1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/power/snapshot.c
4 *
5 * This file provides system snapshot/restore functionality for swsusp.
6 *
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 */
10
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39
40 #include "power.h"
41
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45
enable_restore_image_protection(void)46 void enable_restore_image_protection(void)
47 {
48 hibernate_restore_protection = true;
49 }
50
hibernate_restore_protection_begin(void)51 static inline void hibernate_restore_protection_begin(void)
52 {
53 hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55
hibernate_restore_protection_end(void)56 static inline void hibernate_restore_protection_end(void)
57 {
58 hibernate_restore_protection_active = false;
59 }
60
hibernate_restore_protect_page(void * page_address)61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 if (hibernate_restore_protection_active)
64 set_memory_ro((unsigned long)page_address, 1);
65 }
66
hibernate_restore_unprotect_page(void * page_address)67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 if (hibernate_restore_protection_active)
70 set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
hibernate_restore_protection_begin(void)73 static inline void hibernate_restore_protection_begin(void) {}
hibernate_restore_protection_end(void)74 static inline void hibernate_restore_protection_end(void) {}
hibernate_restore_protect_page(void * page_address)75 static inline void hibernate_restore_protect_page(void *page_address) {}
hibernate_restore_unprotect_page(void * page_address)76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
78
79
80 /*
81 * The calls to set_direct_map_*() should not fail because remapping a page
82 * here means that we only update protection bits in an existing PTE.
83 * It is still worth to have a warning here if something changes and this
84 * will no longer be the case.
85 */
hibernate_map_page(struct page * page)86 static inline void hibernate_map_page(struct page *page)
87 {
88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 int ret = set_direct_map_default_noflush(page);
90
91 if (ret)
92 pr_warn_once("Failed to remap page\n");
93 } else {
94 debug_pagealloc_map_pages(page, 1);
95 }
96 }
97
hibernate_unmap_page(struct page * page)98 static inline void hibernate_unmap_page(struct page *page)
99 {
100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 unsigned long addr = (unsigned long)page_address(page);
102 int ret = set_direct_map_invalid_noflush(page);
103
104 if (ret)
105 pr_warn_once("Failed to remap page\n");
106
107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 } else {
109 debug_pagealloc_unmap_pages(page, 1);
110 }
111 }
112
113 static int swsusp_page_is_free(struct page *);
114 static void swsusp_set_page_forbidden(struct page *);
115 static void swsusp_unset_page_forbidden(struct page *);
116
117 /*
118 * Number of bytes to reserve for memory allocations made by device drivers
119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120 * cause image creation to fail (tunable via /sys/power/reserved_size).
121 */
122 unsigned long reserved_size;
123
hibernate_reserved_size_init(void)124 void __init hibernate_reserved_size_init(void)
125 {
126 reserved_size = SPARE_PAGES * PAGE_SIZE;
127 }
128
129 /*
130 * Preferred image size in bytes (tunable via /sys/power/image_size).
131 * When it is set to N, swsusp will do its best to ensure the image
132 * size will not exceed N bytes, but if that is impossible, it will
133 * try to create the smallest image possible.
134 */
135 unsigned long image_size;
136
hibernate_image_size_init(void)137 void __init hibernate_image_size_init(void)
138 {
139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140 }
141
142 /*
143 * List of PBEs needed for restoring the pages that were allocated before
144 * the suspend and included in the suspend image, but have also been
145 * allocated by the "resume" kernel, so their contents cannot be written
146 * directly to their "original" page frames.
147 */
148 struct pbe *restore_pblist;
149
150 /* struct linked_page is used to build chains of pages */
151
152 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
153
154 struct linked_page {
155 struct linked_page *next;
156 char data[LINKED_PAGE_DATA_SIZE];
157 } __packed;
158
159 /*
160 * List of "safe" pages (ie. pages that were not used by the image kernel
161 * before hibernation) that may be used as temporary storage for image kernel
162 * memory contents.
163 */
164 static struct linked_page *safe_pages_list;
165
166 /* Pointer to an auxiliary buffer (1 page) */
167 static void *buffer;
168
169 #define PG_ANY 0
170 #define PG_SAFE 1
171 #define PG_UNSAFE_CLEAR 1
172 #define PG_UNSAFE_KEEP 0
173
174 static unsigned int allocated_unsafe_pages;
175
176 /**
177 * get_image_page - Allocate a page for a hibernation image.
178 * @gfp_mask: GFP mask for the allocation.
179 * @safe_needed: Get pages that were not used before hibernation (restore only)
180 *
181 * During image restoration, for storing the PBE list and the image data, we can
182 * only use memory pages that do not conflict with the pages used before
183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
184 * using allocated_unsafe_pages.
185 *
186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187 * swsusp_free() can release it.
188 */
get_image_page(gfp_t gfp_mask,int safe_needed)189 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190 {
191 void *res;
192
193 res = (void *)get_zeroed_page(gfp_mask);
194 if (safe_needed)
195 while (res && swsusp_page_is_free(virt_to_page(res))) {
196 /* The page is unsafe, mark it for swsusp_free() */
197 swsusp_set_page_forbidden(virt_to_page(res));
198 allocated_unsafe_pages++;
199 res = (void *)get_zeroed_page(gfp_mask);
200 }
201 if (res) {
202 swsusp_set_page_forbidden(virt_to_page(res));
203 swsusp_set_page_free(virt_to_page(res));
204 }
205 return res;
206 }
207
__get_safe_page(gfp_t gfp_mask)208 static void *__get_safe_page(gfp_t gfp_mask)
209 {
210 if (safe_pages_list) {
211 void *ret = safe_pages_list;
212
213 safe_pages_list = safe_pages_list->next;
214 memset(ret, 0, PAGE_SIZE);
215 return ret;
216 }
217 return get_image_page(gfp_mask, PG_SAFE);
218 }
219
get_safe_page(gfp_t gfp_mask)220 unsigned long get_safe_page(gfp_t gfp_mask)
221 {
222 return (unsigned long)__get_safe_page(gfp_mask);
223 }
224
alloc_image_page(gfp_t gfp_mask)225 static struct page *alloc_image_page(gfp_t gfp_mask)
226 {
227 struct page *page;
228
229 page = alloc_page(gfp_mask);
230 if (page) {
231 swsusp_set_page_forbidden(page);
232 swsusp_set_page_free(page);
233 }
234 return page;
235 }
236
recycle_safe_page(void * page_address)237 static void recycle_safe_page(void *page_address)
238 {
239 struct linked_page *lp = page_address;
240
241 lp->next = safe_pages_list;
242 safe_pages_list = lp;
243 }
244
245 /**
246 * free_image_page - Free a page allocated for hibernation image.
247 * @addr: Address of the page to free.
248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249 *
250 * The page to free should have been allocated by get_image_page() (page flags
251 * set by it are affected).
252 */
free_image_page(void * addr,int clear_nosave_free)253 static inline void free_image_page(void *addr, int clear_nosave_free)
254 {
255 struct page *page;
256
257 BUG_ON(!virt_addr_valid(addr));
258
259 page = virt_to_page(addr);
260
261 swsusp_unset_page_forbidden(page);
262 if (clear_nosave_free)
263 swsusp_unset_page_free(page);
264
265 __free_page(page);
266 }
267
free_list_of_pages(struct linked_page * list,int clear_page_nosave)268 static inline void free_list_of_pages(struct linked_page *list,
269 int clear_page_nosave)
270 {
271 while (list) {
272 struct linked_page *lp = list->next;
273
274 free_image_page(list, clear_page_nosave);
275 list = lp;
276 }
277 }
278
279 /*
280 * struct chain_allocator is used for allocating small objects out of
281 * a linked list of pages called 'the chain'.
282 *
283 * The chain grows each time when there is no room for a new object in
284 * the current page. The allocated objects cannot be freed individually.
285 * It is only possible to free them all at once, by freeing the entire
286 * chain.
287 *
288 * NOTE: The chain allocator may be inefficient if the allocated objects
289 * are not much smaller than PAGE_SIZE.
290 */
291 struct chain_allocator {
292 struct linked_page *chain; /* the chain */
293 unsigned int used_space; /* total size of objects allocated out
294 of the current page */
295 gfp_t gfp_mask; /* mask for allocating pages */
296 int safe_needed; /* if set, only "safe" pages are allocated */
297 };
298
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 int safe_needed)
301 {
302 ca->chain = NULL;
303 ca->used_space = LINKED_PAGE_DATA_SIZE;
304 ca->gfp_mask = gfp_mask;
305 ca->safe_needed = safe_needed;
306 }
307
chain_alloc(struct chain_allocator * ca,unsigned int size)308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309 {
310 void *ret;
311
312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 struct linked_page *lp;
314
315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 get_image_page(ca->gfp_mask, PG_ANY);
317 if (!lp)
318 return NULL;
319
320 lp->next = ca->chain;
321 ca->chain = lp;
322 ca->used_space = 0;
323 }
324 ret = ca->chain->data + ca->used_space;
325 ca->used_space += size;
326 return ret;
327 }
328
329 /*
330 * Data types related to memory bitmaps.
331 *
332 * Memory bitmap is a structure consisting of many linked lists of
333 * objects. The main list's elements are of type struct zone_bitmap
334 * and each of them corresponds to one zone. For each zone bitmap
335 * object there is a list of objects of type struct bm_block that
336 * represent each blocks of bitmap in which information is stored.
337 *
338 * struct memory_bitmap contains a pointer to the main list of zone
339 * bitmap objects, a struct bm_position used for browsing the bitmap,
340 * and a pointer to the list of pages used for allocating all of the
341 * zone bitmap objects and bitmap block objects.
342 *
343 * NOTE: It has to be possible to lay out the bitmap in memory
344 * using only allocations of order 0. Additionally, the bitmap is
345 * designed to work with arbitrary number of zones (this is over the
346 * top for now, but let's avoid making unnecessary assumptions ;-).
347 *
348 * struct zone_bitmap contains a pointer to a list of bitmap block
349 * objects and a pointer to the bitmap block object that has been
350 * most recently used for setting bits. Additionally, it contains the
351 * PFNs that correspond to the start and end of the represented zone.
352 *
353 * struct bm_block contains a pointer to the memory page in which
354 * information is stored (in the form of a block of bitmap)
355 * It also contains the pfns that correspond to the start and end of
356 * the represented memory area.
357 *
358 * The memory bitmap is organized as a radix tree to guarantee fast random
359 * access to the bits. There is one radix tree for each zone (as returned
360 * from create_mem_extents).
361 *
362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363 * two linked lists for the nodes of the tree, one for the inner nodes and
364 * one for the leave nodes. The linked leave nodes are used for fast linear
365 * access of the memory bitmap.
366 *
367 * The struct rtree_node represents one node of the radix tree.
368 */
369
370 #define BM_END_OF_MAP (~0UL)
371
372 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
373 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
374 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
375
376 /*
377 * struct rtree_node is a wrapper struct to link the nodes
378 * of the rtree together for easy linear iteration over
379 * bits and easy freeing
380 */
381 struct rtree_node {
382 struct list_head list;
383 unsigned long *data;
384 };
385
386 /*
387 * struct mem_zone_bm_rtree represents a bitmap used for one
388 * populated memory zone.
389 */
390 struct mem_zone_bm_rtree {
391 struct list_head list; /* Link Zones together */
392 struct list_head nodes; /* Radix Tree inner nodes */
393 struct list_head leaves; /* Radix Tree leaves */
394 unsigned long start_pfn; /* Zone start page frame */
395 unsigned long end_pfn; /* Zone end page frame + 1 */
396 struct rtree_node *rtree; /* Radix Tree Root */
397 int levels; /* Number of Radix Tree Levels */
398 unsigned int blocks; /* Number of Bitmap Blocks */
399 };
400
401 /* strcut bm_position is used for browsing memory bitmaps */
402
403 struct bm_position {
404 struct mem_zone_bm_rtree *zone;
405 struct rtree_node *node;
406 unsigned long node_pfn;
407 int node_bit;
408 };
409
410 struct memory_bitmap {
411 struct list_head zones;
412 struct linked_page *p_list; /* list of pages used to store zone
413 bitmap objects and bitmap block
414 objects */
415 struct bm_position cur; /* most recently used bit position */
416 };
417
418 /* Functions that operate on memory bitmaps */
419
420 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
421 #if BITS_PER_LONG == 32
422 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
423 #else
424 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
425 #endif
426 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427
428 /**
429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
430 * @gfp_mask: GFP mask for the allocation.
431 * @safe_needed: Get pages not used before hibernation (restore only)
432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
433 * @list: Radix Tree node to add.
434 *
435 * This function is used to allocate inner nodes as well as the
436 * leave nodes of the radix tree. It also adds the node to the
437 * corresponding linked list passed in by the *list parameter.
438 */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)439 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
440 struct chain_allocator *ca,
441 struct list_head *list)
442 {
443 struct rtree_node *node;
444
445 node = chain_alloc(ca, sizeof(struct rtree_node));
446 if (!node)
447 return NULL;
448
449 node->data = get_image_page(gfp_mask, safe_needed);
450 if (!node->data)
451 return NULL;
452
453 list_add_tail(&node->list, list);
454
455 return node;
456 }
457
458 /**
459 * add_rtree_block - Add a new leave node to the radix tree.
460 *
461 * The leave nodes need to be allocated in order to keep the leaves
462 * linked list in order. This is guaranteed by the zone->blocks
463 * counter.
464 */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)465 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
466 int safe_needed, struct chain_allocator *ca)
467 {
468 struct rtree_node *node, *block, **dst;
469 unsigned int levels_needed, block_nr;
470 int i;
471
472 block_nr = zone->blocks;
473 levels_needed = 0;
474
475 /* How many levels do we need for this block nr? */
476 while (block_nr) {
477 levels_needed += 1;
478 block_nr >>= BM_RTREE_LEVEL_SHIFT;
479 }
480
481 /* Make sure the rtree has enough levels */
482 for (i = zone->levels; i < levels_needed; i++) {
483 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
484 &zone->nodes);
485 if (!node)
486 return -ENOMEM;
487
488 node->data[0] = (unsigned long)zone->rtree;
489 zone->rtree = node;
490 zone->levels += 1;
491 }
492
493 /* Allocate new block */
494 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
495 if (!block)
496 return -ENOMEM;
497
498 /* Now walk the rtree to insert the block */
499 node = zone->rtree;
500 dst = &zone->rtree;
501 block_nr = zone->blocks;
502 for (i = zone->levels; i > 0; i--) {
503 int index;
504
505 if (!node) {
506 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
507 &zone->nodes);
508 if (!node)
509 return -ENOMEM;
510 *dst = node;
511 }
512
513 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
514 index &= BM_RTREE_LEVEL_MASK;
515 dst = (struct rtree_node **)&((*dst)->data[index]);
516 node = *dst;
517 }
518
519 zone->blocks += 1;
520 *dst = block;
521
522 return 0;
523 }
524
525 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
526 int clear_nosave_free);
527
528 /**
529 * create_zone_bm_rtree - Create a radix tree for one zone.
530 *
531 * Allocated the mem_zone_bm_rtree structure and initializes it.
532 * This function also allocated and builds the radix tree for the
533 * zone.
534 */
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)535 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
536 int safe_needed,
537 struct chain_allocator *ca,
538 unsigned long start,
539 unsigned long end)
540 {
541 struct mem_zone_bm_rtree *zone;
542 unsigned int i, nr_blocks;
543 unsigned long pages;
544
545 pages = end - start;
546 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
547 if (!zone)
548 return NULL;
549
550 INIT_LIST_HEAD(&zone->nodes);
551 INIT_LIST_HEAD(&zone->leaves);
552 zone->start_pfn = start;
553 zone->end_pfn = end;
554 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
555
556 for (i = 0; i < nr_blocks; i++) {
557 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
558 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
559 return NULL;
560 }
561 }
562
563 return zone;
564 }
565
566 /**
567 * free_zone_bm_rtree - Free the memory of the radix tree.
568 *
569 * Free all node pages of the radix tree. The mem_zone_bm_rtree
570 * structure itself is not freed here nor are the rtree_node
571 * structs.
572 */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)573 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
574 int clear_nosave_free)
575 {
576 struct rtree_node *node;
577
578 list_for_each_entry(node, &zone->nodes, list)
579 free_image_page(node->data, clear_nosave_free);
580
581 list_for_each_entry(node, &zone->leaves, list)
582 free_image_page(node->data, clear_nosave_free);
583 }
584
memory_bm_position_reset(struct memory_bitmap * bm)585 static void memory_bm_position_reset(struct memory_bitmap *bm)
586 {
587 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
588 list);
589 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
590 struct rtree_node, list);
591 bm->cur.node_pfn = 0;
592 bm->cur.node_bit = 0;
593 }
594
595 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
596
597 struct mem_extent {
598 struct list_head hook;
599 unsigned long start;
600 unsigned long end;
601 };
602
603 /**
604 * free_mem_extents - Free a list of memory extents.
605 * @list: List of extents to free.
606 */
free_mem_extents(struct list_head * list)607 static void free_mem_extents(struct list_head *list)
608 {
609 struct mem_extent *ext, *aux;
610
611 list_for_each_entry_safe(ext, aux, list, hook) {
612 list_del(&ext->hook);
613 kfree(ext);
614 }
615 }
616
617 /**
618 * create_mem_extents - Create a list of memory extents.
619 * @list: List to put the extents into.
620 * @gfp_mask: Mask to use for memory allocations.
621 *
622 * The extents represent contiguous ranges of PFNs.
623 */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)624 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
625 {
626 struct zone *zone;
627
628 INIT_LIST_HEAD(list);
629
630 for_each_populated_zone(zone) {
631 unsigned long zone_start, zone_end;
632 struct mem_extent *ext, *cur, *aux;
633
634 zone_start = zone->zone_start_pfn;
635 zone_end = zone_end_pfn(zone);
636
637 list_for_each_entry(ext, list, hook)
638 if (zone_start <= ext->end)
639 break;
640
641 if (&ext->hook == list || zone_end < ext->start) {
642 /* New extent is necessary */
643 struct mem_extent *new_ext;
644
645 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
646 if (!new_ext) {
647 free_mem_extents(list);
648 return -ENOMEM;
649 }
650 new_ext->start = zone_start;
651 new_ext->end = zone_end;
652 list_add_tail(&new_ext->hook, &ext->hook);
653 continue;
654 }
655
656 /* Merge this zone's range of PFNs with the existing one */
657 if (zone_start < ext->start)
658 ext->start = zone_start;
659 if (zone_end > ext->end)
660 ext->end = zone_end;
661
662 /* More merging may be possible */
663 cur = ext;
664 list_for_each_entry_safe_continue(cur, aux, list, hook) {
665 if (zone_end < cur->start)
666 break;
667 if (zone_end < cur->end)
668 ext->end = cur->end;
669 list_del(&cur->hook);
670 kfree(cur);
671 }
672 }
673
674 return 0;
675 }
676
677 /**
678 * memory_bm_create - Allocate memory for a memory bitmap.
679 */
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)680 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
681 int safe_needed)
682 {
683 struct chain_allocator ca;
684 struct list_head mem_extents;
685 struct mem_extent *ext;
686 int error;
687
688 chain_init(&ca, gfp_mask, safe_needed);
689 INIT_LIST_HEAD(&bm->zones);
690
691 error = create_mem_extents(&mem_extents, gfp_mask);
692 if (error)
693 return error;
694
695 list_for_each_entry(ext, &mem_extents, hook) {
696 struct mem_zone_bm_rtree *zone;
697
698 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
699 ext->start, ext->end);
700 if (!zone) {
701 error = -ENOMEM;
702 goto Error;
703 }
704 list_add_tail(&zone->list, &bm->zones);
705 }
706
707 bm->p_list = ca.chain;
708 memory_bm_position_reset(bm);
709 Exit:
710 free_mem_extents(&mem_extents);
711 return error;
712
713 Error:
714 bm->p_list = ca.chain;
715 memory_bm_free(bm, PG_UNSAFE_CLEAR);
716 goto Exit;
717 }
718
719 /**
720 * memory_bm_free - Free memory occupied by the memory bitmap.
721 * @bm: Memory bitmap.
722 */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)723 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
724 {
725 struct mem_zone_bm_rtree *zone;
726
727 list_for_each_entry(zone, &bm->zones, list)
728 free_zone_bm_rtree(zone, clear_nosave_free);
729
730 free_list_of_pages(bm->p_list, clear_nosave_free);
731
732 INIT_LIST_HEAD(&bm->zones);
733 }
734
735 /**
736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
737 *
738 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
740 *
741 * Walk the radix tree to find the page containing the bit that represents @pfn
742 * and return the position of the bit in @addr and @bit_nr.
743 */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)744 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
745 void **addr, unsigned int *bit_nr)
746 {
747 struct mem_zone_bm_rtree *curr, *zone;
748 struct rtree_node *node;
749 int i, block_nr;
750
751 zone = bm->cur.zone;
752
753 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
754 goto zone_found;
755
756 zone = NULL;
757
758 /* Find the right zone */
759 list_for_each_entry(curr, &bm->zones, list) {
760 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
761 zone = curr;
762 break;
763 }
764 }
765
766 if (!zone)
767 return -EFAULT;
768
769 zone_found:
770 /*
771 * We have found the zone. Now walk the radix tree to find the leaf node
772 * for our PFN.
773 */
774
775 /*
776 * If the zone we wish to scan is the current zone and the
777 * pfn falls into the current node then we do not need to walk
778 * the tree.
779 */
780 node = bm->cur.node;
781 if (zone == bm->cur.zone &&
782 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
783 goto node_found;
784
785 node = zone->rtree;
786 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
787
788 for (i = zone->levels; i > 0; i--) {
789 int index;
790
791 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
792 index &= BM_RTREE_LEVEL_MASK;
793 BUG_ON(node->data[index] == 0);
794 node = (struct rtree_node *)node->data[index];
795 }
796
797 node_found:
798 /* Update last position */
799 bm->cur.zone = zone;
800 bm->cur.node = node;
801 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
802
803 /* Set return values */
804 *addr = node->data;
805 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
806
807 return 0;
808 }
809
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)810 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
811 {
812 void *addr;
813 unsigned int bit;
814 int error;
815
816 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 BUG_ON(error);
818 set_bit(bit, addr);
819 }
820
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)821 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
822 {
823 void *addr;
824 unsigned int bit;
825 int error;
826
827 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
828 if (!error)
829 set_bit(bit, addr);
830
831 return error;
832 }
833
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)834 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
835 {
836 void *addr;
837 unsigned int bit;
838 int error;
839
840 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
841 BUG_ON(error);
842 clear_bit(bit, addr);
843 }
844
memory_bm_clear_current(struct memory_bitmap * bm)845 static void memory_bm_clear_current(struct memory_bitmap *bm)
846 {
847 int bit;
848
849 bit = max(bm->cur.node_bit - 1, 0);
850 clear_bit(bit, bm->cur.node->data);
851 }
852
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)853 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
854 {
855 void *addr;
856 unsigned int bit;
857 int error;
858
859 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
860 BUG_ON(error);
861 return test_bit(bit, addr);
862 }
863
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)864 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
865 {
866 void *addr;
867 unsigned int bit;
868
869 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
870 }
871
872 /*
873 * rtree_next_node - Jump to the next leaf node.
874 *
875 * Set the position to the beginning of the next node in the
876 * memory bitmap. This is either the next node in the current
877 * zone's radix tree or the first node in the radix tree of the
878 * next zone.
879 *
880 * Return true if there is a next node, false otherwise.
881 */
rtree_next_node(struct memory_bitmap * bm)882 static bool rtree_next_node(struct memory_bitmap *bm)
883 {
884 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
885 bm->cur.node = list_entry(bm->cur.node->list.next,
886 struct rtree_node, list);
887 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
888 bm->cur.node_bit = 0;
889 touch_softlockup_watchdog();
890 return true;
891 }
892
893 /* No more nodes, goto next zone */
894 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
895 bm->cur.zone = list_entry(bm->cur.zone->list.next,
896 struct mem_zone_bm_rtree, list);
897 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
898 struct rtree_node, list);
899 bm->cur.node_pfn = 0;
900 bm->cur.node_bit = 0;
901 return true;
902 }
903
904 /* No more zones */
905 return false;
906 }
907
908 /**
909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
910 * @bm: Memory bitmap.
911 *
912 * Starting from the last returned position this function searches for the next
913 * set bit in @bm and returns the PFN represented by it. If no more bits are
914 * set, BM_END_OF_MAP is returned.
915 *
916 * It is required to run memory_bm_position_reset() before the first call to
917 * this function for the given memory bitmap.
918 */
memory_bm_next_pfn(struct memory_bitmap * bm)919 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
920 {
921 unsigned long bits, pfn, pages;
922 int bit;
923
924 do {
925 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
926 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
927 bit = find_next_bit(bm->cur.node->data, bits,
928 bm->cur.node_bit);
929 if (bit < bits) {
930 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
931 bm->cur.node_bit = bit + 1;
932 return pfn;
933 }
934 } while (rtree_next_node(bm));
935
936 return BM_END_OF_MAP;
937 }
938
939 /*
940 * This structure represents a range of page frames the contents of which
941 * should not be saved during hibernation.
942 */
943 struct nosave_region {
944 struct list_head list;
945 unsigned long start_pfn;
946 unsigned long end_pfn;
947 };
948
949 static LIST_HEAD(nosave_regions);
950
recycle_zone_bm_rtree(struct mem_zone_bm_rtree * zone)951 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
952 {
953 struct rtree_node *node;
954
955 list_for_each_entry(node, &zone->nodes, list)
956 recycle_safe_page(node->data);
957
958 list_for_each_entry(node, &zone->leaves, list)
959 recycle_safe_page(node->data);
960 }
961
memory_bm_recycle(struct memory_bitmap * bm)962 static void memory_bm_recycle(struct memory_bitmap *bm)
963 {
964 struct mem_zone_bm_rtree *zone;
965 struct linked_page *p_list;
966
967 list_for_each_entry(zone, &bm->zones, list)
968 recycle_zone_bm_rtree(zone);
969
970 p_list = bm->p_list;
971 while (p_list) {
972 struct linked_page *lp = p_list;
973
974 p_list = lp->next;
975 recycle_safe_page(lp);
976 }
977 }
978
979 /**
980 * register_nosave_region - Register a region of unsaveable memory.
981 *
982 * Register a range of page frames the contents of which should not be saved
983 * during hibernation (to be used in the early initialization code).
984 */
register_nosave_region(unsigned long start_pfn,unsigned long end_pfn)985 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
986 {
987 struct nosave_region *region;
988
989 if (start_pfn >= end_pfn)
990 return;
991
992 if (!list_empty(&nosave_regions)) {
993 /* Try to extend the previous region (they should be sorted) */
994 region = list_entry(nosave_regions.prev,
995 struct nosave_region, list);
996 if (region->end_pfn == start_pfn) {
997 region->end_pfn = end_pfn;
998 goto Report;
999 }
1000 }
1001 /* This allocation cannot fail */
1002 region = memblock_alloc(sizeof(struct nosave_region),
1003 SMP_CACHE_BYTES);
1004 if (!region)
1005 panic("%s: Failed to allocate %zu bytes\n", __func__,
1006 sizeof(struct nosave_region));
1007 region->start_pfn = start_pfn;
1008 region->end_pfn = end_pfn;
1009 list_add_tail(®ion->list, &nosave_regions);
1010 Report:
1011 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012 (unsigned long long) start_pfn << PAGE_SHIFT,
1013 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014 }
1015
1016 /*
1017 * Set bits in this map correspond to the page frames the contents of which
1018 * should not be saved during the suspend.
1019 */
1020 static struct memory_bitmap *forbidden_pages_map;
1021
1022 /* Set bits in this map correspond to free page frames. */
1023 static struct memory_bitmap *free_pages_map;
1024
1025 /*
1026 * Each page frame allocated for creating the image is marked by setting the
1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028 */
1029
swsusp_set_page_free(struct page * page)1030 void swsusp_set_page_free(struct page *page)
1031 {
1032 if (free_pages_map)
1033 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034 }
1035
swsusp_page_is_free(struct page * page)1036 static int swsusp_page_is_free(struct page *page)
1037 {
1038 return free_pages_map ?
1039 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040 }
1041
swsusp_unset_page_free(struct page * page)1042 void swsusp_unset_page_free(struct page *page)
1043 {
1044 if (free_pages_map)
1045 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046 }
1047
swsusp_set_page_forbidden(struct page * page)1048 static void swsusp_set_page_forbidden(struct page *page)
1049 {
1050 if (forbidden_pages_map)
1051 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052 }
1053
swsusp_page_is_forbidden(struct page * page)1054 int swsusp_page_is_forbidden(struct page *page)
1055 {
1056 return forbidden_pages_map ?
1057 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058 }
1059
swsusp_unset_page_forbidden(struct page * page)1060 static void swsusp_unset_page_forbidden(struct page *page)
1061 {
1062 if (forbidden_pages_map)
1063 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065
1066 /**
1067 * mark_nosave_pages - Mark pages that should not be saved.
1068 * @bm: Memory bitmap.
1069 *
1070 * Set the bits in @bm that correspond to the page frames the contents of which
1071 * should not be saved.
1072 */
mark_nosave_pages(struct memory_bitmap * bm)1073 static void mark_nosave_pages(struct memory_bitmap *bm)
1074 {
1075 struct nosave_region *region;
1076
1077 if (list_empty(&nosave_regions))
1078 return;
1079
1080 list_for_each_entry(region, &nosave_regions, list) {
1081 unsigned long pfn;
1082
1083 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086 - 1);
1087
1088 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089 if (pfn_valid(pfn)) {
1090 /*
1091 * It is safe to ignore the result of
1092 * mem_bm_set_bit_check() here, since we won't
1093 * touch the PFNs for which the error is
1094 * returned anyway.
1095 */
1096 mem_bm_set_bit_check(bm, pfn);
1097 }
1098 }
1099 }
1100
1101 /**
1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103 *
1104 * Create bitmaps needed for marking page frames that should not be saved and
1105 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1106 * only modified if everything goes well, because we don't want the bits to be
1107 * touched before both bitmaps are set up.
1108 */
create_basic_memory_bitmaps(void)1109 int create_basic_memory_bitmaps(void)
1110 {
1111 struct memory_bitmap *bm1, *bm2;
1112 int error = 0;
1113
1114 if (forbidden_pages_map && free_pages_map)
1115 return 0;
1116 else
1117 BUG_ON(forbidden_pages_map || free_pages_map);
1118
1119 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120 if (!bm1)
1121 return -ENOMEM;
1122
1123 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124 if (error)
1125 goto Free_first_object;
1126
1127 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128 if (!bm2)
1129 goto Free_first_bitmap;
1130
1131 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132 if (error)
1133 goto Free_second_object;
1134
1135 forbidden_pages_map = bm1;
1136 free_pages_map = bm2;
1137 mark_nosave_pages(forbidden_pages_map);
1138
1139 pr_debug("Basic memory bitmaps created\n");
1140
1141 return 0;
1142
1143 Free_second_object:
1144 kfree(bm2);
1145 Free_first_bitmap:
1146 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147 Free_first_object:
1148 kfree(bm1);
1149 return -ENOMEM;
1150 }
1151
1152 /**
1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154 *
1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1156 * auxiliary pointers are necessary so that the bitmaps themselves are not
1157 * referred to while they are being freed.
1158 */
free_basic_memory_bitmaps(void)1159 void free_basic_memory_bitmaps(void)
1160 {
1161 struct memory_bitmap *bm1, *bm2;
1162
1163 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164 return;
1165
1166 bm1 = forbidden_pages_map;
1167 bm2 = free_pages_map;
1168 forbidden_pages_map = NULL;
1169 free_pages_map = NULL;
1170 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171 kfree(bm1);
1172 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173 kfree(bm2);
1174
1175 pr_debug("Basic memory bitmaps freed\n");
1176 }
1177
clear_or_poison_free_page(struct page * page)1178 static void clear_or_poison_free_page(struct page *page)
1179 {
1180 if (page_poisoning_enabled_static())
1181 __kernel_poison_pages(page, 1);
1182 else if (want_init_on_free())
1183 clear_highpage(page);
1184 }
1185
clear_or_poison_free_pages(void)1186 void clear_or_poison_free_pages(void)
1187 {
1188 struct memory_bitmap *bm = free_pages_map;
1189 unsigned long pfn;
1190
1191 if (WARN_ON(!(free_pages_map)))
1192 return;
1193
1194 if (page_poisoning_enabled() || want_init_on_free()) {
1195 memory_bm_position_reset(bm);
1196 pfn = memory_bm_next_pfn(bm);
1197 while (pfn != BM_END_OF_MAP) {
1198 if (pfn_valid(pfn))
1199 clear_or_poison_free_page(pfn_to_page(pfn));
1200
1201 pfn = memory_bm_next_pfn(bm);
1202 }
1203 memory_bm_position_reset(bm);
1204 pr_info("free pages cleared after restore\n");
1205 }
1206 }
1207
1208 /**
1209 * snapshot_additional_pages - Estimate the number of extra pages needed.
1210 * @zone: Memory zone to carry out the computation for.
1211 *
1212 * Estimate the number of additional pages needed for setting up a hibernation
1213 * image data structures for @zone (usually, the returned value is greater than
1214 * the exact number).
1215 */
snapshot_additional_pages(struct zone * zone)1216 unsigned int snapshot_additional_pages(struct zone *zone)
1217 {
1218 unsigned int rtree, nodes;
1219
1220 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222 LINKED_PAGE_DATA_SIZE);
1223 while (nodes > 1) {
1224 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225 rtree += nodes;
1226 }
1227
1228 return 2 * rtree;
1229 }
1230
1231 #ifdef CONFIG_HIGHMEM
1232 /**
1233 * count_free_highmem_pages - Compute the total number of free highmem pages.
1234 *
1235 * The returned number is system-wide.
1236 */
count_free_highmem_pages(void)1237 static unsigned int count_free_highmem_pages(void)
1238 {
1239 struct zone *zone;
1240 unsigned int cnt = 0;
1241
1242 for_each_populated_zone(zone)
1243 if (is_highmem(zone))
1244 cnt += zone_page_state(zone, NR_FREE_PAGES);
1245
1246 return cnt;
1247 }
1248
1249 /**
1250 * saveable_highmem_page - Check if a highmem page is saveable.
1251 *
1252 * Determine whether a highmem page should be included in a hibernation image.
1253 *
1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255 * and it isn't part of a free chunk of pages.
1256 */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1257 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1258 {
1259 struct page *page;
1260
1261 if (!pfn_valid(pfn))
1262 return NULL;
1263
1264 page = pfn_to_online_page(pfn);
1265 if (!page || page_zone(page) != zone)
1266 return NULL;
1267
1268 BUG_ON(!PageHighMem(page));
1269
1270 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1271 return NULL;
1272
1273 if (PageReserved(page) || PageOffline(page))
1274 return NULL;
1275
1276 if (page_is_guard(page))
1277 return NULL;
1278
1279 return page;
1280 }
1281
1282 /**
1283 * count_highmem_pages - Compute the total number of saveable highmem pages.
1284 */
count_highmem_pages(void)1285 static unsigned int count_highmem_pages(void)
1286 {
1287 struct zone *zone;
1288 unsigned int n = 0;
1289
1290 for_each_populated_zone(zone) {
1291 unsigned long pfn, max_zone_pfn;
1292
1293 if (!is_highmem(zone))
1294 continue;
1295
1296 mark_free_pages(zone);
1297 max_zone_pfn = zone_end_pfn(zone);
1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 if (saveable_highmem_page(zone, pfn))
1300 n++;
1301 }
1302 return n;
1303 }
1304 #else
saveable_highmem_page(struct zone * z,unsigned long p)1305 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306 {
1307 return NULL;
1308 }
1309 #endif /* CONFIG_HIGHMEM */
1310
1311 /**
1312 * saveable_page - Check if the given page is saveable.
1313 *
1314 * Determine whether a non-highmem page should be included in a hibernation
1315 * image.
1316 *
1317 * We should save the page if it isn't Nosave, and is not in the range
1318 * of pages statically defined as 'unsaveable', and it isn't part of
1319 * a free chunk of pages.
1320 */
saveable_page(struct zone * zone,unsigned long pfn)1321 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1322 {
1323 struct page *page;
1324
1325 if (!pfn_valid(pfn))
1326 return NULL;
1327
1328 page = pfn_to_online_page(pfn);
1329 if (!page || page_zone(page) != zone)
1330 return NULL;
1331
1332 BUG_ON(PageHighMem(page));
1333
1334 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1335 return NULL;
1336
1337 if (PageOffline(page))
1338 return NULL;
1339
1340 if (PageReserved(page)
1341 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1342 return NULL;
1343
1344 if (page_is_guard(page))
1345 return NULL;
1346
1347 return page;
1348 }
1349
1350 /**
1351 * count_data_pages - Compute the total number of saveable non-highmem pages.
1352 */
count_data_pages(void)1353 static unsigned int count_data_pages(void)
1354 {
1355 struct zone *zone;
1356 unsigned long pfn, max_zone_pfn;
1357 unsigned int n = 0;
1358
1359 for_each_populated_zone(zone) {
1360 if (is_highmem(zone))
1361 continue;
1362
1363 mark_free_pages(zone);
1364 max_zone_pfn = zone_end_pfn(zone);
1365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366 if (saveable_page(zone, pfn))
1367 n++;
1368 }
1369 return n;
1370 }
1371
1372 /*
1373 * This is needed, because copy_page and memcpy are not usable for copying
1374 * task structs.
1375 */
do_copy_page(long * dst,long * src)1376 static inline void do_copy_page(long *dst, long *src)
1377 {
1378 int n;
1379
1380 for (n = PAGE_SIZE / sizeof(long); n; n--)
1381 *dst++ = *src++;
1382 }
1383
1384 /**
1385 * safe_copy_page - Copy a page in a safe way.
1386 *
1387 * Check if the page we are going to copy is marked as present in the kernel
1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390 * always returns 'true'.
1391 */
safe_copy_page(void * dst,struct page * s_page)1392 static void safe_copy_page(void *dst, struct page *s_page)
1393 {
1394 if (kernel_page_present(s_page)) {
1395 do_copy_page(dst, page_address(s_page));
1396 } else {
1397 hibernate_map_page(s_page);
1398 do_copy_page(dst, page_address(s_page));
1399 hibernate_unmap_page(s_page);
1400 }
1401 }
1402
1403 #ifdef CONFIG_HIGHMEM
page_is_saveable(struct zone * zone,unsigned long pfn)1404 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1405 {
1406 return is_highmem(zone) ?
1407 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408 }
1409
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1410 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411 {
1412 struct page *s_page, *d_page;
1413 void *src, *dst;
1414
1415 s_page = pfn_to_page(src_pfn);
1416 d_page = pfn_to_page(dst_pfn);
1417 if (PageHighMem(s_page)) {
1418 src = kmap_atomic(s_page);
1419 dst = kmap_atomic(d_page);
1420 do_copy_page(dst, src);
1421 kunmap_atomic(dst);
1422 kunmap_atomic(src);
1423 } else {
1424 if (PageHighMem(d_page)) {
1425 /*
1426 * The page pointed to by src may contain some kernel
1427 * data modified by kmap_atomic()
1428 */
1429 safe_copy_page(buffer, s_page);
1430 dst = kmap_atomic(d_page);
1431 copy_page(dst, buffer);
1432 kunmap_atomic(dst);
1433 } else {
1434 safe_copy_page(page_address(d_page), s_page);
1435 }
1436 }
1437 }
1438 #else
1439 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1440
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1441 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1442 {
1443 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444 pfn_to_page(src_pfn));
1445 }
1446 #endif /* CONFIG_HIGHMEM */
1447
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1448 static void copy_data_pages(struct memory_bitmap *copy_bm,
1449 struct memory_bitmap *orig_bm)
1450 {
1451 struct zone *zone;
1452 unsigned long pfn;
1453
1454 for_each_populated_zone(zone) {
1455 unsigned long max_zone_pfn;
1456
1457 mark_free_pages(zone);
1458 max_zone_pfn = zone_end_pfn(zone);
1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 if (page_is_saveable(zone, pfn))
1461 memory_bm_set_bit(orig_bm, pfn);
1462 }
1463 memory_bm_position_reset(orig_bm);
1464 memory_bm_position_reset(copy_bm);
1465 for(;;) {
1466 pfn = memory_bm_next_pfn(orig_bm);
1467 if (unlikely(pfn == BM_END_OF_MAP))
1468 break;
1469 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470 }
1471 }
1472
1473 /* Total number of image pages */
1474 static unsigned int nr_copy_pages;
1475 /* Number of pages needed for saving the original pfns of the image pages */
1476 static unsigned int nr_meta_pages;
1477 /*
1478 * Numbers of normal and highmem page frames allocated for hibernation image
1479 * before suspending devices.
1480 */
1481 static unsigned int alloc_normal, alloc_highmem;
1482 /*
1483 * Memory bitmap used for marking saveable pages (during hibernation) or
1484 * hibernation image pages (during restore)
1485 */
1486 static struct memory_bitmap orig_bm;
1487 /*
1488 * Memory bitmap used during hibernation for marking allocated page frames that
1489 * will contain copies of saveable pages. During restore it is initially used
1490 * for marking hibernation image pages, but then the set bits from it are
1491 * duplicated in @orig_bm and it is released. On highmem systems it is next
1492 * used for marking "safe" highmem pages, but it has to be reinitialized for
1493 * this purpose.
1494 */
1495 static struct memory_bitmap copy_bm;
1496
1497 /**
1498 * swsusp_free - Free pages allocated for hibernation image.
1499 *
1500 * Image pages are allocated before snapshot creation, so they need to be
1501 * released after resume.
1502 */
swsusp_free(void)1503 void swsusp_free(void)
1504 {
1505 unsigned long fb_pfn, fr_pfn;
1506
1507 if (!forbidden_pages_map || !free_pages_map)
1508 goto out;
1509
1510 memory_bm_position_reset(forbidden_pages_map);
1511 memory_bm_position_reset(free_pages_map);
1512
1513 loop:
1514 fr_pfn = memory_bm_next_pfn(free_pages_map);
1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517 /*
1518 * Find the next bit set in both bitmaps. This is guaranteed to
1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520 */
1521 do {
1522 if (fb_pfn < fr_pfn)
1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524 if (fr_pfn < fb_pfn)
1525 fr_pfn = memory_bm_next_pfn(free_pages_map);
1526 } while (fb_pfn != fr_pfn);
1527
1528 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529 struct page *page = pfn_to_page(fr_pfn);
1530
1531 memory_bm_clear_current(forbidden_pages_map);
1532 memory_bm_clear_current(free_pages_map);
1533 hibernate_restore_unprotect_page(page_address(page));
1534 __free_page(page);
1535 goto loop;
1536 }
1537
1538 out:
1539 nr_copy_pages = 0;
1540 nr_meta_pages = 0;
1541 restore_pblist = NULL;
1542 buffer = NULL;
1543 alloc_normal = 0;
1544 alloc_highmem = 0;
1545 hibernate_restore_protection_end();
1546 }
1547
1548 /* Helper functions used for the shrinking of memory. */
1549
1550 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1551
1552 /**
1553 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1554 * @nr_pages: Number of page frames to allocate.
1555 * @mask: GFP flags to use for the allocation.
1556 *
1557 * Return value: Number of page frames actually allocated
1558 */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1559 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560 {
1561 unsigned long nr_alloc = 0;
1562
1563 while (nr_pages > 0) {
1564 struct page *page;
1565
1566 page = alloc_image_page(mask);
1567 if (!page)
1568 break;
1569 memory_bm_set_bit(©_bm, page_to_pfn(page));
1570 if (PageHighMem(page))
1571 alloc_highmem++;
1572 else
1573 alloc_normal++;
1574 nr_pages--;
1575 nr_alloc++;
1576 }
1577
1578 return nr_alloc;
1579 }
1580
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1581 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582 unsigned long avail_normal)
1583 {
1584 unsigned long alloc;
1585
1586 if (avail_normal <= alloc_normal)
1587 return 0;
1588
1589 alloc = avail_normal - alloc_normal;
1590 if (nr_pages < alloc)
1591 alloc = nr_pages;
1592
1593 return preallocate_image_pages(alloc, GFP_IMAGE);
1594 }
1595
1596 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1597 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598 {
1599 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600 }
1601
1602 /**
1603 * __fraction - Compute (an approximation of) x * (multiplier / base).
1604 */
__fraction(u64 x,u64 multiplier,u64 base)1605 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606 {
1607 return div64_u64(x * multiplier, base);
1608 }
1609
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1610 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1611 unsigned long highmem,
1612 unsigned long total)
1613 {
1614 unsigned long alloc = __fraction(nr_pages, highmem, total);
1615
1616 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1617 }
1618 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1619 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620 {
1621 return 0;
1622 }
1623
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1624 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1625 unsigned long highmem,
1626 unsigned long total)
1627 {
1628 return 0;
1629 }
1630 #endif /* CONFIG_HIGHMEM */
1631
1632 /**
1633 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1634 */
free_unnecessary_pages(void)1635 static unsigned long free_unnecessary_pages(void)
1636 {
1637 unsigned long save, to_free_normal, to_free_highmem, free;
1638
1639 save = count_data_pages();
1640 if (alloc_normal >= save) {
1641 to_free_normal = alloc_normal - save;
1642 save = 0;
1643 } else {
1644 to_free_normal = 0;
1645 save -= alloc_normal;
1646 }
1647 save += count_highmem_pages();
1648 if (alloc_highmem >= save) {
1649 to_free_highmem = alloc_highmem - save;
1650 } else {
1651 to_free_highmem = 0;
1652 save -= alloc_highmem;
1653 if (to_free_normal > save)
1654 to_free_normal -= save;
1655 else
1656 to_free_normal = 0;
1657 }
1658 free = to_free_normal + to_free_highmem;
1659
1660 memory_bm_position_reset(©_bm);
1661
1662 while (to_free_normal > 0 || to_free_highmem > 0) {
1663 unsigned long pfn = memory_bm_next_pfn(©_bm);
1664 struct page *page = pfn_to_page(pfn);
1665
1666 if (PageHighMem(page)) {
1667 if (!to_free_highmem)
1668 continue;
1669 to_free_highmem--;
1670 alloc_highmem--;
1671 } else {
1672 if (!to_free_normal)
1673 continue;
1674 to_free_normal--;
1675 alloc_normal--;
1676 }
1677 memory_bm_clear_bit(©_bm, pfn);
1678 swsusp_unset_page_forbidden(page);
1679 swsusp_unset_page_free(page);
1680 __free_page(page);
1681 }
1682
1683 return free;
1684 }
1685
1686 /**
1687 * minimum_image_size - Estimate the minimum acceptable size of an image.
1688 * @saveable: Number of saveable pages in the system.
1689 *
1690 * We want to avoid attempting to free too much memory too hard, so estimate the
1691 * minimum acceptable size of a hibernation image to use as the lower limit for
1692 * preallocating memory.
1693 *
1694 * We assume that the minimum image size should be proportional to
1695 *
1696 * [number of saveable pages] - [number of pages that can be freed in theory]
1697 *
1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1700 */
minimum_image_size(unsigned long saveable)1701 static unsigned long minimum_image_size(unsigned long saveable)
1702 {
1703 unsigned long size;
1704
1705 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1706 + global_node_page_state(NR_ACTIVE_ANON)
1707 + global_node_page_state(NR_INACTIVE_ANON)
1708 + global_node_page_state(NR_ACTIVE_FILE)
1709 + global_node_page_state(NR_INACTIVE_FILE);
1710
1711 return saveable <= size ? 0 : saveable - size;
1712 }
1713
1714 /**
1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1716 *
1717 * To create a hibernation image it is necessary to make a copy of every page
1718 * frame in use. We also need a number of page frames to be free during
1719 * hibernation for allocations made while saving the image and for device
1720 * drivers, in case they need to allocate memory from their hibernation
1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1723 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1724 * total number of available page frames and allocate at least
1725 *
1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1728 *
1729 * of them, which corresponds to the maximum size of a hibernation image.
1730 *
1731 * If image_size is set below the number following from the above formula,
1732 * the preallocation of memory is continued until the total number of saveable
1733 * pages in the system is below the requested image size or the minimum
1734 * acceptable image size returned by minimum_image_size(), whichever is greater.
1735 */
hibernate_preallocate_memory(void)1736 int hibernate_preallocate_memory(void)
1737 {
1738 struct zone *zone;
1739 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1740 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1741 ktime_t start, stop;
1742 int error;
1743
1744 pr_info("Preallocating image memory\n");
1745 start = ktime_get();
1746
1747 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1748 if (error) {
1749 pr_err("Cannot allocate original bitmap\n");
1750 goto err_out;
1751 }
1752
1753 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1754 if (error) {
1755 pr_err("Cannot allocate copy bitmap\n");
1756 goto err_out;
1757 }
1758
1759 alloc_normal = 0;
1760 alloc_highmem = 0;
1761
1762 /* Count the number of saveable data pages. */
1763 save_highmem = count_highmem_pages();
1764 saveable = count_data_pages();
1765
1766 /*
1767 * Compute the total number of page frames we can use (count) and the
1768 * number of pages needed for image metadata (size).
1769 */
1770 count = saveable;
1771 saveable += save_highmem;
1772 highmem = save_highmem;
1773 size = 0;
1774 for_each_populated_zone(zone) {
1775 size += snapshot_additional_pages(zone);
1776 if (is_highmem(zone))
1777 highmem += zone_page_state(zone, NR_FREE_PAGES);
1778 else
1779 count += zone_page_state(zone, NR_FREE_PAGES);
1780 }
1781 avail_normal = count;
1782 count += highmem;
1783 count -= totalreserve_pages;
1784
1785 /* Compute the maximum number of saveable pages to leave in memory. */
1786 max_size = (count - (size + PAGES_FOR_IO)) / 2
1787 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1788 /* Compute the desired number of image pages specified by image_size. */
1789 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790 if (size > max_size)
1791 size = max_size;
1792 /*
1793 * If the desired number of image pages is at least as large as the
1794 * current number of saveable pages in memory, allocate page frames for
1795 * the image and we're done.
1796 */
1797 if (size >= saveable) {
1798 pages = preallocate_image_highmem(save_highmem);
1799 pages += preallocate_image_memory(saveable - pages, avail_normal);
1800 goto out;
1801 }
1802
1803 /* Estimate the minimum size of the image. */
1804 pages = minimum_image_size(saveable);
1805 /*
1806 * To avoid excessive pressure on the normal zone, leave room in it to
1807 * accommodate an image of the minimum size (unless it's already too
1808 * small, in which case don't preallocate pages from it at all).
1809 */
1810 if (avail_normal > pages)
1811 avail_normal -= pages;
1812 else
1813 avail_normal = 0;
1814 if (size < pages)
1815 size = min_t(unsigned long, pages, max_size);
1816
1817 /*
1818 * Let the memory management subsystem know that we're going to need a
1819 * large number of page frames to allocate and make it free some memory.
1820 * NOTE: If this is not done, performance will be hurt badly in some
1821 * test cases.
1822 */
1823 shrink_all_memory(saveable - size);
1824
1825 /*
1826 * The number of saveable pages in memory was too high, so apply some
1827 * pressure to decrease it. First, make room for the largest possible
1828 * image and fail if that doesn't work. Next, try to decrease the size
1829 * of the image as much as indicated by 'size' using allocations from
1830 * highmem and non-highmem zones separately.
1831 */
1832 pages_highmem = preallocate_image_highmem(highmem / 2);
1833 alloc = count - max_size;
1834 if (alloc > pages_highmem)
1835 alloc -= pages_highmem;
1836 else
1837 alloc = 0;
1838 pages = preallocate_image_memory(alloc, avail_normal);
1839 if (pages < alloc) {
1840 /* We have exhausted non-highmem pages, try highmem. */
1841 alloc -= pages;
1842 pages += pages_highmem;
1843 pages_highmem = preallocate_image_highmem(alloc);
1844 if (pages_highmem < alloc) {
1845 pr_err("Image allocation is %lu pages short\n",
1846 alloc - pages_highmem);
1847 goto err_out;
1848 }
1849 pages += pages_highmem;
1850 /*
1851 * size is the desired number of saveable pages to leave in
1852 * memory, so try to preallocate (all memory - size) pages.
1853 */
1854 alloc = (count - pages) - size;
1855 pages += preallocate_image_highmem(alloc);
1856 } else {
1857 /*
1858 * There are approximately max_size saveable pages at this point
1859 * and we want to reduce this number down to size.
1860 */
1861 alloc = max_size - size;
1862 size = preallocate_highmem_fraction(alloc, highmem, count);
1863 pages_highmem += size;
1864 alloc -= size;
1865 size = preallocate_image_memory(alloc, avail_normal);
1866 pages_highmem += preallocate_image_highmem(alloc - size);
1867 pages += pages_highmem + size;
1868 }
1869
1870 /*
1871 * We only need as many page frames for the image as there are saveable
1872 * pages in memory, but we have allocated more. Release the excessive
1873 * ones now.
1874 */
1875 pages -= free_unnecessary_pages();
1876
1877 out:
1878 stop = ktime_get();
1879 pr_info("Allocated %lu pages for snapshot\n", pages);
1880 swsusp_show_speed(start, stop, pages, "Allocated");
1881
1882 return 0;
1883
1884 err_out:
1885 swsusp_free();
1886 return -ENOMEM;
1887 }
1888
1889 #ifdef CONFIG_HIGHMEM
1890 /**
1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892 *
1893 * Compute the number of non-highmem pages that will be necessary for creating
1894 * copies of highmem pages.
1895 */
count_pages_for_highmem(unsigned int nr_highmem)1896 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897 {
1898 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1899
1900 if (free_highmem >= nr_highmem)
1901 nr_highmem = 0;
1902 else
1903 nr_highmem -= free_highmem;
1904
1905 return nr_highmem;
1906 }
1907 #else
count_pages_for_highmem(unsigned int nr_highmem)1908 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1909 #endif /* CONFIG_HIGHMEM */
1910
1911 /**
1912 * enough_free_mem - Check if there is enough free memory for the image.
1913 */
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1914 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1915 {
1916 struct zone *zone;
1917 unsigned int free = alloc_normal;
1918
1919 for_each_populated_zone(zone)
1920 if (!is_highmem(zone))
1921 free += zone_page_state(zone, NR_FREE_PAGES);
1922
1923 nr_pages += count_pages_for_highmem(nr_highmem);
1924 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925 nr_pages, PAGES_FOR_IO, free);
1926
1927 return free > nr_pages + PAGES_FOR_IO;
1928 }
1929
1930 #ifdef CONFIG_HIGHMEM
1931 /**
1932 * get_highmem_buffer - Allocate a buffer for highmem pages.
1933 *
1934 * If there are some highmem pages in the hibernation image, we may need a
1935 * buffer to copy them and/or load their data.
1936 */
get_highmem_buffer(int safe_needed)1937 static inline int get_highmem_buffer(int safe_needed)
1938 {
1939 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1940 return buffer ? 0 : -ENOMEM;
1941 }
1942
1943 /**
1944 * alloc_highmem_pages - Allocate some highmem pages for the image.
1945 *
1946 * Try to allocate as many pages as needed, but if the number of free highmem
1947 * pages is less than that, allocate them all.
1948 */
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1949 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950 unsigned int nr_highmem)
1951 {
1952 unsigned int to_alloc = count_free_highmem_pages();
1953
1954 if (to_alloc > nr_highmem)
1955 to_alloc = nr_highmem;
1956
1957 nr_highmem -= to_alloc;
1958 while (to_alloc-- > 0) {
1959 struct page *page;
1960
1961 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1962 memory_bm_set_bit(bm, page_to_pfn(page));
1963 }
1964 return nr_highmem;
1965 }
1966 #else
get_highmem_buffer(int safe_needed)1967 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1969 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970 unsigned int n) { return 0; }
1971 #endif /* CONFIG_HIGHMEM */
1972
1973 /**
1974 * swsusp_alloc - Allocate memory for hibernation image.
1975 *
1976 * We first try to allocate as many highmem pages as there are
1977 * saveable highmem pages in the system. If that fails, we allocate
1978 * non-highmem pages for the copies of the remaining highmem ones.
1979 *
1980 * In this approach it is likely that the copies of highmem pages will
1981 * also be located in the high memory, because of the way in which
1982 * copy_data_pages() works.
1983 */
swsusp_alloc(struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1984 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1985 unsigned int nr_pages, unsigned int nr_highmem)
1986 {
1987 if (nr_highmem > 0) {
1988 if (get_highmem_buffer(PG_ANY))
1989 goto err_out;
1990 if (nr_highmem > alloc_highmem) {
1991 nr_highmem -= alloc_highmem;
1992 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993 }
1994 }
1995 if (nr_pages > alloc_normal) {
1996 nr_pages -= alloc_normal;
1997 while (nr_pages-- > 0) {
1998 struct page *page;
1999
2000 page = alloc_image_page(GFP_ATOMIC);
2001 if (!page)
2002 goto err_out;
2003 memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004 }
2005 }
2006
2007 return 0;
2008
2009 err_out:
2010 swsusp_free();
2011 return -ENOMEM;
2012 }
2013
swsusp_save(void)2014 asmlinkage __visible int swsusp_save(void)
2015 {
2016 unsigned int nr_pages, nr_highmem;
2017
2018 pr_info("Creating image:\n");
2019
2020 drain_local_pages(NULL);
2021 nr_pages = count_data_pages();
2022 nr_highmem = count_highmem_pages();
2023 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2024
2025 if (!enough_free_mem(nr_pages, nr_highmem)) {
2026 pr_err("Not enough free memory\n");
2027 return -ENOMEM;
2028 }
2029
2030 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) {
2031 pr_err("Memory allocation failed\n");
2032 return -ENOMEM;
2033 }
2034
2035 /*
2036 * During allocating of suspend pagedir, new cold pages may appear.
2037 * Kill them.
2038 */
2039 drain_local_pages(NULL);
2040 copy_data_pages(©_bm, &orig_bm);
2041
2042 /*
2043 * End of critical section. From now on, we can write to memory,
2044 * but we should not touch disk. This specially means we must _not_
2045 * touch swap space! Except we must write out our image of course.
2046 */
2047
2048 nr_pages += nr_highmem;
2049 nr_copy_pages = nr_pages;
2050 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2051
2052 pr_info("Image created (%d pages copied)\n", nr_pages);
2053
2054 return 0;
2055 }
2056
2057 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)2058 static int init_header_complete(struct swsusp_info *info)
2059 {
2060 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2061 info->version_code = LINUX_VERSION_CODE;
2062 return 0;
2063 }
2064
check_image_kernel(struct swsusp_info * info)2065 static const char *check_image_kernel(struct swsusp_info *info)
2066 {
2067 if (info->version_code != LINUX_VERSION_CODE)
2068 return "kernel version";
2069 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070 return "system type";
2071 if (strcmp(info->uts.release,init_utsname()->release))
2072 return "kernel release";
2073 if (strcmp(info->uts.version,init_utsname()->version))
2074 return "version";
2075 if (strcmp(info->uts.machine,init_utsname()->machine))
2076 return "machine";
2077 return NULL;
2078 }
2079 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080
snapshot_get_image_size(void)2081 unsigned long snapshot_get_image_size(void)
2082 {
2083 return nr_copy_pages + nr_meta_pages + 1;
2084 }
2085
init_header(struct swsusp_info * info)2086 static int init_header(struct swsusp_info *info)
2087 {
2088 memset(info, 0, sizeof(struct swsusp_info));
2089 info->num_physpages = get_num_physpages();
2090 info->image_pages = nr_copy_pages;
2091 info->pages = snapshot_get_image_size();
2092 info->size = info->pages;
2093 info->size <<= PAGE_SHIFT;
2094 return init_header_complete(info);
2095 }
2096
2097 /**
2098 * pack_pfns - Prepare PFNs for saving.
2099 * @bm: Memory bitmap.
2100 * @buf: Memory buffer to store the PFNs in.
2101 *
2102 * PFNs corresponding to set bits in @bm are stored in the area of memory
2103 * pointed to by @buf (1 page at a time).
2104 */
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)2105 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2106 {
2107 int j;
2108
2109 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2110 buf[j] = memory_bm_next_pfn(bm);
2111 if (unlikely(buf[j] == BM_END_OF_MAP))
2112 break;
2113 }
2114 }
2115
2116 /**
2117 * snapshot_read_next - Get the address to read the next image page from.
2118 * @handle: Snapshot handle to be used for the reading.
2119 *
2120 * On the first call, @handle should point to a zeroed snapshot_handle
2121 * structure. The structure gets populated then and a pointer to it should be
2122 * passed to this function every next time.
2123 *
2124 * On success, the function returns a positive number. Then, the caller
2125 * is allowed to read up to the returned number of bytes from the memory
2126 * location computed by the data_of() macro.
2127 *
2128 * The function returns 0 to indicate the end of the data stream condition,
2129 * and negative numbers are returned on errors. If that happens, the structure
2130 * pointed to by @handle is not updated and should not be used any more.
2131 */
snapshot_read_next(struct snapshot_handle * handle)2132 int snapshot_read_next(struct snapshot_handle *handle)
2133 {
2134 if (handle->cur > nr_meta_pages + nr_copy_pages)
2135 return 0;
2136
2137 if (!buffer) {
2138 /* This makes the buffer be freed by swsusp_free() */
2139 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2140 if (!buffer)
2141 return -ENOMEM;
2142 }
2143 if (!handle->cur) {
2144 int error;
2145
2146 error = init_header((struct swsusp_info *)buffer);
2147 if (error)
2148 return error;
2149 handle->buffer = buffer;
2150 memory_bm_position_reset(&orig_bm);
2151 memory_bm_position_reset(©_bm);
2152 } else if (handle->cur <= nr_meta_pages) {
2153 clear_page(buffer);
2154 pack_pfns(buffer, &orig_bm);
2155 } else {
2156 struct page *page;
2157
2158 page = pfn_to_page(memory_bm_next_pfn(©_bm));
2159 if (PageHighMem(page)) {
2160 /*
2161 * Highmem pages are copied to the buffer,
2162 * because we can't return with a kmapped
2163 * highmem page (we may not be called again).
2164 */
2165 void *kaddr;
2166
2167 kaddr = kmap_atomic(page);
2168 copy_page(buffer, kaddr);
2169 kunmap_atomic(kaddr);
2170 handle->buffer = buffer;
2171 } else {
2172 handle->buffer = page_address(page);
2173 }
2174 }
2175 handle->cur++;
2176 return PAGE_SIZE;
2177 }
2178
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2179 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180 struct memory_bitmap *src)
2181 {
2182 unsigned long pfn;
2183
2184 memory_bm_position_reset(src);
2185 pfn = memory_bm_next_pfn(src);
2186 while (pfn != BM_END_OF_MAP) {
2187 memory_bm_set_bit(dst, pfn);
2188 pfn = memory_bm_next_pfn(src);
2189 }
2190 }
2191
2192 /**
2193 * mark_unsafe_pages - Mark pages that were used before hibernation.
2194 *
2195 * Mark the pages that cannot be used for storing the image during restoration,
2196 * because they conflict with the pages that had been used before hibernation.
2197 */
mark_unsafe_pages(struct memory_bitmap * bm)2198 static void mark_unsafe_pages(struct memory_bitmap *bm)
2199 {
2200 unsigned long pfn;
2201
2202 /* Clear the "free"/"unsafe" bit for all PFNs */
2203 memory_bm_position_reset(free_pages_map);
2204 pfn = memory_bm_next_pfn(free_pages_map);
2205 while (pfn != BM_END_OF_MAP) {
2206 memory_bm_clear_current(free_pages_map);
2207 pfn = memory_bm_next_pfn(free_pages_map);
2208 }
2209
2210 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211 duplicate_memory_bitmap(free_pages_map, bm);
2212
2213 allocated_unsafe_pages = 0;
2214 }
2215
check_header(struct swsusp_info * info)2216 static int check_header(struct swsusp_info *info)
2217 {
2218 const char *reason;
2219
2220 reason = check_image_kernel(info);
2221 if (!reason && info->num_physpages != get_num_physpages())
2222 reason = "memory size";
2223 if (reason) {
2224 pr_err("Image mismatch: %s\n", reason);
2225 return -EPERM;
2226 }
2227 return 0;
2228 }
2229
2230 /**
2231 * load_header - Check the image header and copy the data from it.
2232 */
load_header(struct swsusp_info * info)2233 static int load_header(struct swsusp_info *info)
2234 {
2235 int error;
2236
2237 restore_pblist = NULL;
2238 error = check_header(info);
2239 if (!error) {
2240 nr_copy_pages = info->image_pages;
2241 nr_meta_pages = info->pages - info->image_pages - 1;
2242 }
2243 return error;
2244 }
2245
2246 /**
2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248 * @bm: Memory bitmap.
2249 * @buf: Area of memory containing the PFNs.
2250 *
2251 * For each element of the array pointed to by @buf (1 page at a time), set the
2252 * corresponding bit in @bm.
2253 */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)2254 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2255 {
2256 int j;
2257
2258 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259 if (unlikely(buf[j] == BM_END_OF_MAP))
2260 break;
2261
2262 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2263 memory_bm_set_bit(bm, buf[j]);
2264 else
2265 return -EFAULT;
2266 }
2267
2268 return 0;
2269 }
2270
2271 #ifdef CONFIG_HIGHMEM
2272 /*
2273 * struct highmem_pbe is used for creating the list of highmem pages that
2274 * should be restored atomically during the resume from disk, because the page
2275 * frames they have occupied before the suspend are in use.
2276 */
2277 struct highmem_pbe {
2278 struct page *copy_page; /* data is here now */
2279 struct page *orig_page; /* data was here before the suspend */
2280 struct highmem_pbe *next;
2281 };
2282
2283 /*
2284 * List of highmem PBEs needed for restoring the highmem pages that were
2285 * allocated before the suspend and included in the suspend image, but have
2286 * also been allocated by the "resume" kernel, so their contents cannot be
2287 * written directly to their "original" page frames.
2288 */
2289 static struct highmem_pbe *highmem_pblist;
2290
2291 /**
2292 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2293 * @bm: Memory bitmap.
2294 *
2295 * The bits in @bm that correspond to image pages are assumed to be set.
2296 */
count_highmem_image_pages(struct memory_bitmap * bm)2297 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2298 {
2299 unsigned long pfn;
2300 unsigned int cnt = 0;
2301
2302 memory_bm_position_reset(bm);
2303 pfn = memory_bm_next_pfn(bm);
2304 while (pfn != BM_END_OF_MAP) {
2305 if (PageHighMem(pfn_to_page(pfn)))
2306 cnt++;
2307
2308 pfn = memory_bm_next_pfn(bm);
2309 }
2310 return cnt;
2311 }
2312
2313 static unsigned int safe_highmem_pages;
2314
2315 static struct memory_bitmap *safe_highmem_bm;
2316
2317 /**
2318 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2319 * @bm: Pointer to an uninitialized memory bitmap structure.
2320 * @nr_highmem_p: Pointer to the number of highmem image pages.
2321 *
2322 * Try to allocate as many highmem pages as there are highmem image pages
2323 * (@nr_highmem_p points to the variable containing the number of highmem image
2324 * pages). The pages that are "safe" (ie. will not be overwritten when the
2325 * hibernation image is restored entirely) have the corresponding bits set in
2326 * @bm (it must be uninitialized).
2327 *
2328 * NOTE: This function should not be called if there are no highmem image pages.
2329 */
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2330 static int prepare_highmem_image(struct memory_bitmap *bm,
2331 unsigned int *nr_highmem_p)
2332 {
2333 unsigned int to_alloc;
2334
2335 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2336 return -ENOMEM;
2337
2338 if (get_highmem_buffer(PG_SAFE))
2339 return -ENOMEM;
2340
2341 to_alloc = count_free_highmem_pages();
2342 if (to_alloc > *nr_highmem_p)
2343 to_alloc = *nr_highmem_p;
2344 else
2345 *nr_highmem_p = to_alloc;
2346
2347 safe_highmem_pages = 0;
2348 while (to_alloc-- > 0) {
2349 struct page *page;
2350
2351 page = alloc_page(__GFP_HIGHMEM);
2352 if (!swsusp_page_is_free(page)) {
2353 /* The page is "safe", set its bit the bitmap */
2354 memory_bm_set_bit(bm, page_to_pfn(page));
2355 safe_highmem_pages++;
2356 }
2357 /* Mark the page as allocated */
2358 swsusp_set_page_forbidden(page);
2359 swsusp_set_page_free(page);
2360 }
2361 memory_bm_position_reset(bm);
2362 safe_highmem_bm = bm;
2363 return 0;
2364 }
2365
2366 static struct page *last_highmem_page;
2367
2368 /**
2369 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2370 *
2371 * For a given highmem image page get a buffer that suspend_write_next() should
2372 * return to its caller to write to.
2373 *
2374 * If the page is to be saved to its "original" page frame or a copy of
2375 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2376 * the copy of the page is to be made in normal memory, so the address of
2377 * the copy is returned.
2378 *
2379 * If @buffer is returned, the caller of suspend_write_next() will write
2380 * the page's contents to @buffer, so they will have to be copied to the
2381 * right location on the next call to suspend_write_next() and it is done
2382 * with the help of copy_last_highmem_page(). For this purpose, if
2383 * @buffer is returned, @last_highmem_page is set to the page to which
2384 * the data will have to be copied from @buffer.
2385 */
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2386 static void *get_highmem_page_buffer(struct page *page,
2387 struct chain_allocator *ca)
2388 {
2389 struct highmem_pbe *pbe;
2390 void *kaddr;
2391
2392 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2393 /*
2394 * We have allocated the "original" page frame and we can
2395 * use it directly to store the loaded page.
2396 */
2397 last_highmem_page = page;
2398 return buffer;
2399 }
2400 /*
2401 * The "original" page frame has not been allocated and we have to
2402 * use a "safe" page frame to store the loaded page.
2403 */
2404 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2405 if (!pbe) {
2406 swsusp_free();
2407 return ERR_PTR(-ENOMEM);
2408 }
2409 pbe->orig_page = page;
2410 if (safe_highmem_pages > 0) {
2411 struct page *tmp;
2412
2413 /* Copy of the page will be stored in high memory */
2414 kaddr = buffer;
2415 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2416 safe_highmem_pages--;
2417 last_highmem_page = tmp;
2418 pbe->copy_page = tmp;
2419 } else {
2420 /* Copy of the page will be stored in normal memory */
2421 kaddr = safe_pages_list;
2422 safe_pages_list = safe_pages_list->next;
2423 pbe->copy_page = virt_to_page(kaddr);
2424 }
2425 pbe->next = highmem_pblist;
2426 highmem_pblist = pbe;
2427 return kaddr;
2428 }
2429
2430 /**
2431 * copy_last_highmem_page - Copy most the most recent highmem image page.
2432 *
2433 * Copy the contents of a highmem image from @buffer, where the caller of
2434 * snapshot_write_next() has stored them, to the right location represented by
2435 * @last_highmem_page .
2436 */
copy_last_highmem_page(void)2437 static void copy_last_highmem_page(void)
2438 {
2439 if (last_highmem_page) {
2440 void *dst;
2441
2442 dst = kmap_atomic(last_highmem_page);
2443 copy_page(dst, buffer);
2444 kunmap_atomic(dst);
2445 last_highmem_page = NULL;
2446 }
2447 }
2448
last_highmem_page_copied(void)2449 static inline int last_highmem_page_copied(void)
2450 {
2451 return !last_highmem_page;
2452 }
2453
free_highmem_data(void)2454 static inline void free_highmem_data(void)
2455 {
2456 if (safe_highmem_bm)
2457 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2458
2459 if (buffer)
2460 free_image_page(buffer, PG_UNSAFE_CLEAR);
2461 }
2462 #else
count_highmem_image_pages(struct memory_bitmap * bm)2463 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2464
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2465 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2466 unsigned int *nr_highmem_p) { return 0; }
2467
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2468 static inline void *get_highmem_page_buffer(struct page *page,
2469 struct chain_allocator *ca)
2470 {
2471 return ERR_PTR(-EINVAL);
2472 }
2473
copy_last_highmem_page(void)2474 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2475 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2476 static inline void free_highmem_data(void) {}
2477 #endif /* CONFIG_HIGHMEM */
2478
2479 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2480
2481 /**
2482 * prepare_image - Make room for loading hibernation image.
2483 * @new_bm: Uninitialized memory bitmap structure.
2484 * @bm: Memory bitmap with unsafe pages marked.
2485 *
2486 * Use @bm to mark the pages that will be overwritten in the process of
2487 * restoring the system memory state from the suspend image ("unsafe" pages)
2488 * and allocate memory for the image.
2489 *
2490 * The idea is to allocate a new memory bitmap first and then allocate
2491 * as many pages as needed for image data, but without specifying what those
2492 * pages will be used for just yet. Instead, we mark them all as allocated and
2493 * create a lists of "safe" pages to be used later. On systems with high
2494 * memory a list of "safe" highmem pages is created too.
2495 */
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2496 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2497 {
2498 unsigned int nr_pages, nr_highmem;
2499 struct linked_page *lp;
2500 int error;
2501
2502 /* If there is no highmem, the buffer will not be necessary */
2503 free_image_page(buffer, PG_UNSAFE_CLEAR);
2504 buffer = NULL;
2505
2506 nr_highmem = count_highmem_image_pages(bm);
2507 mark_unsafe_pages(bm);
2508
2509 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2510 if (error)
2511 goto Free;
2512
2513 duplicate_memory_bitmap(new_bm, bm);
2514 memory_bm_free(bm, PG_UNSAFE_KEEP);
2515 if (nr_highmem > 0) {
2516 error = prepare_highmem_image(bm, &nr_highmem);
2517 if (error)
2518 goto Free;
2519 }
2520 /*
2521 * Reserve some safe pages for potential later use.
2522 *
2523 * NOTE: This way we make sure there will be enough safe pages for the
2524 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2525 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2526 *
2527 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2528 */
2529 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2530 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2531 while (nr_pages > 0) {
2532 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2533 if (!lp) {
2534 error = -ENOMEM;
2535 goto Free;
2536 }
2537 lp->next = safe_pages_list;
2538 safe_pages_list = lp;
2539 nr_pages--;
2540 }
2541 /* Preallocate memory for the image */
2542 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2543 while (nr_pages > 0) {
2544 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2545 if (!lp) {
2546 error = -ENOMEM;
2547 goto Free;
2548 }
2549 if (!swsusp_page_is_free(virt_to_page(lp))) {
2550 /* The page is "safe", add it to the list */
2551 lp->next = safe_pages_list;
2552 safe_pages_list = lp;
2553 }
2554 /* Mark the page as allocated */
2555 swsusp_set_page_forbidden(virt_to_page(lp));
2556 swsusp_set_page_free(virt_to_page(lp));
2557 nr_pages--;
2558 }
2559 return 0;
2560
2561 Free:
2562 swsusp_free();
2563 return error;
2564 }
2565
2566 /**
2567 * get_buffer - Get the address to store the next image data page.
2568 *
2569 * Get the address that snapshot_write_next() should return to its caller to
2570 * write to.
2571 */
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2572 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2573 {
2574 struct pbe *pbe;
2575 struct page *page;
2576 unsigned long pfn = memory_bm_next_pfn(bm);
2577
2578 if (pfn == BM_END_OF_MAP)
2579 return ERR_PTR(-EFAULT);
2580
2581 page = pfn_to_page(pfn);
2582 if (PageHighMem(page))
2583 return get_highmem_page_buffer(page, ca);
2584
2585 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2586 /*
2587 * We have allocated the "original" page frame and we can
2588 * use it directly to store the loaded page.
2589 */
2590 return page_address(page);
2591
2592 /*
2593 * The "original" page frame has not been allocated and we have to
2594 * use a "safe" page frame to store the loaded page.
2595 */
2596 pbe = chain_alloc(ca, sizeof(struct pbe));
2597 if (!pbe) {
2598 swsusp_free();
2599 return ERR_PTR(-ENOMEM);
2600 }
2601 pbe->orig_address = page_address(page);
2602 pbe->address = safe_pages_list;
2603 safe_pages_list = safe_pages_list->next;
2604 pbe->next = restore_pblist;
2605 restore_pblist = pbe;
2606 return pbe->address;
2607 }
2608
2609 /**
2610 * snapshot_write_next - Get the address to store the next image page.
2611 * @handle: Snapshot handle structure to guide the writing.
2612 *
2613 * On the first call, @handle should point to a zeroed snapshot_handle
2614 * structure. The structure gets populated then and a pointer to it should be
2615 * passed to this function every next time.
2616 *
2617 * On success, the function returns a positive number. Then, the caller
2618 * is allowed to write up to the returned number of bytes to the memory
2619 * location computed by the data_of() macro.
2620 *
2621 * The function returns 0 to indicate the "end of file" condition. Negative
2622 * numbers are returned on errors, in which cases the structure pointed to by
2623 * @handle is not updated and should not be used any more.
2624 */
snapshot_write_next(struct snapshot_handle * handle)2625 int snapshot_write_next(struct snapshot_handle *handle)
2626 {
2627 static struct chain_allocator ca;
2628 int error = 0;
2629
2630 /* Check if we have already loaded the entire image */
2631 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2632 return 0;
2633
2634 handle->sync_read = 1;
2635
2636 if (!handle->cur) {
2637 if (!buffer)
2638 /* This makes the buffer be freed by swsusp_free() */
2639 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2640
2641 if (!buffer)
2642 return -ENOMEM;
2643
2644 handle->buffer = buffer;
2645 } else if (handle->cur == 1) {
2646 error = load_header(buffer);
2647 if (error)
2648 return error;
2649
2650 safe_pages_list = NULL;
2651
2652 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2653 if (error)
2654 return error;
2655
2656 hibernate_restore_protection_begin();
2657 } else if (handle->cur <= nr_meta_pages + 1) {
2658 error = unpack_orig_pfns(buffer, ©_bm);
2659 if (error)
2660 return error;
2661
2662 if (handle->cur == nr_meta_pages + 1) {
2663 error = prepare_image(&orig_bm, ©_bm);
2664 if (error)
2665 return error;
2666
2667 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2668 memory_bm_position_reset(&orig_bm);
2669 restore_pblist = NULL;
2670 handle->buffer = get_buffer(&orig_bm, &ca);
2671 handle->sync_read = 0;
2672 if (IS_ERR(handle->buffer))
2673 return PTR_ERR(handle->buffer);
2674 }
2675 } else {
2676 copy_last_highmem_page();
2677 hibernate_restore_protect_page(handle->buffer);
2678 handle->buffer = get_buffer(&orig_bm, &ca);
2679 if (IS_ERR(handle->buffer))
2680 return PTR_ERR(handle->buffer);
2681 if (handle->buffer != buffer)
2682 handle->sync_read = 0;
2683 }
2684 handle->cur++;
2685 return PAGE_SIZE;
2686 }
2687
2688 /**
2689 * snapshot_write_finalize - Complete the loading of a hibernation image.
2690 *
2691 * Must be called after the last call to snapshot_write_next() in case the last
2692 * page in the image happens to be a highmem page and its contents should be
2693 * stored in highmem. Additionally, it recycles bitmap memory that's not
2694 * necessary any more.
2695 */
snapshot_write_finalize(struct snapshot_handle * handle)2696 void snapshot_write_finalize(struct snapshot_handle *handle)
2697 {
2698 copy_last_highmem_page();
2699 hibernate_restore_protect_page(handle->buffer);
2700 /* Do that only if we have loaded the image entirely */
2701 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2702 memory_bm_recycle(&orig_bm);
2703 free_highmem_data();
2704 }
2705 }
2706
snapshot_image_loaded(struct snapshot_handle * handle)2707 int snapshot_image_loaded(struct snapshot_handle *handle)
2708 {
2709 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2710 handle->cur <= nr_meta_pages + nr_copy_pages);
2711 }
2712
2713 #ifdef CONFIG_HIGHMEM
2714 /* Assumes that @buf is ready and points to a "safe" page */
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2715 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2716 void *buf)
2717 {
2718 void *kaddr1, *kaddr2;
2719
2720 kaddr1 = kmap_atomic(p1);
2721 kaddr2 = kmap_atomic(p2);
2722 copy_page(buf, kaddr1);
2723 copy_page(kaddr1, kaddr2);
2724 copy_page(kaddr2, buf);
2725 kunmap_atomic(kaddr2);
2726 kunmap_atomic(kaddr1);
2727 }
2728
2729 /**
2730 * restore_highmem - Put highmem image pages into their original locations.
2731 *
2732 * For each highmem page that was in use before hibernation and is included in
2733 * the image, and also has been allocated by the "restore" kernel, swap its
2734 * current contents with the previous (ie. "before hibernation") ones.
2735 *
2736 * If the restore eventually fails, we can call this function once again and
2737 * restore the highmem state as seen by the restore kernel.
2738 */
restore_highmem(void)2739 int restore_highmem(void)
2740 {
2741 struct highmem_pbe *pbe = highmem_pblist;
2742 void *buf;
2743
2744 if (!pbe)
2745 return 0;
2746
2747 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2748 if (!buf)
2749 return -ENOMEM;
2750
2751 while (pbe) {
2752 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2753 pbe = pbe->next;
2754 }
2755 free_image_page(buf, PG_UNSAFE_CLEAR);
2756 return 0;
2757 }
2758 #endif /* CONFIG_HIGHMEM */
2759