1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25 
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 	int ret;
32 
33 	*dst = *src;
34 	if (fpu_allocated(&src->thread.fpu)) {
35 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 		ret = fpu_alloc(&dst->thread.fpu);
37 		if (ret)
38 			return ret;
39 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 	}
41 	return 0;
42 }
43 
free_thread_xstate(struct task_struct * tsk)44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 	fpu_free(&tsk->thread.fpu);
47 }
48 
free_thread_info(struct thread_info * ti)49 void free_thread_info(struct thread_info *ti)
50 {
51 	free_thread_xstate(ti->task);
52 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54 
arch_task_cache_init(void)55 void arch_task_cache_init(void)
56 {
57         task_xstate_cachep =
58         	kmem_cache_create("task_xstate", xstate_size,
59 				  __alignof__(union thread_xstate),
60 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62 
63 /*
64  * Free current thread data structures etc..
65  */
exit_thread(void)66 void exit_thread(void)
67 {
68 	struct task_struct *me = current;
69 	struct thread_struct *t = &me->thread;
70 	unsigned long *bp = t->io_bitmap_ptr;
71 
72 	if (bp) {
73 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74 
75 		t->io_bitmap_ptr = NULL;
76 		clear_thread_flag(TIF_IO_BITMAP);
77 		/*
78 		 * Careful, clear this in the TSS too:
79 		 */
80 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 		t->io_bitmap_max = 0;
82 		put_cpu();
83 		kfree(bp);
84 	}
85 }
86 
show_regs(struct pt_regs * regs)87 void show_regs(struct pt_regs *regs)
88 {
89 	show_registers(regs);
90 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
91 }
92 
show_regs_common(void)93 void show_regs_common(void)
94 {
95 	const char *vendor, *product, *board;
96 
97 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 	if (!vendor)
99 		vendor = "";
100 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 	if (!product)
102 		product = "";
103 
104 	/* Board Name is optional */
105 	board = dmi_get_system_info(DMI_BOARD_NAME);
106 
107 	printk(KERN_CONT "\n");
108 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 		current->pid, current->comm, print_tainted(),
110 		init_utsname()->release,
111 		(int)strcspn(init_utsname()->version, " "),
112 		init_utsname()->version);
113 	printk(KERN_CONT " %s %s", vendor, product);
114 	if (board)
115 		printk(KERN_CONT "/%s", board);
116 	printk(KERN_CONT "\n");
117 }
118 
flush_thread(void)119 void flush_thread(void)
120 {
121 	struct task_struct *tsk = current;
122 
123 	flush_ptrace_hw_breakpoint(tsk);
124 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125 	/*
126 	 * Forget coprocessor state..
127 	 */
128 	tsk->fpu_counter = 0;
129 	clear_fpu(tsk);
130 	clear_used_math();
131 }
132 
hard_disable_TSC(void)133 static void hard_disable_TSC(void)
134 {
135 	write_cr4(read_cr4() | X86_CR4_TSD);
136 }
137 
disable_TSC(void)138 void disable_TSC(void)
139 {
140 	preempt_disable();
141 	if (!test_and_set_thread_flag(TIF_NOTSC))
142 		/*
143 		 * Must flip the CPU state synchronously with
144 		 * TIF_NOTSC in the current running context.
145 		 */
146 		hard_disable_TSC();
147 	preempt_enable();
148 }
149 
hard_enable_TSC(void)150 static void hard_enable_TSC(void)
151 {
152 	write_cr4(read_cr4() & ~X86_CR4_TSD);
153 }
154 
enable_TSC(void)155 static void enable_TSC(void)
156 {
157 	preempt_disable();
158 	if (test_and_clear_thread_flag(TIF_NOTSC))
159 		/*
160 		 * Must flip the CPU state synchronously with
161 		 * TIF_NOTSC in the current running context.
162 		 */
163 		hard_enable_TSC();
164 	preempt_enable();
165 }
166 
get_tsc_mode(unsigned long adr)167 int get_tsc_mode(unsigned long adr)
168 {
169 	unsigned int val;
170 
171 	if (test_thread_flag(TIF_NOTSC))
172 		val = PR_TSC_SIGSEGV;
173 	else
174 		val = PR_TSC_ENABLE;
175 
176 	return put_user(val, (unsigned int __user *)adr);
177 }
178 
set_tsc_mode(unsigned int val)179 int set_tsc_mode(unsigned int val)
180 {
181 	if (val == PR_TSC_SIGSEGV)
182 		disable_TSC();
183 	else if (val == PR_TSC_ENABLE)
184 		enable_TSC();
185 	else
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 		      struct tss_struct *tss)
193 {
194 	struct thread_struct *prev, *next;
195 
196 	prev = &prev_p->thread;
197 	next = &next_p->thread;
198 
199 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 		unsigned long debugctl = get_debugctlmsr();
202 
203 		debugctl &= ~DEBUGCTLMSR_BTF;
204 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 			debugctl |= DEBUGCTLMSR_BTF;
206 
207 		update_debugctlmsr(debugctl);
208 	}
209 
210 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 		/* prev and next are different */
213 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 			hard_disable_TSC();
215 		else
216 			hard_enable_TSC();
217 	}
218 
219 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Copy the relevant range of the IO bitmap.
222 		 * Normally this is 128 bytes or less:
223 		 */
224 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 		       max(prev->io_bitmap_max, next->io_bitmap_max));
226 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 		/*
228 		 * Clear any possible leftover bits:
229 		 */
230 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 	}
232 	propagate_user_return_notify(prev_p, next_p);
233 }
234 
sys_fork(struct pt_regs * regs)235 int sys_fork(struct pt_regs *regs)
236 {
237 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238 }
239 
240 /*
241  * This is trivial, and on the face of it looks like it
242  * could equally well be done in user mode.
243  *
244  * Not so, for quite unobvious reasons - register pressure.
245  * In user mode vfork() cannot have a stack frame, and if
246  * done by calling the "clone()" system call directly, you
247  * do not have enough call-clobbered registers to hold all
248  * the information you need.
249  */
sys_vfork(struct pt_regs * regs)250 int sys_vfork(struct pt_regs *regs)
251 {
252 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253 		       NULL, NULL);
254 }
255 
256 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)257 sys_clone(unsigned long clone_flags, unsigned long newsp,
258 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259 {
260 	if (!newsp)
261 		newsp = regs->sp;
262 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263 }
264 
265 /*
266  * This gets run with %si containing the
267  * function to call, and %di containing
268  * the "args".
269  */
270 extern void kernel_thread_helper(void);
271 
272 /*
273  * Create a kernel thread
274  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)275 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276 {
277 	struct pt_regs regs;
278 
279 	memset(&regs, 0, sizeof(regs));
280 
281 	regs.si = (unsigned long) fn;
282 	regs.di = (unsigned long) arg;
283 
284 #ifdef CONFIG_X86_32
285 	regs.ds = __USER_DS;
286 	regs.es = __USER_DS;
287 	regs.fs = __KERNEL_PERCPU;
288 	regs.gs = __KERNEL_STACK_CANARY;
289 #else
290 	regs.ss = __KERNEL_DS;
291 #endif
292 
293 	regs.orig_ax = -1;
294 	regs.ip = (unsigned long) kernel_thread_helper;
295 	regs.cs = __KERNEL_CS | get_kernel_rpl();
296 	regs.flags = X86_EFLAGS_IF | 0x2;
297 
298 	/* Ok, create the new process.. */
299 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300 }
301 EXPORT_SYMBOL(kernel_thread);
302 
303 /*
304  * sys_execve() executes a new program.
305  */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)306 long sys_execve(const char __user *name,
307 		const char __user *const __user *argv,
308 		const char __user *const __user *envp, struct pt_regs *regs)
309 {
310 	long error;
311 	char *filename;
312 
313 	filename = getname(name);
314 	error = PTR_ERR(filename);
315 	if (IS_ERR(filename))
316 		return error;
317 	error = do_execve(filename, argv, envp, regs);
318 
319 #ifdef CONFIG_X86_32
320 	if (error == 0) {
321 		/* Make sure we don't return using sysenter.. */
322                 set_thread_flag(TIF_IRET);
323         }
324 #endif
325 
326 	putname(filename);
327 	return error;
328 }
329 
330 /*
331  * Idle related variables and functions
332  */
333 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334 EXPORT_SYMBOL(boot_option_idle_override);
335 
336 /*
337  * Powermanagement idle function, if any..
338  */
339 void (*pm_idle)(void);
340 EXPORT_SYMBOL(pm_idle);
341 
342 #ifdef CONFIG_X86_32
343 /*
344  * This halt magic was a workaround for ancient floppy DMA
345  * wreckage. It should be safe to remove.
346  */
347 static int hlt_counter;
disable_hlt(void)348 void disable_hlt(void)
349 {
350 	hlt_counter++;
351 }
352 EXPORT_SYMBOL(disable_hlt);
353 
enable_hlt(void)354 void enable_hlt(void)
355 {
356 	hlt_counter--;
357 }
358 EXPORT_SYMBOL(enable_hlt);
359 
hlt_use_halt(void)360 static inline int hlt_use_halt(void)
361 {
362 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
363 }
364 #else
hlt_use_halt(void)365 static inline int hlt_use_halt(void)
366 {
367 	return 1;
368 }
369 #endif
370 
371 /*
372  * We use this if we don't have any better
373  * idle routine..
374  */
default_idle(void)375 void default_idle(void)
376 {
377 	if (hlt_use_halt()) {
378 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
379 		trace_cpu_idle(1, smp_processor_id());
380 		current_thread_info()->status &= ~TS_POLLING;
381 		/*
382 		 * TS_POLLING-cleared state must be visible before we
383 		 * test NEED_RESCHED:
384 		 */
385 		smp_mb();
386 
387 		if (!need_resched())
388 			safe_halt();	/* enables interrupts racelessly */
389 		else
390 			local_irq_enable();
391 		current_thread_info()->status |= TS_POLLING;
392 		trace_power_end(smp_processor_id());
393 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
394 	} else {
395 		local_irq_enable();
396 		/* loop is done by the caller */
397 		cpu_relax();
398 	}
399 }
400 #ifdef CONFIG_APM_MODULE
401 EXPORT_SYMBOL(default_idle);
402 #endif
403 
stop_this_cpu(void * dummy)404 void stop_this_cpu(void *dummy)
405 {
406 	local_irq_disable();
407 	/*
408 	 * Remove this CPU:
409 	 */
410 	set_cpu_online(smp_processor_id(), false);
411 	disable_local_APIC();
412 
413 	for (;;) {
414 		if (hlt_works(smp_processor_id()))
415 			halt();
416 	}
417 }
418 
do_nothing(void * unused)419 static void do_nothing(void *unused)
420 {
421 }
422 
423 /*
424  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
425  * pm_idle and update to new pm_idle value. Required while changing pm_idle
426  * handler on SMP systems.
427  *
428  * Caller must have changed pm_idle to the new value before the call. Old
429  * pm_idle value will not be used by any CPU after the return of this function.
430  */
cpu_idle_wait(void)431 void cpu_idle_wait(void)
432 {
433 	smp_mb();
434 	/* kick all the CPUs so that they exit out of pm_idle */
435 	smp_call_function(do_nothing, NULL, 1);
436 }
437 EXPORT_SYMBOL_GPL(cpu_idle_wait);
438 
439 /*
440  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
441  * which can obviate IPI to trigger checking of need_resched.
442  * We execute MONITOR against need_resched and enter optimized wait state
443  * through MWAIT. Whenever someone changes need_resched, we would be woken
444  * up from MWAIT (without an IPI).
445  *
446  * New with Core Duo processors, MWAIT can take some hints based on CPU
447  * capability.
448  */
mwait_idle_with_hints(unsigned long ax,unsigned long cx)449 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
450 {
451 	if (!need_resched()) {
452 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
453 			clflush((void *)&current_thread_info()->flags);
454 
455 		__monitor((void *)&current_thread_info()->flags, 0, 0);
456 		smp_mb();
457 		if (!need_resched())
458 			__mwait(ax, cx);
459 	}
460 }
461 
462 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)463 static void mwait_idle(void)
464 {
465 	if (!need_resched()) {
466 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
467 		trace_cpu_idle(1, smp_processor_id());
468 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
469 			clflush((void *)&current_thread_info()->flags);
470 
471 		__monitor((void *)&current_thread_info()->flags, 0, 0);
472 		smp_mb();
473 		if (!need_resched())
474 			__sti_mwait(0, 0);
475 		else
476 			local_irq_enable();
477 		trace_power_end(smp_processor_id());
478 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
479 	} else
480 		local_irq_enable();
481 }
482 
483 /*
484  * On SMP it's slightly faster (but much more power-consuming!)
485  * to poll the ->work.need_resched flag instead of waiting for the
486  * cross-CPU IPI to arrive. Use this option with caution.
487  */
poll_idle(void)488 static void poll_idle(void)
489 {
490 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
491 	trace_cpu_idle(0, smp_processor_id());
492 	local_irq_enable();
493 	while (!need_resched())
494 		cpu_relax();
495 	trace_power_end(smp_processor_id());
496 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
497 }
498 
499 /*
500  * mwait selection logic:
501  *
502  * It depends on the CPU. For AMD CPUs that support MWAIT this is
503  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
504  * then depend on a clock divisor and current Pstate of the core. If
505  * all cores of a processor are in halt state (C1) the processor can
506  * enter the C1E (C1 enhanced) state. If mwait is used this will never
507  * happen.
508  *
509  * idle=mwait overrides this decision and forces the usage of mwait.
510  */
511 
512 #define MWAIT_INFO			0x05
513 #define MWAIT_ECX_EXTENDED_INFO		0x01
514 #define MWAIT_EDX_C1			0xf0
515 
mwait_usable(const struct cpuinfo_x86 * c)516 int mwait_usable(const struct cpuinfo_x86 *c)
517 {
518 	u32 eax, ebx, ecx, edx;
519 
520 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
521 		return 1;
522 
523 	if (c->cpuid_level < MWAIT_INFO)
524 		return 0;
525 
526 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
527 	/* Check, whether EDX has extended info about MWAIT */
528 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
529 		return 1;
530 
531 	/*
532 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
533 	 * C1  supports MWAIT
534 	 */
535 	return (edx & MWAIT_EDX_C1);
536 }
537 
538 bool c1e_detected;
539 EXPORT_SYMBOL(c1e_detected);
540 
541 static cpumask_var_t c1e_mask;
542 
c1e_remove_cpu(int cpu)543 void c1e_remove_cpu(int cpu)
544 {
545 	if (c1e_mask != NULL)
546 		cpumask_clear_cpu(cpu, c1e_mask);
547 }
548 
549 /*
550  * C1E aware idle routine. We check for C1E active in the interrupt
551  * pending message MSR. If we detect C1E, then we handle it the same
552  * way as C3 power states (local apic timer and TSC stop)
553  */
c1e_idle(void)554 static void c1e_idle(void)
555 {
556 	if (need_resched())
557 		return;
558 
559 	if (!c1e_detected) {
560 		u32 lo, hi;
561 
562 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
563 
564 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
565 			c1e_detected = true;
566 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
567 				mark_tsc_unstable("TSC halt in AMD C1E");
568 			printk(KERN_INFO "System has AMD C1E enabled\n");
569 		}
570 	}
571 
572 	if (c1e_detected) {
573 		int cpu = smp_processor_id();
574 
575 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
576 			cpumask_set_cpu(cpu, c1e_mask);
577 			/*
578 			 * Force broadcast so ACPI can not interfere.
579 			 */
580 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
581 					   &cpu);
582 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
583 			       cpu);
584 		}
585 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
586 
587 		default_idle();
588 
589 		/*
590 		 * The switch back from broadcast mode needs to be
591 		 * called with interrupts disabled.
592 		 */
593 		 local_irq_disable();
594 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
595 		 local_irq_enable();
596 	} else
597 		default_idle();
598 }
599 
select_idle_routine(const struct cpuinfo_x86 * c)600 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
601 {
602 #ifdef CONFIG_SMP
603 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
604 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
605 			" performance may degrade.\n");
606 	}
607 #endif
608 	if (pm_idle)
609 		return;
610 
611 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
612 		/*
613 		 * One CPU supports mwait => All CPUs supports mwait
614 		 */
615 		printk(KERN_INFO "using mwait in idle threads.\n");
616 		pm_idle = mwait_idle;
617 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
618 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
619 		printk(KERN_INFO "using C1E aware idle routine\n");
620 		pm_idle = c1e_idle;
621 	} else
622 		pm_idle = default_idle;
623 }
624 
init_c1e_mask(void)625 void __init init_c1e_mask(void)
626 {
627 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
628 	if (pm_idle == c1e_idle)
629 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
630 }
631 
idle_setup(char * str)632 static int __init idle_setup(char *str)
633 {
634 	if (!str)
635 		return -EINVAL;
636 
637 	if (!strcmp(str, "poll")) {
638 		printk("using polling idle threads.\n");
639 		pm_idle = poll_idle;
640 		boot_option_idle_override = IDLE_POLL;
641 	} else if (!strcmp(str, "mwait")) {
642 		boot_option_idle_override = IDLE_FORCE_MWAIT;
643 	} else if (!strcmp(str, "halt")) {
644 		/*
645 		 * When the boot option of idle=halt is added, halt is
646 		 * forced to be used for CPU idle. In such case CPU C2/C3
647 		 * won't be used again.
648 		 * To continue to load the CPU idle driver, don't touch
649 		 * the boot_option_idle_override.
650 		 */
651 		pm_idle = default_idle;
652 		boot_option_idle_override = IDLE_HALT;
653 	} else if (!strcmp(str, "nomwait")) {
654 		/*
655 		 * If the boot option of "idle=nomwait" is added,
656 		 * it means that mwait will be disabled for CPU C2/C3
657 		 * states. In such case it won't touch the variable
658 		 * of boot_option_idle_override.
659 		 */
660 		boot_option_idle_override = IDLE_NOMWAIT;
661 	} else
662 		return -1;
663 
664 	return 0;
665 }
666 early_param("idle", idle_setup);
667 
arch_align_stack(unsigned long sp)668 unsigned long arch_align_stack(unsigned long sp)
669 {
670 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
671 		sp -= get_random_int() % 8192;
672 	return sp & ~0xf;
673 }
674 
arch_randomize_brk(struct mm_struct * mm)675 unsigned long arch_randomize_brk(struct mm_struct *mm)
676 {
677 	unsigned long range_end = mm->brk + 0x02000000;
678 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
679 }
680 
681