1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25
26 #include "internal.h"
27
28 struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31 };
32
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)33 static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35 {
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65 }
66
67 /*
68 * Return the folio with ref appropriately incremented,
69 * or NULL if that failed.
70 */
try_get_folio(struct page * page,int refs)71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 struct folio *folio;
74
75 retry:
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 return NULL;
79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 return NULL;
81
82 /*
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
87 * we were given anymore.
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
90 */
91 if (unlikely(page_folio(page) != folio)) {
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
94 goto retry;
95 }
96
97 return folio;
98 }
99
100 /**
101 * try_grab_folio() - Attempt to get or pin a folio.
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the folio's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
113 * FOLL_GET: folio's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on large folios: folio's refcount will be incremented by
116 * @refs, and its pincount will be incremented by @refs.
117 *
118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
119 * @refs * GUP_PIN_COUNTING_BIAS.
120 *
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
125 */
try_grab_folio(struct page * page,int refs,unsigned int flags)126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
136 if (flags & FOLL_GET)
137 return try_get_folio(page, refs);
138
139 /* FOLL_PIN is set */
140
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
147
148 folio = try_get_folio(page, refs);
149 if (!folio)
150 return NULL;
151
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
162 }
163
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
183
184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185
186 return folio;
187 }
188
gup_put_folio(struct folio * folio,int refs,unsigned int flags)189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 if (flags & FOLL_PIN) {
192 if (is_zero_folio(folio))
193 return;
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
196 atomic_sub(refs, &folio->_pincount);
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
203 }
204
205 /**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216 * time. Cases: please see the try_grab_folio() documentation, with
217 * "refs=1".
218 *
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
224 */
try_grab_page(struct page * page,unsigned int flags)225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 struct folio *folio = page_folio(page);
228
229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 return -ENOMEM;
231
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
234
235 if (flags & FOLL_GET)
236 folio_ref_inc(folio);
237 else if (flags & FOLL_PIN) {
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
245 /*
246 * Similar to try_grab_folio(): be sure to *also*
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
249 */
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
252 atomic_add(1, &folio->_pincount);
253 } else {
254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 }
256
257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 }
259
260 return 0;
261 }
262
263 /**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
unpin_user_page(struct page * page)272 void unpin_user_page(struct page *page)
273 {
274 sanity_check_pinned_pages(&page, 1);
275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278
279 /**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
folio_add_pin(struct folio * folio)286 void folio_add_pin(struct folio *folio)
287 {
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304 }
305
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)306 static inline struct folio *gup_folio_range_next(struct page *start,
307 unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
311 unsigned int nr = 1;
312
313 if (folio_test_large(folio))
314 nr = min_t(unsigned int, npages - i,
315 folio_nr_pages(folio) - folio_page_idx(folio, next));
316
317 *ntails = nr;
318 return folio;
319 }
320
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)321 static inline struct folio *gup_folio_next(struct page **list,
322 unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 struct folio *folio = page_folio(list[i]);
325 unsigned int nr;
326
327 for (nr = i + 1; nr < npages; nr++) {
328 if (page_folio(list[nr]) != folio)
329 break;
330 }
331
332 *ntails = nr - i;
333 return folio;
334 }
335
336 /**
337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338 * @pages: array of pages to be maybe marked dirty, and definitely released.
339 * @npages: number of pages in the @pages array.
340 * @make_dirty: whether to mark the pages dirty
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
346 * compound page) dirty, if @make_dirty is true, and if the page was previously
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
349 *
350 * Please see the unpin_user_page() documentation for details.
351 *
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
355 * set_page_dirty_lock(), unpin_user_page().
356 *
357 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
360 {
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
364
365 if (!make_dirty) {
366 unpin_user_pages(pages, npages);
367 return;
368 }
369
370 sanity_check_pinned_pages(pages, npages);
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
399 }
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402
403 /**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426 {
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
439 }
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
unpin_user_pages_lockless(struct page ** pages,unsigned long npages)443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458 }
459
460 /**
461 * unpin_user_pages() - release an array of gup-pinned pages.
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
465 * For each page in the @pages array, release the page using unpin_user_page().
466 *
467 * Please see the unpin_user_page() documentation for details.
468 */
unpin_user_pages(struct page ** pages,unsigned long npages)469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
474
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
482
483 sanity_check_pinned_pages(pages, npages);
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
487 }
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490
491 /*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
mm_set_has_pinned_flag(unsigned long * mm_flags)496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501
502 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)503 static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
505 {
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 return ERR_PTR(-EFAULT);
517 return NULL;
518 }
519
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522 {
523 if (flags & FOLL_TOUCH) {
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
531 if (!pte_same(orig_entry, entry)) {
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539 }
540
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
545 {
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
577 }
578
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
582 {
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
587 int ret;
588
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 if (!ptep)
596 return no_page_table(vma, flags);
597 pte = ptep_get(ptep);
598 if (!pte_present(pte))
599 goto no_page;
600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 goto no_page;
602
603 page = vm_normal_page(vma, address, pte);
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 /*
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
620 */
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
640 }
641
642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
654 goto out;
655 }
656
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
681 out:
682 pte_unmap_unlock(ptep, ptl);
683 return page;
684 no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
687 return NULL;
688 return no_page_table(vma, flags);
689 }
690
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
693 unsigned int flags,
694 struct follow_page_context *ctx)
695 {
696 pmd_t *pmd, pmdval;
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
701 pmd = pmd_offset(pudp, address);
702 pmdval = pmdp_get_lockless(pmd);
703 if (pmd_none(pmdval))
704 return no_page_table(vma, flags);
705 if (!pmd_present(pmdval))
706 return no_page_table(vma, flags);
707 if (pmd_devmap(pmdval)) {
708 ptl = pmd_lock(mm, pmd);
709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
714 if (likely(!pmd_trans_huge(pmdval)))
715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716
717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
718 return no_page_table(vma, flags);
719
720 ptl = pmd_lock(mm, pmd);
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
723 return no_page_table(vma, flags);
724 }
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 }
729 if (flags & FOLL_SPLIT_PMD) {
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 }
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
738 ctx->page_mask = HPAGE_PMD_NR - 1;
739 return page;
740 }
741
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
744 unsigned int flags,
745 struct follow_page_context *ctx)
746 {
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
765 return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
770 unsigned int flags,
771 struct follow_page_context *ctx)
772 {
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
782 return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784
785 /**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 unsigned long address, unsigned int flags,
811 struct follow_page_context *ctx)
812 {
813 pgd_t *pgd;
814 struct mm_struct *mm = vma->vm_mm;
815
816 ctx->page_mask = 0;
817
818 /*
819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 * special hugetlb page table walking code. This eliminates the
821 * need to check for hugetlb entries in the general walking code.
822 */
823 if (is_vm_hugetlb_page(vma))
824 return hugetlb_follow_page_mask(vma, address, flags,
825 &ctx->page_mask);
826
827 pgd = pgd_offset(mm, address);
828
829 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830 return no_page_table(vma, flags);
831
832 return follow_p4d_mask(vma, address, pgd, flags, ctx);
833 }
834
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)835 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
836 unsigned int foll_flags)
837 {
838 struct follow_page_context ctx = { NULL };
839 struct page *page;
840
841 if (vma_is_secretmem(vma))
842 return NULL;
843
844 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
845 return NULL;
846
847 /*
848 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
849 * to fail on PROT_NONE-mapped pages.
850 */
851 page = follow_page_mask(vma, address, foll_flags, &ctx);
852 if (ctx.pgmap)
853 put_dev_pagemap(ctx.pgmap);
854 return page;
855 }
856
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)857 static int get_gate_page(struct mm_struct *mm, unsigned long address,
858 unsigned int gup_flags, struct vm_area_struct **vma,
859 struct page **page)
860 {
861 pgd_t *pgd;
862 p4d_t *p4d;
863 pud_t *pud;
864 pmd_t *pmd;
865 pte_t *pte;
866 pte_t entry;
867 int ret = -EFAULT;
868
869 /* user gate pages are read-only */
870 if (gup_flags & FOLL_WRITE)
871 return -EFAULT;
872 if (address > TASK_SIZE)
873 pgd = pgd_offset_k(address);
874 else
875 pgd = pgd_offset_gate(mm, address);
876 if (pgd_none(*pgd))
877 return -EFAULT;
878 p4d = p4d_offset(pgd, address);
879 if (p4d_none(*p4d))
880 return -EFAULT;
881 pud = pud_offset(p4d, address);
882 if (pud_none(*pud))
883 return -EFAULT;
884 pmd = pmd_offset(pud, address);
885 if (!pmd_present(*pmd))
886 return -EFAULT;
887 pte = pte_offset_map(pmd, address);
888 if (!pte)
889 return -EFAULT;
890 entry = ptep_get(pte);
891 if (pte_none(entry))
892 goto unmap;
893 *vma = get_gate_vma(mm);
894 if (!page)
895 goto out;
896 *page = vm_normal_page(*vma, address, entry);
897 if (!*page) {
898 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
899 goto unmap;
900 *page = pte_page(entry);
901 }
902 ret = try_grab_page(*page, gup_flags);
903 if (unlikely(ret))
904 goto unmap;
905 out:
906 ret = 0;
907 unmap:
908 pte_unmap(pte);
909 return ret;
910 }
911
912 /*
913 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
914 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
915 * to 0 and -EBUSY returned.
916 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,bool unshare,int * locked)917 static int faultin_page(struct vm_area_struct *vma,
918 unsigned long address, unsigned int *flags, bool unshare,
919 int *locked)
920 {
921 unsigned int fault_flags = 0;
922 vm_fault_t ret;
923
924 if (*flags & FOLL_NOFAULT)
925 return -EFAULT;
926 if (*flags & FOLL_WRITE)
927 fault_flags |= FAULT_FLAG_WRITE;
928 if (*flags & FOLL_REMOTE)
929 fault_flags |= FAULT_FLAG_REMOTE;
930 if (*flags & FOLL_UNLOCKABLE) {
931 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
932 /*
933 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
934 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
935 * That's because some callers may not be prepared to
936 * handle early exits caused by non-fatal signals.
937 */
938 if (*flags & FOLL_INTERRUPTIBLE)
939 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
940 }
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
943 if (*flags & FOLL_TRIED) {
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
950 if (unshare) {
951 fault_flags |= FAULT_FLAG_UNSHARE;
952 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
953 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
954 }
955
956 ret = handle_mm_fault(vma, address, fault_flags, NULL);
957
958 if (ret & VM_FAULT_COMPLETED) {
959 /*
960 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
961 * mmap lock in the page fault handler. Sanity check this.
962 */
963 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
964 *locked = 0;
965
966 /*
967 * We should do the same as VM_FAULT_RETRY, but let's not
968 * return -EBUSY since that's not reflecting the reality of
969 * what has happened - we've just fully completed a page
970 * fault, with the mmap lock released. Use -EAGAIN to show
971 * that we want to take the mmap lock _again_.
972 */
973 return -EAGAIN;
974 }
975
976 if (ret & VM_FAULT_ERROR) {
977 int err = vm_fault_to_errno(ret, *flags);
978
979 if (err)
980 return err;
981 BUG();
982 }
983
984 if (ret & VM_FAULT_RETRY) {
985 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
986 *locked = 0;
987 return -EBUSY;
988 }
989
990 return 0;
991 }
992
993 /*
994 * Writing to file-backed mappings which require folio dirty tracking using GUP
995 * is a fundamentally broken operation, as kernel write access to GUP mappings
996 * do not adhere to the semantics expected by a file system.
997 *
998 * Consider the following scenario:-
999 *
1000 * 1. A folio is written to via GUP which write-faults the memory, notifying
1001 * the file system and dirtying the folio.
1002 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1003 * the PTE being marked read-only.
1004 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1005 * direct mapping.
1006 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1007 * (though it does not have to).
1008 *
1009 * This results in both data being written to a folio without writenotify, and
1010 * the folio being dirtied unexpectedly (if the caller decides to do so).
1011 */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1012 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1013 unsigned long gup_flags)
1014 {
1015 /*
1016 * If we aren't pinning then no problematic write can occur. A long term
1017 * pin is the most egregious case so this is the case we disallow.
1018 */
1019 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1020 (FOLL_PIN | FOLL_LONGTERM))
1021 return true;
1022
1023 /*
1024 * If the VMA does not require dirty tracking then no problematic write
1025 * can occur either.
1026 */
1027 return !vma_needs_dirty_tracking(vma);
1028 }
1029
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1030 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1031 {
1032 vm_flags_t vm_flags = vma->vm_flags;
1033 int write = (gup_flags & FOLL_WRITE);
1034 int foreign = (gup_flags & FOLL_REMOTE);
1035 bool vma_anon = vma_is_anonymous(vma);
1036
1037 if (vm_flags & (VM_IO | VM_PFNMAP))
1038 return -EFAULT;
1039
1040 if ((gup_flags & FOLL_ANON) && !vma_anon)
1041 return -EFAULT;
1042
1043 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1044 return -EOPNOTSUPP;
1045
1046 if (vma_is_secretmem(vma))
1047 return -EFAULT;
1048
1049 if (write) {
1050 if (!vma_anon &&
1051 !writable_file_mapping_allowed(vma, gup_flags))
1052 return -EFAULT;
1053
1054 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1055 if (!(gup_flags & FOLL_FORCE))
1056 return -EFAULT;
1057 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1058 if (is_vm_hugetlb_page(vma))
1059 return -EFAULT;
1060 /*
1061 * We used to let the write,force case do COW in a
1062 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1063 * set a breakpoint in a read-only mapping of an
1064 * executable, without corrupting the file (yet only
1065 * when that file had been opened for writing!).
1066 * Anon pages in shared mappings are surprising: now
1067 * just reject it.
1068 */
1069 if (!is_cow_mapping(vm_flags))
1070 return -EFAULT;
1071 }
1072 } else if (!(vm_flags & VM_READ)) {
1073 if (!(gup_flags & FOLL_FORCE))
1074 return -EFAULT;
1075 /*
1076 * Is there actually any vma we can reach here which does not
1077 * have VM_MAYREAD set?
1078 */
1079 if (!(vm_flags & VM_MAYREAD))
1080 return -EFAULT;
1081 }
1082 /*
1083 * gups are always data accesses, not instruction
1084 * fetches, so execute=false here
1085 */
1086 if (!arch_vma_access_permitted(vma, write, false, foreign))
1087 return -EFAULT;
1088 return 0;
1089 }
1090
1091 /*
1092 * This is "vma_lookup()", but with a warning if we would have
1093 * historically expanded the stack in the GUP code.
1094 */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1095 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1096 unsigned long addr)
1097 {
1098 #ifdef CONFIG_STACK_GROWSUP
1099 return vma_lookup(mm, addr);
1100 #else
1101 static volatile unsigned long next_warn;
1102 struct vm_area_struct *vma;
1103 unsigned long now, next;
1104
1105 vma = find_vma(mm, addr);
1106 if (!vma || (addr >= vma->vm_start))
1107 return vma;
1108
1109 /* Only warn for half-way relevant accesses */
1110 if (!(vma->vm_flags & VM_GROWSDOWN))
1111 return NULL;
1112 if (vma->vm_start - addr > 65536)
1113 return NULL;
1114
1115 /* Let's not warn more than once an hour.. */
1116 now = jiffies; next = next_warn;
1117 if (next && time_before(now, next))
1118 return NULL;
1119 next_warn = now + 60*60*HZ;
1120
1121 /* Let people know things may have changed. */
1122 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1123 current->comm, task_pid_nr(current),
1124 vma->vm_start, vma->vm_end, addr);
1125 dump_stack();
1126 return NULL;
1127 #endif
1128 }
1129
1130 /**
1131 * __get_user_pages() - pin user pages in memory
1132 * @mm: mm_struct of target mm
1133 * @start: starting user address
1134 * @nr_pages: number of pages from start to pin
1135 * @gup_flags: flags modifying pin behaviour
1136 * @pages: array that receives pointers to the pages pinned.
1137 * Should be at least nr_pages long. Or NULL, if caller
1138 * only intends to ensure the pages are faulted in.
1139 * @locked: whether we're still with the mmap_lock held
1140 *
1141 * Returns either number of pages pinned (which may be less than the
1142 * number requested), or an error. Details about the return value:
1143 *
1144 * -- If nr_pages is 0, returns 0.
1145 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1146 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1147 * pages pinned. Again, this may be less than nr_pages.
1148 * -- 0 return value is possible when the fault would need to be retried.
1149 *
1150 * The caller is responsible for releasing returned @pages, via put_page().
1151 *
1152 * Must be called with mmap_lock held. It may be released. See below.
1153 *
1154 * __get_user_pages walks a process's page tables and takes a reference to
1155 * each struct page that each user address corresponds to at a given
1156 * instant. That is, it takes the page that would be accessed if a user
1157 * thread accesses the given user virtual address at that instant.
1158 *
1159 * This does not guarantee that the page exists in the user mappings when
1160 * __get_user_pages returns, and there may even be a completely different
1161 * page there in some cases (eg. if mmapped pagecache has been invalidated
1162 * and subsequently re-faulted). However it does guarantee that the page
1163 * won't be freed completely. And mostly callers simply care that the page
1164 * contains data that was valid *at some point in time*. Typically, an IO
1165 * or similar operation cannot guarantee anything stronger anyway because
1166 * locks can't be held over the syscall boundary.
1167 *
1168 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1169 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1170 * appropriate) must be called after the page is finished with, and
1171 * before put_page is called.
1172 *
1173 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1174 * be released. If this happens *@locked will be set to 0 on return.
1175 *
1176 * A caller using such a combination of @gup_flags must therefore hold the
1177 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1178 * it must be held for either reading or writing and will not be released.
1179 *
1180 * In most cases, get_user_pages or get_user_pages_fast should be used
1181 * instead of __get_user_pages. __get_user_pages should be used only if
1182 * you need some special @gup_flags.
1183 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1184 static long __get_user_pages(struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 unsigned int gup_flags, struct page **pages,
1187 int *locked)
1188 {
1189 long ret = 0, i = 0;
1190 struct vm_area_struct *vma = NULL;
1191 struct follow_page_context ctx = { NULL };
1192
1193 if (!nr_pages)
1194 return 0;
1195
1196 start = untagged_addr_remote(mm, start);
1197
1198 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1199
1200 do {
1201 struct page *page;
1202 unsigned int foll_flags = gup_flags;
1203 unsigned int page_increm;
1204
1205 /* first iteration or cross vma bound */
1206 if (!vma || start >= vma->vm_end) {
1207 vma = gup_vma_lookup(mm, start);
1208 if (!vma && in_gate_area(mm, start)) {
1209 ret = get_gate_page(mm, start & PAGE_MASK,
1210 gup_flags, &vma,
1211 pages ? &page : NULL);
1212 if (ret)
1213 goto out;
1214 ctx.page_mask = 0;
1215 goto next_page;
1216 }
1217
1218 if (!vma) {
1219 ret = -EFAULT;
1220 goto out;
1221 }
1222 ret = check_vma_flags(vma, gup_flags);
1223 if (ret)
1224 goto out;
1225 }
1226 retry:
1227 /*
1228 * If we have a pending SIGKILL, don't keep faulting pages and
1229 * potentially allocating memory.
1230 */
1231 if (fatal_signal_pending(current)) {
1232 ret = -EINTR;
1233 goto out;
1234 }
1235 cond_resched();
1236
1237 page = follow_page_mask(vma, start, foll_flags, &ctx);
1238 if (!page || PTR_ERR(page) == -EMLINK) {
1239 ret = faultin_page(vma, start, &foll_flags,
1240 PTR_ERR(page) == -EMLINK, locked);
1241 switch (ret) {
1242 case 0:
1243 goto retry;
1244 case -EBUSY:
1245 case -EAGAIN:
1246 ret = 0;
1247 fallthrough;
1248 case -EFAULT:
1249 case -ENOMEM:
1250 case -EHWPOISON:
1251 goto out;
1252 }
1253 BUG();
1254 } else if (PTR_ERR(page) == -EEXIST) {
1255 /*
1256 * Proper page table entry exists, but no corresponding
1257 * struct page. If the caller expects **pages to be
1258 * filled in, bail out now, because that can't be done
1259 * for this page.
1260 */
1261 if (pages) {
1262 ret = PTR_ERR(page);
1263 goto out;
1264 }
1265 } else if (IS_ERR(page)) {
1266 ret = PTR_ERR(page);
1267 goto out;
1268 }
1269 next_page:
1270 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1271 if (page_increm > nr_pages)
1272 page_increm = nr_pages;
1273
1274 if (pages) {
1275 struct page *subpage;
1276 unsigned int j;
1277
1278 /*
1279 * This must be a large folio (and doesn't need to
1280 * be the whole folio; it can be part of it), do
1281 * the refcount work for all the subpages too.
1282 *
1283 * NOTE: here the page may not be the head page
1284 * e.g. when start addr is not thp-size aligned.
1285 * try_grab_folio() should have taken care of tail
1286 * pages.
1287 */
1288 if (page_increm > 1) {
1289 struct folio *folio;
1290
1291 /*
1292 * Since we already hold refcount on the
1293 * large folio, this should never fail.
1294 */
1295 folio = try_grab_folio(page, page_increm - 1,
1296 foll_flags);
1297 if (WARN_ON_ONCE(!folio)) {
1298 /*
1299 * Release the 1st page ref if the
1300 * folio is problematic, fail hard.
1301 */
1302 gup_put_folio(page_folio(page), 1,
1303 foll_flags);
1304 ret = -EFAULT;
1305 goto out;
1306 }
1307 }
1308
1309 for (j = 0; j < page_increm; j++) {
1310 subpage = nth_page(page, j);
1311 pages[i + j] = subpage;
1312 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1313 flush_dcache_page(subpage);
1314 }
1315 }
1316
1317 i += page_increm;
1318 start += page_increm * PAGE_SIZE;
1319 nr_pages -= page_increm;
1320 } while (nr_pages);
1321 out:
1322 if (ctx.pgmap)
1323 put_dev_pagemap(ctx.pgmap);
1324 return i ? i : ret;
1325 }
1326
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1327 static bool vma_permits_fault(struct vm_area_struct *vma,
1328 unsigned int fault_flags)
1329 {
1330 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1331 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1332 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1333
1334 if (!(vm_flags & vma->vm_flags))
1335 return false;
1336
1337 /*
1338 * The architecture might have a hardware protection
1339 * mechanism other than read/write that can deny access.
1340 *
1341 * gup always represents data access, not instruction
1342 * fetches, so execute=false here:
1343 */
1344 if (!arch_vma_access_permitted(vma, write, false, foreign))
1345 return false;
1346
1347 return true;
1348 }
1349
1350 /**
1351 * fixup_user_fault() - manually resolve a user page fault
1352 * @mm: mm_struct of target mm
1353 * @address: user address
1354 * @fault_flags:flags to pass down to handle_mm_fault()
1355 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1356 * does not allow retry. If NULL, the caller must guarantee
1357 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1358 *
1359 * This is meant to be called in the specific scenario where for locking reasons
1360 * we try to access user memory in atomic context (within a pagefault_disable()
1361 * section), this returns -EFAULT, and we want to resolve the user fault before
1362 * trying again.
1363 *
1364 * Typically this is meant to be used by the futex code.
1365 *
1366 * The main difference with get_user_pages() is that this function will
1367 * unconditionally call handle_mm_fault() which will in turn perform all the
1368 * necessary SW fixup of the dirty and young bits in the PTE, while
1369 * get_user_pages() only guarantees to update these in the struct page.
1370 *
1371 * This is important for some architectures where those bits also gate the
1372 * access permission to the page because they are maintained in software. On
1373 * such architectures, gup() will not be enough to make a subsequent access
1374 * succeed.
1375 *
1376 * This function will not return with an unlocked mmap_lock. So it has not the
1377 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1378 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1379 int fixup_user_fault(struct mm_struct *mm,
1380 unsigned long address, unsigned int fault_flags,
1381 bool *unlocked)
1382 {
1383 struct vm_area_struct *vma;
1384 vm_fault_t ret;
1385
1386 address = untagged_addr_remote(mm, address);
1387
1388 if (unlocked)
1389 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1390
1391 retry:
1392 vma = gup_vma_lookup(mm, address);
1393 if (!vma)
1394 return -EFAULT;
1395
1396 if (!vma_permits_fault(vma, fault_flags))
1397 return -EFAULT;
1398
1399 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1400 fatal_signal_pending(current))
1401 return -EINTR;
1402
1403 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1404
1405 if (ret & VM_FAULT_COMPLETED) {
1406 /*
1407 * NOTE: it's a pity that we need to retake the lock here
1408 * to pair with the unlock() in the callers. Ideally we
1409 * could tell the callers so they do not need to unlock.
1410 */
1411 mmap_read_lock(mm);
1412 *unlocked = true;
1413 return 0;
1414 }
1415
1416 if (ret & VM_FAULT_ERROR) {
1417 int err = vm_fault_to_errno(ret, 0);
1418
1419 if (err)
1420 return err;
1421 BUG();
1422 }
1423
1424 if (ret & VM_FAULT_RETRY) {
1425 mmap_read_lock(mm);
1426 *unlocked = true;
1427 fault_flags |= FAULT_FLAG_TRIED;
1428 goto retry;
1429 }
1430
1431 return 0;
1432 }
1433 EXPORT_SYMBOL_GPL(fixup_user_fault);
1434
1435 /*
1436 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1437 * specified, it'll also respond to generic signals. The caller of GUP
1438 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1439 */
gup_signal_pending(unsigned int flags)1440 static bool gup_signal_pending(unsigned int flags)
1441 {
1442 if (fatal_signal_pending(current))
1443 return true;
1444
1445 if (!(flags & FOLL_INTERRUPTIBLE))
1446 return false;
1447
1448 return signal_pending(current);
1449 }
1450
1451 /*
1452 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1453 * the caller. This function may drop the mmap_lock. If it does so, then it will
1454 * set (*locked = 0).
1455 *
1456 * (*locked == 0) means that the caller expects this function to acquire and
1457 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1458 * the function returns, even though it may have changed temporarily during
1459 * function execution.
1460 *
1461 * Please note that this function, unlike __get_user_pages(), will not return 0
1462 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1463 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1464 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1465 unsigned long start,
1466 unsigned long nr_pages,
1467 struct page **pages,
1468 int *locked,
1469 unsigned int flags)
1470 {
1471 long ret, pages_done;
1472 bool must_unlock = false;
1473
1474 /*
1475 * The internal caller expects GUP to manage the lock internally and the
1476 * lock must be released when this returns.
1477 */
1478 if (!*locked) {
1479 if (mmap_read_lock_killable(mm))
1480 return -EAGAIN;
1481 must_unlock = true;
1482 *locked = 1;
1483 }
1484 else
1485 mmap_assert_locked(mm);
1486
1487 if (flags & FOLL_PIN)
1488 mm_set_has_pinned_flag(&mm->flags);
1489
1490 /*
1491 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1492 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1493 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1494 * for FOLL_GET, not for the newer FOLL_PIN.
1495 *
1496 * FOLL_PIN always expects pages to be non-null, but no need to assert
1497 * that here, as any failures will be obvious enough.
1498 */
1499 if (pages && !(flags & FOLL_PIN))
1500 flags |= FOLL_GET;
1501
1502 pages_done = 0;
1503 for (;;) {
1504 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1505 locked);
1506 if (!(flags & FOLL_UNLOCKABLE)) {
1507 /* VM_FAULT_RETRY couldn't trigger, bypass */
1508 pages_done = ret;
1509 break;
1510 }
1511
1512 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1513 if (!*locked) {
1514 BUG_ON(ret < 0);
1515 BUG_ON(ret >= nr_pages);
1516 }
1517
1518 if (ret > 0) {
1519 nr_pages -= ret;
1520 pages_done += ret;
1521 if (!nr_pages)
1522 break;
1523 }
1524 if (*locked) {
1525 /*
1526 * VM_FAULT_RETRY didn't trigger or it was a
1527 * FOLL_NOWAIT.
1528 */
1529 if (!pages_done)
1530 pages_done = ret;
1531 break;
1532 }
1533 /*
1534 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1535 * For the prefault case (!pages) we only update counts.
1536 */
1537 if (likely(pages))
1538 pages += ret;
1539 start += ret << PAGE_SHIFT;
1540
1541 /* The lock was temporarily dropped, so we must unlock later */
1542 must_unlock = true;
1543
1544 retry:
1545 /*
1546 * Repeat on the address that fired VM_FAULT_RETRY
1547 * with both FAULT_FLAG_ALLOW_RETRY and
1548 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1549 * by fatal signals of even common signals, depending on
1550 * the caller's request. So we need to check it before we
1551 * start trying again otherwise it can loop forever.
1552 */
1553 if (gup_signal_pending(flags)) {
1554 if (!pages_done)
1555 pages_done = -EINTR;
1556 break;
1557 }
1558
1559 ret = mmap_read_lock_killable(mm);
1560 if (ret) {
1561 BUG_ON(ret > 0);
1562 if (!pages_done)
1563 pages_done = ret;
1564 break;
1565 }
1566
1567 *locked = 1;
1568 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1569 pages, locked);
1570 if (!*locked) {
1571 /* Continue to retry until we succeeded */
1572 BUG_ON(ret != 0);
1573 goto retry;
1574 }
1575 if (ret != 1) {
1576 BUG_ON(ret > 1);
1577 if (!pages_done)
1578 pages_done = ret;
1579 break;
1580 }
1581 nr_pages--;
1582 pages_done++;
1583 if (!nr_pages)
1584 break;
1585 if (likely(pages))
1586 pages++;
1587 start += PAGE_SIZE;
1588 }
1589 if (must_unlock && *locked) {
1590 /*
1591 * We either temporarily dropped the lock, or the caller
1592 * requested that we both acquire and drop the lock. Either way,
1593 * we must now unlock, and notify the caller of that state.
1594 */
1595 mmap_read_unlock(mm);
1596 *locked = 0;
1597 }
1598 return pages_done;
1599 }
1600
1601 /**
1602 * populate_vma_page_range() - populate a range of pages in the vma.
1603 * @vma: target vma
1604 * @start: start address
1605 * @end: end address
1606 * @locked: whether the mmap_lock is still held
1607 *
1608 * This takes care of mlocking the pages too if VM_LOCKED is set.
1609 *
1610 * Return either number of pages pinned in the vma, or a negative error
1611 * code on error.
1612 *
1613 * vma->vm_mm->mmap_lock must be held.
1614 *
1615 * If @locked is NULL, it may be held for read or write and will
1616 * be unperturbed.
1617 *
1618 * If @locked is non-NULL, it must held for read only and may be
1619 * released. If it's released, *@locked will be set to 0.
1620 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1621 long populate_vma_page_range(struct vm_area_struct *vma,
1622 unsigned long start, unsigned long end, int *locked)
1623 {
1624 struct mm_struct *mm = vma->vm_mm;
1625 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1626 int local_locked = 1;
1627 int gup_flags;
1628 long ret;
1629
1630 VM_BUG_ON(!PAGE_ALIGNED(start));
1631 VM_BUG_ON(!PAGE_ALIGNED(end));
1632 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1633 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1634 mmap_assert_locked(mm);
1635
1636 /*
1637 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1638 * faultin_page() to break COW, so it has no work to do here.
1639 */
1640 if (vma->vm_flags & VM_LOCKONFAULT)
1641 return nr_pages;
1642
1643 gup_flags = FOLL_TOUCH;
1644 /*
1645 * We want to touch writable mappings with a write fault in order
1646 * to break COW, except for shared mappings because these don't COW
1647 * and we would not want to dirty them for nothing.
1648 */
1649 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1650 gup_flags |= FOLL_WRITE;
1651
1652 /*
1653 * We want mlock to succeed for regions that have any permissions
1654 * other than PROT_NONE.
1655 */
1656 if (vma_is_accessible(vma))
1657 gup_flags |= FOLL_FORCE;
1658
1659 if (locked)
1660 gup_flags |= FOLL_UNLOCKABLE;
1661
1662 /*
1663 * We made sure addr is within a VMA, so the following will
1664 * not result in a stack expansion that recurses back here.
1665 */
1666 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1667 NULL, locked ? locked : &local_locked);
1668 lru_add_drain();
1669 return ret;
1670 }
1671
1672 /*
1673 * faultin_vma_page_range() - populate (prefault) page tables inside the
1674 * given VMA range readable/writable
1675 *
1676 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1677 *
1678 * @vma: target vma
1679 * @start: start address
1680 * @end: end address
1681 * @write: whether to prefault readable or writable
1682 * @locked: whether the mmap_lock is still held
1683 *
1684 * Returns either number of processed pages in the vma, or a negative error
1685 * code on error (see __get_user_pages()).
1686 *
1687 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1688 * covered by the VMA. If it's released, *@locked will be set to 0.
1689 */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1690 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1691 unsigned long end, bool write, int *locked)
1692 {
1693 struct mm_struct *mm = vma->vm_mm;
1694 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1695 int gup_flags;
1696 long ret;
1697
1698 VM_BUG_ON(!PAGE_ALIGNED(start));
1699 VM_BUG_ON(!PAGE_ALIGNED(end));
1700 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1701 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1702 mmap_assert_locked(mm);
1703
1704 /*
1705 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1706 * the page dirty with FOLL_WRITE -- which doesn't make a
1707 * difference with !FOLL_FORCE, because the page is writable
1708 * in the page table.
1709 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1710 * a poisoned page.
1711 * !FOLL_FORCE: Require proper access permissions.
1712 */
1713 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1714 if (write)
1715 gup_flags |= FOLL_WRITE;
1716
1717 /*
1718 * We want to report -EINVAL instead of -EFAULT for any permission
1719 * problems or incompatible mappings.
1720 */
1721 if (check_vma_flags(vma, gup_flags))
1722 return -EINVAL;
1723
1724 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1725 NULL, locked);
1726 lru_add_drain();
1727 return ret;
1728 }
1729
1730 /*
1731 * __mm_populate - populate and/or mlock pages within a range of address space.
1732 *
1733 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1734 * flags. VMAs must be already marked with the desired vm_flags, and
1735 * mmap_lock must not be held.
1736 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1737 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1738 {
1739 struct mm_struct *mm = current->mm;
1740 unsigned long end, nstart, nend;
1741 struct vm_area_struct *vma = NULL;
1742 int locked = 0;
1743 long ret = 0;
1744
1745 end = start + len;
1746
1747 for (nstart = start; nstart < end; nstart = nend) {
1748 /*
1749 * We want to fault in pages for [nstart; end) address range.
1750 * Find first corresponding VMA.
1751 */
1752 if (!locked) {
1753 locked = 1;
1754 mmap_read_lock(mm);
1755 vma = find_vma_intersection(mm, nstart, end);
1756 } else if (nstart >= vma->vm_end)
1757 vma = find_vma_intersection(mm, vma->vm_end, end);
1758
1759 if (!vma)
1760 break;
1761 /*
1762 * Set [nstart; nend) to intersection of desired address
1763 * range with the first VMA. Also, skip undesirable VMA types.
1764 */
1765 nend = min(end, vma->vm_end);
1766 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1767 continue;
1768 if (nstart < vma->vm_start)
1769 nstart = vma->vm_start;
1770 /*
1771 * Now fault in a range of pages. populate_vma_page_range()
1772 * double checks the vma flags, so that it won't mlock pages
1773 * if the vma was already munlocked.
1774 */
1775 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1776 if (ret < 0) {
1777 if (ignore_errors) {
1778 ret = 0;
1779 continue; /* continue at next VMA */
1780 }
1781 break;
1782 }
1783 nend = nstart + ret * PAGE_SIZE;
1784 ret = 0;
1785 }
1786 if (locked)
1787 mmap_read_unlock(mm);
1788 return ret; /* 0 or negative error code */
1789 }
1790 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)1791 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1792 unsigned long nr_pages, struct page **pages,
1793 int *locked, unsigned int foll_flags)
1794 {
1795 struct vm_area_struct *vma;
1796 bool must_unlock = false;
1797 unsigned long vm_flags;
1798 long i;
1799
1800 if (!nr_pages)
1801 return 0;
1802
1803 /*
1804 * The internal caller expects GUP to manage the lock internally and the
1805 * lock must be released when this returns.
1806 */
1807 if (!*locked) {
1808 if (mmap_read_lock_killable(mm))
1809 return -EAGAIN;
1810 must_unlock = true;
1811 *locked = 1;
1812 }
1813
1814 /* calculate required read or write permissions.
1815 * If FOLL_FORCE is set, we only require the "MAY" flags.
1816 */
1817 vm_flags = (foll_flags & FOLL_WRITE) ?
1818 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1819 vm_flags &= (foll_flags & FOLL_FORCE) ?
1820 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1821
1822 for (i = 0; i < nr_pages; i++) {
1823 vma = find_vma(mm, start);
1824 if (!vma)
1825 break;
1826
1827 /* protect what we can, including chardevs */
1828 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1829 !(vm_flags & vma->vm_flags))
1830 break;
1831
1832 if (pages) {
1833 pages[i] = virt_to_page((void *)start);
1834 if (pages[i])
1835 get_page(pages[i]);
1836 }
1837
1838 start = (start + PAGE_SIZE) & PAGE_MASK;
1839 }
1840
1841 if (must_unlock && *locked) {
1842 mmap_read_unlock(mm);
1843 *locked = 0;
1844 }
1845
1846 return i ? : -EFAULT;
1847 }
1848 #endif /* !CONFIG_MMU */
1849
1850 /**
1851 * fault_in_writeable - fault in userspace address range for writing
1852 * @uaddr: start of address range
1853 * @size: size of address range
1854 *
1855 * Returns the number of bytes not faulted in (like copy_to_user() and
1856 * copy_from_user()).
1857 */
fault_in_writeable(char __user * uaddr,size_t size)1858 size_t fault_in_writeable(char __user *uaddr, size_t size)
1859 {
1860 char __user *start = uaddr, *end;
1861
1862 if (unlikely(size == 0))
1863 return 0;
1864 if (!user_write_access_begin(uaddr, size))
1865 return size;
1866 if (!PAGE_ALIGNED(uaddr)) {
1867 unsafe_put_user(0, uaddr, out);
1868 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1869 }
1870 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1871 if (unlikely(end < start))
1872 end = NULL;
1873 while (uaddr != end) {
1874 unsafe_put_user(0, uaddr, out);
1875 uaddr += PAGE_SIZE;
1876 }
1877
1878 out:
1879 user_write_access_end();
1880 if (size > uaddr - start)
1881 return size - (uaddr - start);
1882 return 0;
1883 }
1884 EXPORT_SYMBOL(fault_in_writeable);
1885
1886 /**
1887 * fault_in_subpage_writeable - fault in an address range for writing
1888 * @uaddr: start of address range
1889 * @size: size of address range
1890 *
1891 * Fault in a user address range for writing while checking for permissions at
1892 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1893 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1894 *
1895 * Returns the number of bytes not faulted in (like copy_to_user() and
1896 * copy_from_user()).
1897 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)1898 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1899 {
1900 size_t faulted_in;
1901
1902 /*
1903 * Attempt faulting in at page granularity first for page table
1904 * permission checking. The arch-specific probe_subpage_writeable()
1905 * functions may not check for this.
1906 */
1907 faulted_in = size - fault_in_writeable(uaddr, size);
1908 if (faulted_in)
1909 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1910
1911 return size - faulted_in;
1912 }
1913 EXPORT_SYMBOL(fault_in_subpage_writeable);
1914
1915 /*
1916 * fault_in_safe_writeable - fault in an address range for writing
1917 * @uaddr: start of address range
1918 * @size: length of address range
1919 *
1920 * Faults in an address range for writing. This is primarily useful when we
1921 * already know that some or all of the pages in the address range aren't in
1922 * memory.
1923 *
1924 * Unlike fault_in_writeable(), this function is non-destructive.
1925 *
1926 * Note that we don't pin or otherwise hold the pages referenced that we fault
1927 * in. There's no guarantee that they'll stay in memory for any duration of
1928 * time.
1929 *
1930 * Returns the number of bytes not faulted in, like copy_to_user() and
1931 * copy_from_user().
1932 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1933 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1934 {
1935 unsigned long start = (unsigned long)uaddr, end;
1936 struct mm_struct *mm = current->mm;
1937 bool unlocked = false;
1938
1939 if (unlikely(size == 0))
1940 return 0;
1941 end = PAGE_ALIGN(start + size);
1942 if (end < start)
1943 end = 0;
1944
1945 mmap_read_lock(mm);
1946 do {
1947 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1948 break;
1949 start = (start + PAGE_SIZE) & PAGE_MASK;
1950 } while (start != end);
1951 mmap_read_unlock(mm);
1952
1953 if (size > (unsigned long)uaddr - start)
1954 return size - ((unsigned long)uaddr - start);
1955 return 0;
1956 }
1957 EXPORT_SYMBOL(fault_in_safe_writeable);
1958
1959 /**
1960 * fault_in_readable - fault in userspace address range for reading
1961 * @uaddr: start of user address range
1962 * @size: size of user address range
1963 *
1964 * Returns the number of bytes not faulted in (like copy_to_user() and
1965 * copy_from_user()).
1966 */
fault_in_readable(const char __user * uaddr,size_t size)1967 size_t fault_in_readable(const char __user *uaddr, size_t size)
1968 {
1969 const char __user *start = uaddr, *end;
1970 volatile char c;
1971
1972 if (unlikely(size == 0))
1973 return 0;
1974 if (!user_read_access_begin(uaddr, size))
1975 return size;
1976 if (!PAGE_ALIGNED(uaddr)) {
1977 unsafe_get_user(c, uaddr, out);
1978 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1979 }
1980 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1981 if (unlikely(end < start))
1982 end = NULL;
1983 while (uaddr != end) {
1984 unsafe_get_user(c, uaddr, out);
1985 uaddr += PAGE_SIZE;
1986 }
1987
1988 out:
1989 user_read_access_end();
1990 (void)c;
1991 if (size > uaddr - start)
1992 return size - (uaddr - start);
1993 return 0;
1994 }
1995 EXPORT_SYMBOL(fault_in_readable);
1996
1997 /**
1998 * get_dump_page() - pin user page in memory while writing it to core dump
1999 * @addr: user address
2000 *
2001 * Returns struct page pointer of user page pinned for dump,
2002 * to be freed afterwards by put_page().
2003 *
2004 * Returns NULL on any kind of failure - a hole must then be inserted into
2005 * the corefile, to preserve alignment with its headers; and also returns
2006 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2007 * allowing a hole to be left in the corefile to save disk space.
2008 *
2009 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2010 */
2011 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)2012 struct page *get_dump_page(unsigned long addr)
2013 {
2014 struct page *page;
2015 int locked = 0;
2016 int ret;
2017
2018 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2019 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2020 return (ret == 1) ? page : NULL;
2021 }
2022 #endif /* CONFIG_ELF_CORE */
2023
2024 #ifdef CONFIG_MIGRATION
2025 /*
2026 * Returns the number of collected pages. Return value is always >= 0.
2027 */
collect_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)2028 static unsigned long collect_longterm_unpinnable_pages(
2029 struct list_head *movable_page_list,
2030 unsigned long nr_pages,
2031 struct page **pages)
2032 {
2033 unsigned long i, collected = 0;
2034 struct folio *prev_folio = NULL;
2035 bool drain_allow = true;
2036
2037 for (i = 0; i < nr_pages; i++) {
2038 struct folio *folio = page_folio(pages[i]);
2039
2040 if (folio == prev_folio)
2041 continue;
2042 prev_folio = folio;
2043
2044 if (folio_is_longterm_pinnable(folio))
2045 continue;
2046
2047 collected++;
2048
2049 if (folio_is_device_coherent(folio))
2050 continue;
2051
2052 if (folio_test_hugetlb(folio)) {
2053 isolate_hugetlb(folio, movable_page_list);
2054 continue;
2055 }
2056
2057 if (!folio_test_lru(folio) && drain_allow) {
2058 lru_add_drain_all();
2059 drain_allow = false;
2060 }
2061
2062 if (!folio_isolate_lru(folio))
2063 continue;
2064
2065 list_add_tail(&folio->lru, movable_page_list);
2066 node_stat_mod_folio(folio,
2067 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2068 folio_nr_pages(folio));
2069 }
2070
2071 return collected;
2072 }
2073
2074 /*
2075 * Unpins all pages and migrates device coherent pages and movable_page_list.
2076 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2077 * (or partial success).
2078 */
migrate_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)2079 static int migrate_longterm_unpinnable_pages(
2080 struct list_head *movable_page_list,
2081 unsigned long nr_pages,
2082 struct page **pages)
2083 {
2084 int ret;
2085 unsigned long i;
2086
2087 for (i = 0; i < nr_pages; i++) {
2088 struct folio *folio = page_folio(pages[i]);
2089
2090 if (folio_is_device_coherent(folio)) {
2091 /*
2092 * Migration will fail if the page is pinned, so convert
2093 * the pin on the source page to a normal reference.
2094 */
2095 pages[i] = NULL;
2096 folio_get(folio);
2097 gup_put_folio(folio, 1, FOLL_PIN);
2098
2099 if (migrate_device_coherent_page(&folio->page)) {
2100 ret = -EBUSY;
2101 goto err;
2102 }
2103
2104 continue;
2105 }
2106
2107 /*
2108 * We can't migrate pages with unexpected references, so drop
2109 * the reference obtained by __get_user_pages_locked().
2110 * Migrating pages have been added to movable_page_list after
2111 * calling folio_isolate_lru() which takes a reference so the
2112 * page won't be freed if it's migrating.
2113 */
2114 unpin_user_page(pages[i]);
2115 pages[i] = NULL;
2116 }
2117
2118 if (!list_empty(movable_page_list)) {
2119 struct migration_target_control mtc = {
2120 .nid = NUMA_NO_NODE,
2121 .gfp_mask = GFP_USER | __GFP_NOWARN,
2122 };
2123
2124 if (migrate_pages(movable_page_list, alloc_migration_target,
2125 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2126 MR_LONGTERM_PIN, NULL)) {
2127 ret = -ENOMEM;
2128 goto err;
2129 }
2130 }
2131
2132 putback_movable_pages(movable_page_list);
2133
2134 return -EAGAIN;
2135
2136 err:
2137 for (i = 0; i < nr_pages; i++)
2138 if (pages[i])
2139 unpin_user_page(pages[i]);
2140 putback_movable_pages(movable_page_list);
2141
2142 return ret;
2143 }
2144
2145 /*
2146 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2147 * pages in the range are required to be pinned via FOLL_PIN, before calling
2148 * this routine.
2149 *
2150 * If any pages in the range are not allowed to be pinned, then this routine
2151 * will migrate those pages away, unpin all the pages in the range and return
2152 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2153 * call this routine again.
2154 *
2155 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2156 * The caller should give up, and propagate the error back up the call stack.
2157 *
2158 * If everything is OK and all pages in the range are allowed to be pinned, then
2159 * this routine leaves all pages pinned and returns zero for success.
2160 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2161 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2162 struct page **pages)
2163 {
2164 unsigned long collected;
2165 LIST_HEAD(movable_page_list);
2166
2167 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2168 nr_pages, pages);
2169 if (!collected)
2170 return 0;
2171
2172 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2173 pages);
2174 }
2175 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2176 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2177 struct page **pages)
2178 {
2179 return 0;
2180 }
2181 #endif /* CONFIG_MIGRATION */
2182
2183 /*
2184 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2185 * allows us to process the FOLL_LONGTERM flag.
2186 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2187 static long __gup_longterm_locked(struct mm_struct *mm,
2188 unsigned long start,
2189 unsigned long nr_pages,
2190 struct page **pages,
2191 int *locked,
2192 unsigned int gup_flags)
2193 {
2194 unsigned int flags;
2195 long rc, nr_pinned_pages;
2196
2197 if (!(gup_flags & FOLL_LONGTERM))
2198 return __get_user_pages_locked(mm, start, nr_pages, pages,
2199 locked, gup_flags);
2200
2201 flags = memalloc_pin_save();
2202 do {
2203 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2204 pages, locked,
2205 gup_flags);
2206 if (nr_pinned_pages <= 0) {
2207 rc = nr_pinned_pages;
2208 break;
2209 }
2210
2211 /* FOLL_LONGTERM implies FOLL_PIN */
2212 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2213 } while (rc == -EAGAIN);
2214 memalloc_pin_restore(flags);
2215 return rc ? rc : nr_pinned_pages;
2216 }
2217
2218 /*
2219 * Check that the given flags are valid for the exported gup/pup interface, and
2220 * update them with the required flags that the caller must have set.
2221 */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2222 static bool is_valid_gup_args(struct page **pages, int *locked,
2223 unsigned int *gup_flags_p, unsigned int to_set)
2224 {
2225 unsigned int gup_flags = *gup_flags_p;
2226
2227 /*
2228 * These flags not allowed to be specified externally to the gup
2229 * interfaces:
2230 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2231 * - FOLL_REMOTE is internal only and used on follow_page()
2232 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2233 */
2234 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2235 FOLL_REMOTE | FOLL_FAST_ONLY)))
2236 return false;
2237
2238 gup_flags |= to_set;
2239 if (locked) {
2240 /* At the external interface locked must be set */
2241 if (WARN_ON_ONCE(*locked != 1))
2242 return false;
2243
2244 gup_flags |= FOLL_UNLOCKABLE;
2245 }
2246
2247 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2248 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2249 (FOLL_PIN | FOLL_GET)))
2250 return false;
2251
2252 /* LONGTERM can only be specified when pinning */
2253 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2254 return false;
2255
2256 /* Pages input must be given if using GET/PIN */
2257 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2258 return false;
2259
2260 /* We want to allow the pgmap to be hot-unplugged at all times */
2261 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2262 (gup_flags & FOLL_PCI_P2PDMA)))
2263 return false;
2264
2265 *gup_flags_p = gup_flags;
2266 return true;
2267 }
2268
2269 #ifdef CONFIG_MMU
2270 /**
2271 * get_user_pages_remote() - pin user pages in memory
2272 * @mm: mm_struct of target mm
2273 * @start: starting user address
2274 * @nr_pages: number of pages from start to pin
2275 * @gup_flags: flags modifying lookup behaviour
2276 * @pages: array that receives pointers to the pages pinned.
2277 * Should be at least nr_pages long. Or NULL, if caller
2278 * only intends to ensure the pages are faulted in.
2279 * @locked: pointer to lock flag indicating whether lock is held and
2280 * subsequently whether VM_FAULT_RETRY functionality can be
2281 * utilised. Lock must initially be held.
2282 *
2283 * Returns either number of pages pinned (which may be less than the
2284 * number requested), or an error. Details about the return value:
2285 *
2286 * -- If nr_pages is 0, returns 0.
2287 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2288 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2289 * pages pinned. Again, this may be less than nr_pages.
2290 *
2291 * The caller is responsible for releasing returned @pages, via put_page().
2292 *
2293 * Must be called with mmap_lock held for read or write.
2294 *
2295 * get_user_pages_remote walks a process's page tables and takes a reference
2296 * to each struct page that each user address corresponds to at a given
2297 * instant. That is, it takes the page that would be accessed if a user
2298 * thread accesses the given user virtual address at that instant.
2299 *
2300 * This does not guarantee that the page exists in the user mappings when
2301 * get_user_pages_remote returns, and there may even be a completely different
2302 * page there in some cases (eg. if mmapped pagecache has been invalidated
2303 * and subsequently re-faulted). However it does guarantee that the page
2304 * won't be freed completely. And mostly callers simply care that the page
2305 * contains data that was valid *at some point in time*. Typically, an IO
2306 * or similar operation cannot guarantee anything stronger anyway because
2307 * locks can't be held over the syscall boundary.
2308 *
2309 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2310 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2311 * be called after the page is finished with, and before put_page is called.
2312 *
2313 * get_user_pages_remote is typically used for fewer-copy IO operations,
2314 * to get a handle on the memory by some means other than accesses
2315 * via the user virtual addresses. The pages may be submitted for
2316 * DMA to devices or accessed via their kernel linear mapping (via the
2317 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2318 *
2319 * See also get_user_pages_fast, for performance critical applications.
2320 *
2321 * get_user_pages_remote should be phased out in favor of
2322 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2323 * should use get_user_pages_remote because it cannot pass
2324 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2325 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2326 long get_user_pages_remote(struct mm_struct *mm,
2327 unsigned long start, unsigned long nr_pages,
2328 unsigned int gup_flags, struct page **pages,
2329 int *locked)
2330 {
2331 int local_locked = 1;
2332
2333 if (!is_valid_gup_args(pages, locked, &gup_flags,
2334 FOLL_TOUCH | FOLL_REMOTE))
2335 return -EINVAL;
2336
2337 return __get_user_pages_locked(mm, start, nr_pages, pages,
2338 locked ? locked : &local_locked,
2339 gup_flags);
2340 }
2341 EXPORT_SYMBOL(get_user_pages_remote);
2342
2343 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2344 long get_user_pages_remote(struct mm_struct *mm,
2345 unsigned long start, unsigned long nr_pages,
2346 unsigned int gup_flags, struct page **pages,
2347 int *locked)
2348 {
2349 return 0;
2350 }
2351 #endif /* !CONFIG_MMU */
2352
2353 /**
2354 * get_user_pages() - pin user pages in memory
2355 * @start: starting user address
2356 * @nr_pages: number of pages from start to pin
2357 * @gup_flags: flags modifying lookup behaviour
2358 * @pages: array that receives pointers to the pages pinned.
2359 * Should be at least nr_pages long. Or NULL, if caller
2360 * only intends to ensure the pages are faulted in.
2361 *
2362 * This is the same as get_user_pages_remote(), just with a less-flexible
2363 * calling convention where we assume that the mm being operated on belongs to
2364 * the current task, and doesn't allow passing of a locked parameter. We also
2365 * obviously don't pass FOLL_REMOTE in here.
2366 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2367 long get_user_pages(unsigned long start, unsigned long nr_pages,
2368 unsigned int gup_flags, struct page **pages)
2369 {
2370 int locked = 1;
2371
2372 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2373 return -EINVAL;
2374
2375 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2376 &locked, gup_flags);
2377 }
2378 EXPORT_SYMBOL(get_user_pages);
2379
2380 /*
2381 * get_user_pages_unlocked() is suitable to replace the form:
2382 *
2383 * mmap_read_lock(mm);
2384 * get_user_pages(mm, ..., pages, NULL);
2385 * mmap_read_unlock(mm);
2386 *
2387 * with:
2388 *
2389 * get_user_pages_unlocked(mm, ..., pages);
2390 *
2391 * It is functionally equivalent to get_user_pages_fast so
2392 * get_user_pages_fast should be used instead if specific gup_flags
2393 * (e.g. FOLL_FORCE) are not required.
2394 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2395 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2396 struct page **pages, unsigned int gup_flags)
2397 {
2398 int locked = 0;
2399
2400 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2401 FOLL_TOUCH | FOLL_UNLOCKABLE))
2402 return -EINVAL;
2403
2404 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2405 &locked, gup_flags);
2406 }
2407 EXPORT_SYMBOL(get_user_pages_unlocked);
2408
2409 /*
2410 * Fast GUP
2411 *
2412 * get_user_pages_fast attempts to pin user pages by walking the page
2413 * tables directly and avoids taking locks. Thus the walker needs to be
2414 * protected from page table pages being freed from under it, and should
2415 * block any THP splits.
2416 *
2417 * One way to achieve this is to have the walker disable interrupts, and
2418 * rely on IPIs from the TLB flushing code blocking before the page table
2419 * pages are freed. This is unsuitable for architectures that do not need
2420 * to broadcast an IPI when invalidating TLBs.
2421 *
2422 * Another way to achieve this is to batch up page table containing pages
2423 * belonging to more than one mm_user, then rcu_sched a callback to free those
2424 * pages. Disabling interrupts will allow the fast_gup walker to both block
2425 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2426 * (which is a relatively rare event). The code below adopts this strategy.
2427 *
2428 * Before activating this code, please be aware that the following assumptions
2429 * are currently made:
2430 *
2431 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2432 * free pages containing page tables or TLB flushing requires IPI broadcast.
2433 *
2434 * *) ptes can be read atomically by the architecture.
2435 *
2436 * *) access_ok is sufficient to validate userspace address ranges.
2437 *
2438 * The last two assumptions can be relaxed by the addition of helper functions.
2439 *
2440 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2441 */
2442 #ifdef CONFIG_HAVE_FAST_GUP
2443
2444 /*
2445 * Used in the GUP-fast path to determine whether a pin is permitted for a
2446 * specific folio.
2447 *
2448 * This call assumes the caller has pinned the folio, that the lowest page table
2449 * level still points to this folio, and that interrupts have been disabled.
2450 *
2451 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2452 * (see comment describing the writable_file_mapping_allowed() function). We
2453 * therefore try to avoid the most egregious case of a long-term mapping doing
2454 * so.
2455 *
2456 * This function cannot be as thorough as that one as the VMA is not available
2457 * in the fast path, so instead we whitelist known good cases and if in doubt,
2458 * fall back to the slow path.
2459 */
folio_fast_pin_allowed(struct folio * folio,unsigned int flags)2460 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2461 {
2462 struct address_space *mapping;
2463 unsigned long mapping_flags;
2464
2465 /*
2466 * If we aren't pinning then no problematic write can occur. A long term
2467 * pin is the most egregious case so this is the one we disallow.
2468 */
2469 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2470 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2471 return true;
2472
2473 /* The folio is pinned, so we can safely access folio fields. */
2474
2475 if (WARN_ON_ONCE(folio_test_slab(folio)))
2476 return false;
2477
2478 /* hugetlb mappings do not require dirty-tracking. */
2479 if (folio_test_hugetlb(folio))
2480 return true;
2481
2482 /*
2483 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2484 * cannot proceed, which means no actions performed under RCU can
2485 * proceed either.
2486 *
2487 * inodes and thus their mappings are freed under RCU, which means the
2488 * mapping cannot be freed beneath us and thus we can safely dereference
2489 * it.
2490 */
2491 lockdep_assert_irqs_disabled();
2492
2493 /*
2494 * However, there may be operations which _alter_ the mapping, so ensure
2495 * we read it once and only once.
2496 */
2497 mapping = READ_ONCE(folio->mapping);
2498
2499 /*
2500 * The mapping may have been truncated, in any case we cannot determine
2501 * if this mapping is safe - fall back to slow path to determine how to
2502 * proceed.
2503 */
2504 if (!mapping)
2505 return false;
2506
2507 /* Anonymous folios pose no problem. */
2508 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2509 if (mapping_flags)
2510 return mapping_flags & PAGE_MAPPING_ANON;
2511
2512 /*
2513 * At this point, we know the mapping is non-null and points to an
2514 * address_space object. The only remaining whitelisted file system is
2515 * shmem.
2516 */
2517 return shmem_mapping(mapping);
2518 }
2519
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2520 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2521 unsigned int flags,
2522 struct page **pages)
2523 {
2524 while ((*nr) - nr_start) {
2525 struct page *page = pages[--(*nr)];
2526
2527 ClearPageReferenced(page);
2528 if (flags & FOLL_PIN)
2529 unpin_user_page(page);
2530 else
2531 put_page(page);
2532 }
2533 }
2534
2535 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2536 /*
2537 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2538 * operations.
2539 *
2540 * To pin the page, fast-gup needs to do below in order:
2541 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2542 *
2543 * For the rest of pgtable operations where pgtable updates can be racy
2544 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2545 * is pinned.
2546 *
2547 * Above will work for all pte-level operations, including THP split.
2548 *
2549 * For THP collapse, it's a bit more complicated because fast-gup may be
2550 * walking a pgtable page that is being freed (pte is still valid but pmd
2551 * can be cleared already). To avoid race in such condition, we need to
2552 * also check pmd here to make sure pmd doesn't change (corresponds to
2553 * pmdp_collapse_flush() in the THP collapse code path).
2554 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2555 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2556 unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
2558 {
2559 struct dev_pagemap *pgmap = NULL;
2560 int nr_start = *nr, ret = 0;
2561 pte_t *ptep, *ptem;
2562
2563 ptem = ptep = pte_offset_map(&pmd, addr);
2564 if (!ptep)
2565 return 0;
2566 do {
2567 pte_t pte = ptep_get_lockless(ptep);
2568 struct page *page;
2569 struct folio *folio;
2570
2571 /*
2572 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2573 * pte_access_permitted() better should reject these pages
2574 * either way: otherwise, GUP-fast might succeed in
2575 * cases where ordinary GUP would fail due to VMA access
2576 * permissions.
2577 */
2578 if (pte_protnone(pte))
2579 goto pte_unmap;
2580
2581 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2582 goto pte_unmap;
2583
2584 if (pte_devmap(pte)) {
2585 if (unlikely(flags & FOLL_LONGTERM))
2586 goto pte_unmap;
2587
2588 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2589 if (unlikely(!pgmap)) {
2590 undo_dev_pagemap(nr, nr_start, flags, pages);
2591 goto pte_unmap;
2592 }
2593 } else if (pte_special(pte))
2594 goto pte_unmap;
2595
2596 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2597 page = pte_page(pte);
2598
2599 folio = try_grab_folio(page, 1, flags);
2600 if (!folio)
2601 goto pte_unmap;
2602
2603 if (unlikely(folio_is_secretmem(folio))) {
2604 gup_put_folio(folio, 1, flags);
2605 goto pte_unmap;
2606 }
2607
2608 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2609 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2610 gup_put_folio(folio, 1, flags);
2611 goto pte_unmap;
2612 }
2613
2614 if (!folio_fast_pin_allowed(folio, flags)) {
2615 gup_put_folio(folio, 1, flags);
2616 goto pte_unmap;
2617 }
2618
2619 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2620 gup_put_folio(folio, 1, flags);
2621 goto pte_unmap;
2622 }
2623
2624 /*
2625 * We need to make the page accessible if and only if we are
2626 * going to access its content (the FOLL_PIN case). Please
2627 * see Documentation/core-api/pin_user_pages.rst for
2628 * details.
2629 */
2630 if (flags & FOLL_PIN) {
2631 ret = arch_make_page_accessible(page);
2632 if (ret) {
2633 gup_put_folio(folio, 1, flags);
2634 goto pte_unmap;
2635 }
2636 }
2637 folio_set_referenced(folio);
2638 pages[*nr] = page;
2639 (*nr)++;
2640 } while (ptep++, addr += PAGE_SIZE, addr != end);
2641
2642 ret = 1;
2643
2644 pte_unmap:
2645 if (pgmap)
2646 put_dev_pagemap(pgmap);
2647 pte_unmap(ptem);
2648 return ret;
2649 }
2650 #else
2651
2652 /*
2653 * If we can't determine whether or not a pte is special, then fail immediately
2654 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2655 * to be special.
2656 *
2657 * For a futex to be placed on a THP tail page, get_futex_key requires a
2658 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2659 * useful to have gup_huge_pmd even if we can't operate on ptes.
2660 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2661 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2662 unsigned long end, unsigned int flags,
2663 struct page **pages, int *nr)
2664 {
2665 return 0;
2666 }
2667 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2668
2669 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2670 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2671 unsigned long end, unsigned int flags,
2672 struct page **pages, int *nr)
2673 {
2674 int nr_start = *nr;
2675 struct dev_pagemap *pgmap = NULL;
2676
2677 do {
2678 struct page *page = pfn_to_page(pfn);
2679
2680 pgmap = get_dev_pagemap(pfn, pgmap);
2681 if (unlikely(!pgmap)) {
2682 undo_dev_pagemap(nr, nr_start, flags, pages);
2683 break;
2684 }
2685
2686 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2687 undo_dev_pagemap(nr, nr_start, flags, pages);
2688 break;
2689 }
2690
2691 SetPageReferenced(page);
2692 pages[*nr] = page;
2693 if (unlikely(try_grab_page(page, flags))) {
2694 undo_dev_pagemap(nr, nr_start, flags, pages);
2695 break;
2696 }
2697 (*nr)++;
2698 pfn++;
2699 } while (addr += PAGE_SIZE, addr != end);
2700
2701 put_dev_pagemap(pgmap);
2702 return addr == end;
2703 }
2704
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2705 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2706 unsigned long end, unsigned int flags,
2707 struct page **pages, int *nr)
2708 {
2709 unsigned long fault_pfn;
2710 int nr_start = *nr;
2711
2712 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2713 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2714 return 0;
2715
2716 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2717 undo_dev_pagemap(nr, nr_start, flags, pages);
2718 return 0;
2719 }
2720 return 1;
2721 }
2722
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2723 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2724 unsigned long end, unsigned int flags,
2725 struct page **pages, int *nr)
2726 {
2727 unsigned long fault_pfn;
2728 int nr_start = *nr;
2729
2730 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2731 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2732 return 0;
2733
2734 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2735 undo_dev_pagemap(nr, nr_start, flags, pages);
2736 return 0;
2737 }
2738 return 1;
2739 }
2740 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2741 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2742 unsigned long end, unsigned int flags,
2743 struct page **pages, int *nr)
2744 {
2745 BUILD_BUG();
2746 return 0;
2747 }
2748
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2749 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2750 unsigned long end, unsigned int flags,
2751 struct page **pages, int *nr)
2752 {
2753 BUILD_BUG();
2754 return 0;
2755 }
2756 #endif
2757
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2758 static int record_subpages(struct page *page, unsigned long addr,
2759 unsigned long end, struct page **pages)
2760 {
2761 int nr;
2762
2763 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2764 pages[nr] = nth_page(page, nr);
2765
2766 return nr;
2767 }
2768
2769 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2770 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2771 unsigned long sz)
2772 {
2773 unsigned long __boundary = (addr + sz) & ~(sz-1);
2774 return (__boundary - 1 < end - 1) ? __boundary : end;
2775 }
2776
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2777 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2778 unsigned long end, unsigned int flags,
2779 struct page **pages, int *nr)
2780 {
2781 unsigned long pte_end;
2782 struct page *page;
2783 struct folio *folio;
2784 pte_t pte;
2785 int refs;
2786
2787 pte_end = (addr + sz) & ~(sz-1);
2788 if (pte_end < end)
2789 end = pte_end;
2790
2791 pte = huge_ptep_get(ptep);
2792
2793 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2794 return 0;
2795
2796 /* hugepages are never "special" */
2797 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2798
2799 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2800 refs = record_subpages(page, addr, end, pages + *nr);
2801
2802 folio = try_grab_folio(page, refs, flags);
2803 if (!folio)
2804 return 0;
2805
2806 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2807 gup_put_folio(folio, refs, flags);
2808 return 0;
2809 }
2810
2811 if (!folio_fast_pin_allowed(folio, flags)) {
2812 gup_put_folio(folio, refs, flags);
2813 return 0;
2814 }
2815
2816 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2817 gup_put_folio(folio, refs, flags);
2818 return 0;
2819 }
2820
2821 *nr += refs;
2822 folio_set_referenced(folio);
2823 return 1;
2824 }
2825
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2826 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2827 unsigned int pdshift, unsigned long end, unsigned int flags,
2828 struct page **pages, int *nr)
2829 {
2830 pte_t *ptep;
2831 unsigned long sz = 1UL << hugepd_shift(hugepd);
2832 unsigned long next;
2833
2834 ptep = hugepte_offset(hugepd, addr, pdshift);
2835 do {
2836 next = hugepte_addr_end(addr, end, sz);
2837 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2838 return 0;
2839 } while (ptep++, addr = next, addr != end);
2840
2841 return 1;
2842 }
2843 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2844 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2845 unsigned int pdshift, unsigned long end, unsigned int flags,
2846 struct page **pages, int *nr)
2847 {
2848 return 0;
2849 }
2850 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2851
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2852 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2853 unsigned long end, unsigned int flags,
2854 struct page **pages, int *nr)
2855 {
2856 struct page *page;
2857 struct folio *folio;
2858 int refs;
2859
2860 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2861 return 0;
2862
2863 if (pmd_devmap(orig)) {
2864 if (unlikely(flags & FOLL_LONGTERM))
2865 return 0;
2866 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2867 pages, nr);
2868 }
2869
2870 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2871 refs = record_subpages(page, addr, end, pages + *nr);
2872
2873 folio = try_grab_folio(page, refs, flags);
2874 if (!folio)
2875 return 0;
2876
2877 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2878 gup_put_folio(folio, refs, flags);
2879 return 0;
2880 }
2881
2882 if (!folio_fast_pin_allowed(folio, flags)) {
2883 gup_put_folio(folio, refs, flags);
2884 return 0;
2885 }
2886 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2887 gup_put_folio(folio, refs, flags);
2888 return 0;
2889 }
2890
2891 *nr += refs;
2892 folio_set_referenced(folio);
2893 return 1;
2894 }
2895
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2896 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2897 unsigned long end, unsigned int flags,
2898 struct page **pages, int *nr)
2899 {
2900 struct page *page;
2901 struct folio *folio;
2902 int refs;
2903
2904 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2905 return 0;
2906
2907 if (pud_devmap(orig)) {
2908 if (unlikely(flags & FOLL_LONGTERM))
2909 return 0;
2910 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2911 pages, nr);
2912 }
2913
2914 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2915 refs = record_subpages(page, addr, end, pages + *nr);
2916
2917 folio = try_grab_folio(page, refs, flags);
2918 if (!folio)
2919 return 0;
2920
2921 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2922 gup_put_folio(folio, refs, flags);
2923 return 0;
2924 }
2925
2926 if (!folio_fast_pin_allowed(folio, flags)) {
2927 gup_put_folio(folio, refs, flags);
2928 return 0;
2929 }
2930
2931 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2932 gup_put_folio(folio, refs, flags);
2933 return 0;
2934 }
2935
2936 *nr += refs;
2937 folio_set_referenced(folio);
2938 return 1;
2939 }
2940
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2941 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2942 unsigned long end, unsigned int flags,
2943 struct page **pages, int *nr)
2944 {
2945 int refs;
2946 struct page *page;
2947 struct folio *folio;
2948
2949 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2950 return 0;
2951
2952 BUILD_BUG_ON(pgd_devmap(orig));
2953
2954 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2955 refs = record_subpages(page, addr, end, pages + *nr);
2956
2957 folio = try_grab_folio(page, refs, flags);
2958 if (!folio)
2959 return 0;
2960
2961 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2962 gup_put_folio(folio, refs, flags);
2963 return 0;
2964 }
2965
2966 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2967 gup_put_folio(folio, refs, flags);
2968 return 0;
2969 }
2970
2971 if (!folio_fast_pin_allowed(folio, flags)) {
2972 gup_put_folio(folio, refs, flags);
2973 return 0;
2974 }
2975
2976 *nr += refs;
2977 folio_set_referenced(folio);
2978 return 1;
2979 }
2980
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2981 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2982 unsigned int flags, struct page **pages, int *nr)
2983 {
2984 unsigned long next;
2985 pmd_t *pmdp;
2986
2987 pmdp = pmd_offset_lockless(pudp, pud, addr);
2988 do {
2989 pmd_t pmd = pmdp_get_lockless(pmdp);
2990
2991 next = pmd_addr_end(addr, end);
2992 if (!pmd_present(pmd))
2993 return 0;
2994
2995 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2996 pmd_devmap(pmd))) {
2997 /* See gup_pte_range() */
2998 if (pmd_protnone(pmd))
2999 return 0;
3000
3001 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3002 pages, nr))
3003 return 0;
3004
3005 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3006 /*
3007 * architecture have different format for hugetlbfs
3008 * pmd format and THP pmd format
3009 */
3010 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3011 PMD_SHIFT, next, flags, pages, nr))
3012 return 0;
3013 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3014 return 0;
3015 } while (pmdp++, addr = next, addr != end);
3016
3017 return 1;
3018 }
3019
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3020 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3021 unsigned int flags, struct page **pages, int *nr)
3022 {
3023 unsigned long next;
3024 pud_t *pudp;
3025
3026 pudp = pud_offset_lockless(p4dp, p4d, addr);
3027 do {
3028 pud_t pud = READ_ONCE(*pudp);
3029
3030 next = pud_addr_end(addr, end);
3031 if (unlikely(!pud_present(pud)))
3032 return 0;
3033 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3034 if (!gup_huge_pud(pud, pudp, addr, next, flags,
3035 pages, nr))
3036 return 0;
3037 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3038 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3039 PUD_SHIFT, next, flags, pages, nr))
3040 return 0;
3041 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3042 return 0;
3043 } while (pudp++, addr = next, addr != end);
3044
3045 return 1;
3046 }
3047
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3048 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3049 unsigned int flags, struct page **pages, int *nr)
3050 {
3051 unsigned long next;
3052 p4d_t *p4dp;
3053
3054 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3055 do {
3056 p4d_t p4d = READ_ONCE(*p4dp);
3057
3058 next = p4d_addr_end(addr, end);
3059 if (p4d_none(p4d))
3060 return 0;
3061 BUILD_BUG_ON(p4d_huge(p4d));
3062 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3063 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3064 P4D_SHIFT, next, flags, pages, nr))
3065 return 0;
3066 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3067 return 0;
3068 } while (p4dp++, addr = next, addr != end);
3069
3070 return 1;
3071 }
3072
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3073 static void gup_pgd_range(unsigned long addr, unsigned long end,
3074 unsigned int flags, struct page **pages, int *nr)
3075 {
3076 unsigned long next;
3077 pgd_t *pgdp;
3078
3079 pgdp = pgd_offset(current->mm, addr);
3080 do {
3081 pgd_t pgd = READ_ONCE(*pgdp);
3082
3083 next = pgd_addr_end(addr, end);
3084 if (pgd_none(pgd))
3085 return;
3086 if (unlikely(pgd_huge(pgd))) {
3087 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3088 pages, nr))
3089 return;
3090 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3091 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3092 PGDIR_SHIFT, next, flags, pages, nr))
3093 return;
3094 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3095 return;
3096 } while (pgdp++, addr = next, addr != end);
3097 }
3098 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3099 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3100 unsigned int flags, struct page **pages, int *nr)
3101 {
3102 }
3103 #endif /* CONFIG_HAVE_FAST_GUP */
3104
3105 #ifndef gup_fast_permitted
3106 /*
3107 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3108 * we need to fall back to the slow version:
3109 */
gup_fast_permitted(unsigned long start,unsigned long end)3110 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3111 {
3112 return true;
3113 }
3114 #endif
3115
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3116 static unsigned long lockless_pages_from_mm(unsigned long start,
3117 unsigned long end,
3118 unsigned int gup_flags,
3119 struct page **pages)
3120 {
3121 unsigned long flags;
3122 int nr_pinned = 0;
3123 unsigned seq;
3124
3125 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3126 !gup_fast_permitted(start, end))
3127 return 0;
3128
3129 if (gup_flags & FOLL_PIN) {
3130 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3131 if (seq & 1)
3132 return 0;
3133 }
3134
3135 /*
3136 * Disable interrupts. The nested form is used, in order to allow full,
3137 * general purpose use of this routine.
3138 *
3139 * With interrupts disabled, we block page table pages from being freed
3140 * from under us. See struct mmu_table_batch comments in
3141 * include/asm-generic/tlb.h for more details.
3142 *
3143 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3144 * that come from THPs splitting.
3145 */
3146 local_irq_save(flags);
3147 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3148 local_irq_restore(flags);
3149
3150 /*
3151 * When pinning pages for DMA there could be a concurrent write protect
3152 * from fork() via copy_page_range(), in this case always fail fast GUP.
3153 */
3154 if (gup_flags & FOLL_PIN) {
3155 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3156 unpin_user_pages_lockless(pages, nr_pinned);
3157 return 0;
3158 } else {
3159 sanity_check_pinned_pages(pages, nr_pinned);
3160 }
3161 }
3162 return nr_pinned;
3163 }
3164
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3165 static int internal_get_user_pages_fast(unsigned long start,
3166 unsigned long nr_pages,
3167 unsigned int gup_flags,
3168 struct page **pages)
3169 {
3170 unsigned long len, end;
3171 unsigned long nr_pinned;
3172 int locked = 0;
3173 int ret;
3174
3175 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3176 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3177 FOLL_FAST_ONLY | FOLL_NOFAULT |
3178 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3179 return -EINVAL;
3180
3181 if (gup_flags & FOLL_PIN)
3182 mm_set_has_pinned_flag(¤t->mm->flags);
3183
3184 if (!(gup_flags & FOLL_FAST_ONLY))
3185 might_lock_read(¤t->mm->mmap_lock);
3186
3187 start = untagged_addr(start) & PAGE_MASK;
3188 len = nr_pages << PAGE_SHIFT;
3189 if (check_add_overflow(start, len, &end))
3190 return -EOVERFLOW;
3191 if (end > TASK_SIZE_MAX)
3192 return -EFAULT;
3193 if (unlikely(!access_ok((void __user *)start, len)))
3194 return -EFAULT;
3195
3196 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3197 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3198 return nr_pinned;
3199
3200 /* Slow path: try to get the remaining pages with get_user_pages */
3201 start += nr_pinned << PAGE_SHIFT;
3202 pages += nr_pinned;
3203 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3204 pages, &locked,
3205 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3206 if (ret < 0) {
3207 /*
3208 * The caller has to unpin the pages we already pinned so
3209 * returning -errno is not an option
3210 */
3211 if (nr_pinned)
3212 return nr_pinned;
3213 return ret;
3214 }
3215 return ret + nr_pinned;
3216 }
3217
3218 /**
3219 * get_user_pages_fast_only() - pin user pages in memory
3220 * @start: starting user address
3221 * @nr_pages: number of pages from start to pin
3222 * @gup_flags: flags modifying pin behaviour
3223 * @pages: array that receives pointers to the pages pinned.
3224 * Should be at least nr_pages long.
3225 *
3226 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3227 * the regular GUP.
3228 *
3229 * If the architecture does not support this function, simply return with no
3230 * pages pinned.
3231 *
3232 * Careful, careful! COW breaking can go either way, so a non-write
3233 * access can get ambiguous page results. If you call this function without
3234 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3235 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3236 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3237 unsigned int gup_flags, struct page **pages)
3238 {
3239 /*
3240 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3241 * because gup fast is always a "pin with a +1 page refcount" request.
3242 *
3243 * FOLL_FAST_ONLY is required in order to match the API description of
3244 * this routine: no fall back to regular ("slow") GUP.
3245 */
3246 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3247 FOLL_GET | FOLL_FAST_ONLY))
3248 return -EINVAL;
3249
3250 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3251 }
3252 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3253
3254 /**
3255 * get_user_pages_fast() - pin user pages in memory
3256 * @start: starting user address
3257 * @nr_pages: number of pages from start to pin
3258 * @gup_flags: flags modifying pin behaviour
3259 * @pages: array that receives pointers to the pages pinned.
3260 * Should be at least nr_pages long.
3261 *
3262 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3263 * If not successful, it will fall back to taking the lock and
3264 * calling get_user_pages().
3265 *
3266 * Returns number of pages pinned. This may be fewer than the number requested.
3267 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3268 * -errno.
3269 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3270 int get_user_pages_fast(unsigned long start, int nr_pages,
3271 unsigned int gup_flags, struct page **pages)
3272 {
3273 /*
3274 * The caller may or may not have explicitly set FOLL_GET; either way is
3275 * OK. However, internally (within mm/gup.c), gup fast variants must set
3276 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3277 * request.
3278 */
3279 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3280 return -EINVAL;
3281 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3282 }
3283 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3284
3285 /**
3286 * pin_user_pages_fast() - pin user pages in memory without taking locks
3287 *
3288 * @start: starting user address
3289 * @nr_pages: number of pages from start to pin
3290 * @gup_flags: flags modifying pin behaviour
3291 * @pages: array that receives pointers to the pages pinned.
3292 * Should be at least nr_pages long.
3293 *
3294 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3295 * get_user_pages_fast() for documentation on the function arguments, because
3296 * the arguments here are identical.
3297 *
3298 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3299 * see Documentation/core-api/pin_user_pages.rst for further details.
3300 *
3301 * Note that if a zero_page is amongst the returned pages, it will not have
3302 * pins in it and unpin_user_page() will not remove pins from it.
3303 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3304 int pin_user_pages_fast(unsigned long start, int nr_pages,
3305 unsigned int gup_flags, struct page **pages)
3306 {
3307 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3308 return -EINVAL;
3309 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3310 }
3311 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3312
3313 /**
3314 * pin_user_pages_remote() - pin pages of a remote process
3315 *
3316 * @mm: mm_struct of target mm
3317 * @start: starting user address
3318 * @nr_pages: number of pages from start to pin
3319 * @gup_flags: flags modifying lookup behaviour
3320 * @pages: array that receives pointers to the pages pinned.
3321 * Should be at least nr_pages long.
3322 * @locked: pointer to lock flag indicating whether lock is held and
3323 * subsequently whether VM_FAULT_RETRY functionality can be
3324 * utilised. Lock must initially be held.
3325 *
3326 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3327 * get_user_pages_remote() for documentation on the function arguments, because
3328 * the arguments here are identical.
3329 *
3330 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3331 * see Documentation/core-api/pin_user_pages.rst for details.
3332 *
3333 * Note that if a zero_page is amongst the returned pages, it will not have
3334 * pins in it and unpin_user_page*() will not remove pins from it.
3335 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3336 long pin_user_pages_remote(struct mm_struct *mm,
3337 unsigned long start, unsigned long nr_pages,
3338 unsigned int gup_flags, struct page **pages,
3339 int *locked)
3340 {
3341 int local_locked = 1;
3342
3343 if (!is_valid_gup_args(pages, locked, &gup_flags,
3344 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3345 return 0;
3346 return __gup_longterm_locked(mm, start, nr_pages, pages,
3347 locked ? locked : &local_locked,
3348 gup_flags);
3349 }
3350 EXPORT_SYMBOL(pin_user_pages_remote);
3351
3352 /**
3353 * pin_user_pages() - pin user pages in memory for use by other devices
3354 *
3355 * @start: starting user address
3356 * @nr_pages: number of pages from start to pin
3357 * @gup_flags: flags modifying lookup behaviour
3358 * @pages: array that receives pointers to the pages pinned.
3359 * Should be at least nr_pages long.
3360 *
3361 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3362 * FOLL_PIN is set.
3363 *
3364 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3365 * see Documentation/core-api/pin_user_pages.rst for details.
3366 *
3367 * Note that if a zero_page is amongst the returned pages, it will not have
3368 * pins in it and unpin_user_page*() will not remove pins from it.
3369 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3370 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3371 unsigned int gup_flags, struct page **pages)
3372 {
3373 int locked = 1;
3374
3375 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3376 return 0;
3377 return __gup_longterm_locked(current->mm, start, nr_pages,
3378 pages, &locked, gup_flags);
3379 }
3380 EXPORT_SYMBOL(pin_user_pages);
3381
3382 /*
3383 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3384 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3385 * FOLL_PIN and rejects FOLL_GET.
3386 *
3387 * Note that if a zero_page is amongst the returned pages, it will not have
3388 * pins in it and unpin_user_page*() will not remove pins from it.
3389 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3390 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3391 struct page **pages, unsigned int gup_flags)
3392 {
3393 int locked = 0;
3394
3395 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3396 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3397 return 0;
3398
3399 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3400 &locked, gup_flags);
3401 }
3402 EXPORT_SYMBOL(pin_user_pages_unlocked);
3403