1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/api.h>
34 #include <asm/fpu/sched.h>
35 #include <asm/fpu/xstate.h>
36 #include <asm/debugreg.h>
37 #include <asm/nmi.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mce.h>
40 #include <asm/vm86.h>
41 #include <asm/switch_to.h>
42 #include <asm/desc.h>
43 #include <asm/prctl.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/io_bitmap.h>
46 #include <asm/proto.h>
47 #include <asm/frame.h>
48 #include <asm/unwind.h>
49 #include <asm/tdx.h>
50
51 #include "process.h"
52
53 /*
54 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
55 * no more per-task TSS's. The TSS size is kept cacheline-aligned
56 * so they are allowed to end up in the .data..cacheline_aligned
57 * section. Since TSS's are completely CPU-local, we want them
58 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
59 */
60 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
61 .x86_tss = {
62 /*
63 * .sp0 is only used when entering ring 0 from a lower
64 * privilege level. Since the init task never runs anything
65 * but ring 0 code, there is no need for a valid value here.
66 * Poison it.
67 */
68 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
69
70 #ifdef CONFIG_X86_32
71 .sp1 = TOP_OF_INIT_STACK,
72
73 .ss0 = __KERNEL_DS,
74 .ss1 = __KERNEL_CS,
75 #endif
76 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
77 },
78 };
79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
80
81 DEFINE_PER_CPU(bool, __tss_limit_invalid);
82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
83
84 /*
85 * this gets called so that we can store lazy state into memory and copy the
86 * current task into the new thread.
87 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89 {
90 memcpy(dst, src, arch_task_struct_size);
91 #ifdef CONFIG_VM86
92 dst->thread.vm86 = NULL;
93 #endif
94 /* Drop the copied pointer to current's fpstate */
95 dst->thread.fpu.fpstate = NULL;
96
97 return 0;
98 }
99
100 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)101 void arch_release_task_struct(struct task_struct *tsk)
102 {
103 if (fpu_state_size_dynamic())
104 fpstate_free(&tsk->thread.fpu);
105 }
106 #endif
107
108 /*
109 * Free thread data structures etc..
110 */
exit_thread(struct task_struct * tsk)111 void exit_thread(struct task_struct *tsk)
112 {
113 struct thread_struct *t = &tsk->thread;
114 struct fpu *fpu = &t->fpu;
115
116 if (test_thread_flag(TIF_IO_BITMAP))
117 io_bitmap_exit(tsk);
118
119 free_vm86(t);
120
121 fpu__drop(fpu);
122 }
123
set_new_tls(struct task_struct * p,unsigned long tls)124 static int set_new_tls(struct task_struct *p, unsigned long tls)
125 {
126 struct user_desc __user *utls = (struct user_desc __user *)tls;
127
128 if (in_ia32_syscall())
129 return do_set_thread_area(p, -1, utls, 0);
130 else
131 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
132 }
133
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)134 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
135 {
136 unsigned long clone_flags = args->flags;
137 unsigned long sp = args->stack;
138 unsigned long tls = args->tls;
139 struct inactive_task_frame *frame;
140 struct fork_frame *fork_frame;
141 struct pt_regs *childregs;
142 int ret = 0;
143
144 childregs = task_pt_regs(p);
145 fork_frame = container_of(childregs, struct fork_frame, regs);
146 frame = &fork_frame->frame;
147
148 frame->bp = encode_frame_pointer(childregs);
149 frame->ret_addr = (unsigned long) ret_from_fork;
150 p->thread.sp = (unsigned long) fork_frame;
151 p->thread.io_bitmap = NULL;
152 p->thread.iopl_warn = 0;
153 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
154
155 #ifdef CONFIG_X86_64
156 current_save_fsgs();
157 p->thread.fsindex = current->thread.fsindex;
158 p->thread.fsbase = current->thread.fsbase;
159 p->thread.gsindex = current->thread.gsindex;
160 p->thread.gsbase = current->thread.gsbase;
161
162 savesegment(es, p->thread.es);
163 savesegment(ds, p->thread.ds);
164 #else
165 p->thread.sp0 = (unsigned long) (childregs + 1);
166 savesegment(gs, p->thread.gs);
167 /*
168 * Clear all status flags including IF and set fixed bit. 64bit
169 * does not have this initialization as the frame does not contain
170 * flags. The flags consistency (especially vs. AC) is there
171 * ensured via objtool, which lacks 32bit support.
172 */
173 frame->flags = X86_EFLAGS_FIXED;
174 #endif
175
176 fpu_clone(p, clone_flags, args->fn);
177
178 /* Kernel thread ? */
179 if (unlikely(p->flags & PF_KTHREAD)) {
180 p->thread.pkru = pkru_get_init_value();
181 memset(childregs, 0, sizeof(struct pt_regs));
182 kthread_frame_init(frame, args->fn, args->fn_arg);
183 return 0;
184 }
185
186 /*
187 * Clone current's PKRU value from hardware. tsk->thread.pkru
188 * is only valid when scheduled out.
189 */
190 p->thread.pkru = read_pkru();
191
192 frame->bx = 0;
193 *childregs = *current_pt_regs();
194 childregs->ax = 0;
195 if (sp)
196 childregs->sp = sp;
197
198 if (unlikely(args->fn)) {
199 /*
200 * A user space thread, but it doesn't return to
201 * ret_after_fork().
202 *
203 * In order to indicate that to tools like gdb,
204 * we reset the stack and instruction pointers.
205 *
206 * It does the same kernel frame setup to return to a kernel
207 * function that a kernel thread does.
208 */
209 childregs->sp = 0;
210 childregs->ip = 0;
211 kthread_frame_init(frame, args->fn, args->fn_arg);
212 return 0;
213 }
214
215 /* Set a new TLS for the child thread? */
216 if (clone_flags & CLONE_SETTLS)
217 ret = set_new_tls(p, tls);
218
219 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
220 io_bitmap_share(p);
221
222 return ret;
223 }
224
pkru_flush_thread(void)225 static void pkru_flush_thread(void)
226 {
227 /*
228 * If PKRU is enabled the default PKRU value has to be loaded into
229 * the hardware right here (similar to context switch).
230 */
231 pkru_write_default();
232 }
233
flush_thread(void)234 void flush_thread(void)
235 {
236 struct task_struct *tsk = current;
237
238 flush_ptrace_hw_breakpoint(tsk);
239 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
240
241 fpu_flush_thread();
242 pkru_flush_thread();
243 }
244
disable_TSC(void)245 void disable_TSC(void)
246 {
247 preempt_disable();
248 if (!test_and_set_thread_flag(TIF_NOTSC))
249 /*
250 * Must flip the CPU state synchronously with
251 * TIF_NOTSC in the current running context.
252 */
253 cr4_set_bits(X86_CR4_TSD);
254 preempt_enable();
255 }
256
enable_TSC(void)257 static void enable_TSC(void)
258 {
259 preempt_disable();
260 if (test_and_clear_thread_flag(TIF_NOTSC))
261 /*
262 * Must flip the CPU state synchronously with
263 * TIF_NOTSC in the current running context.
264 */
265 cr4_clear_bits(X86_CR4_TSD);
266 preempt_enable();
267 }
268
get_tsc_mode(unsigned long adr)269 int get_tsc_mode(unsigned long adr)
270 {
271 unsigned int val;
272
273 if (test_thread_flag(TIF_NOTSC))
274 val = PR_TSC_SIGSEGV;
275 else
276 val = PR_TSC_ENABLE;
277
278 return put_user(val, (unsigned int __user *)adr);
279 }
280
set_tsc_mode(unsigned int val)281 int set_tsc_mode(unsigned int val)
282 {
283 if (val == PR_TSC_SIGSEGV)
284 disable_TSC();
285 else if (val == PR_TSC_ENABLE)
286 enable_TSC();
287 else
288 return -EINVAL;
289
290 return 0;
291 }
292
293 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
294
set_cpuid_faulting(bool on)295 static void set_cpuid_faulting(bool on)
296 {
297 u64 msrval;
298
299 msrval = this_cpu_read(msr_misc_features_shadow);
300 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
301 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
302 this_cpu_write(msr_misc_features_shadow, msrval);
303 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
304 }
305
disable_cpuid(void)306 static void disable_cpuid(void)
307 {
308 preempt_disable();
309 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
310 /*
311 * Must flip the CPU state synchronously with
312 * TIF_NOCPUID in the current running context.
313 */
314 set_cpuid_faulting(true);
315 }
316 preempt_enable();
317 }
318
enable_cpuid(void)319 static void enable_cpuid(void)
320 {
321 preempt_disable();
322 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
323 /*
324 * Must flip the CPU state synchronously with
325 * TIF_NOCPUID in the current running context.
326 */
327 set_cpuid_faulting(false);
328 }
329 preempt_enable();
330 }
331
get_cpuid_mode(void)332 static int get_cpuid_mode(void)
333 {
334 return !test_thread_flag(TIF_NOCPUID);
335 }
336
set_cpuid_mode(unsigned long cpuid_enabled)337 static int set_cpuid_mode(unsigned long cpuid_enabled)
338 {
339 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
340 return -ENODEV;
341
342 if (cpuid_enabled)
343 enable_cpuid();
344 else
345 disable_cpuid();
346
347 return 0;
348 }
349
350 /*
351 * Called immediately after a successful exec.
352 */
arch_setup_new_exec(void)353 void arch_setup_new_exec(void)
354 {
355 /* If cpuid was previously disabled for this task, re-enable it. */
356 if (test_thread_flag(TIF_NOCPUID))
357 enable_cpuid();
358
359 /*
360 * Don't inherit TIF_SSBD across exec boundary when
361 * PR_SPEC_DISABLE_NOEXEC is used.
362 */
363 if (test_thread_flag(TIF_SSBD) &&
364 task_spec_ssb_noexec(current)) {
365 clear_thread_flag(TIF_SSBD);
366 task_clear_spec_ssb_disable(current);
367 task_clear_spec_ssb_noexec(current);
368 speculation_ctrl_update(read_thread_flags());
369 }
370 }
371
372 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)373 static inline void switch_to_bitmap(unsigned long tifp)
374 {
375 /*
376 * Invalidate I/O bitmap if the previous task used it. This prevents
377 * any possible leakage of an active I/O bitmap.
378 *
379 * If the next task has an I/O bitmap it will handle it on exit to
380 * user mode.
381 */
382 if (tifp & _TIF_IO_BITMAP)
383 tss_invalidate_io_bitmap();
384 }
385
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)386 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
387 {
388 /*
389 * Copy at least the byte range of the incoming tasks bitmap which
390 * covers the permitted I/O ports.
391 *
392 * If the previous task which used an I/O bitmap had more bits
393 * permitted, then the copy needs to cover those as well so they
394 * get turned off.
395 */
396 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
397 max(tss->io_bitmap.prev_max, iobm->max));
398
399 /*
400 * Store the new max and the sequence number of this bitmap
401 * and a pointer to the bitmap itself.
402 */
403 tss->io_bitmap.prev_max = iobm->max;
404 tss->io_bitmap.prev_sequence = iobm->sequence;
405 }
406
407 /**
408 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
409 */
native_tss_update_io_bitmap(void)410 void native_tss_update_io_bitmap(void)
411 {
412 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
413 struct thread_struct *t = ¤t->thread;
414 u16 *base = &tss->x86_tss.io_bitmap_base;
415
416 if (!test_thread_flag(TIF_IO_BITMAP)) {
417 native_tss_invalidate_io_bitmap();
418 return;
419 }
420
421 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
422 *base = IO_BITMAP_OFFSET_VALID_ALL;
423 } else {
424 struct io_bitmap *iobm = t->io_bitmap;
425
426 /*
427 * Only copy bitmap data when the sequence number differs. The
428 * update time is accounted to the incoming task.
429 */
430 if (tss->io_bitmap.prev_sequence != iobm->sequence)
431 tss_copy_io_bitmap(tss, iobm);
432
433 /* Enable the bitmap */
434 *base = IO_BITMAP_OFFSET_VALID_MAP;
435 }
436
437 /*
438 * Make sure that the TSS limit is covering the IO bitmap. It might have
439 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
440 * access from user space to trigger a #GP because tbe bitmap is outside
441 * the TSS limit.
442 */
443 refresh_tss_limit();
444 }
445 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)446 static inline void switch_to_bitmap(unsigned long tifp) { }
447 #endif
448
449 #ifdef CONFIG_SMP
450
451 struct ssb_state {
452 struct ssb_state *shared_state;
453 raw_spinlock_t lock;
454 unsigned int disable_state;
455 unsigned long local_state;
456 };
457
458 #define LSTATE_SSB 0
459
460 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
461
speculative_store_bypass_ht_init(void)462 void speculative_store_bypass_ht_init(void)
463 {
464 struct ssb_state *st = this_cpu_ptr(&ssb_state);
465 unsigned int this_cpu = smp_processor_id();
466 unsigned int cpu;
467
468 st->local_state = 0;
469
470 /*
471 * Shared state setup happens once on the first bringup
472 * of the CPU. It's not destroyed on CPU hotunplug.
473 */
474 if (st->shared_state)
475 return;
476
477 raw_spin_lock_init(&st->lock);
478
479 /*
480 * Go over HT siblings and check whether one of them has set up the
481 * shared state pointer already.
482 */
483 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
484 if (cpu == this_cpu)
485 continue;
486
487 if (!per_cpu(ssb_state, cpu).shared_state)
488 continue;
489
490 /* Link it to the state of the sibling: */
491 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
492 return;
493 }
494
495 /*
496 * First HT sibling to come up on the core. Link shared state of
497 * the first HT sibling to itself. The siblings on the same core
498 * which come up later will see the shared state pointer and link
499 * themselves to the state of this CPU.
500 */
501 st->shared_state = st;
502 }
503
504 /*
505 * Logic is: First HT sibling enables SSBD for both siblings in the core
506 * and last sibling to disable it, disables it for the whole core. This how
507 * MSR_SPEC_CTRL works in "hardware":
508 *
509 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
510 */
amd_set_core_ssb_state(unsigned long tifn)511 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
512 {
513 struct ssb_state *st = this_cpu_ptr(&ssb_state);
514 u64 msr = x86_amd_ls_cfg_base;
515
516 if (!static_cpu_has(X86_FEATURE_ZEN)) {
517 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
518 wrmsrl(MSR_AMD64_LS_CFG, msr);
519 return;
520 }
521
522 if (tifn & _TIF_SSBD) {
523 /*
524 * Since this can race with prctl(), block reentry on the
525 * same CPU.
526 */
527 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
528 return;
529
530 msr |= x86_amd_ls_cfg_ssbd_mask;
531
532 raw_spin_lock(&st->shared_state->lock);
533 /* First sibling enables SSBD: */
534 if (!st->shared_state->disable_state)
535 wrmsrl(MSR_AMD64_LS_CFG, msr);
536 st->shared_state->disable_state++;
537 raw_spin_unlock(&st->shared_state->lock);
538 } else {
539 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
540 return;
541
542 raw_spin_lock(&st->shared_state->lock);
543 st->shared_state->disable_state--;
544 if (!st->shared_state->disable_state)
545 wrmsrl(MSR_AMD64_LS_CFG, msr);
546 raw_spin_unlock(&st->shared_state->lock);
547 }
548 }
549 #else
amd_set_core_ssb_state(unsigned long tifn)550 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
551 {
552 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
553
554 wrmsrl(MSR_AMD64_LS_CFG, msr);
555 }
556 #endif
557
amd_set_ssb_virt_state(unsigned long tifn)558 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
559 {
560 /*
561 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
562 * so ssbd_tif_to_spec_ctrl() just works.
563 */
564 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
565 }
566
567 /*
568 * Update the MSRs managing speculation control, during context switch.
569 *
570 * tifp: Previous task's thread flags
571 * tifn: Next task's thread flags
572 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)573 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
574 unsigned long tifn)
575 {
576 unsigned long tif_diff = tifp ^ tifn;
577 u64 msr = x86_spec_ctrl_base;
578 bool updmsr = false;
579
580 lockdep_assert_irqs_disabled();
581
582 /* Handle change of TIF_SSBD depending on the mitigation method. */
583 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
584 if (tif_diff & _TIF_SSBD)
585 amd_set_ssb_virt_state(tifn);
586 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
587 if (tif_diff & _TIF_SSBD)
588 amd_set_core_ssb_state(tifn);
589 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
590 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
591 updmsr |= !!(tif_diff & _TIF_SSBD);
592 msr |= ssbd_tif_to_spec_ctrl(tifn);
593 }
594
595 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
596 if (IS_ENABLED(CONFIG_SMP) &&
597 static_branch_unlikely(&switch_to_cond_stibp)) {
598 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
599 msr |= stibp_tif_to_spec_ctrl(tifn);
600 }
601
602 if (updmsr)
603 write_spec_ctrl_current(msr, false);
604 }
605
speculation_ctrl_update_tif(struct task_struct * tsk)606 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
607 {
608 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
609 if (task_spec_ssb_disable(tsk))
610 set_tsk_thread_flag(tsk, TIF_SSBD);
611 else
612 clear_tsk_thread_flag(tsk, TIF_SSBD);
613
614 if (task_spec_ib_disable(tsk))
615 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
616 else
617 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
618 }
619 /* Return the updated threadinfo flags*/
620 return read_task_thread_flags(tsk);
621 }
622
speculation_ctrl_update(unsigned long tif)623 void speculation_ctrl_update(unsigned long tif)
624 {
625 unsigned long flags;
626
627 /* Forced update. Make sure all relevant TIF flags are different */
628 local_irq_save(flags);
629 __speculation_ctrl_update(~tif, tif);
630 local_irq_restore(flags);
631 }
632
633 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)634 void speculation_ctrl_update_current(void)
635 {
636 preempt_disable();
637 speculation_ctrl_update(speculation_ctrl_update_tif(current));
638 preempt_enable();
639 }
640
cr4_toggle_bits_irqsoff(unsigned long mask)641 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
642 {
643 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
644
645 newval = cr4 ^ mask;
646 if (newval != cr4) {
647 this_cpu_write(cpu_tlbstate.cr4, newval);
648 __write_cr4(newval);
649 }
650 }
651
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)652 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
653 {
654 unsigned long tifp, tifn;
655
656 tifn = read_task_thread_flags(next_p);
657 tifp = read_task_thread_flags(prev_p);
658
659 switch_to_bitmap(tifp);
660
661 propagate_user_return_notify(prev_p, next_p);
662
663 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
664 arch_has_block_step()) {
665 unsigned long debugctl, msk;
666
667 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
668 debugctl &= ~DEBUGCTLMSR_BTF;
669 msk = tifn & _TIF_BLOCKSTEP;
670 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
671 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
672 }
673
674 if ((tifp ^ tifn) & _TIF_NOTSC)
675 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
676
677 if ((tifp ^ tifn) & _TIF_NOCPUID)
678 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
679
680 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
681 __speculation_ctrl_update(tifp, tifn);
682 } else {
683 speculation_ctrl_update_tif(prev_p);
684 tifn = speculation_ctrl_update_tif(next_p);
685
686 /* Enforce MSR update to ensure consistent state */
687 __speculation_ctrl_update(~tifn, tifn);
688 }
689 }
690
691 /*
692 * Idle related variables and functions
693 */
694 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
695 EXPORT_SYMBOL(boot_option_idle_override);
696
697 static void (*x86_idle)(void);
698
699 #ifndef CONFIG_SMP
play_dead(void)700 static inline void play_dead(void)
701 {
702 BUG();
703 }
704 #endif
705
arch_cpu_idle_enter(void)706 void arch_cpu_idle_enter(void)
707 {
708 tsc_verify_tsc_adjust(false);
709 local_touch_nmi();
710 }
711
arch_cpu_idle_dead(void)712 void arch_cpu_idle_dead(void)
713 {
714 play_dead();
715 }
716
717 /*
718 * Called from the generic idle code.
719 */
arch_cpu_idle(void)720 void arch_cpu_idle(void)
721 {
722 x86_idle();
723 }
724
725 /*
726 * We use this if we don't have any better idle routine..
727 */
default_idle(void)728 void __cpuidle default_idle(void)
729 {
730 raw_safe_halt();
731 }
732 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
733 EXPORT_SYMBOL(default_idle);
734 #endif
735
736 #ifdef CONFIG_XEN
xen_set_default_idle(void)737 bool xen_set_default_idle(void)
738 {
739 bool ret = !!x86_idle;
740
741 x86_idle = default_idle;
742
743 return ret;
744 }
745 #endif
746
stop_this_cpu(void * dummy)747 void __noreturn stop_this_cpu(void *dummy)
748 {
749 local_irq_disable();
750 /*
751 * Remove this CPU:
752 */
753 set_cpu_online(smp_processor_id(), false);
754 disable_local_APIC();
755 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
756
757 /*
758 * Use wbinvd on processors that support SME. This provides support
759 * for performing a successful kexec when going from SME inactive
760 * to SME active (or vice-versa). The cache must be cleared so that
761 * if there are entries with the same physical address, both with and
762 * without the encryption bit, they don't race each other when flushed
763 * and potentially end up with the wrong entry being committed to
764 * memory.
765 *
766 * Test the CPUID bit directly because the machine might've cleared
767 * X86_FEATURE_SME due to cmdline options.
768 */
769 if (cpuid_eax(0x8000001f) & BIT(0))
770 native_wbinvd();
771 for (;;) {
772 /*
773 * Use native_halt() so that memory contents don't change
774 * (stack usage and variables) after possibly issuing the
775 * native_wbinvd() above.
776 */
777 native_halt();
778 }
779 }
780
781 /*
782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
783 * states (local apic timer and TSC stop).
784 *
785 * XXX this function is completely buggered vs RCU and tracing.
786 */
amd_e400_idle(void)787 static void amd_e400_idle(void)
788 {
789 /*
790 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
791 * gets set after static_cpu_has() places have been converted via
792 * alternatives.
793 */
794 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
795 default_idle();
796 return;
797 }
798
799 tick_broadcast_enter();
800
801 default_idle();
802
803 /*
804 * The switch back from broadcast mode needs to be called with
805 * interrupts disabled.
806 */
807 raw_local_irq_disable();
808 tick_broadcast_exit();
809 raw_local_irq_enable();
810 }
811
812 /*
813 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
814 * We can't rely on cpuidle installing MWAIT, because it will not load
815 * on systems that support only C1 -- so the boot default must be MWAIT.
816 *
817 * Some AMD machines are the opposite, they depend on using HALT.
818 *
819 * So for default C1, which is used during boot until cpuidle loads,
820 * use MWAIT-C1 on Intel HW that has it, else use HALT.
821 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)822 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
823 {
824 /* User has disallowed the use of MWAIT. Fallback to HALT */
825 if (boot_option_idle_override == IDLE_NOMWAIT)
826 return 0;
827
828 if (c->x86_vendor != X86_VENDOR_INTEL)
829 return 0;
830
831 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
832 return 0;
833
834 return 1;
835 }
836
837 /*
838 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
839 * with interrupts enabled and no flags, which is backwards compatible with the
840 * original MWAIT implementation.
841 */
mwait_idle(void)842 static __cpuidle void mwait_idle(void)
843 {
844 if (!current_set_polling_and_test()) {
845 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
846 mb(); /* quirk */
847 clflush((void *)¤t_thread_info()->flags);
848 mb(); /* quirk */
849 }
850
851 __monitor((void *)¤t_thread_info()->flags, 0, 0);
852 if (!need_resched())
853 __sti_mwait(0, 0);
854 else
855 raw_local_irq_enable();
856 } else {
857 raw_local_irq_enable();
858 }
859 __current_clr_polling();
860 }
861
select_idle_routine(const struct cpuinfo_x86 * c)862 void select_idle_routine(const struct cpuinfo_x86 *c)
863 {
864 #ifdef CONFIG_SMP
865 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
866 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
867 #endif
868 if (x86_idle || boot_option_idle_override == IDLE_POLL)
869 return;
870
871 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
872 pr_info("using AMD E400 aware idle routine\n");
873 x86_idle = amd_e400_idle;
874 } else if (prefer_mwait_c1_over_halt(c)) {
875 pr_info("using mwait in idle threads\n");
876 x86_idle = mwait_idle;
877 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
878 pr_info("using TDX aware idle routine\n");
879 x86_idle = tdx_safe_halt;
880 } else
881 x86_idle = default_idle;
882 }
883
amd_e400_c1e_apic_setup(void)884 void amd_e400_c1e_apic_setup(void)
885 {
886 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
887 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
888 local_irq_disable();
889 tick_broadcast_force();
890 local_irq_enable();
891 }
892 }
893
arch_post_acpi_subsys_init(void)894 void __init arch_post_acpi_subsys_init(void)
895 {
896 u32 lo, hi;
897
898 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
899 return;
900
901 /*
902 * AMD E400 detection needs to happen after ACPI has been enabled. If
903 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
904 * MSR_K8_INT_PENDING_MSG.
905 */
906 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
907 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
908 return;
909
910 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
911
912 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
913 mark_tsc_unstable("TSC halt in AMD C1E");
914 pr_info("System has AMD C1E enabled\n");
915 }
916
idle_setup(char * str)917 static int __init idle_setup(char *str)
918 {
919 if (!str)
920 return -EINVAL;
921
922 if (!strcmp(str, "poll")) {
923 pr_info("using polling idle threads\n");
924 boot_option_idle_override = IDLE_POLL;
925 cpu_idle_poll_ctrl(true);
926 } else if (!strcmp(str, "halt")) {
927 /*
928 * When the boot option of idle=halt is added, halt is
929 * forced to be used for CPU idle. In such case CPU C2/C3
930 * won't be used again.
931 * To continue to load the CPU idle driver, don't touch
932 * the boot_option_idle_override.
933 */
934 x86_idle = default_idle;
935 boot_option_idle_override = IDLE_HALT;
936 } else if (!strcmp(str, "nomwait")) {
937 /*
938 * If the boot option of "idle=nomwait" is added,
939 * it means that mwait will be disabled for CPU C1/C2/C3
940 * states.
941 */
942 boot_option_idle_override = IDLE_NOMWAIT;
943 } else
944 return -1;
945
946 return 0;
947 }
948 early_param("idle", idle_setup);
949
arch_align_stack(unsigned long sp)950 unsigned long arch_align_stack(unsigned long sp)
951 {
952 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
953 sp -= get_random_int() % 8192;
954 return sp & ~0xf;
955 }
956
arch_randomize_brk(struct mm_struct * mm)957 unsigned long arch_randomize_brk(struct mm_struct *mm)
958 {
959 return randomize_page(mm->brk, 0x02000000);
960 }
961
962 /*
963 * Called from fs/proc with a reference on @p to find the function
964 * which called into schedule(). This needs to be done carefully
965 * because the task might wake up and we might look at a stack
966 * changing under us.
967 */
__get_wchan(struct task_struct * p)968 unsigned long __get_wchan(struct task_struct *p)
969 {
970 struct unwind_state state;
971 unsigned long addr = 0;
972
973 if (!try_get_task_stack(p))
974 return 0;
975
976 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
977 unwind_next_frame(&state)) {
978 addr = unwind_get_return_address(&state);
979 if (!addr)
980 break;
981 if (in_sched_functions(addr))
982 continue;
983 break;
984 }
985
986 put_task_stack(p);
987
988 return addr;
989 }
990
do_arch_prctl_common(int option,unsigned long arg2)991 long do_arch_prctl_common(int option, unsigned long arg2)
992 {
993 switch (option) {
994 case ARCH_GET_CPUID:
995 return get_cpuid_mode();
996 case ARCH_SET_CPUID:
997 return set_cpuid_mode(arg2);
998 case ARCH_GET_XCOMP_SUPP:
999 case ARCH_GET_XCOMP_PERM:
1000 case ARCH_REQ_XCOMP_PERM:
1001 case ARCH_GET_XCOMP_GUEST_PERM:
1002 case ARCH_REQ_XCOMP_GUEST_PERM:
1003 return fpu_xstate_prctl(option, arg2);
1004 }
1005
1006 return -EINVAL;
1007 }
1008