1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* NTP adjusted clock multiplier */
29 	u32	mult;
30 	/* The shift value of the current clocksource. */
31 	int	shift;
32 
33 	/* Number of clock cycles in one NTP interval. */
34 	cycle_t cycle_interval;
35 	/* Number of clock shifted nano seconds in one NTP interval. */
36 	u64	xtime_interval;
37 	/* shifted nano seconds left over when rounding cycle_interval */
38 	s64	xtime_remainder;
39 	/* Raw nano seconds accumulated per NTP interval. */
40 	u32	raw_interval;
41 
42 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 	u64	xtime_nsec;
44 	/* Difference between accumulated time and NTP time in ntp
45 	 * shifted nano seconds. */
46 	s64	ntp_error;
47 	/* Shift conversion between clock shifted nano seconds and
48 	 * ntp shifted nano seconds. */
49 	int	ntp_error_shift;
50 
51 	/* The current time */
52 	struct timespec xtime;
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec raw_time;
72 
73 	/* Offset clock monotonic -> clock realtime */
74 	ktime_t offs_real;
75 
76 	/* Offset clock monotonic -> clock boottime */
77 	ktime_t offs_boot;
78 
79 	/* Seqlock for all timekeeper values */
80 	seqlock_t lock;
81 };
82 
83 static struct timekeeper timekeeper;
84 
85 /*
86  * This read-write spinlock protects us from races in SMP while
87  * playing with xtime.
88  */
89 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
90 
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
95 
96 
97 /**
98  * timekeeper_setup_internals - Set up internals to use clocksource clock.
99  *
100  * @clock:		Pointer to clocksource.
101  *
102  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
103  * pair and interval request.
104  *
105  * Unless you're the timekeeping code, you should not be using this!
106  */
timekeeper_setup_internals(struct clocksource * clock)107 static void timekeeper_setup_internals(struct clocksource *clock)
108 {
109 	cycle_t interval;
110 	u64 tmp, ntpinterval;
111 
112 	timekeeper.clock = clock;
113 	clock->cycle_last = clock->read(clock);
114 
115 	/* Do the ns -> cycle conversion first, using original mult */
116 	tmp = NTP_INTERVAL_LENGTH;
117 	tmp <<= clock->shift;
118 	ntpinterval = tmp;
119 	tmp += clock->mult/2;
120 	do_div(tmp, clock->mult);
121 	if (tmp == 0)
122 		tmp = 1;
123 
124 	interval = (cycle_t) tmp;
125 	timekeeper.cycle_interval = interval;
126 
127 	/* Go back from cycles -> shifted ns */
128 	timekeeper.xtime_interval = (u64) interval * clock->mult;
129 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
130 	timekeeper.raw_interval =
131 		((u64) interval * clock->mult) >> clock->shift;
132 
133 	timekeeper.xtime_nsec = 0;
134 	timekeeper.shift = clock->shift;
135 
136 	timekeeper.ntp_error = 0;
137 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
138 
139 	/*
140 	 * The timekeeper keeps its own mult values for the currently
141 	 * active clocksource. These value will be adjusted via NTP
142 	 * to counteract clock drifting.
143 	 */
144 	timekeeper.mult = clock->mult;
145 }
146 
147 /* Timekeeper helper functions. */
timekeeping_get_ns(void)148 static inline s64 timekeeping_get_ns(void)
149 {
150 	cycle_t cycle_now, cycle_delta;
151 	struct clocksource *clock;
152 
153 	/* read clocksource: */
154 	clock = timekeeper.clock;
155 	cycle_now = clock->read(clock);
156 
157 	/* calculate the delta since the last update_wall_time: */
158 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
159 
160 	/* return delta convert to nanoseconds using ntp adjusted mult. */
161 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
162 				  timekeeper.shift);
163 }
164 
timekeeping_get_ns_raw(void)165 static inline s64 timekeeping_get_ns_raw(void)
166 {
167 	cycle_t cycle_now, cycle_delta;
168 	struct clocksource *clock;
169 
170 	/* read clocksource: */
171 	clock = timekeeper.clock;
172 	cycle_now = clock->read(clock);
173 
174 	/* calculate the delta since the last update_wall_time: */
175 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
176 
177 	/* return delta convert to nanoseconds. */
178 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
179 }
180 
update_rt_offset(void)181 static void update_rt_offset(void)
182 {
183 	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
184 
185 	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
186 	timekeeper.offs_real = timespec_to_ktime(tmp);
187 }
188 
189 /* must hold write on timekeeper.lock */
timekeeping_update(bool clearntp)190 static void timekeeping_update(bool clearntp)
191 {
192 	if (clearntp) {
193 		timekeeper.ntp_error = 0;
194 		ntp_clear();
195 	}
196 	update_rt_offset();
197 	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
198 			 timekeeper.clock, timekeeper.mult);
199 }
200 
201 
202 /**
203  * timekeeping_forward_now - update clock to the current time
204  *
205  * Forward the current clock to update its state since the last call to
206  * update_wall_time(). This is useful before significant clock changes,
207  * as it avoids having to deal with this time offset explicitly.
208  */
timekeeping_forward_now(void)209 static void timekeeping_forward_now(void)
210 {
211 	cycle_t cycle_now, cycle_delta;
212 	struct clocksource *clock;
213 	s64 nsec;
214 
215 	clock = timekeeper.clock;
216 	cycle_now = clock->read(clock);
217 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 	clock->cycle_last = cycle_now;
219 
220 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
221 				  timekeeper.shift);
222 
223 	/* If arch requires, add in gettimeoffset() */
224 	nsec += arch_gettimeoffset();
225 
226 	timespec_add_ns(&timekeeper.xtime, nsec);
227 
228 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
229 	timespec_add_ns(&timekeeper.raw_time, nsec);
230 }
231 
232 /**
233  * getnstimeofday - Returns the time of day in a timespec
234  * @ts:		pointer to the timespec to be set
235  *
236  * Returns the time of day in a timespec.
237  */
getnstimeofday(struct timespec * ts)238 void getnstimeofday(struct timespec *ts)
239 {
240 	unsigned long seq;
241 	s64 nsecs;
242 
243 	WARN_ON(timekeeping_suspended);
244 
245 	do {
246 		seq = read_seqbegin(&timekeeper.lock);
247 
248 		*ts = timekeeper.xtime;
249 		nsecs = timekeeping_get_ns();
250 
251 		/* If arch requires, add in gettimeoffset() */
252 		nsecs += arch_gettimeoffset();
253 
254 	} while (read_seqretry(&timekeeper.lock, seq));
255 
256 	timespec_add_ns(ts, nsecs);
257 }
258 
259 EXPORT_SYMBOL(getnstimeofday);
260 
ktime_get(void)261 ktime_t ktime_get(void)
262 {
263 	unsigned int seq;
264 	s64 secs, nsecs;
265 
266 	WARN_ON(timekeeping_suspended);
267 
268 	do {
269 		seq = read_seqbegin(&timekeeper.lock);
270 		secs = timekeeper.xtime.tv_sec +
271 				timekeeper.wall_to_monotonic.tv_sec;
272 		nsecs = timekeeper.xtime.tv_nsec +
273 				timekeeper.wall_to_monotonic.tv_nsec;
274 		nsecs += timekeeping_get_ns();
275 		/* If arch requires, add in gettimeoffset() */
276 		nsecs += arch_gettimeoffset();
277 
278 	} while (read_seqretry(&timekeeper.lock, seq));
279 	/*
280 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
281 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
282 	 */
283 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
284 }
285 EXPORT_SYMBOL_GPL(ktime_get);
286 
287 /**
288  * ktime_get_ts - get the monotonic clock in timespec format
289  * @ts:		pointer to timespec variable
290  *
291  * The function calculates the monotonic clock from the realtime
292  * clock and the wall_to_monotonic offset and stores the result
293  * in normalized timespec format in the variable pointed to by @ts.
294  */
ktime_get_ts(struct timespec * ts)295 void ktime_get_ts(struct timespec *ts)
296 {
297 	struct timespec tomono;
298 	unsigned int seq;
299 	s64 nsecs;
300 
301 	WARN_ON(timekeeping_suspended);
302 
303 	do {
304 		seq = read_seqbegin(&timekeeper.lock);
305 		*ts = timekeeper.xtime;
306 		tomono = timekeeper.wall_to_monotonic;
307 		nsecs = timekeeping_get_ns();
308 		/* If arch requires, add in gettimeoffset() */
309 		nsecs += arch_gettimeoffset();
310 
311 	} while (read_seqretry(&timekeeper.lock, seq));
312 
313 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
314 				ts->tv_nsec + tomono.tv_nsec + nsecs);
315 }
316 EXPORT_SYMBOL_GPL(ktime_get_ts);
317 
318 #ifdef CONFIG_NTP_PPS
319 
320 /**
321  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
322  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
323  * @ts_real:	pointer to the timespec to be set to the time of day
324  *
325  * This function reads both the time of day and raw monotonic time at the
326  * same time atomically and stores the resulting timestamps in timespec
327  * format.
328  */
getnstime_raw_and_real(struct timespec * ts_raw,struct timespec * ts_real)329 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
330 {
331 	unsigned long seq;
332 	s64 nsecs_raw, nsecs_real;
333 
334 	WARN_ON_ONCE(timekeeping_suspended);
335 
336 	do {
337 		u32 arch_offset;
338 
339 		seq = read_seqbegin(&timekeeper.lock);
340 
341 		*ts_raw = timekeeper.raw_time;
342 		*ts_real = timekeeper.xtime;
343 
344 		nsecs_raw = timekeeping_get_ns_raw();
345 		nsecs_real = timekeeping_get_ns();
346 
347 		/* If arch requires, add in gettimeoffset() */
348 		arch_offset = arch_gettimeoffset();
349 		nsecs_raw += arch_offset;
350 		nsecs_real += arch_offset;
351 
352 	} while (read_seqretry(&timekeeper.lock, seq));
353 
354 	timespec_add_ns(ts_raw, nsecs_raw);
355 	timespec_add_ns(ts_real, nsecs_real);
356 }
357 EXPORT_SYMBOL(getnstime_raw_and_real);
358 
359 #endif /* CONFIG_NTP_PPS */
360 
361 /**
362  * do_gettimeofday - Returns the time of day in a timeval
363  * @tv:		pointer to the timeval to be set
364  *
365  * NOTE: Users should be converted to using getnstimeofday()
366  */
do_gettimeofday(struct timeval * tv)367 void do_gettimeofday(struct timeval *tv)
368 {
369 	struct timespec now;
370 
371 	getnstimeofday(&now);
372 	tv->tv_sec = now.tv_sec;
373 	tv->tv_usec = now.tv_nsec/1000;
374 }
375 
376 EXPORT_SYMBOL(do_gettimeofday);
377 /**
378  * do_settimeofday - Sets the time of day
379  * @tv:		pointer to the timespec variable containing the new time
380  *
381  * Sets the time of day to the new time and update NTP and notify hrtimers
382  */
do_settimeofday(const struct timespec * tv)383 int do_settimeofday(const struct timespec *tv)
384 {
385 	struct timespec ts_delta;
386 	unsigned long flags;
387 
388 	if (!timespec_valid_strict(tv))
389 		return -EINVAL;
390 
391 	write_seqlock_irqsave(&timekeeper.lock, flags);
392 
393 	timekeeping_forward_now();
394 
395 	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
396 	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
397 	timekeeper.wall_to_monotonic =
398 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
399 
400 	timekeeper.xtime = *tv;
401 	timekeeping_update(true);
402 
403 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
404 
405 	/* signal hrtimers about time change */
406 	clock_was_set();
407 
408 	return 0;
409 }
410 
411 EXPORT_SYMBOL(do_settimeofday);
412 
413 
414 /**
415  * timekeeping_inject_offset - Adds or subtracts from the current time.
416  * @tv:		pointer to the timespec variable containing the offset
417  *
418  * Adds or subtracts an offset value from the current time.
419  */
timekeeping_inject_offset(struct timespec * ts)420 int timekeeping_inject_offset(struct timespec *ts)
421 {
422 	unsigned long flags;
423 	struct timespec tmp;
424 	int ret = 0;
425 
426 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
427 		return -EINVAL;
428 
429 	write_seqlock_irqsave(&timekeeper.lock, flags);
430 
431 	timekeeping_forward_now();
432 
433 	tmp = timespec_add(timekeeper.xtime,  *ts);
434 	if (!timespec_valid_strict(&tmp)) {
435 		ret = -EINVAL;
436 		goto error;
437 	}
438 
439 	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
440 	timekeeper.wall_to_monotonic =
441 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
442 
443 error: /* even if we error out, we forwarded the time, so call update */
444 	timekeeping_update(true);
445 
446 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
447 
448 	/* signal hrtimers about time change */
449 	clock_was_set();
450 
451 	return ret;
452 }
453 EXPORT_SYMBOL(timekeeping_inject_offset);
454 
455 /**
456  * change_clocksource - Swaps clocksources if a new one is available
457  *
458  * Accumulates current time interval and initializes new clocksource
459  */
change_clocksource(void * data)460 static int change_clocksource(void *data)
461 {
462 	struct clocksource *new, *old;
463 	unsigned long flags;
464 
465 	new = (struct clocksource *) data;
466 
467 	write_seqlock_irqsave(&timekeeper.lock, flags);
468 
469 	timekeeping_forward_now();
470 	if (!new->enable || new->enable(new) == 0) {
471 		old = timekeeper.clock;
472 		timekeeper_setup_internals(new);
473 		if (old->disable)
474 			old->disable(old);
475 	}
476 	timekeeping_update(true);
477 
478 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
479 
480 	return 0;
481 }
482 
483 /**
484  * timekeeping_notify - Install a new clock source
485  * @clock:		pointer to the clock source
486  *
487  * This function is called from clocksource.c after a new, better clock
488  * source has been registered. The caller holds the clocksource_mutex.
489  */
timekeeping_notify(struct clocksource * clock)490 void timekeeping_notify(struct clocksource *clock)
491 {
492 	if (timekeeper.clock == clock)
493 		return;
494 	stop_machine(change_clocksource, clock, NULL);
495 	tick_clock_notify();
496 }
497 
498 /**
499  * ktime_get_real - get the real (wall-) time in ktime_t format
500  *
501  * returns the time in ktime_t format
502  */
ktime_get_real(void)503 ktime_t ktime_get_real(void)
504 {
505 	struct timespec now;
506 
507 	getnstimeofday(&now);
508 
509 	return timespec_to_ktime(now);
510 }
511 EXPORT_SYMBOL_GPL(ktime_get_real);
512 
513 /**
514  * getrawmonotonic - Returns the raw monotonic time in a timespec
515  * @ts:		pointer to the timespec to be set
516  *
517  * Returns the raw monotonic time (completely un-modified by ntp)
518  */
getrawmonotonic(struct timespec * ts)519 void getrawmonotonic(struct timespec *ts)
520 {
521 	unsigned long seq;
522 	s64 nsecs;
523 
524 	do {
525 		seq = read_seqbegin(&timekeeper.lock);
526 		nsecs = timekeeping_get_ns_raw();
527 		*ts = timekeeper.raw_time;
528 
529 	} while (read_seqretry(&timekeeper.lock, seq));
530 
531 	timespec_add_ns(ts, nsecs);
532 }
533 EXPORT_SYMBOL(getrawmonotonic);
534 
535 
536 /**
537  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
538  */
timekeeping_valid_for_hres(void)539 int timekeeping_valid_for_hres(void)
540 {
541 	unsigned long seq;
542 	int ret;
543 
544 	do {
545 		seq = read_seqbegin(&timekeeper.lock);
546 
547 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
548 
549 	} while (read_seqretry(&timekeeper.lock, seq));
550 
551 	return ret;
552 }
553 
554 /**
555  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
556  */
timekeeping_max_deferment(void)557 u64 timekeeping_max_deferment(void)
558 {
559 	unsigned long seq;
560 	u64 ret;
561 	do {
562 		seq = read_seqbegin(&timekeeper.lock);
563 
564 		ret = timekeeper.clock->max_idle_ns;
565 
566 	} while (read_seqretry(&timekeeper.lock, seq));
567 
568 	return ret;
569 }
570 
571 /**
572  * read_persistent_clock -  Return time from the persistent clock.
573  *
574  * Weak dummy function for arches that do not yet support it.
575  * Reads the time from the battery backed persistent clock.
576  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
577  *
578  *  XXX - Do be sure to remove it once all arches implement it.
579  */
read_persistent_clock(struct timespec * ts)580 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
581 {
582 	ts->tv_sec = 0;
583 	ts->tv_nsec = 0;
584 }
585 
586 /**
587  * read_boot_clock -  Return time of the system start.
588  *
589  * Weak dummy function for arches that do not yet support it.
590  * Function to read the exact time the system has been started.
591  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
592  *
593  *  XXX - Do be sure to remove it once all arches implement it.
594  */
read_boot_clock(struct timespec * ts)595 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
596 {
597 	ts->tv_sec = 0;
598 	ts->tv_nsec = 0;
599 }
600 
601 /*
602  * timekeeping_init - Initializes the clocksource and common timekeeping values
603  */
timekeeping_init(void)604 void __init timekeeping_init(void)
605 {
606 	struct clocksource *clock;
607 	unsigned long flags;
608 	struct timespec now, boot;
609 
610 	read_persistent_clock(&now);
611 	if (!timespec_valid_strict(&now)) {
612 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
613 			"         Check your CMOS/BIOS settings.\n");
614 		now.tv_sec = 0;
615 		now.tv_nsec = 0;
616 	}
617 
618 	read_boot_clock(&boot);
619 	if (!timespec_valid_strict(&boot)) {
620 		pr_warn("WARNING: Boot clock returned invalid value!\n"
621 			"         Check your CMOS/BIOS settings.\n");
622 		boot.tv_sec = 0;
623 		boot.tv_nsec = 0;
624 	}
625 
626 	seqlock_init(&timekeeper.lock);
627 
628 	ntp_init();
629 
630 	write_seqlock_irqsave(&timekeeper.lock, flags);
631 	clock = clocksource_default_clock();
632 	if (clock->enable)
633 		clock->enable(clock);
634 	timekeeper_setup_internals(clock);
635 
636 	timekeeper.xtime.tv_sec = now.tv_sec;
637 	timekeeper.xtime.tv_nsec = now.tv_nsec;
638 	timekeeper.raw_time.tv_sec = 0;
639 	timekeeper.raw_time.tv_nsec = 0;
640 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
641 		boot.tv_sec = timekeeper.xtime.tv_sec;
642 		boot.tv_nsec = timekeeper.xtime.tv_nsec;
643 	}
644 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
645 				-boot.tv_sec, -boot.tv_nsec);
646 	update_rt_offset();
647 	timekeeper.total_sleep_time.tv_sec = 0;
648 	timekeeper.total_sleep_time.tv_nsec = 0;
649 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
650 }
651 
652 /* time in seconds when suspend began */
653 static struct timespec timekeeping_suspend_time;
654 
update_sleep_time(struct timespec t)655 static void update_sleep_time(struct timespec t)
656 {
657 	timekeeper.total_sleep_time = t;
658 	timekeeper.offs_boot = timespec_to_ktime(t);
659 }
660 
661 /**
662  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
663  * @delta: pointer to a timespec delta value
664  *
665  * Takes a timespec offset measuring a suspend interval and properly
666  * adds the sleep offset to the timekeeping variables.
667  */
__timekeeping_inject_sleeptime(struct timespec * delta)668 static void __timekeeping_inject_sleeptime(struct timespec *delta)
669 {
670 	if (!timespec_valid_strict(delta)) {
671 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
672 					"sleep delta value!\n");
673 		return;
674 	}
675 
676 	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
677 	timekeeper.wall_to_monotonic =
678 			timespec_sub(timekeeper.wall_to_monotonic, *delta);
679 	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
680 }
681 
682 
683 /**
684  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
685  * @delta: pointer to a timespec delta value
686  *
687  * This hook is for architectures that cannot support read_persistent_clock
688  * because their RTC/persistent clock is only accessible when irqs are enabled.
689  *
690  * This function should only be called by rtc_resume(), and allows
691  * a suspend offset to be injected into the timekeeping values.
692  */
timekeeping_inject_sleeptime(struct timespec * delta)693 void timekeeping_inject_sleeptime(struct timespec *delta)
694 {
695 	unsigned long flags;
696 	struct timespec ts;
697 
698 	/* Make sure we don't set the clock twice */
699 	read_persistent_clock(&ts);
700 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
701 		return;
702 
703 	write_seqlock_irqsave(&timekeeper.lock, flags);
704 
705 	timekeeping_forward_now();
706 
707 	__timekeeping_inject_sleeptime(delta);
708 
709 	timekeeping_update(true);
710 
711 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
712 
713 	/* signal hrtimers about time change */
714 	clock_was_set();
715 }
716 
717 
718 /**
719  * timekeeping_resume - Resumes the generic timekeeping subsystem.
720  *
721  * This is for the generic clocksource timekeeping.
722  * xtime/wall_to_monotonic/jiffies/etc are
723  * still managed by arch specific suspend/resume code.
724  */
timekeeping_resume(void)725 static void timekeeping_resume(void)
726 {
727 	unsigned long flags;
728 	struct timespec ts;
729 
730 	read_persistent_clock(&ts);
731 
732 	clocksource_resume();
733 
734 	write_seqlock_irqsave(&timekeeper.lock, flags);
735 
736 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
737 		ts = timespec_sub(ts, timekeeping_suspend_time);
738 		__timekeeping_inject_sleeptime(&ts);
739 	}
740 	/* re-base the last cycle value */
741 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
742 	timekeeper.ntp_error = 0;
743 	timekeeping_suspended = 0;
744 	timekeeping_update(false);
745 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
746 
747 	touch_softlockup_watchdog();
748 
749 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
750 
751 	/* Resume hrtimers */
752 	hrtimers_resume();
753 }
754 
timekeeping_suspend(void)755 static int timekeeping_suspend(void)
756 {
757 	unsigned long flags;
758 	struct timespec		delta, delta_delta;
759 	static struct timespec	old_delta;
760 
761 	read_persistent_clock(&timekeeping_suspend_time);
762 
763 	write_seqlock_irqsave(&timekeeper.lock, flags);
764 	timekeeping_forward_now();
765 	timekeeping_suspended = 1;
766 
767 	/*
768 	 * To avoid drift caused by repeated suspend/resumes,
769 	 * which each can add ~1 second drift error,
770 	 * try to compensate so the difference in system time
771 	 * and persistent_clock time stays close to constant.
772 	 */
773 	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
774 	delta_delta = timespec_sub(delta, old_delta);
775 	if (abs(delta_delta.tv_sec)  >= 2) {
776 		/*
777 		 * if delta_delta is too large, assume time correction
778 		 * has occured and set old_delta to the current delta.
779 		 */
780 		old_delta = delta;
781 	} else {
782 		/* Otherwise try to adjust old_system to compensate */
783 		timekeeping_suspend_time =
784 			timespec_add(timekeeping_suspend_time, delta_delta);
785 	}
786 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
787 
788 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
789 	clocksource_suspend();
790 
791 	return 0;
792 }
793 
794 /* sysfs resume/suspend bits for timekeeping */
795 static struct syscore_ops timekeeping_syscore_ops = {
796 	.resume		= timekeeping_resume,
797 	.suspend	= timekeeping_suspend,
798 };
799 
timekeeping_init_ops(void)800 static int __init timekeeping_init_ops(void)
801 {
802 	register_syscore_ops(&timekeeping_syscore_ops);
803 	return 0;
804 }
805 
806 device_initcall(timekeeping_init_ops);
807 
808 /*
809  * If the error is already larger, we look ahead even further
810  * to compensate for late or lost adjustments.
811  */
timekeeping_bigadjust(s64 error,s64 * interval,s64 * offset)812 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
813 						 s64 *offset)
814 {
815 	s64 tick_error, i;
816 	u32 look_ahead, adj;
817 	s32 error2, mult;
818 
819 	/*
820 	 * Use the current error value to determine how much to look ahead.
821 	 * The larger the error the slower we adjust for it to avoid problems
822 	 * with losing too many ticks, otherwise we would overadjust and
823 	 * produce an even larger error.  The smaller the adjustment the
824 	 * faster we try to adjust for it, as lost ticks can do less harm
825 	 * here.  This is tuned so that an error of about 1 msec is adjusted
826 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
827 	 */
828 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
829 	error2 = abs(error2);
830 	for (look_ahead = 0; error2 > 0; look_ahead++)
831 		error2 >>= 2;
832 
833 	/*
834 	 * Now calculate the error in (1 << look_ahead) ticks, but first
835 	 * remove the single look ahead already included in the error.
836 	 */
837 	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
838 	tick_error -= timekeeper.xtime_interval >> 1;
839 	error = ((error - tick_error) >> look_ahead) + tick_error;
840 
841 	/* Finally calculate the adjustment shift value.  */
842 	i = *interval;
843 	mult = 1;
844 	if (error < 0) {
845 		error = -error;
846 		*interval = -*interval;
847 		*offset = -*offset;
848 		mult = -1;
849 	}
850 	for (adj = 0; error > i; adj++)
851 		error >>= 1;
852 
853 	*interval <<= adj;
854 	*offset <<= adj;
855 	return mult << adj;
856 }
857 
858 /*
859  * Adjust the multiplier to reduce the error value,
860  * this is optimized for the most common adjustments of -1,0,1,
861  * for other values we can do a bit more work.
862  */
timekeeping_adjust(s64 offset)863 static void timekeeping_adjust(s64 offset)
864 {
865 	s64 error, interval = timekeeper.cycle_interval;
866 	int adj;
867 
868 	/*
869 	 * The point of this is to check if the error is greater than half
870 	 * an interval.
871 	 *
872 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
873 	 *
874 	 * Note we subtract one in the shift, so that error is really error*2.
875 	 * This "saves" dividing(shifting) interval twice, but keeps the
876 	 * (error > interval) comparison as still measuring if error is
877 	 * larger than half an interval.
878 	 *
879 	 * Note: It does not "save" on aggravation when reading the code.
880 	 */
881 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
882 	if (error > interval) {
883 		/*
884 		 * We now divide error by 4(via shift), which checks if
885 		 * the error is greater than twice the interval.
886 		 * If it is greater, we need a bigadjust, if its smaller,
887 		 * we can adjust by 1.
888 		 */
889 		error >>= 2;
890 		/*
891 		 * XXX - In update_wall_time, we round up to the next
892 		 * nanosecond, and store the amount rounded up into
893 		 * the error. This causes the likely below to be unlikely.
894 		 *
895 		 * The proper fix is to avoid rounding up by using
896 		 * the high precision timekeeper.xtime_nsec instead of
897 		 * xtime.tv_nsec everywhere. Fixing this will take some
898 		 * time.
899 		 */
900 		if (likely(error <= interval))
901 			adj = 1;
902 		else
903 			adj = timekeeping_bigadjust(error, &interval, &offset);
904 	} else if (error < -interval) {
905 		/* See comment above, this is just switched for the negative */
906 		error >>= 2;
907 		if (likely(error >= -interval)) {
908 			adj = -1;
909 			interval = -interval;
910 			offset = -offset;
911 		} else
912 			adj = timekeeping_bigadjust(error, &interval, &offset);
913 	} else /* No adjustment needed */
914 		return;
915 
916 	if (unlikely(timekeeper.clock->maxadj &&
917 			(timekeeper.mult + adj >
918 			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
919 		printk_once(KERN_WARNING
920 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
921 			timekeeper.clock->name, (long)timekeeper.mult + adj,
922 			(long)timekeeper.clock->mult +
923 				timekeeper.clock->maxadj);
924 	}
925 	/*
926 	 * So the following can be confusing.
927 	 *
928 	 * To keep things simple, lets assume adj == 1 for now.
929 	 *
930 	 * When adj != 1, remember that the interval and offset values
931 	 * have been appropriately scaled so the math is the same.
932 	 *
933 	 * The basic idea here is that we're increasing the multiplier
934 	 * by one, this causes the xtime_interval to be incremented by
935 	 * one cycle_interval. This is because:
936 	 *	xtime_interval = cycle_interval * mult
937 	 * So if mult is being incremented by one:
938 	 *	xtime_interval = cycle_interval * (mult + 1)
939 	 * Its the same as:
940 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
941 	 * Which can be shortened to:
942 	 *	xtime_interval += cycle_interval
943 	 *
944 	 * So offset stores the non-accumulated cycles. Thus the current
945 	 * time (in shifted nanoseconds) is:
946 	 *	now = (offset * adj) + xtime_nsec
947 	 * Now, even though we're adjusting the clock frequency, we have
948 	 * to keep time consistent. In other words, we can't jump back
949 	 * in time, and we also want to avoid jumping forward in time.
950 	 *
951 	 * So given the same offset value, we need the time to be the same
952 	 * both before and after the freq adjustment.
953 	 *	now = (offset * adj_1) + xtime_nsec_1
954 	 *	now = (offset * adj_2) + xtime_nsec_2
955 	 * So:
956 	 *	(offset * adj_1) + xtime_nsec_1 =
957 	 *		(offset * adj_2) + xtime_nsec_2
958 	 * And we know:
959 	 *	adj_2 = adj_1 + 1
960 	 * So:
961 	 *	(offset * adj_1) + xtime_nsec_1 =
962 	 *		(offset * (adj_1+1)) + xtime_nsec_2
963 	 *	(offset * adj_1) + xtime_nsec_1 =
964 	 *		(offset * adj_1) + offset + xtime_nsec_2
965 	 * Canceling the sides:
966 	 *	xtime_nsec_1 = offset + xtime_nsec_2
967 	 * Which gives us:
968 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
969 	 * Which simplfies to:
970 	 *	xtime_nsec -= offset
971 	 *
972 	 * XXX - TODO: Doc ntp_error calculation.
973 	 */
974 	timekeeper.mult += adj;
975 	timekeeper.xtime_interval += interval;
976 	timekeeper.xtime_nsec -= offset;
977 	timekeeper.ntp_error -= (interval - offset) <<
978 				timekeeper.ntp_error_shift;
979 }
980 
981 
982 /**
983  * logarithmic_accumulation - shifted accumulation of cycles
984  *
985  * This functions accumulates a shifted interval of cycles into
986  * into a shifted interval nanoseconds. Allows for O(log) accumulation
987  * loop.
988  *
989  * Returns the unconsumed cycles.
990  */
logarithmic_accumulation(cycle_t offset,int shift,unsigned int * clock_set)991 static cycle_t logarithmic_accumulation(cycle_t offset, int shift,
992 							unsigned int *clock_set)
993 {
994 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
995 	u64 raw_nsecs;
996 
997 	/* If the offset is smaller than a shifted interval, do nothing */
998 	if (offset < timekeeper.cycle_interval<<shift)
999 		return offset;
1000 
1001 	/* Accumulate one shifted interval */
1002 	offset -= timekeeper.cycle_interval << shift;
1003 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
1004 
1005 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1006 	while (timekeeper.xtime_nsec >= nsecps) {
1007 		int leap;
1008 		timekeeper.xtime_nsec -= nsecps;
1009 		timekeeper.xtime.tv_sec++;
1010 		leap = second_overflow(timekeeper.xtime.tv_sec);
1011 		timekeeper.xtime.tv_sec += leap;
1012 		timekeeper.wall_to_monotonic.tv_sec -= leap;
1013 		if (leap)
1014 			*clock_set = 1;
1015 	}
1016 
1017 	/* Accumulate raw time */
1018 	raw_nsecs = (u64)timekeeper.raw_interval << shift;
1019 	raw_nsecs += timekeeper.raw_time.tv_nsec;
1020 	if (raw_nsecs >= NSEC_PER_SEC) {
1021 		u64 raw_secs = raw_nsecs;
1022 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1023 		timekeeper.raw_time.tv_sec += raw_secs;
1024 	}
1025 	timekeeper.raw_time.tv_nsec = raw_nsecs;
1026 
1027 	/* Accumulate error between NTP and clock interval */
1028 	timekeeper.ntp_error += ntp_tick_length() << shift;
1029 	timekeeper.ntp_error -=
1030 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1031 				(timekeeper.ntp_error_shift + shift);
1032 
1033 	return offset;
1034 }
1035 
1036 
1037 /**
1038  * update_wall_time - Uses the current clocksource to increment the wall time
1039  *
1040  */
update_wall_time(void)1041 static void update_wall_time(void)
1042 {
1043 	struct clocksource *clock;
1044 	cycle_t offset;
1045 	int shift = 0, maxshift;
1046 	unsigned int clock_set = 0;
1047 	unsigned long flags;
1048 
1049 	write_seqlock_irqsave(&timekeeper.lock, flags);
1050 
1051 	/* Make sure we're fully resumed: */
1052 	if (unlikely(timekeeping_suspended))
1053 		goto out;
1054 
1055 	clock = timekeeper.clock;
1056 
1057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1058 	offset = timekeeper.cycle_interval;
1059 #else
1060 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1061 #endif
1062 	/* Check if there's really nothing to do */
1063 	if (offset < timekeeper.cycle_interval)
1064 		goto out;
1065 
1066 	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1067 						timekeeper.shift;
1068 	/*
1069 	 * With NO_HZ we may have to accumulate many cycle_intervals
1070 	 * (think "ticks") worth of time at once. To do this efficiently,
1071 	 * we calculate the largest doubling multiple of cycle_intervals
1072 	 * that is smaller than the offset.  We then accumulate that
1073 	 * chunk in one go, and then try to consume the next smaller
1074 	 * doubled multiple.
1075 	 */
1076 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1077 	shift = max(0, shift);
1078 	/* Bound shift to one less than what overflows tick_length */
1079 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1080 	shift = min(shift, maxshift);
1081 	while (offset >= timekeeper.cycle_interval) {
1082 		offset = logarithmic_accumulation(offset, shift, &clock_set);
1083 		if(offset < timekeeper.cycle_interval<<shift)
1084 			shift--;
1085 	}
1086 
1087 	/* correct the clock when NTP error is too big */
1088 	timekeeping_adjust(offset);
1089 
1090 	/*
1091 	 * Since in the loop above, we accumulate any amount of time
1092 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1093 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1094 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1095 	 * its possible the required corrective factor to xtime_nsec could
1096 	 * cause it to underflow.
1097 	 *
1098 	 * Now, we cannot simply roll the accumulated second back, since
1099 	 * the NTP subsystem has been notified via second_overflow. So
1100 	 * instead we push xtime_nsec forward by the amount we underflowed,
1101 	 * and add that amount into the error.
1102 	 *
1103 	 * We'll correct this error next time through this function, when
1104 	 * xtime_nsec is not as small.
1105 	 */
1106 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1107 		s64 neg = -(s64)timekeeper.xtime_nsec;
1108 		timekeeper.xtime_nsec = 0;
1109 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1110 	}
1111 
1112 
1113 	/*
1114 	 * Store full nanoseconds into xtime after rounding it up and
1115 	 * add the remainder to the error difference.
1116 	 */
1117 	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1118 						timekeeper.shift) + 1;
1119 	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1120 						timekeeper.shift;
1121 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1122 				timekeeper.ntp_error_shift;
1123 
1124 	/*
1125 	 * Finally, make sure that after the rounding
1126 	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1127 	 */
1128 	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1129 		int leap;
1130 		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1131 		timekeeper.xtime.tv_sec++;
1132 		leap = second_overflow(timekeeper.xtime.tv_sec);
1133 		timekeeper.xtime.tv_sec += leap;
1134 		timekeeper.wall_to_monotonic.tv_sec -= leap;
1135 		if (leap)
1136 			clock_set = 1;
1137 	}
1138 
1139 	timekeeping_update(false);
1140 
1141 out:
1142 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1143 
1144 	if (clock_set)
1145 		clock_was_set_delayed();
1146 }
1147 
1148 /**
1149  * getboottime - Return the real time of system boot.
1150  * @ts:		pointer to the timespec to be set
1151  *
1152  * Returns the wall-time of boot in a timespec.
1153  *
1154  * This is based on the wall_to_monotonic offset and the total suspend
1155  * time. Calls to settimeofday will affect the value returned (which
1156  * basically means that however wrong your real time clock is at boot time,
1157  * you get the right time here).
1158  */
getboottime(struct timespec * ts)1159 void getboottime(struct timespec *ts)
1160 {
1161 	struct timespec boottime = {
1162 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1163 				timekeeper.total_sleep_time.tv_sec,
1164 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1165 				timekeeper.total_sleep_time.tv_nsec
1166 	};
1167 
1168 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1169 }
1170 EXPORT_SYMBOL_GPL(getboottime);
1171 
1172 
1173 /**
1174  * get_monotonic_boottime - Returns monotonic time since boot
1175  * @ts:		pointer to the timespec to be set
1176  *
1177  * Returns the monotonic time since boot in a timespec.
1178  *
1179  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1180  * includes the time spent in suspend.
1181  */
get_monotonic_boottime(struct timespec * ts)1182 void get_monotonic_boottime(struct timespec *ts)
1183 {
1184 	struct timespec tomono, sleep;
1185 	unsigned int seq;
1186 	s64 nsecs;
1187 
1188 	WARN_ON(timekeeping_suspended);
1189 
1190 	do {
1191 		seq = read_seqbegin(&timekeeper.lock);
1192 		*ts = timekeeper.xtime;
1193 		tomono = timekeeper.wall_to_monotonic;
1194 		sleep = timekeeper.total_sleep_time;
1195 		nsecs = timekeeping_get_ns();
1196 
1197 	} while (read_seqretry(&timekeeper.lock, seq));
1198 
1199 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1200 		(s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1201 }
1202 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1203 
1204 /**
1205  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1206  *
1207  * Returns the monotonic time since boot in a ktime
1208  *
1209  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1210  * includes the time spent in suspend.
1211  */
ktime_get_boottime(void)1212 ktime_t ktime_get_boottime(void)
1213 {
1214 	struct timespec ts;
1215 
1216 	get_monotonic_boottime(&ts);
1217 	return timespec_to_ktime(ts);
1218 }
1219 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1220 
1221 /**
1222  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1223  * @ts:		pointer to the timespec to be converted
1224  */
monotonic_to_bootbased(struct timespec * ts)1225 void monotonic_to_bootbased(struct timespec *ts)
1226 {
1227 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1228 }
1229 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1230 
get_seconds(void)1231 unsigned long get_seconds(void)
1232 {
1233 	return timekeeper.xtime.tv_sec;
1234 }
1235 EXPORT_SYMBOL(get_seconds);
1236 
__current_kernel_time(void)1237 struct timespec __current_kernel_time(void)
1238 {
1239 	return timekeeper.xtime;
1240 }
1241 
current_kernel_time(void)1242 struct timespec current_kernel_time(void)
1243 {
1244 	struct timespec now;
1245 	unsigned long seq;
1246 
1247 	do {
1248 		seq = read_seqbegin(&timekeeper.lock);
1249 
1250 		now = timekeeper.xtime;
1251 	} while (read_seqretry(&timekeeper.lock, seq));
1252 
1253 	return now;
1254 }
1255 EXPORT_SYMBOL(current_kernel_time);
1256 
get_monotonic_coarse(void)1257 struct timespec get_monotonic_coarse(void)
1258 {
1259 	struct timespec now, mono;
1260 	unsigned long seq;
1261 
1262 	do {
1263 		seq = read_seqbegin(&timekeeper.lock);
1264 
1265 		now = timekeeper.xtime;
1266 		mono = timekeeper.wall_to_monotonic;
1267 	} while (read_seqretry(&timekeeper.lock, seq));
1268 
1269 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1270 				now.tv_nsec + mono.tv_nsec);
1271 	return now;
1272 }
1273 
1274 /*
1275  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1276  * without sampling the sequence number in xtime_lock.
1277  * jiffies is defined in the linker script...
1278  */
do_timer(unsigned long ticks)1279 void do_timer(unsigned long ticks)
1280 {
1281 	jiffies_64 += ticks;
1282 	update_wall_time();
1283 	calc_global_load(ticks);
1284 }
1285 
1286 /**
1287  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1288  *    and sleep offsets.
1289  * @xtim:	pointer to timespec to be set with xtime
1290  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1291  * @sleep:	pointer to timespec to be set with time in suspend
1292  */
get_xtime_and_monotonic_and_sleep_offset(struct timespec * xtim,struct timespec * wtom,struct timespec * sleep)1293 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1294 				struct timespec *wtom, struct timespec *sleep)
1295 {
1296 	unsigned long seq;
1297 
1298 	do {
1299 		seq = read_seqbegin(&timekeeper.lock);
1300 		*xtim = timekeeper.xtime;
1301 		*wtom = timekeeper.wall_to_monotonic;
1302 		*sleep = timekeeper.total_sleep_time;
1303 	} while (read_seqretry(&timekeeper.lock, seq));
1304 }
1305 
1306 #ifdef CONFIG_HIGH_RES_TIMERS
1307 /**
1308  * ktime_get_update_offsets - hrtimer helper
1309  * @offs_real:	pointer to storage for monotonic -> realtime offset
1310  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1311  *
1312  * Returns current monotonic time and updates the offsets
1313  * Called from hrtimer_interupt() or retrigger_next_event()
1314  */
ktime_get_update_offsets(ktime_t * offs_real,ktime_t * offs_boot)1315 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1316 {
1317 	ktime_t now;
1318 	unsigned int seq;
1319 	u64 secs, nsecs;
1320 
1321 	do {
1322 		seq = read_seqbegin(&timekeeper.lock);
1323 
1324 		secs = timekeeper.xtime.tv_sec;
1325 		nsecs = timekeeper.xtime.tv_nsec;
1326 		nsecs += timekeeping_get_ns();
1327 		/* If arch requires, add in gettimeoffset() */
1328 		nsecs += arch_gettimeoffset();
1329 
1330 		*offs_real = timekeeper.offs_real;
1331 		*offs_boot = timekeeper.offs_boot;
1332 	} while (read_seqretry(&timekeeper.lock, seq));
1333 
1334 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1335 	now = ktime_sub(now, *offs_real);
1336 	return now;
1337 }
1338 #endif
1339 
1340 /**
1341  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1342  */
ktime_get_monotonic_offset(void)1343 ktime_t ktime_get_monotonic_offset(void)
1344 {
1345 	unsigned long seq;
1346 	struct timespec wtom;
1347 
1348 	do {
1349 		seq = read_seqbegin(&timekeeper.lock);
1350 		wtom = timekeeper.wall_to_monotonic;
1351 	} while (read_seqretry(&timekeeper.lock, seq));
1352 
1353 	return timespec_to_ktime(wtom);
1354 }
1355 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1356 
1357 
1358 /**
1359  * xtime_update() - advances the timekeeping infrastructure
1360  * @ticks:	number of ticks, that have elapsed since the last call.
1361  *
1362  * Must be called with interrupts disabled.
1363  */
xtime_update(unsigned long ticks)1364 void xtime_update(unsigned long ticks)
1365 {
1366 	write_seqlock(&xtime_lock);
1367 	do_timer(ticks);
1368 	write_sequnlock(&xtime_lock);
1369 }
1370