1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135
136 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148
149 /*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154 static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .llseek = no_llseek,
157 .read_iter = sock_read_iter,
158 .write_iter = sock_write_iter,
159 .poll = sock_poll,
160 .unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 .compat_ioctl = compat_sock_ioctl,
163 #endif
164 .uring_cmd = io_uring_cmd_sock,
165 .mmap = sock_mmap,
166 .release = sock_close,
167 .fasync = sock_fasync,
168 .splice_write = splice_to_socket,
169 .splice_read = sock_splice_read,
170 .splice_eof = sock_splice_eof,
171 .show_fdinfo = sock_show_fdinfo,
172 };
173
174 static const char * const pf_family_names[] = {
175 [PF_UNSPEC] = "PF_UNSPEC",
176 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
177 [PF_INET] = "PF_INET",
178 [PF_AX25] = "PF_AX25",
179 [PF_IPX] = "PF_IPX",
180 [PF_APPLETALK] = "PF_APPLETALK",
181 [PF_NETROM] = "PF_NETROM",
182 [PF_BRIDGE] = "PF_BRIDGE",
183 [PF_ATMPVC] = "PF_ATMPVC",
184 [PF_X25] = "PF_X25",
185 [PF_INET6] = "PF_INET6",
186 [PF_ROSE] = "PF_ROSE",
187 [PF_DECnet] = "PF_DECnet",
188 [PF_NETBEUI] = "PF_NETBEUI",
189 [PF_SECURITY] = "PF_SECURITY",
190 [PF_KEY] = "PF_KEY",
191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
192 [PF_PACKET] = "PF_PACKET",
193 [PF_ASH] = "PF_ASH",
194 [PF_ECONET] = "PF_ECONET",
195 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_RDS] = "PF_RDS",
197 [PF_SNA] = "PF_SNA",
198 [PF_IRDA] = "PF_IRDA",
199 [PF_PPPOX] = "PF_PPPOX",
200 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_LLC] = "PF_LLC",
202 [PF_IB] = "PF_IB",
203 [PF_MPLS] = "PF_MPLS",
204 [PF_CAN] = "PF_CAN",
205 [PF_TIPC] = "PF_TIPC",
206 [PF_BLUETOOTH] = "PF_BLUETOOTH",
207 [PF_IUCV] = "PF_IUCV",
208 [PF_RXRPC] = "PF_RXRPC",
209 [PF_ISDN] = "PF_ISDN",
210 [PF_PHONET] = "PF_PHONET",
211 [PF_IEEE802154] = "PF_IEEE802154",
212 [PF_CAIF] = "PF_CAIF",
213 [PF_ALG] = "PF_ALG",
214 [PF_NFC] = "PF_NFC",
215 [PF_VSOCK] = "PF_VSOCK",
216 [PF_KCM] = "PF_KCM",
217 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_SMC] = "PF_SMC",
219 [PF_XDP] = "PF_XDP",
220 [PF_MCTP] = "PF_MCTP",
221 };
222
223 /*
224 * The protocol list. Each protocol is registered in here.
225 */
226
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229
230 /*
231 * Support routines.
232 * Move socket addresses back and forth across the kernel/user
233 * divide and look after the messy bits.
234 */
235
236 /**
237 * move_addr_to_kernel - copy a socket address into kernel space
238 * @uaddr: Address in user space
239 * @kaddr: Address in kernel space
240 * @ulen: Length in user space
241 *
242 * The address is copied into kernel space. If the provided address is
243 * too long an error code of -EINVAL is returned. If the copy gives
244 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 */
246
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 return -EINVAL;
251 if (ulen == 0)
252 return 0;
253 if (copy_from_user(kaddr, uaddr, ulen))
254 return -EFAULT;
255 return audit_sockaddr(ulen, kaddr);
256 }
257
258 /**
259 * move_addr_to_user - copy an address to user space
260 * @kaddr: kernel space address
261 * @klen: length of address in kernel
262 * @uaddr: user space address
263 * @ulen: pointer to user length field
264 *
265 * The value pointed to by ulen on entry is the buffer length available.
266 * This is overwritten with the buffer space used. -EINVAL is returned
267 * if an overlong buffer is specified or a negative buffer size. -EFAULT
268 * is returned if either the buffer or the length field are not
269 * accessible.
270 * After copying the data up to the limit the user specifies, the true
271 * length of the data is written over the length limit the user
272 * specified. Zero is returned for a success.
273 */
274
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 void __user *uaddr, int __user *ulen)
277 {
278 int err;
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282 err = get_user(len, ulen);
283 if (err)
284 return err;
285 if (len > klen)
286 len = klen;
287 if (len < 0)
288 return -EINVAL;
289 if (len) {
290 if (audit_sockaddr(klen, kaddr))
291 return -ENOMEM;
292 if (copy_to_user(uaddr, kaddr, len))
293 return -EFAULT;
294 }
295 /*
296 * "fromlen shall refer to the value before truncation.."
297 * 1003.1g
298 */
299 return __put_user(klen, ulen);
300 }
301
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303
sock_alloc_inode(struct super_block * sb)304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 struct socket_alloc *ei;
307
308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 if (!ei)
310 return NULL;
311 init_waitqueue_head(&ei->socket.wq.wait);
312 ei->socket.wq.fasync_list = NULL;
313 ei->socket.wq.flags = 0;
314
315 ei->socket.state = SS_UNCONNECTED;
316 ei->socket.flags = 0;
317 ei->socket.ops = NULL;
318 ei->socket.sk = NULL;
319 ei->socket.file = NULL;
320
321 return &ei->vfs_inode;
322 }
323
sock_free_inode(struct inode * inode)324 static void sock_free_inode(struct inode *inode)
325 {
326 struct socket_alloc *ei;
327
328 ei = container_of(inode, struct socket_alloc, vfs_inode);
329 kmem_cache_free(sock_inode_cachep, ei);
330 }
331
init_once(void * foo)332 static void init_once(void *foo)
333 {
334 struct socket_alloc *ei = (struct socket_alloc *)foo;
335
336 inode_init_once(&ei->vfs_inode);
337 }
338
init_inodecache(void)339 static void init_inodecache(void)
340 {
341 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 sizeof(struct socket_alloc),
343 0,
344 (SLAB_HWCACHE_ALIGN |
345 SLAB_RECLAIM_ACCOUNT |
346 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 init_once);
348 BUG_ON(sock_inode_cachep == NULL);
349 }
350
351 static const struct super_operations sockfs_ops = {
352 .alloc_inode = sock_alloc_inode,
353 .free_inode = sock_free_inode,
354 .statfs = simple_statfs,
355 };
356
357 /*
358 * sockfs_dname() is called from d_path().
359 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 d_inode(dentry)->i_ino);
364 }
365
366 static const struct dentry_operations sockfs_dentry_operations = {
367 .d_dname = sockfs_dname,
368 };
369
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 struct dentry *dentry, struct inode *inode,
372 const char *suffix, void *value, size_t size)
373 {
374 if (value) {
375 if (dentry->d_name.len + 1 > size)
376 return -ERANGE;
377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 }
379 return dentry->d_name.len + 1;
380 }
381
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385
386 static const struct xattr_handler sockfs_xattr_handler = {
387 .name = XATTR_NAME_SOCKPROTONAME,
388 .get = sockfs_xattr_get,
389 };
390
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 struct mnt_idmap *idmap,
393 struct dentry *dentry, struct inode *inode,
394 const char *suffix, const void *value,
395 size_t size, int flags)
396 {
397 /* Handled by LSM. */
398 return -EAGAIN;
399 }
400
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .set = sockfs_security_xattr_set,
404 };
405
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 &sockfs_xattr_handler,
408 &sockfs_security_xattr_handler,
409 NULL
410 };
411
sockfs_init_fs_context(struct fs_context * fc)412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 if (!ctx)
416 return -ENOMEM;
417 ctx->ops = &sockfs_ops;
418 ctx->dops = &sockfs_dentry_operations;
419 ctx->xattr = sockfs_xattr_handlers;
420 return 0;
421 }
422
423 static struct vfsmount *sock_mnt __read_mostly;
424
425 static struct file_system_type sock_fs_type = {
426 .name = "sockfs",
427 .init_fs_context = sockfs_init_fs_context,
428 .kill_sb = kill_anon_super,
429 };
430
431 /*
432 * Obtains the first available file descriptor and sets it up for use.
433 *
434 * These functions create file structures and maps them to fd space
435 * of the current process. On success it returns file descriptor
436 * and file struct implicitly stored in sock->file.
437 * Note that another thread may close file descriptor before we return
438 * from this function. We use the fact that now we do not refer
439 * to socket after mapping. If one day we will need it, this
440 * function will increment ref. count on file by 1.
441 *
442 * In any case returned fd MAY BE not valid!
443 * This race condition is unavoidable
444 * with shared fd spaces, we cannot solve it inside kernel,
445 * but we take care of internal coherence yet.
446 */
447
448 /**
449 * sock_alloc_file - Bind a &socket to a &file
450 * @sock: socket
451 * @flags: file status flags
452 * @dname: protocol name
453 *
454 * Returns the &file bound with @sock, implicitly storing it
455 * in sock->file. If dname is %NULL, sets to "".
456 *
457 * On failure @sock is released, and an ERR pointer is returned.
458 *
459 * This function uses GFP_KERNEL internally.
460 */
461
sock_alloc_file(struct socket * sock,int flags,const char * dname)462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 struct file *file;
465
466 if (!dname)
467 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468
469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 O_RDWR | (flags & O_NONBLOCK),
471 &socket_file_ops);
472 if (IS_ERR(file)) {
473 sock_release(sock);
474 return file;
475 }
476
477 file->f_mode |= FMODE_NOWAIT;
478 sock->file = file;
479 file->private_data = sock;
480 stream_open(SOCK_INODE(sock), file);
481 return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484
sock_map_fd(struct socket * sock,int flags)485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 struct file *newfile;
488 int fd = get_unused_fd_flags(flags);
489 if (unlikely(fd < 0)) {
490 sock_release(sock);
491 return fd;
492 }
493
494 newfile = sock_alloc_file(sock, flags, NULL);
495 if (!IS_ERR(newfile)) {
496 fd_install(fd, newfile);
497 return fd;
498 }
499
500 put_unused_fd(fd);
501 return PTR_ERR(newfile);
502 }
503
504 /**
505 * sock_from_file - Return the &socket bounded to @file.
506 * @file: file
507 *
508 * On failure returns %NULL.
509 */
510
sock_from_file(struct file * file)511 struct socket *sock_from_file(struct file *file)
512 {
513 if (file->f_op == &socket_file_ops)
514 return file->private_data; /* set in sock_alloc_file */
515
516 return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519
520 /**
521 * sockfd_lookup - Go from a file number to its socket slot
522 * @fd: file handle
523 * @err: pointer to an error code return
524 *
525 * The file handle passed in is locked and the socket it is bound
526 * to is returned. If an error occurs the err pointer is overwritten
527 * with a negative errno code and NULL is returned. The function checks
528 * for both invalid handles and passing a handle which is not a socket.
529 *
530 * On a success the socket object pointer is returned.
531 */
532
sockfd_lookup(int fd,int * err)533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 struct file *file;
536 struct socket *sock;
537
538 file = fget(fd);
539 if (!file) {
540 *err = -EBADF;
541 return NULL;
542 }
543
544 sock = sock_from_file(file);
545 if (!sock) {
546 *err = -ENOTSOCK;
547 fput(file);
548 }
549 return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552
sockfd_lookup_light(int fd,int * err,int * fput_needed)553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 struct fd f = fdget(fd);
556 struct socket *sock;
557
558 *err = -EBADF;
559 if (f.file) {
560 sock = sock_from_file(f.file);
561 if (likely(sock)) {
562 *fput_needed = f.flags & FDPUT_FPUT;
563 return sock;
564 }
565 *err = -ENOTSOCK;
566 fdput(f);
567 }
568 return NULL;
569 }
570
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 size_t size)
573 {
574 ssize_t len;
575 ssize_t used = 0;
576
577 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 if (len < 0)
579 return len;
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 buffer += len;
585 }
586
587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 used += len;
589 if (buffer) {
590 if (size < used)
591 return -ERANGE;
592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 buffer += len;
594 }
595
596 return used;
597 }
598
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 struct dentry *dentry, struct iattr *iattr)
601 {
602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603
604 if (!err && (iattr->ia_valid & ATTR_UID)) {
605 struct socket *sock = SOCKET_I(d_inode(dentry));
606
607 if (sock->sk)
608 sock->sk->sk_uid = iattr->ia_uid;
609 else
610 err = -ENOENT;
611 }
612
613 return err;
614 }
615
616 static const struct inode_operations sockfs_inode_ops = {
617 .listxattr = sockfs_listxattr,
618 .setattr = sockfs_setattr,
619 };
620
621 /**
622 * sock_alloc - allocate a socket
623 *
624 * Allocate a new inode and socket object. The two are bound together
625 * and initialised. The socket is then returned. If we are out of inodes
626 * NULL is returned. This functions uses GFP_KERNEL internally.
627 */
628
sock_alloc(void)629 struct socket *sock_alloc(void)
630 {
631 struct inode *inode;
632 struct socket *sock;
633
634 inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 if (!inode)
636 return NULL;
637
638 sock = SOCKET_I(inode);
639
640 inode->i_ino = get_next_ino();
641 inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 inode->i_uid = current_fsuid();
643 inode->i_gid = current_fsgid();
644 inode->i_op = &sockfs_inode_ops;
645
646 return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649
__sock_release(struct socket * sock,struct inode * inode)650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 const struct proto_ops *ops = READ_ONCE(sock->ops);
653
654 if (ops) {
655 struct module *owner = ops->owner;
656
657 if (inode)
658 inode_lock(inode);
659 ops->release(sock);
660 sock->sk = NULL;
661 if (inode)
662 inode_unlock(inode);
663 sock->ops = NULL;
664 module_put(owner);
665 }
666
667 if (sock->wq.fasync_list)
668 pr_err("%s: fasync list not empty!\n", __func__);
669
670 if (!sock->file) {
671 iput(SOCK_INODE(sock));
672 return;
673 }
674 sock->file = NULL;
675 }
676
677 /**
678 * sock_release - close a socket
679 * @sock: socket to close
680 *
681 * The socket is released from the protocol stack if it has a release
682 * callback, and the inode is then released if the socket is bound to
683 * an inode not a file.
684 */
sock_release(struct socket * sock)685 void sock_release(struct socket *sock)
686 {
687 __sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 u8 flags = *tx_flags;
694
695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 flags |= SKBTX_HW_TSTAMP;
697
698 /* PTP hardware clocks can provide a free running cycle counter
699 * as a time base for virtual clocks. Tell driver to use the
700 * free running cycle counter for timestamp if socket is bound
701 * to virtual clock.
702 */
703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 }
706
707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 flags |= SKBTX_SW_TSTAMP;
709
710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 flags |= SKBTX_SCHED_TSTAMP;
712
713 *tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 size_t));
721
call_trace_sock_send_length(struct sock * sk,int ret,int flags)722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 int flags)
724 {
725 trace_sock_send_length(sk, ret, 0);
726 }
727
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 inet_sendmsg, sock, msg,
732 msg_data_left(msg));
733 BUG_ON(ret == -EIOCBQUEUED);
734
735 if (trace_sock_send_length_enabled())
736 call_trace_sock_send_length(sock->sk, ret, 0);
737 return ret;
738 }
739
__sock_sendmsg(struct socket * sock,struct msghdr * msg)740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 int err = security_socket_sendmsg(sock, msg,
743 msg_data_left(msg));
744
745 return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747
748 /**
749 * sock_sendmsg - send a message through @sock
750 * @sock: socket
751 * @msg: message to send
752 *
753 * Sends @msg through @sock, passing through LSM.
754 * Returns the number of bytes sent, or an error code.
755 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 struct sockaddr_storage address;
760 int save_len = msg->msg_namelen;
761 int ret;
762
763 if (msg->msg_name) {
764 memcpy(&address, msg->msg_name, msg->msg_namelen);
765 msg->msg_name = &address;
766 }
767
768 ret = __sock_sendmsg(sock, msg);
769 msg->msg_name = save_addr;
770 msg->msg_namelen = save_len;
771
772 return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775
776 /**
777 * kernel_sendmsg - send a message through @sock (kernel-space)
778 * @sock: socket
779 * @msg: message header
780 * @vec: kernel vec
781 * @num: vec array length
782 * @size: total message data size
783 *
784 * Builds the message data with @vec and sends it through @sock.
785 * Returns the number of bytes sent, or an error code.
786 */
787
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 struct kvec *vec, size_t num, size_t size)
790 {
791 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795
796 /**
797 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
798 * @sk: sock
799 * @msg: message header
800 * @vec: output s/g array
801 * @num: output s/g array length
802 * @size: total message data size
803 *
804 * Builds the message data with @vec and sends it through @sock.
805 * Returns the number of bytes sent, or an error code.
806 * Caller must hold @sk.
807 */
808
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 struct kvec *vec, size_t num, size_t size)
811 {
812 struct socket *sock = sk->sk_socket;
813 const struct proto_ops *ops = READ_ONCE(sock->ops);
814
815 if (!ops->sendmsg_locked)
816 return sock_no_sendmsg_locked(sk, msg, size);
817
818 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819
820 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823
skb_is_err_queue(const struct sk_buff * skb)824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 /* pkt_type of skbs enqueued on the error queue are set to
827 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 * in recvmsg, since skbs received on a local socket will never
829 * have a pkt_type of PACKET_OUTGOING.
830 */
831 return skb->pkt_type == PACKET_OUTGOING;
832 }
833
834 /* On transmit, software and hardware timestamps are returned independently.
835 * As the two skb clones share the hardware timestamp, which may be updated
836 * before the software timestamp is received, a hardware TX timestamp may be
837 * returned only if there is no software TX timestamp. Ignore false software
838 * timestamps, which may be made in the __sock_recv_timestamp() call when the
839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840 * hardware timestamp.
841 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 struct net_device *orig_dev;
852 ktime_t hwtstamp;
853
854 rcu_read_lock();
855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 if (orig_dev) {
857 *if_index = orig_dev->ifindex;
858 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 } else {
860 hwtstamp = shhwtstamps->hwtstamp;
861 }
862 rcu_read_unlock();
863
864 return hwtstamp;
865 }
866
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 int if_index)
869 {
870 struct scm_ts_pktinfo ts_pktinfo;
871 struct net_device *orig_dev;
872
873 if (!skb_mac_header_was_set(skb))
874 return;
875
876 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877
878 if (!if_index) {
879 rcu_read_lock();
880 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 if (orig_dev)
882 if_index = orig_dev->ifindex;
883 rcu_read_unlock();
884 }
885 ts_pktinfo.if_index = if_index;
886
887 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891
892 /*
893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 struct sk_buff *skb)
897 {
898 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 struct scm_timestamping_internal tss;
901 int empty = 1, false_tstamp = 0;
902 struct skb_shared_hwtstamps *shhwtstamps =
903 skb_hwtstamps(skb);
904 int if_index;
905 ktime_t hwtstamp;
906 u32 tsflags;
907
908 /* Race occurred between timestamp enabling and packet
909 receiving. Fill in the current time for now. */
910 if (need_software_tstamp && skb->tstamp == 0) {
911 __net_timestamp(skb);
912 false_tstamp = 1;
913 }
914
915 if (need_software_tstamp) {
916 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 if (new_tstamp) {
918 struct __kernel_sock_timeval tv;
919
920 skb_get_new_timestamp(skb, &tv);
921 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 sizeof(tv), &tv);
923 } else {
924 struct __kernel_old_timeval tv;
925
926 skb_get_timestamp(skb, &tv);
927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 sizeof(tv), &tv);
929 }
930 } else {
931 if (new_tstamp) {
932 struct __kernel_timespec ts;
933
934 skb_get_new_timestampns(skb, &ts);
935 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 sizeof(ts), &ts);
937 } else {
938 struct __kernel_old_timespec ts;
939
940 skb_get_timestampns(skb, &ts);
941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 sizeof(ts), &ts);
943 }
944 }
945 }
946
947 memset(&tss, 0, sizeof(tss));
948 tsflags = READ_ONCE(sk->sk_tsflags);
949 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
950 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
951 empty = 0;
952 if (shhwtstamps &&
953 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
954 !skb_is_swtx_tstamp(skb, false_tstamp)) {
955 if_index = 0;
956 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
957 hwtstamp = get_timestamp(sk, skb, &if_index);
958 else
959 hwtstamp = shhwtstamps->hwtstamp;
960
961 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
962 hwtstamp = ptp_convert_timestamp(&hwtstamp,
963 READ_ONCE(sk->sk_bind_phc));
964
965 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
966 empty = 0;
967
968 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
969 !skb_is_err_queue(skb))
970 put_ts_pktinfo(msg, skb, if_index);
971 }
972 }
973 if (!empty) {
974 if (sock_flag(sk, SOCK_TSTAMP_NEW))
975 put_cmsg_scm_timestamping64(msg, &tss);
976 else
977 put_cmsg_scm_timestamping(msg, &tss);
978
979 if (skb_is_err_queue(skb) && skb->len &&
980 SKB_EXT_ERR(skb)->opt_stats)
981 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
982 skb->len, skb->data);
983 }
984 }
985 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
986
987 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)988 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
989 struct sk_buff *skb)
990 {
991 int ack;
992
993 if (!sock_flag(sk, SOCK_WIFI_STATUS))
994 return;
995 if (!skb->wifi_acked_valid)
996 return;
997
998 ack = skb->wifi_acked;
999
1000 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1003 #endif
1004
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1005 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1006 struct sk_buff *skb)
1007 {
1008 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1009 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1010 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1011 }
1012
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1013 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1014 struct sk_buff *skb)
1015 {
1016 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1017 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1018 __u32 mark = skb->mark;
1019
1020 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1021 }
1022 }
1023
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1024 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1025 struct sk_buff *skb)
1026 {
1027 sock_recv_timestamp(msg, sk, skb);
1028 sock_recv_drops(msg, sk, skb);
1029 sock_recv_mark(msg, sk, skb);
1030 }
1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1032
1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1034 size_t, int));
1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1036 size_t, int));
1037
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1039 {
1040 trace_sock_recv_length(sk, ret, flags);
1041 }
1042
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1044 int flags)
1045 {
1046 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1047 inet6_recvmsg,
1048 inet_recvmsg, sock, msg,
1049 msg_data_left(msg), flags);
1050 if (trace_sock_recv_length_enabled())
1051 call_trace_sock_recv_length(sock->sk, ret, flags);
1052 return ret;
1053 }
1054
1055 /**
1056 * sock_recvmsg - receive a message from @sock
1057 * @sock: socket
1058 * @msg: message to receive
1059 * @flags: message flags
1060 *
1061 * Receives @msg from @sock, passing through LSM. Returns the total number
1062 * of bytes received, or an error.
1063 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1065 {
1066 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1067
1068 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1069 }
1070 EXPORT_SYMBOL(sock_recvmsg);
1071
1072 /**
1073 * kernel_recvmsg - Receive a message from a socket (kernel space)
1074 * @sock: The socket to receive the message from
1075 * @msg: Received message
1076 * @vec: Input s/g array for message data
1077 * @num: Size of input s/g array
1078 * @size: Number of bytes to read
1079 * @flags: Message flags (MSG_DONTWAIT, etc...)
1080 *
1081 * On return the msg structure contains the scatter/gather array passed in the
1082 * vec argument. The array is modified so that it consists of the unfilled
1083 * portion of the original array.
1084 *
1085 * The returned value is the total number of bytes received, or an error.
1086 */
1087
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1089 struct kvec *vec, size_t num, size_t size, int flags)
1090 {
1091 msg->msg_control_is_user = false;
1092 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1093 return sock_recvmsg(sock, msg, flags);
1094 }
1095 EXPORT_SYMBOL(kernel_recvmsg);
1096
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1098 struct pipe_inode_info *pipe, size_t len,
1099 unsigned int flags)
1100 {
1101 struct socket *sock = file->private_data;
1102 const struct proto_ops *ops;
1103
1104 ops = READ_ONCE(sock->ops);
1105 if (unlikely(!ops->splice_read))
1106 return copy_splice_read(file, ppos, pipe, len, flags);
1107
1108 return ops->splice_read(sock, ppos, pipe, len, flags);
1109 }
1110
sock_splice_eof(struct file * file)1111 static void sock_splice_eof(struct file *file)
1112 {
1113 struct socket *sock = file->private_data;
1114 const struct proto_ops *ops;
1115
1116 ops = READ_ONCE(sock->ops);
1117 if (ops->splice_eof)
1118 ops->splice_eof(sock);
1119 }
1120
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1122 {
1123 struct file *file = iocb->ki_filp;
1124 struct socket *sock = file->private_data;
1125 struct msghdr msg = {.msg_iter = *to,
1126 .msg_iocb = iocb};
1127 ssize_t res;
1128
1129 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1130 msg.msg_flags = MSG_DONTWAIT;
1131
1132 if (iocb->ki_pos != 0)
1133 return -ESPIPE;
1134
1135 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1136 return 0;
1137
1138 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1139 *to = msg.msg_iter;
1140 return res;
1141 }
1142
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1144 {
1145 struct file *file = iocb->ki_filp;
1146 struct socket *sock = file->private_data;
1147 struct msghdr msg = {.msg_iter = *from,
1148 .msg_iocb = iocb};
1149 ssize_t res;
1150
1151 if (iocb->ki_pos != 0)
1152 return -ESPIPE;
1153
1154 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1155 msg.msg_flags = MSG_DONTWAIT;
1156
1157 if (sock->type == SOCK_SEQPACKET)
1158 msg.msg_flags |= MSG_EOR;
1159
1160 res = __sock_sendmsg(sock, &msg);
1161 *from = msg.msg_iter;
1162 return res;
1163 }
1164
1165 /*
1166 * Atomic setting of ioctl hooks to avoid race
1167 * with module unload.
1168 */
1169
1170 static DEFINE_MUTEX(br_ioctl_mutex);
1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1172 unsigned int cmd, struct ifreq *ifr,
1173 void __user *uarg);
1174
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1176 unsigned int cmd, struct ifreq *ifr,
1177 void __user *uarg))
1178 {
1179 mutex_lock(&br_ioctl_mutex);
1180 br_ioctl_hook = hook;
1181 mutex_unlock(&br_ioctl_mutex);
1182 }
1183 EXPORT_SYMBOL(brioctl_set);
1184
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1186 struct ifreq *ifr, void __user *uarg)
1187 {
1188 int err = -ENOPKG;
1189
1190 if (!br_ioctl_hook)
1191 request_module("bridge");
1192
1193 mutex_lock(&br_ioctl_mutex);
1194 if (br_ioctl_hook)
1195 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1196 mutex_unlock(&br_ioctl_mutex);
1197
1198 return err;
1199 }
1200
1201 static DEFINE_MUTEX(vlan_ioctl_mutex);
1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1203
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1205 {
1206 mutex_lock(&vlan_ioctl_mutex);
1207 vlan_ioctl_hook = hook;
1208 mutex_unlock(&vlan_ioctl_mutex);
1209 }
1210 EXPORT_SYMBOL(vlan_ioctl_set);
1211
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1212 static long sock_do_ioctl(struct net *net, struct socket *sock,
1213 unsigned int cmd, unsigned long arg)
1214 {
1215 const struct proto_ops *ops = READ_ONCE(sock->ops);
1216 struct ifreq ifr;
1217 bool need_copyout;
1218 int err;
1219 void __user *argp = (void __user *)arg;
1220 void __user *data;
1221
1222 err = ops->ioctl(sock, cmd, arg);
1223
1224 /*
1225 * If this ioctl is unknown try to hand it down
1226 * to the NIC driver.
1227 */
1228 if (err != -ENOIOCTLCMD)
1229 return err;
1230
1231 if (!is_socket_ioctl_cmd(cmd))
1232 return -ENOTTY;
1233
1234 if (get_user_ifreq(&ifr, &data, argp))
1235 return -EFAULT;
1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237 if (!err && need_copyout)
1238 if (put_user_ifreq(&ifr, argp))
1239 return -EFAULT;
1240
1241 return err;
1242 }
1243
1244 /*
1245 * With an ioctl, arg may well be a user mode pointer, but we don't know
1246 * what to do with it - that's up to the protocol still.
1247 */
1248
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1250 {
1251 const struct proto_ops *ops;
1252 struct socket *sock;
1253 struct sock *sk;
1254 void __user *argp = (void __user *)arg;
1255 int pid, err;
1256 struct net *net;
1257
1258 sock = file->private_data;
1259 ops = READ_ONCE(sock->ops);
1260 sk = sock->sk;
1261 net = sock_net(sk);
1262 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1263 struct ifreq ifr;
1264 void __user *data;
1265 bool need_copyout;
1266 if (get_user_ifreq(&ifr, &data, argp))
1267 return -EFAULT;
1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 if (!err && need_copyout)
1270 if (put_user_ifreq(&ifr, argp))
1271 return -EFAULT;
1272 } else
1273 #ifdef CONFIG_WEXT_CORE
1274 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1275 err = wext_handle_ioctl(net, cmd, argp);
1276 } else
1277 #endif
1278 switch (cmd) {
1279 case FIOSETOWN:
1280 case SIOCSPGRP:
1281 err = -EFAULT;
1282 if (get_user(pid, (int __user *)argp))
1283 break;
1284 err = f_setown(sock->file, pid, 1);
1285 break;
1286 case FIOGETOWN:
1287 case SIOCGPGRP:
1288 err = put_user(f_getown(sock->file),
1289 (int __user *)argp);
1290 break;
1291 case SIOCGIFBR:
1292 case SIOCSIFBR:
1293 case SIOCBRADDBR:
1294 case SIOCBRDELBR:
1295 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1296 break;
1297 case SIOCGIFVLAN:
1298 case SIOCSIFVLAN:
1299 err = -ENOPKG;
1300 if (!vlan_ioctl_hook)
1301 request_module("8021q");
1302
1303 mutex_lock(&vlan_ioctl_mutex);
1304 if (vlan_ioctl_hook)
1305 err = vlan_ioctl_hook(net, argp);
1306 mutex_unlock(&vlan_ioctl_mutex);
1307 break;
1308 case SIOCGSKNS:
1309 err = -EPERM;
1310 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1311 break;
1312
1313 err = open_related_ns(&net->ns, get_net_ns);
1314 break;
1315 case SIOCGSTAMP_OLD:
1316 case SIOCGSTAMPNS_OLD:
1317 if (!ops->gettstamp) {
1318 err = -ENOIOCTLCMD;
1319 break;
1320 }
1321 err = ops->gettstamp(sock, argp,
1322 cmd == SIOCGSTAMP_OLD,
1323 !IS_ENABLED(CONFIG_64BIT));
1324 break;
1325 case SIOCGSTAMP_NEW:
1326 case SIOCGSTAMPNS_NEW:
1327 if (!ops->gettstamp) {
1328 err = -ENOIOCTLCMD;
1329 break;
1330 }
1331 err = ops->gettstamp(sock, argp,
1332 cmd == SIOCGSTAMP_NEW,
1333 false);
1334 break;
1335
1336 case SIOCGIFCONF:
1337 err = dev_ifconf(net, argp);
1338 break;
1339
1340 default:
1341 err = sock_do_ioctl(net, sock, cmd, arg);
1342 break;
1343 }
1344 return err;
1345 }
1346
1347 /**
1348 * sock_create_lite - creates a socket
1349 * @family: protocol family (AF_INET, ...)
1350 * @type: communication type (SOCK_STREAM, ...)
1351 * @protocol: protocol (0, ...)
1352 * @res: new socket
1353 *
1354 * Creates a new socket and assigns it to @res, passing through LSM.
1355 * The new socket initialization is not complete, see kernel_accept().
1356 * Returns 0 or an error. On failure @res is set to %NULL.
1357 * This function internally uses GFP_KERNEL.
1358 */
1359
sock_create_lite(int family,int type,int protocol,struct socket ** res)1360 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1361 {
1362 int err;
1363 struct socket *sock = NULL;
1364
1365 err = security_socket_create(family, type, protocol, 1);
1366 if (err)
1367 goto out;
1368
1369 sock = sock_alloc();
1370 if (!sock) {
1371 err = -ENOMEM;
1372 goto out;
1373 }
1374
1375 sock->type = type;
1376 err = security_socket_post_create(sock, family, type, protocol, 1);
1377 if (err)
1378 goto out_release;
1379
1380 out:
1381 *res = sock;
1382 return err;
1383 out_release:
1384 sock_release(sock);
1385 sock = NULL;
1386 goto out;
1387 }
1388 EXPORT_SYMBOL(sock_create_lite);
1389
1390 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1391 static __poll_t sock_poll(struct file *file, poll_table *wait)
1392 {
1393 struct socket *sock = file->private_data;
1394 const struct proto_ops *ops = READ_ONCE(sock->ops);
1395 __poll_t events = poll_requested_events(wait), flag = 0;
1396
1397 if (!ops->poll)
1398 return 0;
1399
1400 if (sk_can_busy_loop(sock->sk)) {
1401 /* poll once if requested by the syscall */
1402 if (events & POLL_BUSY_LOOP)
1403 sk_busy_loop(sock->sk, 1);
1404
1405 /* if this socket can poll_ll, tell the system call */
1406 flag = POLL_BUSY_LOOP;
1407 }
1408
1409 return ops->poll(file, sock, wait) | flag;
1410 }
1411
sock_mmap(struct file * file,struct vm_area_struct * vma)1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414 struct socket *sock = file->private_data;
1415
1416 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1417 }
1418
sock_close(struct inode * inode,struct file * filp)1419 static int sock_close(struct inode *inode, struct file *filp)
1420 {
1421 __sock_release(SOCKET_I(inode), inode);
1422 return 0;
1423 }
1424
1425 /*
1426 * Update the socket async list
1427 *
1428 * Fasync_list locking strategy.
1429 *
1430 * 1. fasync_list is modified only under process context socket lock
1431 * i.e. under semaphore.
1432 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1433 * or under socket lock
1434 */
1435
sock_fasync(int fd,struct file * filp,int on)1436 static int sock_fasync(int fd, struct file *filp, int on)
1437 {
1438 struct socket *sock = filp->private_data;
1439 struct sock *sk = sock->sk;
1440 struct socket_wq *wq = &sock->wq;
1441
1442 if (sk == NULL)
1443 return -EINVAL;
1444
1445 lock_sock(sk);
1446 fasync_helper(fd, filp, on, &wq->fasync_list);
1447
1448 if (!wq->fasync_list)
1449 sock_reset_flag(sk, SOCK_FASYNC);
1450 else
1451 sock_set_flag(sk, SOCK_FASYNC);
1452
1453 release_sock(sk);
1454 return 0;
1455 }
1456
1457 /* This function may be called only under rcu_lock */
1458
sock_wake_async(struct socket_wq * wq,int how,int band)1459 int sock_wake_async(struct socket_wq *wq, int how, int band)
1460 {
1461 if (!wq || !wq->fasync_list)
1462 return -1;
1463
1464 switch (how) {
1465 case SOCK_WAKE_WAITD:
1466 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1467 break;
1468 goto call_kill;
1469 case SOCK_WAKE_SPACE:
1470 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1471 break;
1472 fallthrough;
1473 case SOCK_WAKE_IO:
1474 call_kill:
1475 kill_fasync(&wq->fasync_list, SIGIO, band);
1476 break;
1477 case SOCK_WAKE_URG:
1478 kill_fasync(&wq->fasync_list, SIGURG, band);
1479 }
1480
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(sock_wake_async);
1484
1485 /**
1486 * __sock_create - creates a socket
1487 * @net: net namespace
1488 * @family: protocol family (AF_INET, ...)
1489 * @type: communication type (SOCK_STREAM, ...)
1490 * @protocol: protocol (0, ...)
1491 * @res: new socket
1492 * @kern: boolean for kernel space sockets
1493 *
1494 * Creates a new socket and assigns it to @res, passing through LSM.
1495 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1496 * be set to true if the socket resides in kernel space.
1497 * This function internally uses GFP_KERNEL.
1498 */
1499
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1500 int __sock_create(struct net *net, int family, int type, int protocol,
1501 struct socket **res, int kern)
1502 {
1503 int err;
1504 struct socket *sock;
1505 const struct net_proto_family *pf;
1506
1507 /*
1508 * Check protocol is in range
1509 */
1510 if (family < 0 || family >= NPROTO)
1511 return -EAFNOSUPPORT;
1512 if (type < 0 || type >= SOCK_MAX)
1513 return -EINVAL;
1514
1515 /* Compatibility.
1516
1517 This uglymoron is moved from INET layer to here to avoid
1518 deadlock in module load.
1519 */
1520 if (family == PF_INET && type == SOCK_PACKET) {
1521 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1522 current->comm);
1523 family = PF_PACKET;
1524 }
1525
1526 err = security_socket_create(family, type, protocol, kern);
1527 if (err)
1528 return err;
1529
1530 /*
1531 * Allocate the socket and allow the family to set things up. if
1532 * the protocol is 0, the family is instructed to select an appropriate
1533 * default.
1534 */
1535 sock = sock_alloc();
1536 if (!sock) {
1537 net_warn_ratelimited("socket: no more sockets\n");
1538 return -ENFILE; /* Not exactly a match, but its the
1539 closest posix thing */
1540 }
1541
1542 sock->type = type;
1543
1544 #ifdef CONFIG_MODULES
1545 /* Attempt to load a protocol module if the find failed.
1546 *
1547 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1548 * requested real, full-featured networking support upon configuration.
1549 * Otherwise module support will break!
1550 */
1551 if (rcu_access_pointer(net_families[family]) == NULL)
1552 request_module("net-pf-%d", family);
1553 #endif
1554
1555 rcu_read_lock();
1556 pf = rcu_dereference(net_families[family]);
1557 err = -EAFNOSUPPORT;
1558 if (!pf)
1559 goto out_release;
1560
1561 /*
1562 * We will call the ->create function, that possibly is in a loadable
1563 * module, so we have to bump that loadable module refcnt first.
1564 */
1565 if (!try_module_get(pf->owner))
1566 goto out_release;
1567
1568 /* Now protected by module ref count */
1569 rcu_read_unlock();
1570
1571 err = pf->create(net, sock, protocol, kern);
1572 if (err < 0)
1573 goto out_module_put;
1574
1575 /*
1576 * Now to bump the refcnt of the [loadable] module that owns this
1577 * socket at sock_release time we decrement its refcnt.
1578 */
1579 if (!try_module_get(sock->ops->owner))
1580 goto out_module_busy;
1581
1582 /*
1583 * Now that we're done with the ->create function, the [loadable]
1584 * module can have its refcnt decremented
1585 */
1586 module_put(pf->owner);
1587 err = security_socket_post_create(sock, family, type, protocol, kern);
1588 if (err)
1589 goto out_sock_release;
1590 *res = sock;
1591
1592 return 0;
1593
1594 out_module_busy:
1595 err = -EAFNOSUPPORT;
1596 out_module_put:
1597 sock->ops = NULL;
1598 module_put(pf->owner);
1599 out_sock_release:
1600 sock_release(sock);
1601 return err;
1602
1603 out_release:
1604 rcu_read_unlock();
1605 goto out_sock_release;
1606 }
1607 EXPORT_SYMBOL(__sock_create);
1608
1609 /**
1610 * sock_create - creates a socket
1611 * @family: protocol family (AF_INET, ...)
1612 * @type: communication type (SOCK_STREAM, ...)
1613 * @protocol: protocol (0, ...)
1614 * @res: new socket
1615 *
1616 * A wrapper around __sock_create().
1617 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1618 */
1619
sock_create(int family,int type,int protocol,struct socket ** res)1620 int sock_create(int family, int type, int protocol, struct socket **res)
1621 {
1622 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1623 }
1624 EXPORT_SYMBOL(sock_create);
1625
1626 /**
1627 * sock_create_kern - creates a socket (kernel space)
1628 * @net: net namespace
1629 * @family: protocol family (AF_INET, ...)
1630 * @type: communication type (SOCK_STREAM, ...)
1631 * @protocol: protocol (0, ...)
1632 * @res: new socket
1633 *
1634 * A wrapper around __sock_create().
1635 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1636 */
1637
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1638 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1639 {
1640 return __sock_create(net, family, type, protocol, res, 1);
1641 }
1642 EXPORT_SYMBOL(sock_create_kern);
1643
__sys_socket_create(int family,int type,int protocol)1644 static struct socket *__sys_socket_create(int family, int type, int protocol)
1645 {
1646 struct socket *sock;
1647 int retval;
1648
1649 /* Check the SOCK_* constants for consistency. */
1650 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1651 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1652 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1653 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1654
1655 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1656 return ERR_PTR(-EINVAL);
1657 type &= SOCK_TYPE_MASK;
1658
1659 retval = sock_create(family, type, protocol, &sock);
1660 if (retval < 0)
1661 return ERR_PTR(retval);
1662
1663 return sock;
1664 }
1665
__sys_socket_file(int family,int type,int protocol)1666 struct file *__sys_socket_file(int family, int type, int protocol)
1667 {
1668 struct socket *sock;
1669 int flags;
1670
1671 sock = __sys_socket_create(family, type, protocol);
1672 if (IS_ERR(sock))
1673 return ERR_CAST(sock);
1674
1675 flags = type & ~SOCK_TYPE_MASK;
1676 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1677 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1678
1679 return sock_alloc_file(sock, flags, NULL);
1680 }
1681
1682 /* A hook for bpf progs to attach to and update socket protocol.
1683 *
1684 * A static noinline declaration here could cause the compiler to
1685 * optimize away the function. A global noinline declaration will
1686 * keep the definition, but may optimize away the callsite.
1687 * Therefore, __weak is needed to ensure that the call is still
1688 * emitted, by telling the compiler that we don't know what the
1689 * function might eventually be.
1690 *
1691 * __diag_* below are needed to dismiss the missing prototype warning.
1692 */
1693
1694 __diag_push();
1695 __diag_ignore_all("-Wmissing-prototypes",
1696 "A fmod_ret entry point for BPF programs");
1697
update_socket_protocol(int family,int type,int protocol)1698 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1699 {
1700 return protocol;
1701 }
1702
1703 __diag_pop();
1704
__sys_socket(int family,int type,int protocol)1705 int __sys_socket(int family, int type, int protocol)
1706 {
1707 struct socket *sock;
1708 int flags;
1709
1710 sock = __sys_socket_create(family, type,
1711 update_socket_protocol(family, type, protocol));
1712 if (IS_ERR(sock))
1713 return PTR_ERR(sock);
1714
1715 flags = type & ~SOCK_TYPE_MASK;
1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718
1719 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1720 }
1721
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1722 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1723 {
1724 return __sys_socket(family, type, protocol);
1725 }
1726
1727 /*
1728 * Create a pair of connected sockets.
1729 */
1730
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1731 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1732 {
1733 struct socket *sock1, *sock2;
1734 int fd1, fd2, err;
1735 struct file *newfile1, *newfile2;
1736 int flags;
1737
1738 flags = type & ~SOCK_TYPE_MASK;
1739 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1740 return -EINVAL;
1741 type &= SOCK_TYPE_MASK;
1742
1743 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1744 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1745
1746 /*
1747 * reserve descriptors and make sure we won't fail
1748 * to return them to userland.
1749 */
1750 fd1 = get_unused_fd_flags(flags);
1751 if (unlikely(fd1 < 0))
1752 return fd1;
1753
1754 fd2 = get_unused_fd_flags(flags);
1755 if (unlikely(fd2 < 0)) {
1756 put_unused_fd(fd1);
1757 return fd2;
1758 }
1759
1760 err = put_user(fd1, &usockvec[0]);
1761 if (err)
1762 goto out;
1763
1764 err = put_user(fd2, &usockvec[1]);
1765 if (err)
1766 goto out;
1767
1768 /*
1769 * Obtain the first socket and check if the underlying protocol
1770 * supports the socketpair call.
1771 */
1772
1773 err = sock_create(family, type, protocol, &sock1);
1774 if (unlikely(err < 0))
1775 goto out;
1776
1777 err = sock_create(family, type, protocol, &sock2);
1778 if (unlikely(err < 0)) {
1779 sock_release(sock1);
1780 goto out;
1781 }
1782
1783 err = security_socket_socketpair(sock1, sock2);
1784 if (unlikely(err)) {
1785 sock_release(sock2);
1786 sock_release(sock1);
1787 goto out;
1788 }
1789
1790 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1791 if (unlikely(err < 0)) {
1792 sock_release(sock2);
1793 sock_release(sock1);
1794 goto out;
1795 }
1796
1797 newfile1 = sock_alloc_file(sock1, flags, NULL);
1798 if (IS_ERR(newfile1)) {
1799 err = PTR_ERR(newfile1);
1800 sock_release(sock2);
1801 goto out;
1802 }
1803
1804 newfile2 = sock_alloc_file(sock2, flags, NULL);
1805 if (IS_ERR(newfile2)) {
1806 err = PTR_ERR(newfile2);
1807 fput(newfile1);
1808 goto out;
1809 }
1810
1811 audit_fd_pair(fd1, fd2);
1812
1813 fd_install(fd1, newfile1);
1814 fd_install(fd2, newfile2);
1815 return 0;
1816
1817 out:
1818 put_unused_fd(fd2);
1819 put_unused_fd(fd1);
1820 return err;
1821 }
1822
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1823 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1824 int __user *, usockvec)
1825 {
1826 return __sys_socketpair(family, type, protocol, usockvec);
1827 }
1828
1829 /*
1830 * Bind a name to a socket. Nothing much to do here since it's
1831 * the protocol's responsibility to handle the local address.
1832 *
1833 * We move the socket address to kernel space before we call
1834 * the protocol layer (having also checked the address is ok).
1835 */
1836
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1837 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1838 {
1839 struct socket *sock;
1840 struct sockaddr_storage address;
1841 int err, fput_needed;
1842
1843 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 if (sock) {
1845 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1846 if (!err) {
1847 err = security_socket_bind(sock,
1848 (struct sockaddr *)&address,
1849 addrlen);
1850 if (!err)
1851 err = READ_ONCE(sock->ops)->bind(sock,
1852 (struct sockaddr *)
1853 &address, addrlen);
1854 }
1855 fput_light(sock->file, fput_needed);
1856 }
1857 return err;
1858 }
1859
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1860 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1861 {
1862 return __sys_bind(fd, umyaddr, addrlen);
1863 }
1864
1865 /*
1866 * Perform a listen. Basically, we allow the protocol to do anything
1867 * necessary for a listen, and if that works, we mark the socket as
1868 * ready for listening.
1869 */
1870
__sys_listen(int fd,int backlog)1871 int __sys_listen(int fd, int backlog)
1872 {
1873 struct socket *sock;
1874 int err, fput_needed;
1875 int somaxconn;
1876
1877 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 if (sock) {
1879 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1880 if ((unsigned int)backlog > somaxconn)
1881 backlog = somaxconn;
1882
1883 err = security_socket_listen(sock, backlog);
1884 if (!err)
1885 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1886
1887 fput_light(sock->file, fput_needed);
1888 }
1889 return err;
1890 }
1891
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1892 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1893 {
1894 return __sys_listen(fd, backlog);
1895 }
1896
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1897 struct file *do_accept(struct file *file, unsigned file_flags,
1898 struct sockaddr __user *upeer_sockaddr,
1899 int __user *upeer_addrlen, int flags)
1900 {
1901 struct socket *sock, *newsock;
1902 struct file *newfile;
1903 int err, len;
1904 struct sockaddr_storage address;
1905 const struct proto_ops *ops;
1906
1907 sock = sock_from_file(file);
1908 if (!sock)
1909 return ERR_PTR(-ENOTSOCK);
1910
1911 newsock = sock_alloc();
1912 if (!newsock)
1913 return ERR_PTR(-ENFILE);
1914 ops = READ_ONCE(sock->ops);
1915
1916 newsock->type = sock->type;
1917 newsock->ops = ops;
1918
1919 /*
1920 * We don't need try_module_get here, as the listening socket (sock)
1921 * has the protocol module (sock->ops->owner) held.
1922 */
1923 __module_get(ops->owner);
1924
1925 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1926 if (IS_ERR(newfile))
1927 return newfile;
1928
1929 err = security_socket_accept(sock, newsock);
1930 if (err)
1931 goto out_fd;
1932
1933 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1934 false);
1935 if (err < 0)
1936 goto out_fd;
1937
1938 if (upeer_sockaddr) {
1939 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1940 if (len < 0) {
1941 err = -ECONNABORTED;
1942 goto out_fd;
1943 }
1944 err = move_addr_to_user(&address,
1945 len, upeer_sockaddr, upeer_addrlen);
1946 if (err < 0)
1947 goto out_fd;
1948 }
1949
1950 /* File flags are not inherited via accept() unlike another OSes. */
1951 return newfile;
1952 out_fd:
1953 fput(newfile);
1954 return ERR_PTR(err);
1955 }
1956
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1957 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1958 int __user *upeer_addrlen, int flags)
1959 {
1960 struct file *newfile;
1961 int newfd;
1962
1963 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1964 return -EINVAL;
1965
1966 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1967 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1968
1969 newfd = get_unused_fd_flags(flags);
1970 if (unlikely(newfd < 0))
1971 return newfd;
1972
1973 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1974 flags);
1975 if (IS_ERR(newfile)) {
1976 put_unused_fd(newfd);
1977 return PTR_ERR(newfile);
1978 }
1979 fd_install(newfd, newfile);
1980 return newfd;
1981 }
1982
1983 /*
1984 * For accept, we attempt to create a new socket, set up the link
1985 * with the client, wake up the client, then return the new
1986 * connected fd. We collect the address of the connector in kernel
1987 * space and move it to user at the very end. This is unclean because
1988 * we open the socket then return an error.
1989 *
1990 * 1003.1g adds the ability to recvmsg() to query connection pending
1991 * status to recvmsg. We need to add that support in a way thats
1992 * clean when we restructure accept also.
1993 */
1994
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1995 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1996 int __user *upeer_addrlen, int flags)
1997 {
1998 int ret = -EBADF;
1999 struct fd f;
2000
2001 f = fdget(fd);
2002 if (f.file) {
2003 ret = __sys_accept4_file(f.file, upeer_sockaddr,
2004 upeer_addrlen, flags);
2005 fdput(f);
2006 }
2007
2008 return ret;
2009 }
2010
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2011 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2012 int __user *, upeer_addrlen, int, flags)
2013 {
2014 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2015 }
2016
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2017 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2018 int __user *, upeer_addrlen)
2019 {
2020 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2021 }
2022
2023 /*
2024 * Attempt to connect to a socket with the server address. The address
2025 * is in user space so we verify it is OK and move it to kernel space.
2026 *
2027 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2028 * break bindings
2029 *
2030 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2031 * other SEQPACKET protocols that take time to connect() as it doesn't
2032 * include the -EINPROGRESS status for such sockets.
2033 */
2034
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2035 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2036 int addrlen, int file_flags)
2037 {
2038 struct socket *sock;
2039 int err;
2040
2041 sock = sock_from_file(file);
2042 if (!sock) {
2043 err = -ENOTSOCK;
2044 goto out;
2045 }
2046
2047 err =
2048 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2049 if (err)
2050 goto out;
2051
2052 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2053 addrlen, sock->file->f_flags | file_flags);
2054 out:
2055 return err;
2056 }
2057
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2058 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2059 {
2060 int ret = -EBADF;
2061 struct fd f;
2062
2063 f = fdget(fd);
2064 if (f.file) {
2065 struct sockaddr_storage address;
2066
2067 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2068 if (!ret)
2069 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2070 fdput(f);
2071 }
2072
2073 return ret;
2074 }
2075
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2076 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2077 int, addrlen)
2078 {
2079 return __sys_connect(fd, uservaddr, addrlen);
2080 }
2081
2082 /*
2083 * Get the local address ('name') of a socket object. Move the obtained
2084 * name to user space.
2085 */
2086
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2087 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2088 int __user *usockaddr_len)
2089 {
2090 struct socket *sock;
2091 struct sockaddr_storage address;
2092 int err, fput_needed;
2093
2094 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2095 if (!sock)
2096 goto out;
2097
2098 err = security_socket_getsockname(sock);
2099 if (err)
2100 goto out_put;
2101
2102 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2103 if (err < 0)
2104 goto out_put;
2105 /* "err" is actually length in this case */
2106 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2107
2108 out_put:
2109 fput_light(sock->file, fput_needed);
2110 out:
2111 return err;
2112 }
2113
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2114 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115 int __user *, usockaddr_len)
2116 {
2117 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118 }
2119
2120 /*
2121 * Get the remote address ('name') of a socket object. Move the obtained
2122 * name to user space.
2123 */
2124
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2125 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126 int __user *usockaddr_len)
2127 {
2128 struct socket *sock;
2129 struct sockaddr_storage address;
2130 int err, fput_needed;
2131
2132 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 if (sock != NULL) {
2134 const struct proto_ops *ops = READ_ONCE(sock->ops);
2135
2136 err = security_socket_getpeername(sock);
2137 if (err) {
2138 fput_light(sock->file, fput_needed);
2139 return err;
2140 }
2141
2142 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2143 if (err >= 0)
2144 /* "err" is actually length in this case */
2145 err = move_addr_to_user(&address, err, usockaddr,
2146 usockaddr_len);
2147 fput_light(sock->file, fput_needed);
2148 }
2149 return err;
2150 }
2151
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2152 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2153 int __user *, usockaddr_len)
2154 {
2155 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2156 }
2157
2158 /*
2159 * Send a datagram to a given address. We move the address into kernel
2160 * space and check the user space data area is readable before invoking
2161 * the protocol.
2162 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2163 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2164 struct sockaddr __user *addr, int addr_len)
2165 {
2166 struct socket *sock;
2167 struct sockaddr_storage address;
2168 int err;
2169 struct msghdr msg;
2170 struct iovec iov;
2171 int fput_needed;
2172
2173 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2174 if (unlikely(err))
2175 return err;
2176 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2177 if (!sock)
2178 goto out;
2179
2180 msg.msg_name = NULL;
2181 msg.msg_control = NULL;
2182 msg.msg_controllen = 0;
2183 msg.msg_namelen = 0;
2184 msg.msg_ubuf = NULL;
2185 if (addr) {
2186 err = move_addr_to_kernel(addr, addr_len, &address);
2187 if (err < 0)
2188 goto out_put;
2189 msg.msg_name = (struct sockaddr *)&address;
2190 msg.msg_namelen = addr_len;
2191 }
2192 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2193 if (sock->file->f_flags & O_NONBLOCK)
2194 flags |= MSG_DONTWAIT;
2195 msg.msg_flags = flags;
2196 err = __sock_sendmsg(sock, &msg);
2197
2198 out_put:
2199 fput_light(sock->file, fput_needed);
2200 out:
2201 return err;
2202 }
2203
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2204 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2205 unsigned int, flags, struct sockaddr __user *, addr,
2206 int, addr_len)
2207 {
2208 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2209 }
2210
2211 /*
2212 * Send a datagram down a socket.
2213 */
2214
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2215 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2216 unsigned int, flags)
2217 {
2218 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2219 }
2220
2221 /*
2222 * Receive a frame from the socket and optionally record the address of the
2223 * sender. We verify the buffers are writable and if needed move the
2224 * sender address from kernel to user space.
2225 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2226 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2227 struct sockaddr __user *addr, int __user *addr_len)
2228 {
2229 struct sockaddr_storage address;
2230 struct msghdr msg = {
2231 /* Save some cycles and don't copy the address if not needed */
2232 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2233 };
2234 struct socket *sock;
2235 struct iovec iov;
2236 int err, err2;
2237 int fput_needed;
2238
2239 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2240 if (unlikely(err))
2241 return err;
2242 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2243 if (!sock)
2244 goto out;
2245
2246 if (sock->file->f_flags & O_NONBLOCK)
2247 flags |= MSG_DONTWAIT;
2248 err = sock_recvmsg(sock, &msg, flags);
2249
2250 if (err >= 0 && addr != NULL) {
2251 err2 = move_addr_to_user(&address,
2252 msg.msg_namelen, addr, addr_len);
2253 if (err2 < 0)
2254 err = err2;
2255 }
2256
2257 fput_light(sock->file, fput_needed);
2258 out:
2259 return err;
2260 }
2261
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2262 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2263 unsigned int, flags, struct sockaddr __user *, addr,
2264 int __user *, addr_len)
2265 {
2266 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2267 }
2268
2269 /*
2270 * Receive a datagram from a socket.
2271 */
2272
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2273 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2274 unsigned int, flags)
2275 {
2276 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2277 }
2278
sock_use_custom_sol_socket(const struct socket * sock)2279 static bool sock_use_custom_sol_socket(const struct socket *sock)
2280 {
2281 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2282 }
2283
2284 /*
2285 * Set a socket option. Because we don't know the option lengths we have
2286 * to pass the user mode parameter for the protocols to sort out.
2287 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2288 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2289 int optlen)
2290 {
2291 sockptr_t optval = USER_SOCKPTR(user_optval);
2292 const struct proto_ops *ops;
2293 char *kernel_optval = NULL;
2294 int err, fput_needed;
2295 struct socket *sock;
2296
2297 if (optlen < 0)
2298 return -EINVAL;
2299
2300 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2301 if (!sock)
2302 return err;
2303
2304 err = security_socket_setsockopt(sock, level, optname);
2305 if (err)
2306 goto out_put;
2307
2308 if (!in_compat_syscall())
2309 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2310 user_optval, &optlen,
2311 &kernel_optval);
2312 if (err < 0)
2313 goto out_put;
2314 if (err > 0) {
2315 err = 0;
2316 goto out_put;
2317 }
2318
2319 if (kernel_optval)
2320 optval = KERNEL_SOCKPTR(kernel_optval);
2321 ops = READ_ONCE(sock->ops);
2322 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2323 err = sock_setsockopt(sock, level, optname, optval, optlen);
2324 else if (unlikely(!ops->setsockopt))
2325 err = -EOPNOTSUPP;
2326 else
2327 err = ops->setsockopt(sock, level, optname, optval,
2328 optlen);
2329 kfree(kernel_optval);
2330 out_put:
2331 fput_light(sock->file, fput_needed);
2332 return err;
2333 }
2334
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2335 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2336 char __user *, optval, int, optlen)
2337 {
2338 return __sys_setsockopt(fd, level, optname, optval, optlen);
2339 }
2340
2341 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2342 int optname));
2343
2344 /*
2345 * Get a socket option. Because we don't know the option lengths we have
2346 * to pass a user mode parameter for the protocols to sort out.
2347 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2348 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2349 int __user *optlen)
2350 {
2351 int max_optlen __maybe_unused;
2352 const struct proto_ops *ops;
2353 int err, fput_needed;
2354 struct socket *sock;
2355
2356 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2357 if (!sock)
2358 return err;
2359
2360 err = security_socket_getsockopt(sock, level, optname);
2361 if (err)
2362 goto out_put;
2363
2364 if (!in_compat_syscall())
2365 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2366
2367 ops = READ_ONCE(sock->ops);
2368 if (level == SOL_SOCKET)
2369 err = sock_getsockopt(sock, level, optname, optval, optlen);
2370 else if (unlikely(!ops->getsockopt))
2371 err = -EOPNOTSUPP;
2372 else
2373 err = ops->getsockopt(sock, level, optname, optval,
2374 optlen);
2375
2376 if (!in_compat_syscall())
2377 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2378 optval, optlen, max_optlen,
2379 err);
2380 out_put:
2381 fput_light(sock->file, fput_needed);
2382 return err;
2383 }
2384
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2385 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2386 char __user *, optval, int __user *, optlen)
2387 {
2388 return __sys_getsockopt(fd, level, optname, optval, optlen);
2389 }
2390
2391 /*
2392 * Shutdown a socket.
2393 */
2394
__sys_shutdown_sock(struct socket * sock,int how)2395 int __sys_shutdown_sock(struct socket *sock, int how)
2396 {
2397 int err;
2398
2399 err = security_socket_shutdown(sock, how);
2400 if (!err)
2401 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2402
2403 return err;
2404 }
2405
__sys_shutdown(int fd,int how)2406 int __sys_shutdown(int fd, int how)
2407 {
2408 int err, fput_needed;
2409 struct socket *sock;
2410
2411 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2412 if (sock != NULL) {
2413 err = __sys_shutdown_sock(sock, how);
2414 fput_light(sock->file, fput_needed);
2415 }
2416 return err;
2417 }
2418
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2419 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2420 {
2421 return __sys_shutdown(fd, how);
2422 }
2423
2424 /* A couple of helpful macros for getting the address of the 32/64 bit
2425 * fields which are the same type (int / unsigned) on our platforms.
2426 */
2427 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2428 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2429 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2430
2431 struct used_address {
2432 struct sockaddr_storage name;
2433 unsigned int name_len;
2434 };
2435
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2436 int __copy_msghdr(struct msghdr *kmsg,
2437 struct user_msghdr *msg,
2438 struct sockaddr __user **save_addr)
2439 {
2440 ssize_t err;
2441
2442 kmsg->msg_control_is_user = true;
2443 kmsg->msg_get_inq = 0;
2444 kmsg->msg_control_user = msg->msg_control;
2445 kmsg->msg_controllen = msg->msg_controllen;
2446 kmsg->msg_flags = msg->msg_flags;
2447
2448 kmsg->msg_namelen = msg->msg_namelen;
2449 if (!msg->msg_name)
2450 kmsg->msg_namelen = 0;
2451
2452 if (kmsg->msg_namelen < 0)
2453 return -EINVAL;
2454
2455 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2456 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2457
2458 if (save_addr)
2459 *save_addr = msg->msg_name;
2460
2461 if (msg->msg_name && kmsg->msg_namelen) {
2462 if (!save_addr) {
2463 err = move_addr_to_kernel(msg->msg_name,
2464 kmsg->msg_namelen,
2465 kmsg->msg_name);
2466 if (err < 0)
2467 return err;
2468 }
2469 } else {
2470 kmsg->msg_name = NULL;
2471 kmsg->msg_namelen = 0;
2472 }
2473
2474 if (msg->msg_iovlen > UIO_MAXIOV)
2475 return -EMSGSIZE;
2476
2477 kmsg->msg_iocb = NULL;
2478 kmsg->msg_ubuf = NULL;
2479 return 0;
2480 }
2481
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2482 static int copy_msghdr_from_user(struct msghdr *kmsg,
2483 struct user_msghdr __user *umsg,
2484 struct sockaddr __user **save_addr,
2485 struct iovec **iov)
2486 {
2487 struct user_msghdr msg;
2488 ssize_t err;
2489
2490 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2491 return -EFAULT;
2492
2493 err = __copy_msghdr(kmsg, &msg, save_addr);
2494 if (err)
2495 return err;
2496
2497 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2498 msg.msg_iov, msg.msg_iovlen,
2499 UIO_FASTIOV, iov, &kmsg->msg_iter);
2500 return err < 0 ? err : 0;
2501 }
2502
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2503 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2504 unsigned int flags, struct used_address *used_address,
2505 unsigned int allowed_msghdr_flags)
2506 {
2507 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2508 __aligned(sizeof(__kernel_size_t));
2509 /* 20 is size of ipv6_pktinfo */
2510 unsigned char *ctl_buf = ctl;
2511 int ctl_len;
2512 ssize_t err;
2513
2514 err = -ENOBUFS;
2515
2516 if (msg_sys->msg_controllen > INT_MAX)
2517 goto out;
2518 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2519 ctl_len = msg_sys->msg_controllen;
2520 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2521 err =
2522 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2523 sizeof(ctl));
2524 if (err)
2525 goto out;
2526 ctl_buf = msg_sys->msg_control;
2527 ctl_len = msg_sys->msg_controllen;
2528 } else if (ctl_len) {
2529 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2530 CMSG_ALIGN(sizeof(struct cmsghdr)));
2531 if (ctl_len > sizeof(ctl)) {
2532 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2533 if (ctl_buf == NULL)
2534 goto out;
2535 }
2536 err = -EFAULT;
2537 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2538 goto out_freectl;
2539 msg_sys->msg_control = ctl_buf;
2540 msg_sys->msg_control_is_user = false;
2541 }
2542 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2543 msg_sys->msg_flags = flags;
2544
2545 if (sock->file->f_flags & O_NONBLOCK)
2546 msg_sys->msg_flags |= MSG_DONTWAIT;
2547 /*
2548 * If this is sendmmsg() and current destination address is same as
2549 * previously succeeded address, omit asking LSM's decision.
2550 * used_address->name_len is initialized to UINT_MAX so that the first
2551 * destination address never matches.
2552 */
2553 if (used_address && msg_sys->msg_name &&
2554 used_address->name_len == msg_sys->msg_namelen &&
2555 !memcmp(&used_address->name, msg_sys->msg_name,
2556 used_address->name_len)) {
2557 err = sock_sendmsg_nosec(sock, msg_sys);
2558 goto out_freectl;
2559 }
2560 err = __sock_sendmsg(sock, msg_sys);
2561 /*
2562 * If this is sendmmsg() and sending to current destination address was
2563 * successful, remember it.
2564 */
2565 if (used_address && err >= 0) {
2566 used_address->name_len = msg_sys->msg_namelen;
2567 if (msg_sys->msg_name)
2568 memcpy(&used_address->name, msg_sys->msg_name,
2569 used_address->name_len);
2570 }
2571
2572 out_freectl:
2573 if (ctl_buf != ctl)
2574 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2575 out:
2576 return err;
2577 }
2578
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2579 int sendmsg_copy_msghdr(struct msghdr *msg,
2580 struct user_msghdr __user *umsg, unsigned flags,
2581 struct iovec **iov)
2582 {
2583 int err;
2584
2585 if (flags & MSG_CMSG_COMPAT) {
2586 struct compat_msghdr __user *msg_compat;
2587
2588 msg_compat = (struct compat_msghdr __user *) umsg;
2589 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2590 } else {
2591 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2592 }
2593 if (err < 0)
2594 return err;
2595
2596 return 0;
2597 }
2598
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2599 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2600 struct msghdr *msg_sys, unsigned int flags,
2601 struct used_address *used_address,
2602 unsigned int allowed_msghdr_flags)
2603 {
2604 struct sockaddr_storage address;
2605 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2606 ssize_t err;
2607
2608 msg_sys->msg_name = &address;
2609
2610 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2611 if (err < 0)
2612 return err;
2613
2614 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2615 allowed_msghdr_flags);
2616 kfree(iov);
2617 return err;
2618 }
2619
2620 /*
2621 * BSD sendmsg interface
2622 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2623 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2624 unsigned int flags)
2625 {
2626 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2627 }
2628
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2629 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2630 bool forbid_cmsg_compat)
2631 {
2632 int fput_needed, err;
2633 struct msghdr msg_sys;
2634 struct socket *sock;
2635
2636 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2637 return -EINVAL;
2638
2639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2640 if (!sock)
2641 goto out;
2642
2643 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2644
2645 fput_light(sock->file, fput_needed);
2646 out:
2647 return err;
2648 }
2649
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2650 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2651 {
2652 return __sys_sendmsg(fd, msg, flags, true);
2653 }
2654
2655 /*
2656 * Linux sendmmsg interface
2657 */
2658
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2659 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2660 unsigned int flags, bool forbid_cmsg_compat)
2661 {
2662 int fput_needed, err, datagrams;
2663 struct socket *sock;
2664 struct mmsghdr __user *entry;
2665 struct compat_mmsghdr __user *compat_entry;
2666 struct msghdr msg_sys;
2667 struct used_address used_address;
2668 unsigned int oflags = flags;
2669
2670 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2671 return -EINVAL;
2672
2673 if (vlen > UIO_MAXIOV)
2674 vlen = UIO_MAXIOV;
2675
2676 datagrams = 0;
2677
2678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2679 if (!sock)
2680 return err;
2681
2682 used_address.name_len = UINT_MAX;
2683 entry = mmsg;
2684 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2685 err = 0;
2686 flags |= MSG_BATCH;
2687
2688 while (datagrams < vlen) {
2689 if (datagrams == vlen - 1)
2690 flags = oflags;
2691
2692 if (MSG_CMSG_COMPAT & flags) {
2693 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2694 &msg_sys, flags, &used_address, MSG_EOR);
2695 if (err < 0)
2696 break;
2697 err = __put_user(err, &compat_entry->msg_len);
2698 ++compat_entry;
2699 } else {
2700 err = ___sys_sendmsg(sock,
2701 (struct user_msghdr __user *)entry,
2702 &msg_sys, flags, &used_address, MSG_EOR);
2703 if (err < 0)
2704 break;
2705 err = put_user(err, &entry->msg_len);
2706 ++entry;
2707 }
2708
2709 if (err)
2710 break;
2711 ++datagrams;
2712 if (msg_data_left(&msg_sys))
2713 break;
2714 cond_resched();
2715 }
2716
2717 fput_light(sock->file, fput_needed);
2718
2719 /* We only return an error if no datagrams were able to be sent */
2720 if (datagrams != 0)
2721 return datagrams;
2722
2723 return err;
2724 }
2725
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2726 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2727 unsigned int, vlen, unsigned int, flags)
2728 {
2729 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2730 }
2731
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2732 int recvmsg_copy_msghdr(struct msghdr *msg,
2733 struct user_msghdr __user *umsg, unsigned flags,
2734 struct sockaddr __user **uaddr,
2735 struct iovec **iov)
2736 {
2737 ssize_t err;
2738
2739 if (MSG_CMSG_COMPAT & flags) {
2740 struct compat_msghdr __user *msg_compat;
2741
2742 msg_compat = (struct compat_msghdr __user *) umsg;
2743 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2744 } else {
2745 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2746 }
2747 if (err < 0)
2748 return err;
2749
2750 return 0;
2751 }
2752
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2753 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2754 struct user_msghdr __user *msg,
2755 struct sockaddr __user *uaddr,
2756 unsigned int flags, int nosec)
2757 {
2758 struct compat_msghdr __user *msg_compat =
2759 (struct compat_msghdr __user *) msg;
2760 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2761 struct sockaddr_storage addr;
2762 unsigned long cmsg_ptr;
2763 int len;
2764 ssize_t err;
2765
2766 msg_sys->msg_name = &addr;
2767 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2768 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2769
2770 /* We assume all kernel code knows the size of sockaddr_storage */
2771 msg_sys->msg_namelen = 0;
2772
2773 if (sock->file->f_flags & O_NONBLOCK)
2774 flags |= MSG_DONTWAIT;
2775
2776 if (unlikely(nosec))
2777 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2778 else
2779 err = sock_recvmsg(sock, msg_sys, flags);
2780
2781 if (err < 0)
2782 goto out;
2783 len = err;
2784
2785 if (uaddr != NULL) {
2786 err = move_addr_to_user(&addr,
2787 msg_sys->msg_namelen, uaddr,
2788 uaddr_len);
2789 if (err < 0)
2790 goto out;
2791 }
2792 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2793 COMPAT_FLAGS(msg));
2794 if (err)
2795 goto out;
2796 if (MSG_CMSG_COMPAT & flags)
2797 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2798 &msg_compat->msg_controllen);
2799 else
2800 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2801 &msg->msg_controllen);
2802 if (err)
2803 goto out;
2804 err = len;
2805 out:
2806 return err;
2807 }
2808
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2809 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2810 struct msghdr *msg_sys, unsigned int flags, int nosec)
2811 {
2812 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2813 /* user mode address pointers */
2814 struct sockaddr __user *uaddr;
2815 ssize_t err;
2816
2817 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2818 if (err < 0)
2819 return err;
2820
2821 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2822 kfree(iov);
2823 return err;
2824 }
2825
2826 /*
2827 * BSD recvmsg interface
2828 */
2829
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2830 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2831 struct user_msghdr __user *umsg,
2832 struct sockaddr __user *uaddr, unsigned int flags)
2833 {
2834 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2835 }
2836
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2837 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2838 bool forbid_cmsg_compat)
2839 {
2840 int fput_needed, err;
2841 struct msghdr msg_sys;
2842 struct socket *sock;
2843
2844 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2845 return -EINVAL;
2846
2847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2848 if (!sock)
2849 goto out;
2850
2851 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2852
2853 fput_light(sock->file, fput_needed);
2854 out:
2855 return err;
2856 }
2857
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2858 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2859 unsigned int, flags)
2860 {
2861 return __sys_recvmsg(fd, msg, flags, true);
2862 }
2863
2864 /*
2865 * Linux recvmmsg interface
2866 */
2867
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2868 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2869 unsigned int vlen, unsigned int flags,
2870 struct timespec64 *timeout)
2871 {
2872 int fput_needed, err, datagrams;
2873 struct socket *sock;
2874 struct mmsghdr __user *entry;
2875 struct compat_mmsghdr __user *compat_entry;
2876 struct msghdr msg_sys;
2877 struct timespec64 end_time;
2878 struct timespec64 timeout64;
2879
2880 if (timeout &&
2881 poll_select_set_timeout(&end_time, timeout->tv_sec,
2882 timeout->tv_nsec))
2883 return -EINVAL;
2884
2885 datagrams = 0;
2886
2887 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2888 if (!sock)
2889 return err;
2890
2891 if (likely(!(flags & MSG_ERRQUEUE))) {
2892 err = sock_error(sock->sk);
2893 if (err) {
2894 datagrams = err;
2895 goto out_put;
2896 }
2897 }
2898
2899 entry = mmsg;
2900 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2901
2902 while (datagrams < vlen) {
2903 /*
2904 * No need to ask LSM for more than the first datagram.
2905 */
2906 if (MSG_CMSG_COMPAT & flags) {
2907 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2908 &msg_sys, flags & ~MSG_WAITFORONE,
2909 datagrams);
2910 if (err < 0)
2911 break;
2912 err = __put_user(err, &compat_entry->msg_len);
2913 ++compat_entry;
2914 } else {
2915 err = ___sys_recvmsg(sock,
2916 (struct user_msghdr __user *)entry,
2917 &msg_sys, flags & ~MSG_WAITFORONE,
2918 datagrams);
2919 if (err < 0)
2920 break;
2921 err = put_user(err, &entry->msg_len);
2922 ++entry;
2923 }
2924
2925 if (err)
2926 break;
2927 ++datagrams;
2928
2929 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2930 if (flags & MSG_WAITFORONE)
2931 flags |= MSG_DONTWAIT;
2932
2933 if (timeout) {
2934 ktime_get_ts64(&timeout64);
2935 *timeout = timespec64_sub(end_time, timeout64);
2936 if (timeout->tv_sec < 0) {
2937 timeout->tv_sec = timeout->tv_nsec = 0;
2938 break;
2939 }
2940
2941 /* Timeout, return less than vlen datagrams */
2942 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2943 break;
2944 }
2945
2946 /* Out of band data, return right away */
2947 if (msg_sys.msg_flags & MSG_OOB)
2948 break;
2949 cond_resched();
2950 }
2951
2952 if (err == 0)
2953 goto out_put;
2954
2955 if (datagrams == 0) {
2956 datagrams = err;
2957 goto out_put;
2958 }
2959
2960 /*
2961 * We may return less entries than requested (vlen) if the
2962 * sock is non block and there aren't enough datagrams...
2963 */
2964 if (err != -EAGAIN) {
2965 /*
2966 * ... or if recvmsg returns an error after we
2967 * received some datagrams, where we record the
2968 * error to return on the next call or if the
2969 * app asks about it using getsockopt(SO_ERROR).
2970 */
2971 WRITE_ONCE(sock->sk->sk_err, -err);
2972 }
2973 out_put:
2974 fput_light(sock->file, fput_needed);
2975
2976 return datagrams;
2977 }
2978
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2979 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2980 unsigned int vlen, unsigned int flags,
2981 struct __kernel_timespec __user *timeout,
2982 struct old_timespec32 __user *timeout32)
2983 {
2984 int datagrams;
2985 struct timespec64 timeout_sys;
2986
2987 if (timeout && get_timespec64(&timeout_sys, timeout))
2988 return -EFAULT;
2989
2990 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2991 return -EFAULT;
2992
2993 if (!timeout && !timeout32)
2994 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2995
2996 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2997
2998 if (datagrams <= 0)
2999 return datagrams;
3000
3001 if (timeout && put_timespec64(&timeout_sys, timeout))
3002 datagrams = -EFAULT;
3003
3004 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3005 datagrams = -EFAULT;
3006
3007 return datagrams;
3008 }
3009
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3010 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3011 unsigned int, vlen, unsigned int, flags,
3012 struct __kernel_timespec __user *, timeout)
3013 {
3014 if (flags & MSG_CMSG_COMPAT)
3015 return -EINVAL;
3016
3017 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3018 }
3019
3020 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3021 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3022 unsigned int, vlen, unsigned int, flags,
3023 struct old_timespec32 __user *, timeout)
3024 {
3025 if (flags & MSG_CMSG_COMPAT)
3026 return -EINVAL;
3027
3028 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3029 }
3030 #endif
3031
3032 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3033 /* Argument list sizes for sys_socketcall */
3034 #define AL(x) ((x) * sizeof(unsigned long))
3035 static const unsigned char nargs[21] = {
3036 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3037 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3038 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3039 AL(4), AL(5), AL(4)
3040 };
3041
3042 #undef AL
3043
3044 /*
3045 * System call vectors.
3046 *
3047 * Argument checking cleaned up. Saved 20% in size.
3048 * This function doesn't need to set the kernel lock because
3049 * it is set by the callees.
3050 */
3051
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3052 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3053 {
3054 unsigned long a[AUDITSC_ARGS];
3055 unsigned long a0, a1;
3056 int err;
3057 unsigned int len;
3058
3059 if (call < 1 || call > SYS_SENDMMSG)
3060 return -EINVAL;
3061 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3062
3063 len = nargs[call];
3064 if (len > sizeof(a))
3065 return -EINVAL;
3066
3067 /* copy_from_user should be SMP safe. */
3068 if (copy_from_user(a, args, len))
3069 return -EFAULT;
3070
3071 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3072 if (err)
3073 return err;
3074
3075 a0 = a[0];
3076 a1 = a[1];
3077
3078 switch (call) {
3079 case SYS_SOCKET:
3080 err = __sys_socket(a0, a1, a[2]);
3081 break;
3082 case SYS_BIND:
3083 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3084 break;
3085 case SYS_CONNECT:
3086 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3087 break;
3088 case SYS_LISTEN:
3089 err = __sys_listen(a0, a1);
3090 break;
3091 case SYS_ACCEPT:
3092 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3093 (int __user *)a[2], 0);
3094 break;
3095 case SYS_GETSOCKNAME:
3096 err =
3097 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3098 (int __user *)a[2]);
3099 break;
3100 case SYS_GETPEERNAME:
3101 err =
3102 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3103 (int __user *)a[2]);
3104 break;
3105 case SYS_SOCKETPAIR:
3106 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3107 break;
3108 case SYS_SEND:
3109 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3110 NULL, 0);
3111 break;
3112 case SYS_SENDTO:
3113 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3114 (struct sockaddr __user *)a[4], a[5]);
3115 break;
3116 case SYS_RECV:
3117 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3118 NULL, NULL);
3119 break;
3120 case SYS_RECVFROM:
3121 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3122 (struct sockaddr __user *)a[4],
3123 (int __user *)a[5]);
3124 break;
3125 case SYS_SHUTDOWN:
3126 err = __sys_shutdown(a0, a1);
3127 break;
3128 case SYS_SETSOCKOPT:
3129 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3130 a[4]);
3131 break;
3132 case SYS_GETSOCKOPT:
3133 err =
3134 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3135 (int __user *)a[4]);
3136 break;
3137 case SYS_SENDMSG:
3138 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3139 a[2], true);
3140 break;
3141 case SYS_SENDMMSG:
3142 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3143 a[3], true);
3144 break;
3145 case SYS_RECVMSG:
3146 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3147 a[2], true);
3148 break;
3149 case SYS_RECVMMSG:
3150 if (IS_ENABLED(CONFIG_64BIT))
3151 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3152 a[2], a[3],
3153 (struct __kernel_timespec __user *)a[4],
3154 NULL);
3155 else
3156 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3157 a[2], a[3], NULL,
3158 (struct old_timespec32 __user *)a[4]);
3159 break;
3160 case SYS_ACCEPT4:
3161 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3162 (int __user *)a[2], a[3]);
3163 break;
3164 default:
3165 err = -EINVAL;
3166 break;
3167 }
3168 return err;
3169 }
3170
3171 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3172
3173 /**
3174 * sock_register - add a socket protocol handler
3175 * @ops: description of protocol
3176 *
3177 * This function is called by a protocol handler that wants to
3178 * advertise its address family, and have it linked into the
3179 * socket interface. The value ops->family corresponds to the
3180 * socket system call protocol family.
3181 */
sock_register(const struct net_proto_family * ops)3182 int sock_register(const struct net_proto_family *ops)
3183 {
3184 int err;
3185
3186 if (ops->family >= NPROTO) {
3187 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3188 return -ENOBUFS;
3189 }
3190
3191 spin_lock(&net_family_lock);
3192 if (rcu_dereference_protected(net_families[ops->family],
3193 lockdep_is_held(&net_family_lock)))
3194 err = -EEXIST;
3195 else {
3196 rcu_assign_pointer(net_families[ops->family], ops);
3197 err = 0;
3198 }
3199 spin_unlock(&net_family_lock);
3200
3201 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3202 return err;
3203 }
3204 EXPORT_SYMBOL(sock_register);
3205
3206 /**
3207 * sock_unregister - remove a protocol handler
3208 * @family: protocol family to remove
3209 *
3210 * This function is called by a protocol handler that wants to
3211 * remove its address family, and have it unlinked from the
3212 * new socket creation.
3213 *
3214 * If protocol handler is a module, then it can use module reference
3215 * counts to protect against new references. If protocol handler is not
3216 * a module then it needs to provide its own protection in
3217 * the ops->create routine.
3218 */
sock_unregister(int family)3219 void sock_unregister(int family)
3220 {
3221 BUG_ON(family < 0 || family >= NPROTO);
3222
3223 spin_lock(&net_family_lock);
3224 RCU_INIT_POINTER(net_families[family], NULL);
3225 spin_unlock(&net_family_lock);
3226
3227 synchronize_rcu();
3228
3229 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3230 }
3231 EXPORT_SYMBOL(sock_unregister);
3232
sock_is_registered(int family)3233 bool sock_is_registered(int family)
3234 {
3235 return family < NPROTO && rcu_access_pointer(net_families[family]);
3236 }
3237
sock_init(void)3238 static int __init sock_init(void)
3239 {
3240 int err;
3241 /*
3242 * Initialize the network sysctl infrastructure.
3243 */
3244 err = net_sysctl_init();
3245 if (err)
3246 goto out;
3247
3248 /*
3249 * Initialize skbuff SLAB cache
3250 */
3251 skb_init();
3252
3253 /*
3254 * Initialize the protocols module.
3255 */
3256
3257 init_inodecache();
3258
3259 err = register_filesystem(&sock_fs_type);
3260 if (err)
3261 goto out;
3262 sock_mnt = kern_mount(&sock_fs_type);
3263 if (IS_ERR(sock_mnt)) {
3264 err = PTR_ERR(sock_mnt);
3265 goto out_mount;
3266 }
3267
3268 /* The real protocol initialization is performed in later initcalls.
3269 */
3270
3271 #ifdef CONFIG_NETFILTER
3272 err = netfilter_init();
3273 if (err)
3274 goto out;
3275 #endif
3276
3277 ptp_classifier_init();
3278
3279 out:
3280 return err;
3281
3282 out_mount:
3283 unregister_filesystem(&sock_fs_type);
3284 goto out;
3285 }
3286
3287 core_initcall(sock_init); /* early initcall */
3288
3289 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3290 void socket_seq_show(struct seq_file *seq)
3291 {
3292 seq_printf(seq, "sockets: used %d\n",
3293 sock_inuse_get(seq->private));
3294 }
3295 #endif /* CONFIG_PROC_FS */
3296
3297 /* Handle the fact that while struct ifreq has the same *layout* on
3298 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3299 * which are handled elsewhere, it still has different *size* due to
3300 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3301 * resulting in struct ifreq being 32 and 40 bytes respectively).
3302 * As a result, if the struct happens to be at the end of a page and
3303 * the next page isn't readable/writable, we get a fault. To prevent
3304 * that, copy back and forth to the full size.
3305 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3306 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3307 {
3308 if (in_compat_syscall()) {
3309 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3310
3311 memset(ifr, 0, sizeof(*ifr));
3312 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3313 return -EFAULT;
3314
3315 if (ifrdata)
3316 *ifrdata = compat_ptr(ifr32->ifr_data);
3317
3318 return 0;
3319 }
3320
3321 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3322 return -EFAULT;
3323
3324 if (ifrdata)
3325 *ifrdata = ifr->ifr_data;
3326
3327 return 0;
3328 }
3329 EXPORT_SYMBOL(get_user_ifreq);
3330
put_user_ifreq(struct ifreq * ifr,void __user * arg)3331 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3332 {
3333 size_t size = sizeof(*ifr);
3334
3335 if (in_compat_syscall())
3336 size = sizeof(struct compat_ifreq);
3337
3338 if (copy_to_user(arg, ifr, size))
3339 return -EFAULT;
3340
3341 return 0;
3342 }
3343 EXPORT_SYMBOL(put_user_ifreq);
3344
3345 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3346 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3347 {
3348 compat_uptr_t uptr32;
3349 struct ifreq ifr;
3350 void __user *saved;
3351 int err;
3352
3353 if (get_user_ifreq(&ifr, NULL, uifr32))
3354 return -EFAULT;
3355
3356 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3357 return -EFAULT;
3358
3359 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3360 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3361
3362 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3363 if (!err) {
3364 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3365 if (put_user_ifreq(&ifr, uifr32))
3366 err = -EFAULT;
3367 }
3368 return err;
3369 }
3370
3371 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3372 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3373 struct compat_ifreq __user *u_ifreq32)
3374 {
3375 struct ifreq ifreq;
3376 void __user *data;
3377
3378 if (!is_socket_ioctl_cmd(cmd))
3379 return -ENOTTY;
3380 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3381 return -EFAULT;
3382 ifreq.ifr_data = data;
3383
3384 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3385 }
3386
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3387 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3388 unsigned int cmd, unsigned long arg)
3389 {
3390 void __user *argp = compat_ptr(arg);
3391 struct sock *sk = sock->sk;
3392 struct net *net = sock_net(sk);
3393 const struct proto_ops *ops;
3394
3395 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3396 return sock_ioctl(file, cmd, (unsigned long)argp);
3397
3398 switch (cmd) {
3399 case SIOCWANDEV:
3400 return compat_siocwandev(net, argp);
3401 case SIOCGSTAMP_OLD:
3402 case SIOCGSTAMPNS_OLD:
3403 ops = READ_ONCE(sock->ops);
3404 if (!ops->gettstamp)
3405 return -ENOIOCTLCMD;
3406 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3407 !COMPAT_USE_64BIT_TIME);
3408
3409 case SIOCETHTOOL:
3410 case SIOCBONDSLAVEINFOQUERY:
3411 case SIOCBONDINFOQUERY:
3412 case SIOCSHWTSTAMP:
3413 case SIOCGHWTSTAMP:
3414 return compat_ifr_data_ioctl(net, cmd, argp);
3415
3416 case FIOSETOWN:
3417 case SIOCSPGRP:
3418 case FIOGETOWN:
3419 case SIOCGPGRP:
3420 case SIOCBRADDBR:
3421 case SIOCBRDELBR:
3422 case SIOCGIFVLAN:
3423 case SIOCSIFVLAN:
3424 case SIOCGSKNS:
3425 case SIOCGSTAMP_NEW:
3426 case SIOCGSTAMPNS_NEW:
3427 case SIOCGIFCONF:
3428 case SIOCSIFBR:
3429 case SIOCGIFBR:
3430 return sock_ioctl(file, cmd, arg);
3431
3432 case SIOCGIFFLAGS:
3433 case SIOCSIFFLAGS:
3434 case SIOCGIFMAP:
3435 case SIOCSIFMAP:
3436 case SIOCGIFMETRIC:
3437 case SIOCSIFMETRIC:
3438 case SIOCGIFMTU:
3439 case SIOCSIFMTU:
3440 case SIOCGIFMEM:
3441 case SIOCSIFMEM:
3442 case SIOCGIFHWADDR:
3443 case SIOCSIFHWADDR:
3444 case SIOCADDMULTI:
3445 case SIOCDELMULTI:
3446 case SIOCGIFINDEX:
3447 case SIOCGIFADDR:
3448 case SIOCSIFADDR:
3449 case SIOCSIFHWBROADCAST:
3450 case SIOCDIFADDR:
3451 case SIOCGIFBRDADDR:
3452 case SIOCSIFBRDADDR:
3453 case SIOCGIFDSTADDR:
3454 case SIOCSIFDSTADDR:
3455 case SIOCGIFNETMASK:
3456 case SIOCSIFNETMASK:
3457 case SIOCSIFPFLAGS:
3458 case SIOCGIFPFLAGS:
3459 case SIOCGIFTXQLEN:
3460 case SIOCSIFTXQLEN:
3461 case SIOCBRADDIF:
3462 case SIOCBRDELIF:
3463 case SIOCGIFNAME:
3464 case SIOCSIFNAME:
3465 case SIOCGMIIPHY:
3466 case SIOCGMIIREG:
3467 case SIOCSMIIREG:
3468 case SIOCBONDENSLAVE:
3469 case SIOCBONDRELEASE:
3470 case SIOCBONDSETHWADDR:
3471 case SIOCBONDCHANGEACTIVE:
3472 case SIOCSARP:
3473 case SIOCGARP:
3474 case SIOCDARP:
3475 case SIOCOUTQ:
3476 case SIOCOUTQNSD:
3477 case SIOCATMARK:
3478 return sock_do_ioctl(net, sock, cmd, arg);
3479 }
3480
3481 return -ENOIOCTLCMD;
3482 }
3483
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3484 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3485 unsigned long arg)
3486 {
3487 struct socket *sock = file->private_data;
3488 const struct proto_ops *ops = READ_ONCE(sock->ops);
3489 int ret = -ENOIOCTLCMD;
3490 struct sock *sk;
3491 struct net *net;
3492
3493 sk = sock->sk;
3494 net = sock_net(sk);
3495
3496 if (ops->compat_ioctl)
3497 ret = ops->compat_ioctl(sock, cmd, arg);
3498
3499 if (ret == -ENOIOCTLCMD &&
3500 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3501 ret = compat_wext_handle_ioctl(net, cmd, arg);
3502
3503 if (ret == -ENOIOCTLCMD)
3504 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3505
3506 return ret;
3507 }
3508 #endif
3509
3510 /**
3511 * kernel_bind - bind an address to a socket (kernel space)
3512 * @sock: socket
3513 * @addr: address
3514 * @addrlen: length of address
3515 *
3516 * Returns 0 or an error.
3517 */
3518
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3519 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3520 {
3521 struct sockaddr_storage address;
3522
3523 memcpy(&address, addr, addrlen);
3524
3525 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3526 addrlen);
3527 }
3528 EXPORT_SYMBOL(kernel_bind);
3529
3530 /**
3531 * kernel_listen - move socket to listening state (kernel space)
3532 * @sock: socket
3533 * @backlog: pending connections queue size
3534 *
3535 * Returns 0 or an error.
3536 */
3537
kernel_listen(struct socket * sock,int backlog)3538 int kernel_listen(struct socket *sock, int backlog)
3539 {
3540 return READ_ONCE(sock->ops)->listen(sock, backlog);
3541 }
3542 EXPORT_SYMBOL(kernel_listen);
3543
3544 /**
3545 * kernel_accept - accept a connection (kernel space)
3546 * @sock: listening socket
3547 * @newsock: new connected socket
3548 * @flags: flags
3549 *
3550 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3551 * If it fails, @newsock is guaranteed to be %NULL.
3552 * Returns 0 or an error.
3553 */
3554
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3555 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3556 {
3557 struct sock *sk = sock->sk;
3558 const struct proto_ops *ops = READ_ONCE(sock->ops);
3559 int err;
3560
3561 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3562 newsock);
3563 if (err < 0)
3564 goto done;
3565
3566 err = ops->accept(sock, *newsock, flags, true);
3567 if (err < 0) {
3568 sock_release(*newsock);
3569 *newsock = NULL;
3570 goto done;
3571 }
3572
3573 (*newsock)->ops = ops;
3574 __module_get(ops->owner);
3575
3576 done:
3577 return err;
3578 }
3579 EXPORT_SYMBOL(kernel_accept);
3580
3581 /**
3582 * kernel_connect - connect a socket (kernel space)
3583 * @sock: socket
3584 * @addr: address
3585 * @addrlen: address length
3586 * @flags: flags (O_NONBLOCK, ...)
3587 *
3588 * For datagram sockets, @addr is the address to which datagrams are sent
3589 * by default, and the only address from which datagrams are received.
3590 * For stream sockets, attempts to connect to @addr.
3591 * Returns 0 or an error code.
3592 */
3593
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3594 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3595 int flags)
3596 {
3597 struct sockaddr_storage address;
3598
3599 memcpy(&address, addr, addrlen);
3600
3601 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3602 addrlen, flags);
3603 }
3604 EXPORT_SYMBOL(kernel_connect);
3605
3606 /**
3607 * kernel_getsockname - get the address which the socket is bound (kernel space)
3608 * @sock: socket
3609 * @addr: address holder
3610 *
3611 * Fills the @addr pointer with the address which the socket is bound.
3612 * Returns the length of the address in bytes or an error code.
3613 */
3614
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3615 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3616 {
3617 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3618 }
3619 EXPORT_SYMBOL(kernel_getsockname);
3620
3621 /**
3622 * kernel_getpeername - get the address which the socket is connected (kernel space)
3623 * @sock: socket
3624 * @addr: address holder
3625 *
3626 * Fills the @addr pointer with the address which the socket is connected.
3627 * Returns the length of the address in bytes or an error code.
3628 */
3629
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3630 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3631 {
3632 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3633 }
3634 EXPORT_SYMBOL(kernel_getpeername);
3635
3636 /**
3637 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3638 * @sock: socket
3639 * @how: connection part
3640 *
3641 * Returns 0 or an error.
3642 */
3643
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3644 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3645 {
3646 return READ_ONCE(sock->ops)->shutdown(sock, how);
3647 }
3648 EXPORT_SYMBOL(kernel_sock_shutdown);
3649
3650 /**
3651 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3652 * @sk: socket
3653 *
3654 * This routine returns the IP overhead imposed by a socket i.e.
3655 * the length of the underlying IP header, depending on whether
3656 * this is an IPv4 or IPv6 socket and the length from IP options turned
3657 * on at the socket. Assumes that the caller has a lock on the socket.
3658 */
3659
kernel_sock_ip_overhead(struct sock * sk)3660 u32 kernel_sock_ip_overhead(struct sock *sk)
3661 {
3662 struct inet_sock *inet;
3663 struct ip_options_rcu *opt;
3664 u32 overhead = 0;
3665 #if IS_ENABLED(CONFIG_IPV6)
3666 struct ipv6_pinfo *np;
3667 struct ipv6_txoptions *optv6 = NULL;
3668 #endif /* IS_ENABLED(CONFIG_IPV6) */
3669
3670 if (!sk)
3671 return overhead;
3672
3673 switch (sk->sk_family) {
3674 case AF_INET:
3675 inet = inet_sk(sk);
3676 overhead += sizeof(struct iphdr);
3677 opt = rcu_dereference_protected(inet->inet_opt,
3678 sock_owned_by_user(sk));
3679 if (opt)
3680 overhead += opt->opt.optlen;
3681 return overhead;
3682 #if IS_ENABLED(CONFIG_IPV6)
3683 case AF_INET6:
3684 np = inet6_sk(sk);
3685 overhead += sizeof(struct ipv6hdr);
3686 if (np)
3687 optv6 = rcu_dereference_protected(np->opt,
3688 sock_owned_by_user(sk));
3689 if (optv6)
3690 overhead += (optv6->opt_flen + optv6->opt_nflen);
3691 return overhead;
3692 #endif /* IS_ENABLED(CONFIG_IPV6) */
3693 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3694 return overhead;
3695 }
3696 }
3697 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3698