1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 int ret;
32
33 *dst = *src;
34 if (fpu_allocated(&src->thread.fpu)) {
35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 ret = fpu_alloc(&dst->thread.fpu);
37 if (ret)
38 return ret;
39 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 }
41 return 0;
42 }
43
free_thread_xstate(struct task_struct * tsk)44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 fpu_free(&tsk->thread.fpu);
47 }
48
free_thread_info(struct thread_info * ti)49 void free_thread_info(struct thread_info *ti)
50 {
51 free_thread_xstate(ti->task);
52 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54
arch_task_cache_init(void)55 void arch_task_cache_init(void)
56 {
57 task_xstate_cachep =
58 kmem_cache_create("task_xstate", xstate_size,
59 __alignof__(union thread_xstate),
60 SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62
63 /*
64 * Free current thread data structures etc..
65 */
exit_thread(void)66 void exit_thread(void)
67 {
68 struct task_struct *me = current;
69 struct thread_struct *t = &me->thread;
70 unsigned long *bp = t->io_bitmap_ptr;
71
72 if (bp) {
73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74
75 t->io_bitmap_ptr = NULL;
76 clear_thread_flag(TIF_IO_BITMAP);
77 /*
78 * Careful, clear this in the TSS too:
79 */
80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 t->io_bitmap_max = 0;
82 put_cpu();
83 kfree(bp);
84 }
85 }
86
show_regs(struct pt_regs * regs)87 void show_regs(struct pt_regs *regs)
88 {
89 show_registers(regs);
90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
91 }
92
show_regs_common(void)93 void show_regs_common(void)
94 {
95 const char *vendor, *product, *board;
96
97 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 if (!vendor)
99 vendor = "";
100 product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 if (!product)
102 product = "";
103
104 /* Board Name is optional */
105 board = dmi_get_system_info(DMI_BOARD_NAME);
106
107 printk(KERN_CONT "\n");
108 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 current->pid, current->comm, print_tainted(),
110 init_utsname()->release,
111 (int)strcspn(init_utsname()->version, " "),
112 init_utsname()->version);
113 printk(KERN_CONT " %s %s", vendor, product);
114 if (board)
115 printk(KERN_CONT "/%s", board);
116 printk(KERN_CONT "\n");
117 }
118
flush_thread(void)119 void flush_thread(void)
120 {
121 struct task_struct *tsk = current;
122
123 flush_ptrace_hw_breakpoint(tsk);
124 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125 /*
126 * Forget coprocessor state..
127 */
128 tsk->fpu_counter = 0;
129 clear_fpu(tsk);
130 clear_used_math();
131 }
132
hard_disable_TSC(void)133 static void hard_disable_TSC(void)
134 {
135 write_cr4(read_cr4() | X86_CR4_TSD);
136 }
137
disable_TSC(void)138 void disable_TSC(void)
139 {
140 preempt_disable();
141 if (!test_and_set_thread_flag(TIF_NOTSC))
142 /*
143 * Must flip the CPU state synchronously with
144 * TIF_NOTSC in the current running context.
145 */
146 hard_disable_TSC();
147 preempt_enable();
148 }
149
hard_enable_TSC(void)150 static void hard_enable_TSC(void)
151 {
152 write_cr4(read_cr4() & ~X86_CR4_TSD);
153 }
154
enable_TSC(void)155 static void enable_TSC(void)
156 {
157 preempt_disable();
158 if (test_and_clear_thread_flag(TIF_NOTSC))
159 /*
160 * Must flip the CPU state synchronously with
161 * TIF_NOTSC in the current running context.
162 */
163 hard_enable_TSC();
164 preempt_enable();
165 }
166
get_tsc_mode(unsigned long adr)167 int get_tsc_mode(unsigned long adr)
168 {
169 unsigned int val;
170
171 if (test_thread_flag(TIF_NOTSC))
172 val = PR_TSC_SIGSEGV;
173 else
174 val = PR_TSC_ENABLE;
175
176 return put_user(val, (unsigned int __user *)adr);
177 }
178
set_tsc_mode(unsigned int val)179 int set_tsc_mode(unsigned int val)
180 {
181 if (val == PR_TSC_SIGSEGV)
182 disable_TSC();
183 else if (val == PR_TSC_ENABLE)
184 enable_TSC();
185 else
186 return -EINVAL;
187
188 return 0;
189 }
190
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 struct tss_struct *tss)
193 {
194 struct thread_struct *prev, *next;
195
196 prev = &prev_p->thread;
197 next = &next_p->thread;
198
199 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 unsigned long debugctl = get_debugctlmsr();
202
203 debugctl &= ~DEBUGCTLMSR_BTF;
204 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 debugctl |= DEBUGCTLMSR_BTF;
206
207 update_debugctlmsr(debugctl);
208 }
209
210 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 /* prev and next are different */
213 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 hard_disable_TSC();
215 else
216 hard_enable_TSC();
217 }
218
219 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220 /*
221 * Copy the relevant range of the IO bitmap.
222 * Normally this is 128 bytes or less:
223 */
224 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 max(prev->io_bitmap_max, next->io_bitmap_max));
226 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 /*
228 * Clear any possible leftover bits:
229 */
230 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 }
232 propagate_user_return_notify(prev_p, next_p);
233 }
234
sys_fork(struct pt_regs * regs)235 int sys_fork(struct pt_regs *regs)
236 {
237 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238 }
239
240 /*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
sys_vfork(struct pt_regs * regs)250 int sys_vfork(struct pt_regs *regs)
251 {
252 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253 NULL, NULL);
254 }
255
256 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)257 sys_clone(unsigned long clone_flags, unsigned long newsp,
258 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259 {
260 if (!newsp)
261 newsp = regs->sp;
262 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263 }
264
265 /*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270 extern void kernel_thread_helper(void);
271
272 /*
273 * Create a kernel thread
274 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)275 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276 {
277 struct pt_regs regs;
278
279 memset(®s, 0, sizeof(regs));
280
281 regs.si = (unsigned long) fn;
282 regs.di = (unsigned long) arg;
283
284 #ifdef CONFIG_X86_32
285 regs.ds = __USER_DS;
286 regs.es = __USER_DS;
287 regs.fs = __KERNEL_PERCPU;
288 regs.gs = __KERNEL_STACK_CANARY;
289 #else
290 regs.ss = __KERNEL_DS;
291 #endif
292
293 regs.orig_ax = -1;
294 regs.ip = (unsigned long) kernel_thread_helper;
295 regs.cs = __KERNEL_CS | get_kernel_rpl();
296 regs.flags = X86_EFLAGS_IF | 0x2;
297
298 /* Ok, create the new process.. */
299 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
300 }
301 EXPORT_SYMBOL(kernel_thread);
302
303 /*
304 * sys_execve() executes a new program.
305 */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)306 long sys_execve(const char __user *name,
307 const char __user *const __user *argv,
308 const char __user *const __user *envp, struct pt_regs *regs)
309 {
310 long error;
311 char *filename;
312
313 filename = getname(name);
314 error = PTR_ERR(filename);
315 if (IS_ERR(filename))
316 return error;
317 error = do_execve(filename, argv, envp, regs);
318
319 #ifdef CONFIG_X86_32
320 if (error == 0) {
321 /* Make sure we don't return using sysenter.. */
322 set_thread_flag(TIF_IRET);
323 }
324 #endif
325
326 putname(filename);
327 return error;
328 }
329
330 /*
331 * Idle related variables and functions
332 */
333 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334 EXPORT_SYMBOL(boot_option_idle_override);
335
336 /*
337 * Powermanagement idle function, if any..
338 */
339 void (*pm_idle)(void);
340 EXPORT_SYMBOL(pm_idle);
341
342 #ifdef CONFIG_X86_32
343 /*
344 * This halt magic was a workaround for ancient floppy DMA
345 * wreckage. It should be safe to remove.
346 */
347 static int hlt_counter;
disable_hlt(void)348 void disable_hlt(void)
349 {
350 hlt_counter++;
351 }
352 EXPORT_SYMBOL(disable_hlt);
353
enable_hlt(void)354 void enable_hlt(void)
355 {
356 hlt_counter--;
357 }
358 EXPORT_SYMBOL(enable_hlt);
359
hlt_use_halt(void)360 static inline int hlt_use_halt(void)
361 {
362 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
363 }
364 #else
hlt_use_halt(void)365 static inline int hlt_use_halt(void)
366 {
367 return 1;
368 }
369 #endif
370
371 /*
372 * We use this if we don't have any better
373 * idle routine..
374 */
default_idle(void)375 void default_idle(void)
376 {
377 if (hlt_use_halt()) {
378 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
379 trace_cpu_idle(1, smp_processor_id());
380 current_thread_info()->status &= ~TS_POLLING;
381 /*
382 * TS_POLLING-cleared state must be visible before we
383 * test NEED_RESCHED:
384 */
385 smp_mb();
386
387 if (!need_resched())
388 safe_halt(); /* enables interrupts racelessly */
389 else
390 local_irq_enable();
391 current_thread_info()->status |= TS_POLLING;
392 trace_power_end(smp_processor_id());
393 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
394 } else {
395 local_irq_enable();
396 /* loop is done by the caller */
397 cpu_relax();
398 }
399 }
400 #ifdef CONFIG_APM_MODULE
401 EXPORT_SYMBOL(default_idle);
402 #endif
403
stop_this_cpu(void * dummy)404 void stop_this_cpu(void *dummy)
405 {
406 local_irq_disable();
407 /*
408 * Remove this CPU:
409 */
410 set_cpu_online(smp_processor_id(), false);
411 disable_local_APIC();
412
413 for (;;) {
414 if (hlt_works(smp_processor_id()))
415 halt();
416 }
417 }
418
do_nothing(void * unused)419 static void do_nothing(void *unused)
420 {
421 }
422
423 /*
424 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
425 * pm_idle and update to new pm_idle value. Required while changing pm_idle
426 * handler on SMP systems.
427 *
428 * Caller must have changed pm_idle to the new value before the call. Old
429 * pm_idle value will not be used by any CPU after the return of this function.
430 */
cpu_idle_wait(void)431 void cpu_idle_wait(void)
432 {
433 smp_mb();
434 /* kick all the CPUs so that they exit out of pm_idle */
435 smp_call_function(do_nothing, NULL, 1);
436 }
437 EXPORT_SYMBOL_GPL(cpu_idle_wait);
438
439 /*
440 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
441 * which can obviate IPI to trigger checking of need_resched.
442 * We execute MONITOR against need_resched and enter optimized wait state
443 * through MWAIT. Whenever someone changes need_resched, we would be woken
444 * up from MWAIT (without an IPI).
445 *
446 * New with Core Duo processors, MWAIT can take some hints based on CPU
447 * capability.
448 */
mwait_idle_with_hints(unsigned long ax,unsigned long cx)449 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
450 {
451 if (!need_resched()) {
452 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
453 clflush((void *)¤t_thread_info()->flags);
454
455 __monitor((void *)¤t_thread_info()->flags, 0, 0);
456 smp_mb();
457 if (!need_resched())
458 __mwait(ax, cx);
459 }
460 }
461
462 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)463 static void mwait_idle(void)
464 {
465 if (!need_resched()) {
466 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
467 trace_cpu_idle(1, smp_processor_id());
468 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
469 clflush((void *)¤t_thread_info()->flags);
470
471 __monitor((void *)¤t_thread_info()->flags, 0, 0);
472 smp_mb();
473 if (!need_resched())
474 __sti_mwait(0, 0);
475 else
476 local_irq_enable();
477 trace_power_end(smp_processor_id());
478 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
479 } else
480 local_irq_enable();
481 }
482
483 /*
484 * On SMP it's slightly faster (but much more power-consuming!)
485 * to poll the ->work.need_resched flag instead of waiting for the
486 * cross-CPU IPI to arrive. Use this option with caution.
487 */
poll_idle(void)488 static void poll_idle(void)
489 {
490 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
491 trace_cpu_idle(0, smp_processor_id());
492 local_irq_enable();
493 while (!need_resched())
494 cpu_relax();
495 trace_power_end(smp_processor_id());
496 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
497 }
498
499 /*
500 * mwait selection logic:
501 *
502 * It depends on the CPU. For AMD CPUs that support MWAIT this is
503 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
504 * then depend on a clock divisor and current Pstate of the core. If
505 * all cores of a processor are in halt state (C1) the processor can
506 * enter the C1E (C1 enhanced) state. If mwait is used this will never
507 * happen.
508 *
509 * idle=mwait overrides this decision and forces the usage of mwait.
510 */
511
512 #define MWAIT_INFO 0x05
513 #define MWAIT_ECX_EXTENDED_INFO 0x01
514 #define MWAIT_EDX_C1 0xf0
515
mwait_usable(const struct cpuinfo_x86 * c)516 int mwait_usable(const struct cpuinfo_x86 *c)
517 {
518 u32 eax, ebx, ecx, edx;
519
520 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
521 return 1;
522
523 if (c->cpuid_level < MWAIT_INFO)
524 return 0;
525
526 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
527 /* Check, whether EDX has extended info about MWAIT */
528 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
529 return 1;
530
531 /*
532 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
533 * C1 supports MWAIT
534 */
535 return (edx & MWAIT_EDX_C1);
536 }
537
538 bool c1e_detected;
539 EXPORT_SYMBOL(c1e_detected);
540
541 static cpumask_var_t c1e_mask;
542
c1e_remove_cpu(int cpu)543 void c1e_remove_cpu(int cpu)
544 {
545 if (c1e_mask != NULL)
546 cpumask_clear_cpu(cpu, c1e_mask);
547 }
548
549 /*
550 * C1E aware idle routine. We check for C1E active in the interrupt
551 * pending message MSR. If we detect C1E, then we handle it the same
552 * way as C3 power states (local apic timer and TSC stop)
553 */
c1e_idle(void)554 static void c1e_idle(void)
555 {
556 if (need_resched())
557 return;
558
559 if (!c1e_detected) {
560 u32 lo, hi;
561
562 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
563
564 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
565 c1e_detected = true;
566 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
567 mark_tsc_unstable("TSC halt in AMD C1E");
568 printk(KERN_INFO "System has AMD C1E enabled\n");
569 }
570 }
571
572 if (c1e_detected) {
573 int cpu = smp_processor_id();
574
575 if (!cpumask_test_cpu(cpu, c1e_mask)) {
576 cpumask_set_cpu(cpu, c1e_mask);
577 /*
578 * Force broadcast so ACPI can not interfere.
579 */
580 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
581 &cpu);
582 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
583 cpu);
584 }
585 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
586
587 default_idle();
588
589 /*
590 * The switch back from broadcast mode needs to be
591 * called with interrupts disabled.
592 */
593 local_irq_disable();
594 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
595 local_irq_enable();
596 } else
597 default_idle();
598 }
599
select_idle_routine(const struct cpuinfo_x86 * c)600 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
601 {
602 #ifdef CONFIG_SMP
603 if (pm_idle == poll_idle && smp_num_siblings > 1) {
604 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
605 " performance may degrade.\n");
606 }
607 #endif
608 if (pm_idle)
609 return;
610
611 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
612 /*
613 * One CPU supports mwait => All CPUs supports mwait
614 */
615 printk(KERN_INFO "using mwait in idle threads.\n");
616 pm_idle = mwait_idle;
617 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
618 /* E400: APIC timer interrupt does not wake up CPU from C1e */
619 printk(KERN_INFO "using C1E aware idle routine\n");
620 pm_idle = c1e_idle;
621 } else
622 pm_idle = default_idle;
623 }
624
init_c1e_mask(void)625 void __init init_c1e_mask(void)
626 {
627 /* If we're using c1e_idle, we need to allocate c1e_mask. */
628 if (pm_idle == c1e_idle)
629 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
630 }
631
idle_setup(char * str)632 static int __init idle_setup(char *str)
633 {
634 if (!str)
635 return -EINVAL;
636
637 if (!strcmp(str, "poll")) {
638 printk("using polling idle threads.\n");
639 pm_idle = poll_idle;
640 boot_option_idle_override = IDLE_POLL;
641 } else if (!strcmp(str, "mwait")) {
642 boot_option_idle_override = IDLE_FORCE_MWAIT;
643 } else if (!strcmp(str, "halt")) {
644 /*
645 * When the boot option of idle=halt is added, halt is
646 * forced to be used for CPU idle. In such case CPU C2/C3
647 * won't be used again.
648 * To continue to load the CPU idle driver, don't touch
649 * the boot_option_idle_override.
650 */
651 pm_idle = default_idle;
652 boot_option_idle_override = IDLE_HALT;
653 } else if (!strcmp(str, "nomwait")) {
654 /*
655 * If the boot option of "idle=nomwait" is added,
656 * it means that mwait will be disabled for CPU C2/C3
657 * states. In such case it won't touch the variable
658 * of boot_option_idle_override.
659 */
660 boot_option_idle_override = IDLE_NOMWAIT;
661 } else
662 return -1;
663
664 return 0;
665 }
666 early_param("idle", idle_setup);
667
arch_align_stack(unsigned long sp)668 unsigned long arch_align_stack(unsigned long sp)
669 {
670 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
671 sp -= get_random_int() % 8192;
672 return sp & ~0xf;
673 }
674
arch_randomize_brk(struct mm_struct * mm)675 unsigned long arch_randomize_brk(struct mm_struct *mm)
676 {
677 unsigned long range_end = mm->brk + 0x02000000;
678 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
679 }
680
681