dibh = NULL, *bh;
854 u8 height;
855
856 if (!length)
857 return -EINVAL;
858
859 down_read(&ip->i_rw_mutex);
860
861 ret = gfs2_meta_inode_buffer(ip, &dibh);
862 if (ret)
863 goto unlock;
864 mp->mp_bh[0] = dibh;
865
866 if (gfs2_is_stuffed(ip)) {
867 if (flags & IOMAP_WRITE) {
868 loff_t max_size = gfs2_max_stuffed_size(ip);
869
870 if (pos + length > max_size)
871 goto unstuff;
872 iomap->length = max_size;
873 } else {
874 if (pos >= size) {
875 if (flags & IOMAP_REPORT) {
876 ret = -ENOENT;
877 goto unlock;
878 } else {
879 iomap->offset = pos;
880 iomap->length = length;
881 goto hole_found;
882 }
883 }
884 iomap->length = size;
885 }
886 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
887 sizeof(struct gfs2_dinode);
888 iomap->type = IOMAP_INLINE;
889 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
890 goto out;
891 }
892
893 unstuff:
894 lblock = pos >> inode->i_blkbits;
895 iomap->offset = lblock << inode->i_blkbits;
896 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
897 len = lblock_stop - lblock + 1;
898 iomap->length = len << inode->i_blkbits;
899
900 height = ip->i_height;
901 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
902 height++;
903 find_metapath(sdp, lblock, mp, height);
904 if (height > ip->i_height || gfs2_is_stuffed(ip))
905 goto do_alloc;
906
907 ret = lookup_metapath(ip, mp);
908 if (ret)
909 goto unlock;
910
911 if (mp->mp_aheight != ip->i_height)
912 goto do_alloc;
913
914 ptr = metapointer(ip->i_height - 1, mp);
915 if (*ptr == 0)
916 goto do_alloc;
917
918 bh = mp->mp_bh[ip->i_height - 1];
919 len = gfs2_extent_length(bh, ptr, len, &eob);
920
921 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
922 iomap->length = len << inode->i_blkbits;
923 iomap->type = IOMAP_MAPPED;
924 iomap->flags |= IOMAP_F_MERGED;
925 if (eob)
926 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
927
928 out:
929 iomap->bdev = inode->i_sb->s_bdev;
930 unlock:
931 up_read(&ip->i_rw_mutex);
932 return ret;
933
934 do_alloc:
935 if (flags & IOMAP_REPORT) {
936 if (pos >= size)
937 ret = -ENOENT;
938 else if (height == ip->i_height)
939 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
940 else
941 iomap->length = size - iomap->offset;
942 } else if (flags & IOMAP_WRITE) {
943 u64 alloc_size;
944
945 if (flags & IOMAP_DIRECT)
946 goto out; /* (see gfs2_file_direct_write) */
947
948 len = gfs2_alloc_size(inode, mp, len);
949 alloc_size = len << inode->i_blkbits;
950 if (alloc_size < iomap->length)
951 iomap->length = alloc_size;
952 } else {
953 if (pos < size && height == ip->i_height)
954 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
955 }
956 hole_found:
957 iomap->addr = IOMAP_NULL_ADDR;
958 iomap->type = IOMAP_HOLE;
959 goto out;
960 }
961
gfs2_iomap_page_prepare(struct inode * inode,loff_t pos,unsigned len)962 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
963 unsigned len)
964 {
965 unsigned int blockmask = i_blocksize(inode) - 1;
966 struct gfs2_sbd *sdp = GFS2_SB(inode);
967 unsigned int blocks;
968
969 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
970 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
971 }
972
gfs2_iomap_page_done(struct inode * inode,loff_t pos,unsigned copied,struct page * page)973 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
974 unsigned copied, struct page *page)
975 {
976 struct gfs2_trans *tr = current->journal_info;
977 struct gfs2_inode *ip = GFS2_I(inode);
978 struct gfs2_sbd *sdp = GFS2_SB(inode);
979
980 if (page && !gfs2_is_stuffed(ip))
981 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
982
983 if (tr->tr_num_buf_new)
984 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
985
986 gfs2_trans_end(sdp);
987 }
988
989 static const struct iomap_page_ops gfs2_iomap_page_ops = {
990 .page_prepare = gfs2_iomap_page_prepare,
991 .page_done = gfs2_iomap_page_done,
992 };
993
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)994 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
995 loff_t length, unsigned flags,
996 struct iomap *iomap,
997 struct metapath *mp)
998 {
999 struct gfs2_inode *ip = GFS2_I(inode);
1000 struct gfs2_sbd *sdp = GFS2_SB(inode);
1001 bool unstuff;
1002 int ret;
1003
1004 unstuff = gfs2_is_stuffed(ip) &&
1005 pos + length > gfs2_max_stuffed_size(ip);
1006
1007 if (unstuff || iomap->type == IOMAP_HOLE) {
1008 unsigned int data_blocks, ind_blocks;
1009 struct gfs2_alloc_parms ap = {};
1010 unsigned int rblocks;
1011 struct gfs2_trans *tr;
1012
1013 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1014 &ind_blocks);
1015 ap.target = data_blocks + ind_blocks;
1016 ret = gfs2_quota_lock_check(ip, &ap);
1017 if (ret)
1018 return ret;
1019
1020 ret = gfs2_inplace_reserve(ip, &ap);
1021 if (ret)
1022 goto out_qunlock;
1023
1024 rblocks = RES_DINODE + ind_blocks;
1025 if (gfs2_is_jdata(ip))
1026 rblocks += data_blocks;
1027 if (ind_blocks || data_blocks)
1028 rblocks += RES_STATFS + RES_QUOTA;
1029 if (inode == sdp->sd_rindex)
1030 rblocks += 2 * RES_STATFS;
1031 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1032
1033 ret = gfs2_trans_begin(sdp, rblocks,
1034 iomap->length >> inode->i_blkbits);
1035 if (ret)
1036 goto out_trans_fail;
1037
1038 if (unstuff) {
1039 ret = gfs2_unstuff_dinode(ip);
1040 if (ret)
1041 goto out_trans_end;
1042 release_metapath(mp);
1043 ret = __gfs2_iomap_get(inode, iomap->offset,
1044 iomap->length, flags, iomap, mp);
1045 if (ret)
1046 goto out_trans_end;
1047 }
1048
1049 if (iomap->type == IOMAP_HOLE) {
1050 ret = __gfs2_iomap_alloc(inode, iomap, mp);
1051 if (ret) {
1052 gfs2_trans_end(sdp);
1053 gfs2_inplace_release(ip);
1054 punch_hole(ip, iomap->offset, iomap->length);
1055 goto out_qunlock;
1056 }
1057 }
1058
1059 tr = current->journal_info;
1060 if (tr->tr_num_buf_new)
1061 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1062
1063 gfs2_trans_end(sdp);
1064 }
1065
1066 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1067 iomap->page_ops = &gfs2_iomap_page_ops;
1068 return 0;
1069
1070 out_trans_end:
1071 gfs2_trans_end(sdp);
1072 out_trans_fail:
1073 gfs2_inplace_release(ip);
1074 out_qunlock:
1075 gfs2_quota_unlock(ip);
1076 return ret;
1077 }
1078
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1079 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1080 unsigned flags, struct iomap *iomap,
1081 struct iomap *srcmap)
1082 {
1083 struct gfs2_inode *ip = GFS2_I(inode);
1084 struct metapath mp = { .mp_aheight = 1, };
1085 int ret;
1086
1087 if (gfs2_is_jdata(ip))
1088 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1089
1090 trace_gfs2_iomap_start(ip, pos, length, flags);
1091 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1092 if (ret)
1093 goto out_unlock;
1094
1095 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1096 case IOMAP_WRITE:
1097 if (flags & IOMAP_DIRECT) {
1098 /*
1099 * Silently fall back to buffered I/O for stuffed files
1100 * or if we've got a hole (see gfs2_file_direct_write).
1101 */
1102 if (iomap->type != IOMAP_MAPPED)
1103 ret = -ENOTBLK;
1104 goto out_unlock;
1105 }
1106 break;
1107 case IOMAP_ZERO:
1108 if (iomap->type == IOMAP_HOLE)
1109 goto out_unlock;
1110 break;
1111 default:
1112 goto out_unlock;
1113 }
1114
1115 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1116
1117 out_unlock:
1118 release_metapath(&mp);
1119 trace_gfs2_iomap_end(ip, iomap, ret);
1120 return ret;
1121 }
1122
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1123 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1124 ssize_t written, unsigned flags, struct iomap *iomap)
1125 {
1126 struct gfs2_inode *ip = GFS2_I(inode);
1127 struct gfs2_sbd *sdp = GFS2_SB(inode);
1128
1129 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1130 case IOMAP_WRITE:
1131 if (flags & IOMAP_DIRECT)
1132 return 0;
1133 break;
1134 case IOMAP_ZERO:
1135 if (iomap->type == IOMAP_HOLE)
1136 return 0;
1137 break;
1138 default:
1139 return 0;
1140 }
1141
1142 if (!gfs2_is_stuffed(ip))
1143 gfs2_ordered_add_inode(ip);
1144
1145 if (inode == sdp->sd_rindex)
1146 adjust_fs_space(inode);
1147
1148 gfs2_inplace_release(ip);
1149
1150 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1151 gfs2_quota_unlock(ip);
1152
1153 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1154 /* Deallocate blocks that were just allocated. */
1155 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1156 loff_t hend = iomap->offset + iomap->length;
1157
1158 if (hstart < hend) {
1159 truncate_pagecache_range(inode, hstart, hend - 1);
1160 punch_hole(ip, hstart, hend - hstart);
1161 }
1162 }
1163
1164 if (unlikely(!written))
1165 return 0;
1166
1167 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1168 mark_inode_dirty(inode);
1169 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1170 return 0;
1171 }
1172
1173 const struct iomap_ops gfs2_iomap_ops = {
1174 .iomap_begin = gfs2_iomap_begin,
1175 .iomap_end = gfs2_iomap_end,
1176 };
1177
1178 /**
1179 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1180 * @inode: The inode
1181 * @lblock: The logical block number
1182 * @bh_map: The bh to be mapped
1183 * @create: True if its ok to alloc blocks to satify the request
1184 *
1185 * The size of the requested mapping is defined in bh_map->b_size.
1186 *
1187 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1188 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1189 * bh_map->b_size to indicate the size of the mapping when @lblock and
1190 * successive blocks are mapped, up to the requested size.
1191 *
1192 * Sets buffer_boundary() if a read of metadata will be required
1193 * before the next block can be mapped. Sets buffer_new() if new
1194 * blocks were allocated.
1195 *
1196 * Returns: errno
1197 */
1198
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1199 int gfs2_block_map(struct inode *inode, sector_t lblock,
1200 struct buffer_head *bh_map, int create)
1201 {
1202 struct gfs2_inode *ip = GFS2_I(inode);
1203 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1204 loff_t length = bh_map->b_size;
1205 struct iomap iomap = { };
1206 int ret;
1207
1208 clear_buffer_mapped(bh_map);
1209 clear_buffer_new(bh_map);
1210 clear_buffer_boundary(bh_map);
1211 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1212
1213 if (!create)
1214 ret = gfs2_iomap_get(inode, pos, length, &iomap);
1215 else
1216 ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1217 if (ret)
1218 goto out;
1219
1220 if (iomap.length > bh_map->b_size) {
1221 iomap.length = bh_map->b_size;
1222 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1223 }
1224 if (iomap.addr != IOMAP_NULL_ADDR)
1225 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1226 bh_map->b_size = iomap.length;
1227 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1228 set_buffer_boundary(bh_map);
1229 if (iomap.flags & IOMAP_F_NEW)
1230 set_buffer_new(bh_map);
1231
1232 out:
1233 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1234 return ret;
1235 }
1236
gfs2_get_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen)1237 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1238 unsigned int *extlen)
1239 {
1240 unsigned int blkbits = inode->i_blkbits;
1241 struct iomap iomap = { };
1242 unsigned int len;
1243 int ret;
1244
1245 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1246 &iomap);
1247 if (ret)
1248 return ret;
1249 if (iomap.type != IOMAP_MAPPED)
1250 return -EIO;
1251 *dblock = iomap.addr >> blkbits;
1252 len = iomap.length >> blkbits;
1253 if (len < *extlen)
1254 *extlen = len;
1255 return 0;
1256 }
1257
gfs2_alloc_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen,bool * new)1258 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1259 unsigned int *extlen, bool *new)
1260 {
1261 unsigned int blkbits = inode->i_blkbits;
1262 struct iomap iomap = { };
1263 unsigned int len;
1264 int ret;
1265
1266 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1267 &iomap);
1268 if (ret)
1269 return ret;
1270 if (iomap.type != IOMAP_MAPPED)
1271 return -EIO;
1272 *dblock = iomap.addr >> blkbits;
1273 len = iomap.length >> blkbits;
1274 if (len < *extlen)
1275 *extlen = len;
1276 *new = iomap.flags & IOMAP_F_NEW;
1277 return 0;
1278 }
1279
1280 /*
1281 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1282 * uses iomap write to perform its actions, which begin their own transactions
1283 * (iomap_begin, page_prepare, etc.)
1284 */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1285 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1286 unsigned int length)
1287 {
1288 BUG_ON(current->journal_info);
1289 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1290 }
1291
1292 #define GFS2_JTRUNC_REVOKES 8192
1293
1294 /**
1295 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1296 * @inode: The inode being truncated
1297 * @oldsize: The original (larger) size
1298 * @newsize: The new smaller size
1299 *
1300 * With jdata files, we have to journal a revoke for each block which is
1301 * truncated. As a result, we need to split this into separate transactions
1302 * if the number of pages being truncated gets too large.
1303 */
1304
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1305 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1306 {
1307 struct gfs2_sbd *sdp = GFS2_SB(inode);
1308 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1309 u64 chunk;
1310 int error;
1311
1312 while (oldsize != newsize) {
1313 struct gfs2_trans *tr;
1314 unsigned int offs;
1315
1316 chunk = oldsize - newsize;
1317 if (chunk > max_chunk)
1318 chunk = max_chunk;
1319
1320 offs = oldsize & ~PAGE_MASK;
1321 if (offs && chunk > PAGE_SIZE)
1322 chunk = offs + ((chunk - offs) & PAGE_MASK);
1323
1324 truncate_pagecache(inode, oldsize - chunk);
1325 oldsize -= chunk;
1326
1327 tr = current->journal_info;
1328 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1329 continue;
1330
1331 gfs2_trans_end(sdp);
1332 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1333 if (error)
1334 return error;
1335 }
1336
1337 return 0;
1338 }
1339
trunc_start(struct inode * inode,u64 newsize)1340 static int trunc_start(struct inode *inode, u64 newsize)
1341 {
1342 struct gfs2_inode *ip = GFS2_I(inode);
1343 struct gfs2_sbd *sdp = GFS2_SB(inode);
1344 struct buffer_head *dibh = NULL;
1345 int journaled = gfs2_is_jdata(ip);
1346 u64 oldsize = inode->i_size;
1347 int error;
1348
1349 if (!gfs2_is_stuffed(ip)) {
1350 unsigned int blocksize = i_blocksize(inode);
1351 unsigned int offs = newsize & (blocksize - 1);
1352 if (offs) {
1353 error = gfs2_block_zero_range(inode, newsize,
1354 blocksize - offs);
1355 if (error)
1356 return error;
1357 }
1358 }
1359 if (journaled)
1360 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1361 else
1362 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1363 if (error)
1364 return error;
1365
1366 error = gfs2_meta_inode_buffer(ip, &dibh);
1367 if (error)
1368 goto out;
1369
1370 gfs2_trans_add_meta(ip->i_gl, dibh);
1371
1372 if (gfs2_is_stuffed(ip))
1373 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1374 else
1375 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1376
1377 i_size_write(inode, newsize);
1378 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1379 gfs2_dinode_out(ip, dibh->b_data);
1380
1381 if (journaled)
1382 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1383 else
1384 truncate_pagecache(inode, newsize);
1385
1386 out:
1387 brelse(dibh);
1388 if (current->journal_info)
1389 gfs2_trans_end(sdp);
1390 return error;
1391 }
1392
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1393 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1394 struct iomap *iomap)
1395 {
1396 struct metapath mp = { .mp_aheight = 1, };
1397 int ret;
1398
1399 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1400 release_metapath(&mp);
1401 return ret;
1402 }
1403
gfs2_iomap_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1404 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1405 struct iomap *iomap)
1406 {
1407 struct metapath mp = { .mp_aheight = 1, };
1408 int ret;
1409
1410 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1411 if (!ret && iomap->type == IOMAP_HOLE)
1412 ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1413 release_metapath(&mp);
1414 return ret;
1415 }
1416
1417 /**
1418 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1419 * @ip: inode
1420 * @rd_gh: holder of resource group glock
1421 * @bh: buffer head to sweep
1422 * @start: starting point in bh
1423 * @end: end point in bh
1424 * @meta: true if bh points to metadata (rather than data)
1425 * @btotal: place to keep count of total blocks freed
1426 *
1427 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1428 * free, and free them all. However, we do it one rgrp at a time. If this
1429 * block has references to multiple rgrps, we break it into individual
1430 * transactions. This allows other processes to use the rgrps while we're
1431 * focused on a single one, for better concurrency / performance.
1432 * At every transaction boundary, we rewrite the inode into the journal.
1433 * That way the bitmaps are kept consistent with the inode and we can recover
1434 * if we're interrupted by power-outages.
1435 *
1436 * Returns: 0, or return code if an error occurred.
1437 * *btotal has the total number of blocks freed
1438 */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1439 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1440 struct buffer_head *bh, __be64 *start, __be64 *end,
1441 bool meta, u32 *btotal)
1442 {
1443 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1444 struct gfs2_rgrpd *rgd;
1445 struct gfs2_trans *tr;
1446 __be64 *p;
1447 int blks_outside_rgrp;
1448 u64 bn, bstart, isize_blks;
1449 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1450 int ret = 0;
1451 bool buf_in_tr = false; /* buffer was added to transaction */
1452
1453 more_rgrps:
1454 rgd = NULL;
1455 if (gfs2_holder_initialized(rd_gh)) {
1456 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1457 gfs2_assert_withdraw(sdp,
1458 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1459 }
1460 blks_outside_rgrp = 0;
1461 bstart = 0;
1462 blen = 0;
1463
1464 for (p = start; p < end; p++) {
1465 if (!*p)
1466 continue;
1467 bn = be64_to_cpu(*p);
1468
1469 if (rgd) {
1470 if (!rgrp_contains_block(rgd, bn)) {
1471 blks_outside_rgrp++;
1472 continue;
1473 }
1474 } else {
1475 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1476 if (unlikely(!rgd)) {
1477 ret = -EIO;
1478 goto out;
1479 }
1480 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1481 LM_FLAG_NODE_SCOPE, rd_gh);
1482 if (ret)
1483 goto out;
1484
1485 /* Must be done with the rgrp glock held: */
1486 if (gfs2_rs_active(&ip->i_res) &&
1487 rgd == ip->i_res.rs_rgd)
1488 gfs2_rs_deltree(&ip->i_res);
1489 }
1490
1491 /* The size of our transactions will be unknown until we
1492 actually process all the metadata blocks that relate to
1493 the rgrp. So we estimate. We know it can't be more than
1494 the dinode's i_blocks and we don't want to exceed the
1495 journal flush threshold, sd_log_thresh2. */
1496 if (current->journal_info == NULL) {
1497 unsigned int jblocks_rqsted, revokes;
1498
1499 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1500 RES_INDIRECT;
1501 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1502 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1503 jblocks_rqsted +=
1504 atomic_read(&sdp->sd_log_thresh2);
1505 else
1506 jblocks_rqsted += isize_blks;
1507 revokes = jblocks_rqsted;
1508 if (meta)
1509 revokes += end - start;
1510 else if (ip->i_depth)
1511 revokes += sdp->sd_inptrs;
1512 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1513 if (ret)
1514 goto out_unlock;
1515 down_write(&ip->i_rw_mutex);
1516 }
1517 /* check if we will exceed the transaction blocks requested */
1518 tr = current->journal_info;
1519 if (tr->tr_num_buf_new + RES_STATFS +
1520 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1521 /* We set blks_outside_rgrp to ensure the loop will
1522 be repeated for the same rgrp, but with a new
1523 transaction. */
1524 blks_outside_rgrp++;
1525 /* This next part is tricky. If the buffer was added
1526 to the transaction, we've already set some block
1527 pointers to 0, so we better follow through and free
1528 them, or we will introduce corruption (so break).
1529 This may be impossible, or at least rare, but I
1530 decided to cover the case regardless.
1531
1532 If the buffer was not added to the transaction
1533 (this call), doing so would exceed our transaction
1534 size, so we need to end the transaction and start a
1535 new one (so goto). */
1536
1537 if (buf_in_tr)
1538 break;
1539 goto out_unlock;
1540 }
1541
1542 gfs2_trans_add_meta(ip->i_gl, bh);
1543 buf_in_tr = true;
1544 *p = 0;
1545 if (bstart + blen == bn) {
1546 blen++;
1547 continue;
1548 }
1549 if (bstart) {
1550 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1551 (*btotal) += blen;
1552 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1553 }
1554 bstart = bn;
1555 blen = 1;
1556 }
1557 if (bstart) {
1558 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1559 (*btotal) += blen;
1560 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1561 }
1562 out_unlock:
1563 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1564 outside the rgrp we just processed,
1565 do it all over again. */
1566 if (current->journal_info) {
1567 struct buffer_head *dibh;
1568
1569 ret = gfs2_meta_inode_buffer(ip, &dibh);
1570 if (ret)
1571 goto out;
1572
1573 /* Every transaction boundary, we rewrite the dinode
1574 to keep its di_blocks current in case of failure. */
1575 ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1576 current_time(&ip->i_inode);
1577 gfs2_trans_add_meta(ip->i_gl, dibh);
1578 gfs2_dinode_out(ip, dibh->b_data);
1579 brelse(dibh);
1580 up_write(&ip->i_rw_mutex);
1581 gfs2_trans_end(sdp);
1582 buf_in_tr = false;
1583 }
1584 gfs2_glock_dq_uninit(rd_gh);
1585 cond_resched();
1586 goto more_rgrps;
1587 }
1588 out:
1589 return ret;
1590 }
1591
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1592 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1593 {
1594 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1595 return false;
1596 return true;
1597 }
1598
1599 /**
1600 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1601 * @sdp: The superblock
1602 * @mp: starting metapath
1603 * @h: desired height to search
1604 * @end_list: See punch_hole().
1605 * @end_aligned: See punch_hole().
1606 *
1607 * Assumes the metapath is valid (with buffers) out to height h.
1608 * Returns: true if a non-null pointer was found in the metapath buffer
1609 * false if all remaining pointers are NULL in the buffer
1610 */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1611 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1612 unsigned int h,
1613 __u16 *end_list, unsigned int end_aligned)
1614 {
1615 struct buffer_head *bh = mp->mp_bh[h];
1616 __be64 *first, *ptr, *end;
1617
1618 first = metaptr1(h, mp);
1619 ptr = first + mp->mp_list[h];
1620 end = (__be64 *)(bh->b_data + bh->b_size);
1621 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1622 bool keep_end = h < end_aligned;
1623 end = first + end_list[h] + keep_end;
1624 }
1625
1626 while (ptr < end) {
1627 if (*ptr) { /* if we have a non-null pointer */
1628 mp->mp_list[h] = ptr - first;
1629 h++;
1630 if (h < GFS2_MAX_META_HEIGHT)
1631 mp->mp_list[h] = 0;
1632 return true;
1633 }
1634 ptr++;
1635 }
1636 return false;
1637 }
1638
1639 enum dealloc_states {
1640 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1641 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1642 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1643 DEALLOC_DONE = 3, /* process complete */
1644 };
1645
1646 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1647 metapointer_range(struct metapath *mp, int height,
1648 __u16 *start_list, unsigned int start_aligned,
1649 __u16 *end_list, unsigned int end_aligned,
1650 __be64 **start, __be64 **end)
1651 {
1652 struct buffer_head *bh = mp->mp_bh[height];
1653 __be64 *first;
1654
1655 first = metaptr1(height, mp);
1656 *start = first;
1657 if (mp_eq_to_hgt(mp, start_list, height)) {
1658 bool keep_start = height < start_aligned;
1659 *start = first + start_list[height] + keep_start;
1660 }
1661 *end = (__be64 *)(bh->b_data + bh->b_size);
1662 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1663 bool keep_end = height < end_aligned;
1664 *end = first + end_list[height] + keep_end;
1665 }
1666 }
1667
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1668 static inline bool walk_done(struct gfs2_sbd *sdp,
1669 struct metapath *mp, int height,
1670 __u16 *end_list, unsigned int end_aligned)
1671 {
1672 __u16 end;
1673
1674 if (end_list) {
1675 bool keep_end = height < end_aligned;
1676 if (!mp_eq_to_hgt(mp, end_list, height))
1677 return false;
1678 end = end_list[height] + keep_end;
1679 } else
1680 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1681 return mp->mp_list[height] >= end;
1682 }
1683
1684 /**
1685 * punch_hole - deallocate blocks in a file
1686 * @ip: inode to truncate
1687 * @offset: the start of the hole
1688 * @length: the size of the hole (or 0 for truncate)
1689 *
1690 * Punch a hole into a file or truncate a file at a given position. This
1691 * function operates in whole blocks (@offset and @length are rounded
1692 * accordingly); partially filled blocks must be cleared otherwise.
1693 *
1694 * This function works from the bottom up, and from the right to the left. In
1695 * other words, it strips off the highest layer (data) before stripping any of
1696 * the metadata. Doing it this way is best in case the operation is interrupted
1697 * by power failure, etc. The dinode is rewritten in every transaction to
1698 * guarantee integrity.
1699 */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1700 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1701 {
1702 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1703 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1704 struct metapath mp = {};
1705 struct buffer_head *dibh, *bh;
1706 struct gfs2_holder rd_gh;
1707 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1708 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1709 __u16 start_list[GFS2_MAX_META_HEIGHT];
1710 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1711 unsigned int start_aligned, end_aligned;
1712 unsigned int strip_h = ip->i_height - 1;
1713 u32 btotal = 0;
1714 int ret, state;
1715 int mp_h; /* metapath buffers are read in to this height */
1716 u64 prev_bnr = 0;
1717 __be64 *start, *end;
1718
1719 if (offset >= maxsize) {
1720 /*
1721 * The starting point lies beyond the allocated meta-data;
1722 * there are no blocks do deallocate.
1723 */
1724 return 0;
1725 }
1726
1727 /*
1728 * The start position of the hole is defined by lblock, start_list, and
1729 * start_aligned. The end position of the hole is defined by lend,
1730 * end_list, and end_aligned.
1731 *
1732 * start_aligned and end_aligned define down to which height the start
1733 * and end positions are aligned to the metadata tree (i.e., the
1734 * position is a multiple of the metadata granularity at the height
1735 * above). This determines at which heights additional meta pointers
1736 * needs to be preserved for the remaining data.
1737 */
1738
1739 if (length) {
1740 u64 end_offset = offset + length;
1741 u64 lend;
1742
1743 /*
1744 * Clip the end at the maximum file size for the given height:
1745 * that's how far the metadata goes; files bigger than that
1746 * will have additional layers of indirection.
1747 */
1748 if (end_offset > maxsize)
1749 end_offset = maxsize;
1750 lend = end_offset >> bsize_shift;
1751
1752 if (lblock >= lend)
1753 return 0;
1754
1755 find_metapath(sdp, lend, &mp, ip->i_height);
1756 end_list = __end_list;
1757 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1758
1759 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1760 if (end_list[mp_h])
1761 break;
1762 }
1763 end_aligned = mp_h;
1764 }
1765
1766 find_metapath(sdp, lblock, &mp, ip->i_height);
1767 memcpy(start_list, mp.mp_list, sizeof(start_list));
1768
1769 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1770 if (start_list[mp_h])
1771 break;
1772 }
1773 start_aligned = mp_h;
1774
1775 ret = gfs2_meta_inode_buffer(ip, &dibh);
1776 if (ret)
1777 return ret;
1778
1779 mp.mp_bh[0] = dibh;
1780 ret = lookup_metapath(ip, &mp);
1781 if (ret)
1782 goto out_metapath;
1783
1784 /* issue read-ahead on metadata */
1785 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1786 metapointer_range(&mp, mp_h, start_list, start_aligned,
1787 end_list, end_aligned, &start, &end);
1788 gfs2_metapath_ra(ip->i_gl, start, end);
1789 }
1790
1791 if (mp.mp_aheight == ip->i_height)
1792 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1793 else
1794 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1795
1796 ret = gfs2_rindex_update(sdp);
1797 if (ret)
1798 goto out_metapath;
1799
1800 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1801 if (ret)
1802 goto out_metapath;
1803 gfs2_holder_mark_uninitialized(&rd_gh);
1804
1805 mp_h = strip_h;
1806
1807 while (state != DEALLOC_DONE) {
1808 switch (state) {
1809 /* Truncate a full metapath at the given strip height.
1810 * Note that strip_h == mp_h in order to be in this state. */
1811 case DEALLOC_MP_FULL:
1812 bh = mp.mp_bh[mp_h];
1813 gfs2_assert_withdraw(sdp, bh);
1814 if (gfs2_assert_withdraw(sdp,
1815 prev_bnr != bh->b_blocknr)) {
1816 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1817 "s_h:%u, mp_h:%u\n",
1818 (unsigned long long)ip->i_no_addr,
1819 prev_bnr, ip->i_height, strip_h, mp_h);
1820 }
1821 prev_bnr = bh->b_blocknr;
1822
1823 if (gfs2_metatype_check(sdp, bh,
1824 (mp_h ? GFS2_METATYPE_IN :
1825 GFS2_METATYPE_DI))) {
1826 ret = -EIO;
1827 goto out;
1828 }
1829
1830 /*
1831 * Below, passing end_aligned as 0 gives us the
1832 * metapointer range excluding the end point: the end
1833 * point is the first metapath we must not deallocate!
1834 */
1835
1836 metapointer_range(&mp, mp_h, start_list, start_aligned,
1837 end_list, 0 /* end_aligned */,
1838 &start, &end);
1839 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1840 start, end,
1841 mp_h != ip->i_height - 1,
1842 &btotal);
1843
1844 /* If we hit an error or just swept dinode buffer,
1845 just exit. */
1846 if (ret || !mp_h) {
1847 state = DEALLOC_DONE;
1848 break;
1849 }
1850 state = DEALLOC_MP_LOWER;
1851 break;
1852
1853 /* lower the metapath strip height */
1854 case DEALLOC_MP_LOWER:
1855 /* We're done with the current buffer, so release it,
1856 unless it's the dinode buffer. Then back up to the
1857 previous pointer. */
1858 if (mp_h) {
1859 brelse(mp.mp_bh[mp_h]);
1860 mp.mp_bh[mp_h] = NULL;
1861 }
1862 /* If we can't get any lower in height, we've stripped
1863 off all we can. Next step is to back up and start
1864 stripping the previous level of metadata. */
1865 if (mp_h == 0) {
1866 strip_h--;
1867 memcpy(mp.mp_list, start_list, sizeof(start_list));
1868 mp_h = strip_h;
1869 state = DEALLOC_FILL_MP;
1870 break;
1871 }
1872 mp.mp_list[mp_h] = 0;
1873 mp_h--; /* search one metadata height down */
1874 mp.mp_list[mp_h]++;
1875 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1876 break;
1877 /* Here we've found a part of the metapath that is not
1878 * allocated. We need to search at that height for the
1879 * next non-null pointer. */
1880 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1881 state = DEALLOC_FILL_MP;
1882 mp_h++;
1883 }
1884 /* No more non-null pointers at this height. Back up
1885 to the previous height and try again. */
1886 break; /* loop around in the same state */
1887
1888 /* Fill the metapath with buffers to the given height. */
1889 case DEALLOC_FILL_MP:
1890 /* Fill the buffers out to the current height. */
1891 ret = fillup_metapath(ip, &mp, mp_h);
1892 if (ret < 0)
1893 goto out;
1894
1895 /* On the first pass, issue read-ahead on metadata. */
1896 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1897 unsigned int height = mp.mp_aheight - 1;
1898
1899 /* No read-ahead for data blocks. */
1900 if (mp.mp_aheight - 1 == strip_h)
1901 height--;
1902
1903 for (; height >= mp.mp_aheight - ret; height--) {
1904 metapointer_range(&mp, height,
1905 start_list, start_aligned,
1906 end_list, end_aligned,
1907 &start, &end);
1908 gfs2_metapath_ra(ip->i_gl, start, end);
1909 }
1910 }
1911
1912 /* If buffers found for the entire strip height */
1913 if (mp.mp_aheight - 1 == strip_h) {
1914 state = DEALLOC_MP_FULL;
1915 break;
1916 }
1917 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1918 mp_h = mp.mp_aheight - 1;
1919
1920 /* If we find a non-null block pointer, crawl a bit
1921 higher up in the metapath and try again, otherwise
1922 we need to look lower for a new starting point. */
1923 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1924 mp_h++;
1925 else
1926 state = DEALLOC_MP_LOWER;
1927 break;
1928 }
1929 }
1930
1931 if (btotal) {
1932 if (current->journal_info == NULL) {
1933 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1934 RES_QUOTA, 0);
1935 if (ret)
1936 goto out;
1937 down_write(&ip->i_rw_mutex);
1938 }
1939 gfs2_statfs_change(sdp, 0, +btotal, 0);
1940 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1941 ip->i_inode.i_gid);
1942 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1943 gfs2_trans_add_meta(ip->i_gl, dibh);
1944 gfs2_dinode_out(ip, dibh->b_data);
1945 up_write(&ip->i_rw_mutex);
1946 gfs2_trans_end(sdp);
1947 }
1948
1949 out:
1950 if (gfs2_holder_initialized(&rd_gh))
1951 gfs2_glock_dq_uninit(&rd_gh);
1952 if (current->journal_info) {
1953 up_write(&ip->i_rw_mutex);
1954 gfs2_trans_end(sdp);
1955 cond_resched();
1956 }
1957 gfs2_quota_unhold(ip);
1958 out_metapath:
1959 release_metapath(&mp);
1960 return ret;
1961 }
1962
trunc_end(struct gfs2_inode * ip)1963 static int trunc_end(struct gfs2_inode *ip)
1964 {
1965 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1966 struct buffer_head *dibh;
1967 int error;
1968
1969 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1970 if (error)
1971 return error;
1972
1973 down_write(&ip->i_rw_mutex);
1974
1975 error = gfs2_meta_inode_buffer(ip, &dibh);
1976 if (error)
1977 goto out;
1978
1979 if (!i_size_read(&ip->i_inode)) {
1980 ip->i_height = 0;
1981 ip->i_goal = ip->i_no_addr;
1982 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1983 gfs2_ordered_del_inode(ip);
1984 }
1985 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1986 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1987
1988 gfs2_trans_add_meta(ip->i_gl, dibh);
1989 gfs2_dinode_out(ip, dibh->b_data);
1990 brelse(dibh);
1991
1992 out:
1993 up_write(&ip->i_rw_mutex);
1994 gfs2_trans_end(sdp);
1995 return error;
1996 }
1997
1998 /**
1999 * do_shrink - make a file smaller
2000 * @inode: the inode
2001 * @newsize: the size to make the file
2002 *
2003 * Called with an exclusive lock on @inode. The @size must
2004 * be equal to or smaller than the current inode size.
2005 *
2006 * Returns: errno
2007 */
2008
do_shrink(struct inode * inode,u64 newsize)2009 static int do_shrink(struct inode *inode, u64 newsize)
2010 {
2011 struct gfs2_inode *ip = GFS2_I(inode);
2012 int error;
2013
2014 error = trunc_start(inode, newsize);
2015 if (error < 0)
2016 return error;
2017 if (gfs2_is_stuffed(ip))
2018 return 0;
2019
2020 error = punch_hole(ip, newsize, 0);
2021 if (error == 0)
2022 error = trunc_end(ip);
2023
2024 return error;
2025 }
2026
gfs2_trim_blocks(struct inode * inode)2027 void gfs2_trim_blocks(struct inode *inode)
2028 {
2029 int ret;
2030
2031 ret = do_shrink(inode, inode->i_size);
2032 WARN_ON(ret != 0);
2033 }
2034
2035 /**
2036 * do_grow - Touch and update inode size
2037 * @inode: The inode
2038 * @size: The new size
2039 *
2040 * This function updates the timestamps on the inode and
2041 * may also increase the size of the inode. This function
2042 * must not be called with @size any smaller than the current
2043 * inode size.
2044 *
2045 * Although it is not strictly required to unstuff files here,
2046 * earlier versions of GFS2 have a bug in the stuffed file reading
2047 * code which will result in a buffer overrun if the size is larger
2048 * than the max stuffed file size. In order to prevent this from
2049 * occurring, such files are unstuffed, but in other cases we can
2050 * just update the inode size directly.
2051 *
2052 * Returns: 0 on success, or -ve on error
2053 */
2054
do_grow(struct inode * inode,u64 size)2055 static int do_grow(struct inode *inode, u64 size)
2056 {
2057 struct gfs2_inode *ip = GFS2_I(inode);
2058 struct gfs2_sbd *sdp = GFS2_SB(inode);
2059 struct gfs2_alloc_parms ap = { .target = 1, };
2060 struct buffer_head *dibh;
2061 int error;
2062 int unstuff = 0;
2063
2064 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2065 error = gfs2_quota_lock_check(ip, &ap);
2066 if (error)
2067 return error;
2068
2069 error = gfs2_inplace_reserve(ip, &ap);
2070 if (error)
2071 goto do_grow_qunlock;
2072 unstuff = 1;
2073 }
2074
2075 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2076 (unstuff &&
2077 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2078 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2079 0 : RES_QUOTA), 0);
2080 if (error)
2081 goto do_grow_release;
2082
2083 if (unstuff) {
2084 error = gfs2_unstuff_dinode(ip);
2085 if (error)
2086 goto do_end_trans;
2087 }
2088
2089 error = gfs2_meta_inode_buffer(ip, &dibh);
2090 if (error)
2091 goto do_end_trans;
2092
2093 truncate_setsize(inode, size);
2094 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2095 gfs2_trans_add_meta(ip->i_gl, dibh);
2096 gfs2_dinode_out(ip, dibh->b_data);
2097 brelse(dibh);
2098
2099 do_end_trans:
2100 gfs2_trans_end(sdp);
2101 do_grow_release:
2102 if (unstuff) {
2103 gfs2_inplace_release(ip);
2104 do_grow_qunlock:
2105 gfs2_quota_unlock(ip);
2106 }
2107 return error;
2108 }
2109
2110 /**
2111 * gfs2_setattr_size - make a file a given size
2112 * @inode: the inode
2113 * @newsize: the size to make the file
2114 *
2115 * The file size can grow, shrink, or stay the same size. This
2116 * is called holding i_rwsem and an exclusive glock on the inode
2117 * in question.
2118 *
2119 * Returns: errno
2120 */
2121
gfs2_setattr_size(struct inode * inode,u64 newsize)2122 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2123 {
2124 struct gfs2_inode *ip = GFS2_I(inode);
2125 int ret;
2126
2127 BUG_ON(!S_ISREG(inode->i_mode));
2128
2129 ret = inode_newsize_ok(inode, newsize);
2130 if (ret)
2131 return ret;
2132
2133 inode_dio_wait(inode);
2134
2135 ret = gfs2_qa_get(ip);
2136 if (ret)
2137 goto out;
2138
2139 if (newsize >= inode->i_size) {
2140 ret = do_grow(inode, newsize);
2141 goto out;
2142 }
2143
2144 ret = do_shrink(inode, newsize);
2145 out:
2146 gfs2_rs_delete(ip);
2147 gfs2_qa_put(ip);
2148 return ret;
2149 }
2150
gfs2_truncatei_resume(struct gfs2_inode * ip)2151 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2152 {
2153 int error;
2154 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2155 if (!error)
2156 error = trunc_end(ip);
2157 return error;
2158 }
2159
gfs2_file_dealloc(struct gfs2_inode * ip)2160 int gfs2_file_dealloc(struct gfs2_inode *ip)
2161 {
2162 return punch_hole(ip, 0, 0);
2163 }
2164
2165 /**
2166 * gfs2_free_journal_extents - Free cached journal bmap info
2167 * @jd: The journal
2168 *
2169 */
2170
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2171 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2172 {
2173 struct gfs2_journal_extent *jext;
2174
2175 while(!list_empty(&jd->extent_list)) {
2176 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2177 list_del(&jext->list);
2178 kfree(jext);
2179 }
2180 }
2181
2182 /**
2183 * gfs2_add_jextent - Add or merge a new extent to extent cache
2184 * @jd: The journal descriptor
2185 * @lblock: The logical block at start of new extent
2186 * @dblock: The physical block at start of new extent
2187 * @blocks: Size of extent in fs blocks
2188 *
2189 * Returns: 0 on success or -ENOMEM
2190 */
2191
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2192 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2193 {
2194 struct gfs2_journal_extent *jext;
2195
2196 if (!list_empty(&jd->extent_list)) {
2197 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2198 if ((jext->dblock + jext->blocks) == dblock) {
2199 jext->blocks += blocks;
2200 return 0;
2201 }
2202 }
2203
2204 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2205 if (jext == NULL)
2206 return -ENOMEM;
2207 jext->dblock = dblock;
2208 jext->lblock = lblock;
2209 jext->blocks = blocks;
2210 list_add_tail(&jext->list, &jd->extent_list);
2211 jd->nr_extents++;
2212 return 0;
2213 }
2214
2215 /**
2216 * gfs2_map_journal_extents - Cache journal bmap info
2217 * @sdp: The super block
2218 * @jd: The journal to map
2219 *
2220 * Create a reusable "extent" mapping from all logical
2221 * blocks to all physical blocks for the given journal. This will save
2222 * us time when writing journal blocks. Most journals will have only one
2223 * extent that maps all their logical blocks. That's because gfs2.mkfs
2224 * arranges the journal blocks sequentially to maximize performance.
2225 * So the extent would map the first block for the entire file length.
2226 * However, gfs2_jadd can happen while file activity is happening, so
2227 * those journals may not be sequential. Less likely is the case where
2228 * the users created their own journals by mounting the metafs and
2229 * laying it out. But it's still possible. These journals might have
2230 * several extents.
2231 *
2232 * Returns: 0 on success, or error on failure
2233 */
2234
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2235 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2236 {
2237 u64 lblock = 0;
2238 u64 lblock_stop;
2239 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2240 struct buffer_head bh;
2241 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2242 u64 size;
2243 int rc;
2244 ktime_t start, end;
2245
2246 start = ktime_get();
2247 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2248 size = (lblock_stop - lblock) << shift;
2249 jd->nr_extents = 0;
2250 WARN_ON(!list_empty(&jd->extent_list));
2251
2252 do {
2253 bh.b_state = 0;
2254 bh.b_blocknr = 0;
2255 bh.b_size = size;
2256 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2257 if (rc || !buffer_mapped(&bh))
2258 goto fail;
2259 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2260 if (rc)
2261 goto fail;
2262 size -= bh.b_size;
2263 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2264 } while(size > 0);
2265
2266 end = ktime_get();
2267 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2268 jd->nr_extents, ktime_ms_delta(end, start));
2269 return 0;
2270
2271 fail:
2272 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2273 rc, jd->jd_jid,
2274 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2275 jd->nr_extents);
2276 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2277 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2278 bh.b_state, (unsigned long long)bh.b_size);
2279 gfs2_free_journal_extents(jd);
2280 return rc;
2281 }
2282
2283 /**
2284 * gfs2_write_alloc_required - figure out if a write will require an allocation
2285 * @ip: the file being written to
2286 * @offset: the offset to write to
2287 * @len: the number of bytes being written
2288 *
2289 * Returns: 1 if an alloc is required, 0 otherwise
2290 */
2291
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2292 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2293 unsigned int len)
2294 {
2295 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2296 struct buffer_head bh;
2297 unsigned int shift;
2298 u64 lblock, lblock_stop, size;
2299 u64 end_of_file;
2300
2301 if (!len)
2302 return 0;
2303
2304 if (gfs2_is_stuffed(ip)) {
2305 if (offset + len > gfs2_max_stuffed_size(ip))
2306 return 1;
2307 return 0;
2308 }
2309
2310 shift = sdp->sd_sb.sb_bsize_shift;
2311 BUG_ON(gfs2_is_dir(ip));
2312 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2313 lblock = offset >> shift;
2314 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2315 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2316 return 1;
2317
2318 size = (lblock_stop - lblock) << shift;
2319 do {
2320 bh.b_state = 0;
2321 bh.b_size = size;
2322 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2323 if (!buffer_mapped(&bh))
2324 return 1;
2325 size -= bh.b_size;
2326 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2327 } while(size > 0);
2328
2329 return 0;
2330 }
2331
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2332 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2333 {
2334 struct gfs2_inode *ip = GFS2_I(inode);
2335 struct buffer_head *dibh;
2336 int error;
2337
2338 if (offset >= inode->i_size)
2339 return 0;
2340 if (offset + length > inode->i_size)
2341 length = inode->i_size - offset;
2342
2343 error = gfs2_meta_inode_buffer(ip, &dibh);
2344 if (error)
2345 return error;
2346 gfs2_trans_add_meta(ip->i_gl, dibh);
2347 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2348 length);
2349 brelse(dibh);
2350 return 0;
2351 }
2352
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2353 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2354 loff_t length)
2355 {
2356 struct gfs2_sbd *sdp = GFS2_SB(inode);
2357 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2358 int error;
2359
2360 while (length) {
2361 struct gfs2_trans *tr;
2362 loff_t chunk;
2363 unsigned int offs;
2364
2365 chunk = length;
2366 if (chunk > max_chunk)
2367 chunk = max_chunk;
2368
2369 offs = offset & ~PAGE_MASK;
2370 if (offs && chunk > PAGE_SIZE)
2371 chunk = offs + ((chunk - offs) & PAGE_MASK);
2372
2373 truncate_pagecache_range(inode, offset, chunk);
2374 offset += chunk;
2375 length -= chunk;
2376
2377 tr = current->journal_info;
2378 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2379 continue;
2380
2381 gfs2_trans_end(sdp);
2382 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2383 if (error)
2384 return error;
2385 }
2386 return 0;
2387 }
2388
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2389 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2390 {
2391 struct inode *inode = file_inode(file);
2392 struct gfs2_inode *ip = GFS2_I(inode);
2393 struct gfs2_sbd *sdp = GFS2_SB(inode);
2394 unsigned int blocksize = i_blocksize(inode);
2395 loff_t start, end;
2396 int error;
2397
2398 if (!gfs2_is_stuffed(ip)) {
2399 unsigned int start_off, end_len;
2400
2401 start_off = offset & (blocksize - 1);
2402 end_len = (offset + length) & (blocksize - 1);
2403 if (start_off) {
2404 unsigned int len = length;
2405 if (length > blocksize - start_off)
2406 len = blocksize - start_off;
2407 error = gfs2_block_zero_range(inode, offset, len);
2408 if (error)
2409 goto out;
2410 if (start_off + length < blocksize)
2411 end_len = 0;
2412 }
2413 if (end_len) {
2414 error = gfs2_block_zero_range(inode,
2415 offset + length - end_len, end_len);
2416 if (error)
2417 goto out;
2418 }
2419 }
2420
2421 start = round_down(offset, blocksize);
2422 end = round_up(offset + length, blocksize) - 1;
2423 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2424 if (error)
2425 return error;
2426
2427 if (gfs2_is_jdata(ip))
2428 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2429 GFS2_JTRUNC_REVOKES);
2430 else
2431 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2432 if (error)
2433 return error;
2434
2435 if (gfs2_is_stuffed(ip)) {
2436 error = stuffed_zero_range(inode, offset, length);
2437 if (error)
2438 goto out;
2439 }
2440
2441 if (gfs2_is_jdata(ip)) {
2442 BUG_ON(!current->journal_info);
2443 gfs2_journaled_truncate_range(inode, offset, length);
2444 } else
2445 truncate_pagecache_range(inode, offset, offset + length - 1);
2446
2447 file_update_time(file);
2448 mark_inode_dirty(inode);
2449
2450 if (current->journal_info)
2451 gfs2_trans_end(sdp);
2452
2453 if (!gfs2_is_stuffed(ip))
2454 error = punch_hole(ip, offset, length);
2455
2456 out:
2457 if (current->journal_info)
2458 gfs2_trans_end(sdp);
2459 return error;
2460 }
2461
gfs2_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)2462 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2463 loff_t offset)
2464 {
2465 int ret;
2466
2467 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2468 return -EIO;
2469
2470 if (offset >= wpc->iomap.offset &&
2471 offset < wpc->iomap.offset + wpc->iomap.length)
2472 return 0;
2473
2474 memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2475 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2476 return ret;
2477 }
2478
2479 const struct iomap_writeback_ops gfs2_writeback_ops = {
2480 .map_blocks = gfs2_map_blocks,
2481 };
2482