1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers, basic process system calls
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52 
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54 
55 EXPORT_SYMBOL(jiffies_64);
56 
57 /*
58  * per-CPU timer vector definitions:
59  */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 
67 struct tvec {
68 	struct list_head vec[TVN_SIZE];
69 };
70 
71 struct tvec_root {
72 	struct list_head vec[TVR_SIZE];
73 };
74 
75 struct tvec_base {
76 	spinlock_t lock;
77 	struct timer_list *running_timer;
78 	unsigned long timer_jiffies;
79 	unsigned long next_timer;
80 	struct tvec_root tv1;
81 	struct tvec tv2;
82 	struct tvec tv3;
83 	struct tvec tv4;
84 	struct tvec tv5;
85 } ____cacheline_aligned;
86 
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90 
91 /* Functions below help us manage 'deferrable' flag */
tbase_get_deferrable(struct tvec_base * base)92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96 
tbase_get_base(struct tvec_base * base)97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101 
timer_set_deferrable(struct timer_list * timer)102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 	timer->base = TBASE_MAKE_DEFERRED(timer->base);
105 }
106 
107 static inline void
timer_set_base(struct timer_list * timer,struct tvec_base * new_base)108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109 {
110 	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 				      tbase_get_deferrable(timer->base));
112 }
113 
round_jiffies_common(unsigned long j,int cpu,bool force_up)114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 		bool force_up)
116 {
117 	int rem;
118 	unsigned long original = j;
119 
120 	/*
121 	 * We don't want all cpus firing their timers at once hitting the
122 	 * same lock or cachelines, so we skew each extra cpu with an extra
123 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 	 * already did this.
125 	 * The skew is done by adding 3*cpunr, then round, then subtract this
126 	 * extra offset again.
127 	 */
128 	j += cpu * 3;
129 
130 	rem = j % HZ;
131 
132 	/*
133 	 * If the target jiffie is just after a whole second (which can happen
134 	 * due to delays of the timer irq, long irq off times etc etc) then
135 	 * we should round down to the whole second, not up. Use 1/4th second
136 	 * as cutoff for this rounding as an extreme upper bound for this.
137 	 * But never round down if @force_up is set.
138 	 */
139 	if (rem < HZ/4 && !force_up) /* round down */
140 		j = j - rem;
141 	else /* round up */
142 		j = j - rem + HZ;
143 
144 	/* now that we have rounded, subtract the extra skew again */
145 	j -= cpu * 3;
146 
147 	if (j <= jiffies) /* rounding ate our timeout entirely; */
148 		return original;
149 	return j;
150 }
151 
152 /**
153  * __round_jiffies - function to round jiffies to a full second
154  * @j: the time in (absolute) jiffies that should be rounded
155  * @cpu: the processor number on which the timeout will happen
156  *
157  * __round_jiffies() rounds an absolute time in the future (in jiffies)
158  * up or down to (approximately) full seconds. This is useful for timers
159  * for which the exact time they fire does not matter too much, as long as
160  * they fire approximately every X seconds.
161  *
162  * By rounding these timers to whole seconds, all such timers will fire
163  * at the same time, rather than at various times spread out. The goal
164  * of this is to have the CPU wake up less, which saves power.
165  *
166  * The exact rounding is skewed for each processor to avoid all
167  * processors firing at the exact same time, which could lead
168  * to lock contention or spurious cache line bouncing.
169  *
170  * The return value is the rounded version of the @j parameter.
171  */
__round_jiffies(unsigned long j,int cpu)172 unsigned long __round_jiffies(unsigned long j, int cpu)
173 {
174 	return round_jiffies_common(j, cpu, false);
175 }
176 EXPORT_SYMBOL_GPL(__round_jiffies);
177 
178 /**
179  * __round_jiffies_relative - function to round jiffies to a full second
180  * @j: the time in (relative) jiffies that should be rounded
181  * @cpu: the processor number on which the timeout will happen
182  *
183  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
184  * up or down to (approximately) full seconds. This is useful for timers
185  * for which the exact time they fire does not matter too much, as long as
186  * they fire approximately every X seconds.
187  *
188  * By rounding these timers to whole seconds, all such timers will fire
189  * at the same time, rather than at various times spread out. The goal
190  * of this is to have the CPU wake up less, which saves power.
191  *
192  * The exact rounding is skewed for each processor to avoid all
193  * processors firing at the exact same time, which could lead
194  * to lock contention or spurious cache line bouncing.
195  *
196  * The return value is the rounded version of the @j parameter.
197  */
__round_jiffies_relative(unsigned long j,int cpu)198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199 {
200 	unsigned long j0 = jiffies;
201 
202 	/* Use j0 because jiffies might change while we run */
203 	return round_jiffies_common(j + j0, cpu, false) - j0;
204 }
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206 
207 /**
208  * round_jiffies - function to round jiffies to a full second
209  * @j: the time in (absolute) jiffies that should be rounded
210  *
211  * round_jiffies() rounds an absolute time in the future (in jiffies)
212  * up or down to (approximately) full seconds. This is useful for timers
213  * for which the exact time they fire does not matter too much, as long as
214  * they fire approximately every X seconds.
215  *
216  * By rounding these timers to whole seconds, all such timers will fire
217  * at the same time, rather than at various times spread out. The goal
218  * of this is to have the CPU wake up less, which saves power.
219  *
220  * The return value is the rounded version of the @j parameter.
221  */
round_jiffies(unsigned long j)222 unsigned long round_jiffies(unsigned long j)
223 {
224 	return round_jiffies_common(j, raw_smp_processor_id(), false);
225 }
226 EXPORT_SYMBOL_GPL(round_jiffies);
227 
228 /**
229  * round_jiffies_relative - function to round jiffies to a full second
230  * @j: the time in (relative) jiffies that should be rounded
231  *
232  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
233  * up or down to (approximately) full seconds. This is useful for timers
234  * for which the exact time they fire does not matter too much, as long as
235  * they fire approximately every X seconds.
236  *
237  * By rounding these timers to whole seconds, all such timers will fire
238  * at the same time, rather than at various times spread out. The goal
239  * of this is to have the CPU wake up less, which saves power.
240  *
241  * The return value is the rounded version of the @j parameter.
242  */
round_jiffies_relative(unsigned long j)243 unsigned long round_jiffies_relative(unsigned long j)
244 {
245 	return __round_jiffies_relative(j, raw_smp_processor_id());
246 }
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
248 
249 /**
250  * __round_jiffies_up - function to round jiffies up to a full second
251  * @j: the time in (absolute) jiffies that should be rounded
252  * @cpu: the processor number on which the timeout will happen
253  *
254  * This is the same as __round_jiffies() except that it will never
255  * round down.  This is useful for timeouts for which the exact time
256  * of firing does not matter too much, as long as they don't fire too
257  * early.
258  */
__round_jiffies_up(unsigned long j,int cpu)259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
260 {
261 	return round_jiffies_common(j, cpu, true);
262 }
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
264 
265 /**
266  * __round_jiffies_up_relative - function to round jiffies up to a full second
267  * @j: the time in (relative) jiffies that should be rounded
268  * @cpu: the processor number on which the timeout will happen
269  *
270  * This is the same as __round_jiffies_relative() except that it will never
271  * round down.  This is useful for timeouts for which the exact time
272  * of firing does not matter too much, as long as they don't fire too
273  * early.
274  */
__round_jiffies_up_relative(unsigned long j,int cpu)275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276 {
277 	unsigned long j0 = jiffies;
278 
279 	/* Use j0 because jiffies might change while we run */
280 	return round_jiffies_common(j + j0, cpu, true) - j0;
281 }
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283 
284 /**
285  * round_jiffies_up - function to round jiffies up to a full second
286  * @j: the time in (absolute) jiffies that should be rounded
287  *
288  * This is the same as round_jiffies() except that it will never
289  * round down.  This is useful for timeouts for which the exact time
290  * of firing does not matter too much, as long as they don't fire too
291  * early.
292  */
round_jiffies_up(unsigned long j)293 unsigned long round_jiffies_up(unsigned long j)
294 {
295 	return round_jiffies_common(j, raw_smp_processor_id(), true);
296 }
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
298 
299 /**
300  * round_jiffies_up_relative - function to round jiffies up to a full second
301  * @j: the time in (relative) jiffies that should be rounded
302  *
303  * This is the same as round_jiffies_relative() except that it will never
304  * round down.  This is useful for timeouts for which the exact time
305  * of firing does not matter too much, as long as they don't fire too
306  * early.
307  */
round_jiffies_up_relative(unsigned long j)308 unsigned long round_jiffies_up_relative(unsigned long j)
309 {
310 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
311 }
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313 
314 /**
315  * set_timer_slack - set the allowed slack for a timer
316  * @timer: the timer to be modified
317  * @slack_hz: the amount of time (in jiffies) allowed for rounding
318  *
319  * Set the amount of time, in jiffies, that a certain timer has
320  * in terms of slack. By setting this value, the timer subsystem
321  * will schedule the actual timer somewhere between
322  * the time mod_timer() asks for, and that time plus the slack.
323  *
324  * By setting the slack to -1, a percentage of the delay is used
325  * instead.
326  */
set_timer_slack(struct timer_list * timer,int slack_hz)327 void set_timer_slack(struct timer_list *timer, int slack_hz)
328 {
329 	timer->slack = slack_hz;
330 }
331 EXPORT_SYMBOL_GPL(set_timer_slack);
332 
internal_add_timer(struct tvec_base * base,struct timer_list * timer)333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
334 {
335 	unsigned long expires = timer->expires;
336 	unsigned long idx = expires - base->timer_jiffies;
337 	struct list_head *vec;
338 
339 	if (idx < TVR_SIZE) {
340 		int i = expires & TVR_MASK;
341 		vec = base->tv1.vec + i;
342 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 		int i = (expires >> TVR_BITS) & TVN_MASK;
344 		vec = base->tv2.vec + i;
345 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 		vec = base->tv3.vec + i;
348 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 		vec = base->tv4.vec + i;
351 	} else if ((signed long) idx < 0) {
352 		/*
353 		 * Can happen if you add a timer with expires == jiffies,
354 		 * or you set a timer to go off in the past
355 		 */
356 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 	} else {
358 		int i;
359 		/* If the timeout is larger than 0xffffffff on 64-bit
360 		 * architectures then we use the maximum timeout:
361 		 */
362 		if (idx > 0xffffffffUL) {
363 			idx = 0xffffffffUL;
364 			expires = idx + base->timer_jiffies;
365 		}
366 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 		vec = base->tv5.vec + i;
368 	}
369 	/*
370 	 * Timers are FIFO:
371 	 */
372 	list_add_tail(&timer->entry, vec);
373 }
374 
375 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377 {
378 	if (timer->start_site)
379 		return;
380 
381 	timer->start_site = addr;
382 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 	timer->start_pid = current->pid;
384 }
385 
timer_stats_account_timer(struct timer_list * timer)386 static void timer_stats_account_timer(struct timer_list *timer)
387 {
388 	unsigned int flag = 0;
389 
390 	if (likely(!timer->start_site))
391 		return;
392 	if (unlikely(tbase_get_deferrable(timer->base)))
393 		flag |= TIMER_STATS_FLAG_DEFERRABLE;
394 
395 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 				 timer->function, timer->start_comm, flag);
397 }
398 
399 #else
timer_stats_account_timer(struct timer_list * timer)400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
402 
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404 
405 static struct debug_obj_descr timer_debug_descr;
406 
timer_debug_hint(void * addr)407 static void *timer_debug_hint(void *addr)
408 {
409 	return ((struct timer_list *) addr)->function;
410 }
411 
412 /*
413  * fixup_init is called when:
414  * - an active object is initialized
415  */
timer_fixup_init(void * addr,enum debug_obj_state state)416 static int timer_fixup_init(void *addr, enum debug_obj_state state)
417 {
418 	struct timer_list *timer = addr;
419 
420 	switch (state) {
421 	case ODEBUG_STATE_ACTIVE:
422 		del_timer_sync(timer);
423 		debug_object_init(timer, &timer_debug_descr);
424 		return 1;
425 	default:
426 		return 0;
427 	}
428 }
429 
430 /*
431  * fixup_activate is called when:
432  * - an active object is activated
433  * - an unknown object is activated (might be a statically initialized object)
434  */
timer_fixup_activate(void * addr,enum debug_obj_state state)435 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
436 {
437 	struct timer_list *timer = addr;
438 
439 	switch (state) {
440 
441 	case ODEBUG_STATE_NOTAVAILABLE:
442 		/*
443 		 * This is not really a fixup. The timer was
444 		 * statically initialized. We just make sure that it
445 		 * is tracked in the object tracker.
446 		 */
447 		if (timer->entry.next == NULL &&
448 		    timer->entry.prev == TIMER_ENTRY_STATIC) {
449 			debug_object_init(timer, &timer_debug_descr);
450 			debug_object_activate(timer, &timer_debug_descr);
451 			return 0;
452 		} else {
453 			WARN_ON_ONCE(1);
454 		}
455 		return 0;
456 
457 	case ODEBUG_STATE_ACTIVE:
458 		WARN_ON(1);
459 
460 	default:
461 		return 0;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
timer_fixup_free(void * addr,enum debug_obj_state state)469 static int timer_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct timer_list *timer = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		del_timer_sync(timer);
476 		debug_object_free(timer, &timer_debug_descr);
477 		return 1;
478 	default:
479 		return 0;
480 	}
481 }
482 
483 static struct debug_obj_descr timer_debug_descr = {
484 	.name		= "timer_list",
485 	.debug_hint	= timer_debug_hint,
486 	.fixup_init	= timer_fixup_init,
487 	.fixup_activate	= timer_fixup_activate,
488 	.fixup_free	= timer_fixup_free,
489 };
490 
debug_timer_init(struct timer_list * timer)491 static inline void debug_timer_init(struct timer_list *timer)
492 {
493 	debug_object_init(timer, &timer_debug_descr);
494 }
495 
debug_timer_activate(struct timer_list * timer)496 static inline void debug_timer_activate(struct timer_list *timer)
497 {
498 	debug_object_activate(timer, &timer_debug_descr);
499 }
500 
debug_timer_deactivate(struct timer_list * timer)501 static inline void debug_timer_deactivate(struct timer_list *timer)
502 {
503 	debug_object_deactivate(timer, &timer_debug_descr);
504 }
505 
debug_timer_free(struct timer_list * timer)506 static inline void debug_timer_free(struct timer_list *timer)
507 {
508 	debug_object_free(timer, &timer_debug_descr);
509 }
510 
511 static void __init_timer(struct timer_list *timer,
512 			 const char *name,
513 			 struct lock_class_key *key);
514 
init_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key)515 void init_timer_on_stack_key(struct timer_list *timer,
516 			     const char *name,
517 			     struct lock_class_key *key)
518 {
519 	debug_object_init_on_stack(timer, &timer_debug_descr);
520 	__init_timer(timer, name, key);
521 }
522 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
523 
destroy_timer_on_stack(struct timer_list * timer)524 void destroy_timer_on_stack(struct timer_list *timer)
525 {
526 	debug_object_free(timer, &timer_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
529 
530 #else
debug_timer_init(struct timer_list * timer)531 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)532 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)533 static inline void debug_timer_deactivate(struct timer_list *timer) { }
534 #endif
535 
debug_init(struct timer_list * timer)536 static inline void debug_init(struct timer_list *timer)
537 {
538 	debug_timer_init(timer);
539 	trace_timer_init(timer);
540 }
541 
542 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)543 debug_activate(struct timer_list *timer, unsigned long expires)
544 {
545 	debug_timer_activate(timer);
546 	trace_timer_start(timer, expires);
547 }
548 
debug_deactivate(struct timer_list * timer)549 static inline void debug_deactivate(struct timer_list *timer)
550 {
551 	debug_timer_deactivate(timer);
552 	trace_timer_cancel(timer);
553 }
554 
__init_timer(struct timer_list * timer,const char * name,struct lock_class_key * key)555 static void __init_timer(struct timer_list *timer,
556 			 const char *name,
557 			 struct lock_class_key *key)
558 {
559 	timer->entry.next = NULL;
560 	timer->base = __raw_get_cpu_var(tvec_bases);
561 	timer->slack = -1;
562 #ifdef CONFIG_TIMER_STATS
563 	timer->start_site = NULL;
564 	timer->start_pid = -1;
565 	memset(timer->start_comm, 0, TASK_COMM_LEN);
566 #endif
567 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
568 }
569 
setup_deferrable_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key,void (* function)(unsigned long),unsigned long data)570 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
571 					 const char *name,
572 					 struct lock_class_key *key,
573 					 void (*function)(unsigned long),
574 					 unsigned long data)
575 {
576 	timer->function = function;
577 	timer->data = data;
578 	init_timer_on_stack_key(timer, name, key);
579 	timer_set_deferrable(timer);
580 }
581 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
582 
583 /**
584  * init_timer_key - initialize a timer
585  * @timer: the timer to be initialized
586  * @name: name of the timer
587  * @key: lockdep class key of the fake lock used for tracking timer
588  *       sync lock dependencies
589  *
590  * init_timer_key() must be done to a timer prior calling *any* of the
591  * other timer functions.
592  */
init_timer_key(struct timer_list * timer,const char * name,struct lock_class_key * key)593 void init_timer_key(struct timer_list *timer,
594 		    const char *name,
595 		    struct lock_class_key *key)
596 {
597 	debug_init(timer);
598 	__init_timer(timer, name, key);
599 }
600 EXPORT_SYMBOL(init_timer_key);
601 
init_timer_deferrable_key(struct timer_list * timer,const char * name,struct lock_class_key * key)602 void init_timer_deferrable_key(struct timer_list *timer,
603 			       const char *name,
604 			       struct lock_class_key *key)
605 {
606 	init_timer_key(timer, name, key);
607 	timer_set_deferrable(timer);
608 }
609 EXPORT_SYMBOL(init_timer_deferrable_key);
610 
detach_timer(struct timer_list * timer,int clear_pending)611 static inline void detach_timer(struct timer_list *timer,
612 				int clear_pending)
613 {
614 	struct list_head *entry = &timer->entry;
615 
616 	debug_deactivate(timer);
617 
618 	__list_del(entry->prev, entry->next);
619 	if (clear_pending)
620 		entry->next = NULL;
621 	entry->prev = LIST_POISON2;
622 }
623 
624 /*
625  * We are using hashed locking: holding per_cpu(tvec_bases).lock
626  * means that all timers which are tied to this base via timer->base are
627  * locked, and the base itself is locked too.
628  *
629  * So __run_timers/migrate_timers can safely modify all timers which could
630  * be found on ->tvX lists.
631  *
632  * When the timer's base is locked, and the timer removed from list, it is
633  * possible to set timer->base = NULL and drop the lock: the timer remains
634  * locked.
635  */
lock_timer_base(struct timer_list * timer,unsigned long * flags)636 static struct tvec_base *lock_timer_base(struct timer_list *timer,
637 					unsigned long *flags)
638 	__acquires(timer->base->lock)
639 {
640 	struct tvec_base *base;
641 
642 	for (;;) {
643 		struct tvec_base *prelock_base = timer->base;
644 		base = tbase_get_base(prelock_base);
645 		if (likely(base != NULL)) {
646 			spin_lock_irqsave(&base->lock, *flags);
647 			if (likely(prelock_base == timer->base))
648 				return base;
649 			/* The timer has migrated to another CPU */
650 			spin_unlock_irqrestore(&base->lock, *flags);
651 		}
652 		cpu_relax();
653 	}
654 }
655 
656 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only,int pinned)657 __mod_timer(struct timer_list *timer, unsigned long expires,
658 						bool pending_only, int pinned)
659 {
660 	struct tvec_base *base, *new_base;
661 	unsigned long flags;
662 	int ret = 0 , cpu;
663 
664 	timer_stats_timer_set_start_info(timer);
665 	BUG_ON(!timer->function);
666 
667 	base = lock_timer_base(timer, &flags);
668 
669 	if (timer_pending(timer)) {
670 		detach_timer(timer, 0);
671 		if (timer->expires == base->next_timer &&
672 		    !tbase_get_deferrable(timer->base))
673 			base->next_timer = base->timer_jiffies;
674 		ret = 1;
675 	} else {
676 		if (pending_only)
677 			goto out_unlock;
678 	}
679 
680 	debug_activate(timer, expires);
681 
682 	cpu = smp_processor_id();
683 
684 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
685 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
686 		cpu = get_nohz_timer_target();
687 #endif
688 	new_base = per_cpu(tvec_bases, cpu);
689 
690 	if (base != new_base) {
691 		/*
692 		 * We are trying to schedule the timer on the local CPU.
693 		 * However we can't change timer's base while it is running,
694 		 * otherwise del_timer_sync() can't detect that the timer's
695 		 * handler yet has not finished. This also guarantees that
696 		 * the timer is serialized wrt itself.
697 		 */
698 		if (likely(base->running_timer != timer)) {
699 			/* See the comment in lock_timer_base() */
700 			timer_set_base(timer, NULL);
701 			spin_unlock(&base->lock);
702 			base = new_base;
703 			spin_lock(&base->lock);
704 			timer_set_base(timer, base);
705 		}
706 	}
707 
708 	timer->expires = expires;
709 	if (time_before(timer->expires, base->next_timer) &&
710 	    !tbase_get_deferrable(timer->base))
711 		base->next_timer = timer->expires;
712 	internal_add_timer(base, timer);
713 
714 out_unlock:
715 	spin_unlock_irqrestore(&base->lock, flags);
716 
717 	return ret;
718 }
719 
720 /**
721  * mod_timer_pending - modify a pending timer's timeout
722  * @timer: the pending timer to be modified
723  * @expires: new timeout in jiffies
724  *
725  * mod_timer_pending() is the same for pending timers as mod_timer(),
726  * but will not re-activate and modify already deleted timers.
727  *
728  * It is useful for unserialized use of timers.
729  */
mod_timer_pending(struct timer_list * timer,unsigned long expires)730 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
731 {
732 	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
733 }
734 EXPORT_SYMBOL(mod_timer_pending);
735 
736 /*
737  * Decide where to put the timer while taking the slack into account
738  *
739  * Algorithm:
740  *   1) calculate the maximum (absolute) time
741  *   2) calculate the highest bit where the expires and new max are different
742  *   3) use this bit to make a mask
743  *   4) use the bitmask to round down the maximum time, so that all last
744  *      bits are zeros
745  */
746 static inline
apply_slack(struct timer_list * timer,unsigned long expires)747 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
748 {
749 	unsigned long expires_limit, mask;
750 	int bit;
751 
752 	expires_limit = expires;
753 
754 	if (timer->slack >= 0) {
755 		expires_limit = expires + timer->slack;
756 	} else {
757 		unsigned long now = jiffies;
758 
759 		/* No slack, if already expired else auto slack 0.4% */
760 		if (time_after(expires, now))
761 			expires_limit = expires + (expires - now)/256;
762 	}
763 	mask = expires ^ expires_limit;
764 	if (mask == 0)
765 		return expires;
766 
767 	bit = find_last_bit(&mask, BITS_PER_LONG);
768 
769 	mask = (1 << bit) - 1;
770 
771 	expires_limit = expires_limit & ~(mask);
772 
773 	return expires_limit;
774 }
775 
776 /**
777  * mod_timer - modify a timer's timeout
778  * @timer: the timer to be modified
779  * @expires: new timeout in jiffies
780  *
781  * mod_timer() is a more efficient way to update the expire field of an
782  * active timer (if the timer is inactive it will be activated)
783  *
784  * mod_timer(timer, expires) is equivalent to:
785  *
786  *     del_timer(timer); timer->expires = expires; add_timer(timer);
787  *
788  * Note that if there are multiple unserialized concurrent users of the
789  * same timer, then mod_timer() is the only safe way to modify the timeout,
790  * since add_timer() cannot modify an already running timer.
791  *
792  * The function returns whether it has modified a pending timer or not.
793  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
794  * active timer returns 1.)
795  */
mod_timer(struct timer_list * timer,unsigned long expires)796 int mod_timer(struct timer_list *timer, unsigned long expires)
797 {
798 	/*
799 	 * This is a common optimization triggered by the
800 	 * networking code - if the timer is re-modified
801 	 * to be the same thing then just return:
802 	 */
803 	if (timer_pending(timer) && timer->expires == expires)
804 		return 1;
805 
806 	expires = apply_slack(timer, expires);
807 
808 	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
809 }
810 EXPORT_SYMBOL(mod_timer);
811 
812 /**
813  * mod_timer_pinned - modify a timer's timeout
814  * @timer: the timer to be modified
815  * @expires: new timeout in jiffies
816  *
817  * mod_timer_pinned() is a way to update the expire field of an
818  * active timer (if the timer is inactive it will be activated)
819  * and not allow the timer to be migrated to a different CPU.
820  *
821  * mod_timer_pinned(timer, expires) is equivalent to:
822  *
823  *     del_timer(timer); timer->expires = expires; add_timer(timer);
824  */
mod_timer_pinned(struct timer_list * timer,unsigned long expires)825 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
826 {
827 	if (timer->expires == expires && timer_pending(timer))
828 		return 1;
829 
830 	return __mod_timer(timer, expires, false, TIMER_PINNED);
831 }
832 EXPORT_SYMBOL(mod_timer_pinned);
833 
834 /**
835  * add_timer - start a timer
836  * @timer: the timer to be added
837  *
838  * The kernel will do a ->function(->data) callback from the
839  * timer interrupt at the ->expires point in the future. The
840  * current time is 'jiffies'.
841  *
842  * The timer's ->expires, ->function (and if the handler uses it, ->data)
843  * fields must be set prior calling this function.
844  *
845  * Timers with an ->expires field in the past will be executed in the next
846  * timer tick.
847  */
add_timer(struct timer_list * timer)848 void add_timer(struct timer_list *timer)
849 {
850 	BUG_ON(timer_pending(timer));
851 	mod_timer(timer, timer->expires);
852 }
853 EXPORT_SYMBOL(add_timer);
854 
855 /**
856  * add_timer_on - start a timer on a particular CPU
857  * @timer: the timer to be added
858  * @cpu: the CPU to start it on
859  *
860  * This is not very scalable on SMP. Double adds are not possible.
861  */
add_timer_on(struct timer_list * timer,int cpu)862 void add_timer_on(struct timer_list *timer, int cpu)
863 {
864 	struct tvec_base *base = per_cpu(tvec_bases, cpu);
865 	unsigned long flags;
866 
867 	timer_stats_timer_set_start_info(timer);
868 	BUG_ON(timer_pending(timer) || !timer->function);
869 	spin_lock_irqsave(&base->lock, flags);
870 	timer_set_base(timer, base);
871 	debug_activate(timer, timer->expires);
872 	if (time_before(timer->expires, base->next_timer) &&
873 	    !tbase_get_deferrable(timer->base))
874 		base->next_timer = timer->expires;
875 	internal_add_timer(base, timer);
876 	/*
877 	 * Check whether the other CPU is idle and needs to be
878 	 * triggered to reevaluate the timer wheel when nohz is
879 	 * active. We are protected against the other CPU fiddling
880 	 * with the timer by holding the timer base lock. This also
881 	 * makes sure that a CPU on the way to idle can not evaluate
882 	 * the timer wheel.
883 	 */
884 	wake_up_idle_cpu(cpu);
885 	spin_unlock_irqrestore(&base->lock, flags);
886 }
887 EXPORT_SYMBOL_GPL(add_timer_on);
888 
889 /**
890  * del_timer - deactive a timer.
891  * @timer: the timer to be deactivated
892  *
893  * del_timer() deactivates a timer - this works on both active and inactive
894  * timers.
895  *
896  * The function returns whether it has deactivated a pending timer or not.
897  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
898  * active timer returns 1.)
899  */
del_timer(struct timer_list * timer)900 int del_timer(struct timer_list *timer)
901 {
902 	struct tvec_base *base;
903 	unsigned long flags;
904 	int ret = 0;
905 
906 	timer_stats_timer_clear_start_info(timer);
907 	if (timer_pending(timer)) {
908 		base = lock_timer_base(timer, &flags);
909 		if (timer_pending(timer)) {
910 			detach_timer(timer, 1);
911 			if (timer->expires == base->next_timer &&
912 			    !tbase_get_deferrable(timer->base))
913 				base->next_timer = base->timer_jiffies;
914 			ret = 1;
915 		}
916 		spin_unlock_irqrestore(&base->lock, flags);
917 	}
918 
919 	return ret;
920 }
921 EXPORT_SYMBOL(del_timer);
922 
923 /**
924  * try_to_del_timer_sync - Try to deactivate a timer
925  * @timer: timer do del
926  *
927  * This function tries to deactivate a timer. Upon successful (ret >= 0)
928  * exit the timer is not queued and the handler is not running on any CPU.
929  */
try_to_del_timer_sync(struct timer_list * timer)930 int try_to_del_timer_sync(struct timer_list *timer)
931 {
932 	struct tvec_base *base;
933 	unsigned long flags;
934 	int ret = -1;
935 
936 	base = lock_timer_base(timer, &flags);
937 
938 	if (base->running_timer == timer)
939 		goto out;
940 
941 	timer_stats_timer_clear_start_info(timer);
942 	ret = 0;
943 	if (timer_pending(timer)) {
944 		detach_timer(timer, 1);
945 		if (timer->expires == base->next_timer &&
946 		    !tbase_get_deferrable(timer->base))
947 			base->next_timer = base->timer_jiffies;
948 		ret = 1;
949 	}
950 out:
951 	spin_unlock_irqrestore(&base->lock, flags);
952 
953 	return ret;
954 }
955 EXPORT_SYMBOL(try_to_del_timer_sync);
956 
957 #ifdef CONFIG_SMP
958 /**
959  * del_timer_sync - deactivate a timer and wait for the handler to finish.
960  * @timer: the timer to be deactivated
961  *
962  * This function only differs from del_timer() on SMP: besides deactivating
963  * the timer it also makes sure the handler has finished executing on other
964  * CPUs.
965  *
966  * Synchronization rules: Callers must prevent restarting of the timer,
967  * otherwise this function is meaningless. It must not be called from
968  * interrupt contexts. The caller must not hold locks which would prevent
969  * completion of the timer's handler. The timer's handler must not call
970  * add_timer_on(). Upon exit the timer is not queued and the handler is
971  * not running on any CPU.
972  *
973  * Note: You must not hold locks that are held in interrupt context
974  *   while calling this function. Even if the lock has nothing to do
975  *   with the timer in question.  Here's why:
976  *
977  *    CPU0                             CPU1
978  *    ----                             ----
979  *                                   <SOFTIRQ>
980  *                                   call_timer_fn();
981  *                                     base->running_timer = mytimer;
982  *  spin_lock_irq(somelock);
983  *                                     <IRQ>
984  *                                        spin_lock(somelock);
985  *  del_timer_sync(mytimer);
986  *   while (base->running_timer == mytimer);
987  *
988  * Now del_timer_sync() will never return and never release somelock.
989  * The interrupt on the other CPU is waiting to grab somelock but
990  * it has interrupted the softirq that CPU0 is waiting to finish.
991  *
992  * The function returns whether it has deactivated a pending timer or not.
993  */
del_timer_sync(struct timer_list * timer)994 int del_timer_sync(struct timer_list *timer)
995 {
996 #ifdef CONFIG_LOCKDEP
997 	unsigned long flags;
998 
999 	/*
1000 	 * If lockdep gives a backtrace here, please reference
1001 	 * the synchronization rules above.
1002 	 */
1003 	local_irq_save(flags);
1004 	lock_map_acquire(&timer->lockdep_map);
1005 	lock_map_release(&timer->lockdep_map);
1006 	local_irq_restore(flags);
1007 #endif
1008 	/*
1009 	 * don't use it in hardirq context, because it
1010 	 * could lead to deadlock.
1011 	 */
1012 	WARN_ON(in_irq());
1013 	for (;;) {
1014 		int ret = try_to_del_timer_sync(timer);
1015 		if (ret >= 0)
1016 			return ret;
1017 		cpu_relax();
1018 	}
1019 }
1020 EXPORT_SYMBOL(del_timer_sync);
1021 #endif
1022 
cascade(struct tvec_base * base,struct tvec * tv,int index)1023 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1024 {
1025 	/* cascade all the timers from tv up one level */
1026 	struct timer_list *timer, *tmp;
1027 	struct list_head tv_list;
1028 
1029 	list_replace_init(tv->vec + index, &tv_list);
1030 
1031 	/*
1032 	 * We are removing _all_ timers from the list, so we
1033 	 * don't have to detach them individually.
1034 	 */
1035 	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1036 		BUG_ON(tbase_get_base(timer->base) != base);
1037 		internal_add_timer(base, timer);
1038 	}
1039 
1040 	return index;
1041 }
1042 
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1043 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1044 			  unsigned long data)
1045 {
1046 	int preempt_count = preempt_count();
1047 
1048 #ifdef CONFIG_LOCKDEP
1049 	/*
1050 	 * It is permissible to free the timer from inside the
1051 	 * function that is called from it, this we need to take into
1052 	 * account for lockdep too. To avoid bogus "held lock freed"
1053 	 * warnings as well as problems when looking into
1054 	 * timer->lockdep_map, make a copy and use that here.
1055 	 */
1056 	struct lockdep_map lockdep_map = timer->lockdep_map;
1057 #endif
1058 	/*
1059 	 * Couple the lock chain with the lock chain at
1060 	 * del_timer_sync() by acquiring the lock_map around the fn()
1061 	 * call here and in del_timer_sync().
1062 	 */
1063 	lock_map_acquire(&lockdep_map);
1064 
1065 	trace_timer_expire_entry(timer);
1066 	fn(data);
1067 	trace_timer_expire_exit(timer);
1068 
1069 	lock_map_release(&lockdep_map);
1070 
1071 	if (preempt_count != preempt_count()) {
1072 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1073 			  fn, preempt_count, preempt_count());
1074 		/*
1075 		 * Restore the preempt count. That gives us a decent
1076 		 * chance to survive and extract information. If the
1077 		 * callback kept a lock held, bad luck, but not worse
1078 		 * than the BUG() we had.
1079 		 */
1080 		preempt_count() = preempt_count;
1081 	}
1082 }
1083 
1084 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1085 
1086 /**
1087  * __run_timers - run all expired timers (if any) on this CPU.
1088  * @base: the timer vector to be processed.
1089  *
1090  * This function cascades all vectors and executes all expired timer
1091  * vectors.
1092  */
__run_timers(struct tvec_base * base)1093 static inline void __run_timers(struct tvec_base *base)
1094 {
1095 	struct timer_list *timer;
1096 
1097 	spin_lock_irq(&base->lock);
1098 	while (time_after_eq(jiffies, base->timer_jiffies)) {
1099 		struct list_head work_list;
1100 		struct list_head *head = &work_list;
1101 		int index = base->timer_jiffies & TVR_MASK;
1102 
1103 		/*
1104 		 * Cascade timers:
1105 		 */
1106 		if (!index &&
1107 			(!cascade(base, &base->tv2, INDEX(0))) &&
1108 				(!cascade(base, &base->tv3, INDEX(1))) &&
1109 					!cascade(base, &base->tv4, INDEX(2)))
1110 			cascade(base, &base->tv5, INDEX(3));
1111 		++base->timer_jiffies;
1112 		list_replace_init(base->tv1.vec + index, &work_list);
1113 		while (!list_empty(head)) {
1114 			void (*fn)(unsigned long);
1115 			unsigned long data;
1116 
1117 			timer = list_first_entry(head, struct timer_list,entry);
1118 			fn = timer->function;
1119 			data = timer->data;
1120 
1121 			timer_stats_account_timer(timer);
1122 
1123 			base->running_timer = timer;
1124 			detach_timer(timer, 1);
1125 
1126 			spin_unlock_irq(&base->lock);
1127 			call_timer_fn(timer, fn, data);
1128 			spin_lock_irq(&base->lock);
1129 		}
1130 	}
1131 	base->running_timer = NULL;
1132 	spin_unlock_irq(&base->lock);
1133 }
1134 
1135 #ifdef CONFIG_NO_HZ
1136 /*
1137  * Find out when the next timer event is due to happen. This
1138  * is used on S/390 to stop all activity when a CPU is idle.
1139  * This function needs to be called with interrupts disabled.
1140  */
__next_timer_interrupt(struct tvec_base * base)1141 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1142 {
1143 	unsigned long timer_jiffies = base->timer_jiffies;
1144 	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1145 	int index, slot, array, found = 0;
1146 	struct timer_list *nte;
1147 	struct tvec *varray[4];
1148 
1149 	/* Look for timer events in tv1. */
1150 	index = slot = timer_jiffies & TVR_MASK;
1151 	do {
1152 		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1153 			if (tbase_get_deferrable(nte->base))
1154 				continue;
1155 
1156 			found = 1;
1157 			expires = nte->expires;
1158 			/* Look at the cascade bucket(s)? */
1159 			if (!index || slot < index)
1160 				goto cascade;
1161 			return expires;
1162 		}
1163 		slot = (slot + 1) & TVR_MASK;
1164 	} while (slot != index);
1165 
1166 cascade:
1167 	/* Calculate the next cascade event */
1168 	if (index)
1169 		timer_jiffies += TVR_SIZE - index;
1170 	timer_jiffies >>= TVR_BITS;
1171 
1172 	/* Check tv2-tv5. */
1173 	varray[0] = &base->tv2;
1174 	varray[1] = &base->tv3;
1175 	varray[2] = &base->tv4;
1176 	varray[3] = &base->tv5;
1177 
1178 	for (array = 0; array < 4; array++) {
1179 		struct tvec *varp = varray[array];
1180 
1181 		index = slot = timer_jiffies & TVN_MASK;
1182 		do {
1183 			list_for_each_entry(nte, varp->vec + slot, entry) {
1184 				if (tbase_get_deferrable(nte->base))
1185 					continue;
1186 
1187 				found = 1;
1188 				if (time_before(nte->expires, expires))
1189 					expires = nte->expires;
1190 			}
1191 			/*
1192 			 * Do we still search for the first timer or are
1193 			 * we looking up the cascade buckets ?
1194 			 */
1195 			if (found) {
1196 				/* Look at the cascade bucket(s)? */
1197 				if (!index || slot < index)
1198 					break;
1199 				return expires;
1200 			}
1201 			slot = (slot + 1) & TVN_MASK;
1202 		} while (slot != index);
1203 
1204 		if (index)
1205 			timer_jiffies += TVN_SIZE - index;
1206 		timer_jiffies >>= TVN_BITS;
1207 	}
1208 	return expires;
1209 }
1210 
1211 /*
1212  * Check, if the next hrtimer event is before the next timer wheel
1213  * event:
1214  */
cmp_next_hrtimer_event(unsigned long now,unsigned long expires)1215 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1216 					    unsigned long expires)
1217 {
1218 	ktime_t hr_delta = hrtimer_get_next_event();
1219 	struct timespec tsdelta;
1220 	unsigned long delta;
1221 
1222 	if (hr_delta.tv64 == KTIME_MAX)
1223 		return expires;
1224 
1225 	/*
1226 	 * Expired timer available, let it expire in the next tick
1227 	 */
1228 	if (hr_delta.tv64 <= 0)
1229 		return now + 1;
1230 
1231 	tsdelta = ktime_to_timespec(hr_delta);
1232 	delta = timespec_to_jiffies(&tsdelta);
1233 
1234 	/*
1235 	 * Limit the delta to the max value, which is checked in
1236 	 * tick_nohz_stop_sched_tick():
1237 	 */
1238 	if (delta > NEXT_TIMER_MAX_DELTA)
1239 		delta = NEXT_TIMER_MAX_DELTA;
1240 
1241 	/*
1242 	 * Take rounding errors in to account and make sure, that it
1243 	 * expires in the next tick. Otherwise we go into an endless
1244 	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1245 	 * the timer softirq
1246 	 */
1247 	if (delta < 1)
1248 		delta = 1;
1249 	now += delta;
1250 	if (time_before(now, expires))
1251 		return now;
1252 	return expires;
1253 }
1254 
1255 /**
1256  * get_next_timer_interrupt - return the jiffy of the next pending timer
1257  * @now: current time (in jiffies)
1258  */
get_next_timer_interrupt(unsigned long now)1259 unsigned long get_next_timer_interrupt(unsigned long now)
1260 {
1261 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1262 	unsigned long expires;
1263 
1264 	/*
1265 	 * Pretend that there is no timer pending if the cpu is offline.
1266 	 * Possible pending timers will be migrated later to an active cpu.
1267 	 */
1268 	if (cpu_is_offline(smp_processor_id()))
1269 		return now + NEXT_TIMER_MAX_DELTA;
1270 	spin_lock(&base->lock);
1271 	if (time_before_eq(base->next_timer, base->timer_jiffies))
1272 		base->next_timer = __next_timer_interrupt(base);
1273 	expires = base->next_timer;
1274 	spin_unlock(&base->lock);
1275 
1276 	if (time_before_eq(expires, now))
1277 		return now;
1278 
1279 	return cmp_next_hrtimer_event(now, expires);
1280 }
1281 #endif
1282 
1283 /*
1284  * Called from the timer interrupt handler to charge one tick to the current
1285  * process.  user_tick is 1 if the tick is user time, 0 for system.
1286  */
update_process_times(int user_tick)1287 void update_process_times(int user_tick)
1288 {
1289 	struct task_struct *p = current;
1290 	int cpu = smp_processor_id();
1291 
1292 	/* Note: this timer irq context must be accounted for as well. */
1293 	account_process_tick(p, user_tick);
1294 	run_local_timers();
1295 	rcu_check_callbacks(cpu, user_tick);
1296 	printk_tick();
1297 #ifdef CONFIG_IRQ_WORK
1298 	if (in_irq())
1299 		irq_work_run();
1300 #endif
1301 	scheduler_tick();
1302 	run_posix_cpu_timers(p);
1303 }
1304 
1305 /*
1306  * This function runs timers and the timer-tq in bottom half context.
1307  */
run_timer_softirq(struct softirq_action * h)1308 static void run_timer_softirq(struct softirq_action *h)
1309 {
1310 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1311 
1312 	hrtimer_run_pending();
1313 
1314 	if (time_after_eq(jiffies, base->timer_jiffies))
1315 		__run_timers(base);
1316 }
1317 
1318 /*
1319  * Called by the local, per-CPU timer interrupt on SMP.
1320  */
run_local_timers(void)1321 void run_local_timers(void)
1322 {
1323 	hrtimer_run_queues();
1324 	raise_softirq(TIMER_SOFTIRQ);
1325 }
1326 
1327 #ifdef __ARCH_WANT_SYS_ALARM
1328 
1329 /*
1330  * For backwards compatibility?  This can be done in libc so Alpha
1331  * and all newer ports shouldn't need it.
1332  */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1333 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1334 {
1335 	return alarm_setitimer(seconds);
1336 }
1337 
1338 #endif
1339 
1340 #ifndef __alpha__
1341 
1342 /*
1343  * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
1344  * should be moved into arch/i386 instead?
1345  */
1346 
1347 /**
1348  * sys_getpid - return the thread group id of the current process
1349  *
1350  * Note, despite the name, this returns the tgid not the pid.  The tgid and
1351  * the pid are identical unless CLONE_THREAD was specified on clone() in
1352  * which case the tgid is the same in all threads of the same group.
1353  *
1354  * This is SMP safe as current->tgid does not change.
1355  */
SYSCALL_DEFINE0(getpid)1356 SYSCALL_DEFINE0(getpid)
1357 {
1358 	return task_tgid_vnr(current);
1359 }
1360 
1361 /*
1362  * Accessing ->real_parent is not SMP-safe, it could
1363  * change from under us. However, we can use a stale
1364  * value of ->real_parent under rcu_read_lock(), see
1365  * release_task()->call_rcu(delayed_put_task_struct).
1366  */
SYSCALL_DEFINE0(getppid)1367 SYSCALL_DEFINE0(getppid)
1368 {
1369 	int pid;
1370 
1371 	rcu_read_lock();
1372 	pid = task_tgid_vnr(current->real_parent);
1373 	rcu_read_unlock();
1374 
1375 	return pid;
1376 }
1377 
SYSCALL_DEFINE0(getuid)1378 SYSCALL_DEFINE0(getuid)
1379 {
1380 	/* Only we change this so SMP safe */
1381 	return current_uid();
1382 }
1383 
SYSCALL_DEFINE0(geteuid)1384 SYSCALL_DEFINE0(geteuid)
1385 {
1386 	/* Only we change this so SMP safe */
1387 	return current_euid();
1388 }
1389 
SYSCALL_DEFINE0(getgid)1390 SYSCALL_DEFINE0(getgid)
1391 {
1392 	/* Only we change this so SMP safe */
1393 	return current_gid();
1394 }
1395 
SYSCALL_DEFINE0(getegid)1396 SYSCALL_DEFINE0(getegid)
1397 {
1398 	/* Only we change this so SMP safe */
1399 	return  current_egid();
1400 }
1401 
1402 #endif
1403 
process_timeout(unsigned long __data)1404 static void process_timeout(unsigned long __data)
1405 {
1406 	wake_up_process((struct task_struct *)__data);
1407 }
1408 
1409 /**
1410  * schedule_timeout - sleep until timeout
1411  * @timeout: timeout value in jiffies
1412  *
1413  * Make the current task sleep until @timeout jiffies have
1414  * elapsed. The routine will return immediately unless
1415  * the current task state has been set (see set_current_state()).
1416  *
1417  * You can set the task state as follows -
1418  *
1419  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1420  * pass before the routine returns. The routine will return 0
1421  *
1422  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1423  * delivered to the current task. In this case the remaining time
1424  * in jiffies will be returned, or 0 if the timer expired in time
1425  *
1426  * The current task state is guaranteed to be TASK_RUNNING when this
1427  * routine returns.
1428  *
1429  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1430  * the CPU away without a bound on the timeout. In this case the return
1431  * value will be %MAX_SCHEDULE_TIMEOUT.
1432  *
1433  * In all cases the return value is guaranteed to be non-negative.
1434  */
schedule_timeout(signed long timeout)1435 signed long __sched schedule_timeout(signed long timeout)
1436 {
1437 	struct timer_list timer;
1438 	unsigned long expire;
1439 
1440 	switch (timeout)
1441 	{
1442 	case MAX_SCHEDULE_TIMEOUT:
1443 		/*
1444 		 * These two special cases are useful to be comfortable
1445 		 * in the caller. Nothing more. We could take
1446 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1447 		 * but I' d like to return a valid offset (>=0) to allow
1448 		 * the caller to do everything it want with the retval.
1449 		 */
1450 		schedule();
1451 		goto out;
1452 	default:
1453 		/*
1454 		 * Another bit of PARANOID. Note that the retval will be
1455 		 * 0 since no piece of kernel is supposed to do a check
1456 		 * for a negative retval of schedule_timeout() (since it
1457 		 * should never happens anyway). You just have the printk()
1458 		 * that will tell you if something is gone wrong and where.
1459 		 */
1460 		if (timeout < 0) {
1461 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1462 				"value %lx\n", timeout);
1463 			dump_stack();
1464 			current->state = TASK_RUNNING;
1465 			goto out;
1466 		}
1467 	}
1468 
1469 	expire = timeout + jiffies;
1470 
1471 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1472 	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1473 	schedule();
1474 	del_singleshot_timer_sync(&timer);
1475 
1476 	/* Remove the timer from the object tracker */
1477 	destroy_timer_on_stack(&timer);
1478 
1479 	timeout = expire - jiffies;
1480 
1481  out:
1482 	return timeout < 0 ? 0 : timeout;
1483 }
1484 EXPORT_SYMBOL(schedule_timeout);
1485 
1486 /*
1487  * We can use __set_current_state() here because schedule_timeout() calls
1488  * schedule() unconditionally.
1489  */
schedule_timeout_interruptible(signed long timeout)1490 signed long __sched schedule_timeout_interruptible(signed long timeout)
1491 {
1492 	__set_current_state(TASK_INTERRUPTIBLE);
1493 	return schedule_timeout(timeout);
1494 }
1495 EXPORT_SYMBOL(schedule_timeout_interruptible);
1496 
schedule_timeout_killable(signed long timeout)1497 signed long __sched schedule_timeout_killable(signed long timeout)
1498 {
1499 	__set_current_state(TASK_KILLABLE);
1500 	return schedule_timeout(timeout);
1501 }
1502 EXPORT_SYMBOL(schedule_timeout_killable);
1503 
schedule_timeout_uninterruptible(signed long timeout)1504 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1505 {
1506 	__set_current_state(TASK_UNINTERRUPTIBLE);
1507 	return schedule_timeout(timeout);
1508 }
1509 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1510 
1511 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)1512 SYSCALL_DEFINE0(gettid)
1513 {
1514 	return task_pid_vnr(current);
1515 }
1516 
1517 /**
1518  * do_sysinfo - fill in sysinfo struct
1519  * @info: pointer to buffer to fill
1520  */
do_sysinfo(struct sysinfo * info)1521 int do_sysinfo(struct sysinfo *info)
1522 {
1523 	unsigned long mem_total, sav_total;
1524 	unsigned int mem_unit, bitcount;
1525 	struct timespec tp;
1526 
1527 	memset(info, 0, sizeof(struct sysinfo));
1528 
1529 	ktime_get_ts(&tp);
1530 	monotonic_to_bootbased(&tp);
1531 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1532 
1533 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1534 
1535 	info->procs = nr_threads;
1536 
1537 	si_meminfo(info);
1538 	si_swapinfo(info);
1539 
1540 	/*
1541 	 * If the sum of all the available memory (i.e. ram + swap)
1542 	 * is less than can be stored in a 32 bit unsigned long then
1543 	 * we can be binary compatible with 2.2.x kernels.  If not,
1544 	 * well, in that case 2.2.x was broken anyways...
1545 	 *
1546 	 *  -Erik Andersen <andersee@debian.org>
1547 	 */
1548 
1549 	mem_total = info->totalram + info->totalswap;
1550 	if (mem_total < info->totalram || mem_total < info->totalswap)
1551 		goto out;
1552 	bitcount = 0;
1553 	mem_unit = info->mem_unit;
1554 	while (mem_unit > 1) {
1555 		bitcount++;
1556 		mem_unit >>= 1;
1557 		sav_total = mem_total;
1558 		mem_total <<= 1;
1559 		if (mem_total < sav_total)
1560 			goto out;
1561 	}
1562 
1563 	/*
1564 	 * If mem_total did not overflow, multiply all memory values by
1565 	 * info->mem_unit and set it to 1.  This leaves things compatible
1566 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1567 	 * kernels...
1568 	 */
1569 
1570 	info->mem_unit = 1;
1571 	info->totalram <<= bitcount;
1572 	info->freeram <<= bitcount;
1573 	info->sharedram <<= bitcount;
1574 	info->bufferram <<= bitcount;
1575 	info->totalswap <<= bitcount;
1576 	info->freeswap <<= bitcount;
1577 	info->totalhigh <<= bitcount;
1578 	info->freehigh <<= bitcount;
1579 
1580 out:
1581 	return 0;
1582 }
1583 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)1584 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1585 {
1586 	struct sysinfo val;
1587 
1588 	do_sysinfo(&val);
1589 
1590 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1591 		return -EFAULT;
1592 
1593 	return 0;
1594 }
1595 
init_timers_cpu(int cpu)1596 static int __cpuinit init_timers_cpu(int cpu)
1597 {
1598 	int j;
1599 	struct tvec_base *base;
1600 	static char __cpuinitdata tvec_base_done[NR_CPUS];
1601 
1602 	if (!tvec_base_done[cpu]) {
1603 		static char boot_done;
1604 
1605 		if (boot_done) {
1606 			/*
1607 			 * The APs use this path later in boot
1608 			 */
1609 			base = kmalloc_node(sizeof(*base),
1610 						GFP_KERNEL | __GFP_ZERO,
1611 						cpu_to_node(cpu));
1612 			if (!base)
1613 				return -ENOMEM;
1614 
1615 			/* Make sure that tvec_base is 2 byte aligned */
1616 			if (tbase_get_deferrable(base)) {
1617 				WARN_ON(1);
1618 				kfree(base);
1619 				return -ENOMEM;
1620 			}
1621 			per_cpu(tvec_bases, cpu) = base;
1622 		} else {
1623 			/*
1624 			 * This is for the boot CPU - we use compile-time
1625 			 * static initialisation because per-cpu memory isn't
1626 			 * ready yet and because the memory allocators are not
1627 			 * initialised either.
1628 			 */
1629 			boot_done = 1;
1630 			base = &boot_tvec_bases;
1631 		}
1632 		tvec_base_done[cpu] = 1;
1633 	} else {
1634 		base = per_cpu(tvec_bases, cpu);
1635 	}
1636 
1637 	spin_lock_init(&base->lock);
1638 
1639 	for (j = 0; j < TVN_SIZE; j++) {
1640 		INIT_LIST_HEAD(base->tv5.vec + j);
1641 		INIT_LIST_HEAD(base->tv4.vec + j);
1642 		INIT_LIST_HEAD(base->tv3.vec + j);
1643 		INIT_LIST_HEAD(base->tv2.vec + j);
1644 	}
1645 	for (j = 0; j < TVR_SIZE; j++)
1646 		INIT_LIST_HEAD(base->tv1.vec + j);
1647 
1648 	base->timer_jiffies = jiffies;
1649 	base->next_timer = base->timer_jiffies;
1650 	return 0;
1651 }
1652 
1653 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct tvec_base * new_base,struct list_head * head)1654 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1655 {
1656 	struct timer_list *timer;
1657 
1658 	while (!list_empty(head)) {
1659 		timer = list_first_entry(head, struct timer_list, entry);
1660 		detach_timer(timer, 0);
1661 		timer_set_base(timer, new_base);
1662 		if (time_before(timer->expires, new_base->next_timer) &&
1663 		    !tbase_get_deferrable(timer->base))
1664 			new_base->next_timer = timer->expires;
1665 		internal_add_timer(new_base, timer);
1666 	}
1667 }
1668 
migrate_timers(int cpu)1669 static void __cpuinit migrate_timers(int cpu)
1670 {
1671 	struct tvec_base *old_base;
1672 	struct tvec_base *new_base;
1673 	int i;
1674 
1675 	BUG_ON(cpu_online(cpu));
1676 	old_base = per_cpu(tvec_bases, cpu);
1677 	new_base = get_cpu_var(tvec_bases);
1678 	/*
1679 	 * The caller is globally serialized and nobody else
1680 	 * takes two locks at once, deadlock is not possible.
1681 	 */
1682 	spin_lock_irq(&new_base->lock);
1683 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1684 
1685 	BUG_ON(old_base->running_timer);
1686 
1687 	for (i = 0; i < TVR_SIZE; i++)
1688 		migrate_timer_list(new_base, old_base->tv1.vec + i);
1689 	for (i = 0; i < TVN_SIZE; i++) {
1690 		migrate_timer_list(new_base, old_base->tv2.vec + i);
1691 		migrate_timer_list(new_base, old_base->tv3.vec + i);
1692 		migrate_timer_list(new_base, old_base->tv4.vec + i);
1693 		migrate_timer_list(new_base, old_base->tv5.vec + i);
1694 	}
1695 
1696 	spin_unlock(&old_base->lock);
1697 	spin_unlock_irq(&new_base->lock);
1698 	put_cpu_var(tvec_bases);
1699 }
1700 #endif /* CONFIG_HOTPLUG_CPU */
1701 
timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1702 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1703 				unsigned long action, void *hcpu)
1704 {
1705 	long cpu = (long)hcpu;
1706 	int err;
1707 
1708 	switch(action) {
1709 	case CPU_UP_PREPARE:
1710 	case CPU_UP_PREPARE_FROZEN:
1711 		err = init_timers_cpu(cpu);
1712 		if (err < 0)
1713 			return notifier_from_errno(err);
1714 		break;
1715 #ifdef CONFIG_HOTPLUG_CPU
1716 	case CPU_DEAD:
1717 	case CPU_DEAD_FROZEN:
1718 		migrate_timers(cpu);
1719 		break;
1720 #endif
1721 	default:
1722 		break;
1723 	}
1724 	return NOTIFY_OK;
1725 }
1726 
1727 static struct notifier_block __cpuinitdata timers_nb = {
1728 	.notifier_call	= timer_cpu_notify,
1729 };
1730 
1731 
init_timers(void)1732 void __init init_timers(void)
1733 {
1734 	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1735 				(void *)(long)smp_processor_id());
1736 
1737 	init_timer_stats();
1738 
1739 	BUG_ON(err != NOTIFY_OK);
1740 	register_cpu_notifier(&timers_nb);
1741 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1742 }
1743 
1744 /**
1745  * msleep - sleep safely even with waitqueue interruptions
1746  * @msecs: Time in milliseconds to sleep for
1747  */
msleep(unsigned int msecs)1748 void msleep(unsigned int msecs)
1749 {
1750 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1751 
1752 	while (timeout)
1753 		timeout = schedule_timeout_uninterruptible(timeout);
1754 }
1755 
1756 EXPORT_SYMBOL(msleep);
1757 
1758 /**
1759  * msleep_interruptible - sleep waiting for signals
1760  * @msecs: Time in milliseconds to sleep for
1761  */
msleep_interruptible(unsigned int msecs)1762 unsigned long msleep_interruptible(unsigned int msecs)
1763 {
1764 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1765 
1766 	while (timeout && !signal_pending(current))
1767 		timeout = schedule_timeout_interruptible(timeout);
1768 	return jiffies_to_msecs(timeout);
1769 }
1770 
1771 EXPORT_SYMBOL(msleep_interruptible);
1772 
do_usleep_range(unsigned long min,unsigned long max)1773 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1774 {
1775 	ktime_t kmin;
1776 	unsigned long delta;
1777 
1778 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1779 	delta = (max - min) * NSEC_PER_USEC;
1780 	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1781 }
1782 
1783 /**
1784  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1785  * @min: Minimum time in usecs to sleep
1786  * @max: Maximum time in usecs to sleep
1787  */
usleep_range(unsigned long min,unsigned long max)1788 void usleep_range(unsigned long min, unsigned long max)
1789 {
1790 	__set_current_state(TASK_UNINTERRUPTIBLE);
1791 	do_usleep_range(min, max);
1792 }
1793 EXPORT_SYMBOL(usleep_range);
1794