1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/task.h>
83
84 /*
85 * Protected counters by write_lock_irq(&tasklist_lock)
86 */
87 unsigned long total_forks; /* Handle normal Linux uptimes. */
88 int nr_threads; /* The idle threads do not count.. */
89
90 int max_threads; /* tunable limit on nr_threads */
91
92 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
93
94 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
95
96 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)97 int lockdep_tasklist_lock_is_held(void)
98 {
99 return lockdep_is_held(&tasklist_lock);
100 }
101 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
102 #endif /* #ifdef CONFIG_PROVE_RCU */
103
nr_processes(void)104 int nr_processes(void)
105 {
106 int cpu;
107 int total = 0;
108
109 for_each_possible_cpu(cpu)
110 total += per_cpu(process_counts, cpu);
111
112 return total;
113 }
114
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 # define alloc_task_struct_node(node) \
117 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
118 # define free_task_struct(tsk) \
119 kmem_cache_free(task_struct_cachep, (tsk))
120 static struct kmem_cache *task_struct_cachep;
121 #endif
122
123 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
alloc_thread_info_node(struct task_struct * tsk,int node)124 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
125 int node)
126 {
127 #ifdef CONFIG_DEBUG_STACK_USAGE
128 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
129 #else
130 gfp_t mask = GFP_KERNEL;
131 #endif
132 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
133
134 return page ? page_address(page) : NULL;
135 }
136
free_thread_info(struct thread_info * ti)137 static inline void free_thread_info(struct thread_info *ti)
138 {
139 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
140 }
141 #endif
142
143 /* SLAB cache for signal_struct structures (tsk->signal) */
144 static struct kmem_cache *signal_cachep;
145
146 /* SLAB cache for sighand_struct structures (tsk->sighand) */
147 struct kmem_cache *sighand_cachep;
148
149 /* SLAB cache for files_struct structures (tsk->files) */
150 struct kmem_cache *files_cachep;
151
152 /* SLAB cache for fs_struct structures (tsk->fs) */
153 struct kmem_cache *fs_cachep;
154
155 /* SLAB cache for vm_area_struct structures */
156 struct kmem_cache *vm_area_cachep;
157
158 /* SLAB cache for mm_struct structures (tsk->mm) */
159 static struct kmem_cache *mm_cachep;
160
account_kernel_stack(struct thread_info * ti,int account)161 static void account_kernel_stack(struct thread_info *ti, int account)
162 {
163 struct zone *zone = page_zone(virt_to_page(ti));
164
165 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
166 }
167
free_task(struct task_struct * tsk)168 void free_task(struct task_struct *tsk)
169 {
170 account_kernel_stack(tsk->stack, -1);
171 free_thread_info(tsk->stack);
172 rt_mutex_debug_task_free(tsk);
173 ftrace_graph_exit_task(tsk);
174 free_task_struct(tsk);
175 }
176 EXPORT_SYMBOL(free_task);
177
free_signal_struct(struct signal_struct * sig)178 static inline void free_signal_struct(struct signal_struct *sig)
179 {
180 taskstats_tgid_free(sig);
181 sched_autogroup_exit(sig);
182 kmem_cache_free(signal_cachep, sig);
183 }
184
put_signal_struct(struct signal_struct * sig)185 static inline void put_signal_struct(struct signal_struct *sig)
186 {
187 if (atomic_dec_and_test(&sig->sigcnt))
188 free_signal_struct(sig);
189 }
190
__put_task_struct(struct task_struct * tsk)191 void __put_task_struct(struct task_struct *tsk)
192 {
193 WARN_ON(!tsk->exit_state);
194 WARN_ON(atomic_read(&tsk->usage));
195 WARN_ON(tsk == current);
196
197 security_task_free(tsk);
198 exit_creds(tsk);
199 delayacct_tsk_free(tsk);
200 put_signal_struct(tsk->signal);
201
202 if (!profile_handoff_task(tsk))
203 free_task(tsk);
204 }
205 EXPORT_SYMBOL_GPL(__put_task_struct);
206
207 /*
208 * macro override instead of weak attribute alias, to workaround
209 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
210 */
211 #ifndef arch_task_cache_init
212 #define arch_task_cache_init()
213 #endif
214
fork_init(unsigned long mempages)215 void __init fork_init(unsigned long mempages)
216 {
217 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
218 #ifndef ARCH_MIN_TASKALIGN
219 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
220 #endif
221 /* create a slab on which task_structs can be allocated */
222 task_struct_cachep =
223 kmem_cache_create("task_struct", sizeof(struct task_struct),
224 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
225 #endif
226
227 /* do the arch specific task caches init */
228 arch_task_cache_init();
229
230 /*
231 * The default maximum number of threads is set to a safe
232 * value: the thread structures can take up at most half
233 * of memory.
234 */
235 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
236
237 /*
238 * we need to allow at least 20 threads to boot a system
239 */
240 if (max_threads < 20)
241 max_threads = 20;
242
243 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
244 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
245 init_task.signal->rlim[RLIMIT_SIGPENDING] =
246 init_task.signal->rlim[RLIMIT_NPROC];
247 }
248
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)249 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
250 struct task_struct *src)
251 {
252 *dst = *src;
253 return 0;
254 }
255
dup_task_struct(struct task_struct * orig)256 static struct task_struct *dup_task_struct(struct task_struct *orig)
257 {
258 struct task_struct *tsk;
259 struct thread_info *ti;
260 unsigned long *stackend;
261 int node = tsk_fork_get_node(orig);
262 int err;
263
264 prepare_to_copy(orig);
265
266 tsk = alloc_task_struct_node(node);
267 if (!tsk)
268 return NULL;
269
270 ti = alloc_thread_info_node(tsk, node);
271 if (!ti) {
272 free_task_struct(tsk);
273 return NULL;
274 }
275
276 err = arch_dup_task_struct(tsk, orig);
277 if (err)
278 goto out;
279
280 tsk->stack = ti;
281
282 setup_thread_stack(tsk, orig);
283 clear_user_return_notifier(tsk);
284 clear_tsk_need_resched(tsk);
285 stackend = end_of_stack(tsk);
286 *stackend = STACK_END_MAGIC; /* for overflow detection */
287
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 tsk->stack_canary = get_random_int();
290 #endif
291
292 /*
293 * One for us, one for whoever does the "release_task()" (usually
294 * parent)
295 */
296 atomic_set(&tsk->usage, 2);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298 tsk->btrace_seq = 0;
299 #endif
300 tsk->splice_pipe = NULL;
301
302 account_kernel_stack(ti, 1);
303
304 return tsk;
305
306 out:
307 free_thread_info(ti);
308 free_task_struct(tsk);
309 return NULL;
310 }
311
312 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 {
315 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316 struct rb_node **rb_link, *rb_parent;
317 int retval;
318 unsigned long charge;
319 struct mempolicy *pol;
320
321 down_write(&oldmm->mmap_sem);
322 flush_cache_dup_mm(oldmm);
323 /*
324 * Not linked in yet - no deadlock potential:
325 */
326 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327
328 mm->locked_vm = 0;
329 mm->mmap = NULL;
330 mm->mmap_cache = NULL;
331 mm->free_area_cache = oldmm->mmap_base;
332 mm->cached_hole_size = ~0UL;
333 mm->map_count = 0;
334 cpumask_clear(mm_cpumask(mm));
335 mm->mm_rb = RB_ROOT;
336 rb_link = &mm->mm_rb.rb_node;
337 rb_parent = NULL;
338 pprev = &mm->mmap;
339 retval = ksm_fork(mm, oldmm);
340 if (retval)
341 goto out;
342 retval = khugepaged_fork(mm, oldmm);
343 if (retval)
344 goto out;
345
346 prev = NULL;
347 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348 struct file *file;
349
350 if (mpnt->vm_flags & VM_DONTCOPY) {
351 long pages = vma_pages(mpnt);
352 mm->total_vm -= pages;
353 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354 -pages);
355 continue;
356 }
357 charge = 0;
358 if (mpnt->vm_flags & VM_ACCOUNT) {
359 unsigned long len;
360 len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
361 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
362 goto fail_nomem;
363 charge = len;
364 }
365 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
366 if (!tmp)
367 goto fail_nomem;
368 *tmp = *mpnt;
369 INIT_LIST_HEAD(&tmp->anon_vma_chain);
370 pol = mpol_dup(vma_policy(mpnt));
371 retval = PTR_ERR(pol);
372 if (IS_ERR(pol))
373 goto fail_nomem_policy;
374 vma_set_policy(tmp, pol);
375 tmp->vm_mm = mm;
376 if (anon_vma_fork(tmp, mpnt))
377 goto fail_nomem_anon_vma_fork;
378 tmp->vm_flags &= ~VM_LOCKED;
379 tmp->vm_next = tmp->vm_prev = NULL;
380 file = tmp->vm_file;
381 if (file) {
382 struct inode *inode = file->f_path.dentry->d_inode;
383 struct address_space *mapping = file->f_mapping;
384
385 get_file(file);
386 if (tmp->vm_flags & VM_DENYWRITE)
387 atomic_dec(&inode->i_writecount);
388 mutex_lock(&mapping->i_mmap_mutex);
389 if (tmp->vm_flags & VM_SHARED)
390 mapping->i_mmap_writable++;
391 flush_dcache_mmap_lock(mapping);
392 /* insert tmp into the share list, just after mpnt */
393 vma_prio_tree_add(tmp, mpnt);
394 flush_dcache_mmap_unlock(mapping);
395 mutex_unlock(&mapping->i_mmap_mutex);
396 }
397
398 /*
399 * Clear hugetlb-related page reserves for children. This only
400 * affects MAP_PRIVATE mappings. Faults generated by the child
401 * are not guaranteed to succeed, even if read-only
402 */
403 if (is_vm_hugetlb_page(tmp))
404 reset_vma_resv_huge_pages(tmp);
405
406 /*
407 * Link in the new vma and copy the page table entries.
408 */
409 *pprev = tmp;
410 pprev = &tmp->vm_next;
411 tmp->vm_prev = prev;
412 prev = tmp;
413
414 __vma_link_rb(mm, tmp, rb_link, rb_parent);
415 rb_link = &tmp->vm_rb.rb_right;
416 rb_parent = &tmp->vm_rb;
417
418 mm->map_count++;
419 retval = copy_page_range(mm, oldmm, mpnt);
420
421 if (tmp->vm_ops && tmp->vm_ops->open)
422 tmp->vm_ops->open(tmp);
423
424 if (retval)
425 goto out;
426 }
427 /* a new mm has just been created */
428 arch_dup_mmap(oldmm, mm);
429 retval = 0;
430 out:
431 up_write(&mm->mmap_sem);
432 flush_tlb_mm(oldmm);
433 up_write(&oldmm->mmap_sem);
434 return retval;
435 fail_nomem_anon_vma_fork:
436 mpol_put(pol);
437 fail_nomem_policy:
438 kmem_cache_free(vm_area_cachep, tmp);
439 fail_nomem:
440 retval = -ENOMEM;
441 vm_unacct_memory(charge);
442 goto out;
443 }
444
mm_alloc_pgd(struct mm_struct * mm)445 static inline int mm_alloc_pgd(struct mm_struct *mm)
446 {
447 mm->pgd = pgd_alloc(mm);
448 if (unlikely(!mm->pgd))
449 return -ENOMEM;
450 return 0;
451 }
452
mm_free_pgd(struct mm_struct * mm)453 static inline void mm_free_pgd(struct mm_struct *mm)
454 {
455 pgd_free(mm, mm->pgd);
456 }
457 #else
458 #define dup_mmap(mm, oldmm) (0)
459 #define mm_alloc_pgd(mm) (0)
460 #define mm_free_pgd(mm)
461 #endif /* CONFIG_MMU */
462
463 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
464
465 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
466 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
467
468 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
469
coredump_filter_setup(char * s)470 static int __init coredump_filter_setup(char *s)
471 {
472 default_dump_filter =
473 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
474 MMF_DUMP_FILTER_MASK;
475 return 1;
476 }
477
478 __setup("coredump_filter=", coredump_filter_setup);
479
480 #include <linux/init_task.h>
481
mm_init_aio(struct mm_struct * mm)482 static void mm_init_aio(struct mm_struct *mm)
483 {
484 #ifdef CONFIG_AIO
485 spin_lock_init(&mm->ioctx_lock);
486 INIT_HLIST_HEAD(&mm->ioctx_list);
487 #endif
488 }
489
mm_init(struct mm_struct * mm,struct task_struct * p)490 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
491 {
492 atomic_set(&mm->mm_users, 1);
493 atomic_set(&mm->mm_count, 1);
494 init_rwsem(&mm->mmap_sem);
495 INIT_LIST_HEAD(&mm->mmlist);
496 mm->flags = (current->mm) ?
497 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
498 mm->core_state = NULL;
499 mm->nr_ptes = 0;
500 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
501 spin_lock_init(&mm->page_table_lock);
502 mm->free_area_cache = TASK_UNMAPPED_BASE;
503 mm->cached_hole_size = ~0UL;
504 mm_init_aio(mm);
505 mm_init_owner(mm, p);
506
507 if (likely(!mm_alloc_pgd(mm))) {
508 mm->def_flags = 0;
509 mmu_notifier_mm_init(mm);
510 return mm;
511 }
512
513 free_mm(mm);
514 return NULL;
515 }
516
check_mm(struct mm_struct * mm)517 static void check_mm(struct mm_struct *mm)
518 {
519 int i;
520
521 for (i = 0; i < NR_MM_COUNTERS; i++) {
522 long x = atomic_long_read(&mm->rss_stat.count[i]);
523
524 if (unlikely(x))
525 printk(KERN_ALERT "BUG: Bad rss-counter state "
526 "mm:%p idx:%d val:%ld\n", mm, i, x);
527 }
528
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 VM_BUG_ON(mm->pmd_huge_pte);
531 #endif
532 }
533
534 /*
535 * Allocate and initialize an mm_struct.
536 */
mm_alloc(void)537 struct mm_struct *mm_alloc(void)
538 {
539 struct mm_struct *mm;
540
541 mm = allocate_mm();
542 if (!mm)
543 return NULL;
544
545 memset(mm, 0, sizeof(*mm));
546 mm_init_cpumask(mm);
547 return mm_init(mm, current);
548 }
549
550 /*
551 * Called when the last reference to the mm
552 * is dropped: either by a lazy thread or by
553 * mmput. Free the page directory and the mm.
554 */
__mmdrop(struct mm_struct * mm)555 void __mmdrop(struct mm_struct *mm)
556 {
557 BUG_ON(mm == &init_mm);
558 mm_free_pgd(mm);
559 destroy_context(mm);
560 mmu_notifier_mm_destroy(mm);
561 check_mm(mm);
562 free_mm(mm);
563 }
564 EXPORT_SYMBOL_GPL(__mmdrop);
565
566 /*
567 * Decrement the use count and release all resources for an mm.
568 */
mmput(struct mm_struct * mm)569 void mmput(struct mm_struct *mm)
570 {
571 might_sleep();
572
573 if (atomic_dec_and_test(&mm->mm_users)) {
574 exit_aio(mm);
575 ksm_exit(mm);
576 khugepaged_exit(mm); /* must run before exit_mmap */
577 exit_mmap(mm);
578 set_mm_exe_file(mm, NULL);
579 if (!list_empty(&mm->mmlist)) {
580 spin_lock(&mmlist_lock);
581 list_del(&mm->mmlist);
582 spin_unlock(&mmlist_lock);
583 }
584 put_swap_token(mm);
585 if (mm->binfmt)
586 module_put(mm->binfmt->module);
587 mmdrop(mm);
588 }
589 }
590 EXPORT_SYMBOL_GPL(mmput);
591
592 /*
593 * We added or removed a vma mapping the executable. The vmas are only mapped
594 * during exec and are not mapped with the mmap system call.
595 * Callers must hold down_write() on the mm's mmap_sem for these
596 */
added_exe_file_vma(struct mm_struct * mm)597 void added_exe_file_vma(struct mm_struct *mm)
598 {
599 mm->num_exe_file_vmas++;
600 }
601
removed_exe_file_vma(struct mm_struct * mm)602 void removed_exe_file_vma(struct mm_struct *mm)
603 {
604 mm->num_exe_file_vmas--;
605 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
606 fput(mm->exe_file);
607 mm->exe_file = NULL;
608 }
609
610 }
611
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)612 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
613 {
614 if (new_exe_file)
615 get_file(new_exe_file);
616 if (mm->exe_file)
617 fput(mm->exe_file);
618 mm->exe_file = new_exe_file;
619 mm->num_exe_file_vmas = 0;
620 }
621
get_mm_exe_file(struct mm_struct * mm)622 struct file *get_mm_exe_file(struct mm_struct *mm)
623 {
624 struct file *exe_file;
625
626 /* We need mmap_sem to protect against races with removal of
627 * VM_EXECUTABLE vmas */
628 down_read(&mm->mmap_sem);
629 exe_file = mm->exe_file;
630 if (exe_file)
631 get_file(exe_file);
632 up_read(&mm->mmap_sem);
633 return exe_file;
634 }
635
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)636 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
637 {
638 /* It's safe to write the exe_file pointer without exe_file_lock because
639 * this is called during fork when the task is not yet in /proc */
640 newmm->exe_file = get_mm_exe_file(oldmm);
641 }
642
643 /**
644 * get_task_mm - acquire a reference to the task's mm
645 *
646 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
647 * this kernel workthread has transiently adopted a user mm with use_mm,
648 * to do its AIO) is not set and if so returns a reference to it, after
649 * bumping up the use count. User must release the mm via mmput()
650 * after use. Typically used by /proc and ptrace.
651 */
get_task_mm(struct task_struct * task)652 struct mm_struct *get_task_mm(struct task_struct *task)
653 {
654 struct mm_struct *mm;
655
656 task_lock(task);
657 mm = task->mm;
658 if (mm) {
659 if (task->flags & PF_KTHREAD)
660 mm = NULL;
661 else
662 atomic_inc(&mm->mm_users);
663 }
664 task_unlock(task);
665 return mm;
666 }
667 EXPORT_SYMBOL_GPL(get_task_mm);
668
mm_access(struct task_struct * task,unsigned int mode)669 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
670 {
671 struct mm_struct *mm;
672 int err;
673
674 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
675 if (err)
676 return ERR_PTR(err);
677
678 mm = get_task_mm(task);
679 if (mm && mm != current->mm &&
680 !ptrace_may_access(task, mode)) {
681 mmput(mm);
682 mm = ERR_PTR(-EACCES);
683 }
684 mutex_unlock(&task->signal->cred_guard_mutex);
685
686 return mm;
687 }
688
complete_vfork_done(struct task_struct * tsk)689 static void complete_vfork_done(struct task_struct *tsk)
690 {
691 struct completion *vfork;
692
693 task_lock(tsk);
694 vfork = tsk->vfork_done;
695 if (likely(vfork)) {
696 tsk->vfork_done = NULL;
697 complete(vfork);
698 }
699 task_unlock(tsk);
700 }
701
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)702 static int wait_for_vfork_done(struct task_struct *child,
703 struct completion *vfork)
704 {
705 int killed;
706
707 freezer_do_not_count();
708 killed = wait_for_completion_killable(vfork);
709 freezer_count();
710
711 if (killed) {
712 task_lock(child);
713 child->vfork_done = NULL;
714 task_unlock(child);
715 }
716
717 put_task_struct(child);
718 return killed;
719 }
720
721 /* Please note the differences between mmput and mm_release.
722 * mmput is called whenever we stop holding onto a mm_struct,
723 * error success whatever.
724 *
725 * mm_release is called after a mm_struct has been removed
726 * from the current process.
727 *
728 * This difference is important for error handling, when we
729 * only half set up a mm_struct for a new process and need to restore
730 * the old one. Because we mmput the new mm_struct before
731 * restoring the old one. . .
732 * Eric Biederman 10 January 1998
733 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)734 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
735 {
736 /* Get rid of any futexes when releasing the mm */
737 #ifdef CONFIG_FUTEX
738 if (unlikely(tsk->robust_list)) {
739 exit_robust_list(tsk);
740 tsk->robust_list = NULL;
741 }
742 #ifdef CONFIG_COMPAT
743 if (unlikely(tsk->compat_robust_list)) {
744 compat_exit_robust_list(tsk);
745 tsk->compat_robust_list = NULL;
746 }
747 #endif
748 if (unlikely(!list_empty(&tsk->pi_state_list)))
749 exit_pi_state_list(tsk);
750 #endif
751
752 /* Get rid of any cached register state */
753 deactivate_mm(tsk, mm);
754
755 if (tsk->vfork_done)
756 complete_vfork_done(tsk);
757
758 /*
759 * If we're exiting normally, clear a user-space tid field if
760 * requested. We leave this alone when dying by signal, to leave
761 * the value intact in a core dump, and to save the unnecessary
762 * trouble, say, a killed vfork parent shouldn't touch this mm.
763 * Userland only wants this done for a sys_exit.
764 */
765 if (tsk->clear_child_tid) {
766 if (!(tsk->flags & PF_SIGNALED) &&
767 atomic_read(&mm->mm_users) > 1) {
768 /*
769 * We don't check the error code - if userspace has
770 * not set up a proper pointer then tough luck.
771 */
772 put_user(0, tsk->clear_child_tid);
773 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
774 1, NULL, NULL, 0);
775 }
776 tsk->clear_child_tid = NULL;
777 }
778 }
779
780 /*
781 * Allocate a new mm structure and copy contents from the
782 * mm structure of the passed in task structure.
783 */
dup_mm(struct task_struct * tsk)784 struct mm_struct *dup_mm(struct task_struct *tsk)
785 {
786 struct mm_struct *mm, *oldmm = current->mm;
787 int err;
788
789 if (!oldmm)
790 return NULL;
791
792 mm = allocate_mm();
793 if (!mm)
794 goto fail_nomem;
795
796 memcpy(mm, oldmm, sizeof(*mm));
797 mm_init_cpumask(mm);
798
799 /* Initializing for Swap token stuff */
800 mm->token_priority = 0;
801 mm->last_interval = 0;
802
803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 mm->pmd_huge_pte = NULL;
805 #endif
806
807 if (!mm_init(mm, tsk))
808 goto fail_nomem;
809
810 if (init_new_context(tsk, mm))
811 goto fail_nocontext;
812
813 dup_mm_exe_file(oldmm, mm);
814
815 err = dup_mmap(mm, oldmm);
816 if (err)
817 goto free_pt;
818
819 mm->hiwater_rss = get_mm_rss(mm);
820 mm->hiwater_vm = mm->total_vm;
821
822 if (mm->binfmt && !try_module_get(mm->binfmt->module))
823 goto free_pt;
824
825 return mm;
826
827 free_pt:
828 /* don't put binfmt in mmput, we haven't got module yet */
829 mm->binfmt = NULL;
830 mmput(mm);
831
832 fail_nomem:
833 return NULL;
834
835 fail_nocontext:
836 /*
837 * If init_new_context() failed, we cannot use mmput() to free the mm
838 * because it calls destroy_context()
839 */
840 mm_free_pgd(mm);
841 free_mm(mm);
842 return NULL;
843 }
844
copy_mm(unsigned long clone_flags,struct task_struct * tsk)845 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 struct mm_struct *mm, *oldmm;
848 int retval;
849
850 tsk->min_flt = tsk->maj_flt = 0;
851 tsk->nvcsw = tsk->nivcsw = 0;
852 #ifdef CONFIG_DETECT_HUNG_TASK
853 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
854 #endif
855
856 tsk->mm = NULL;
857 tsk->active_mm = NULL;
858
859 /*
860 * Are we cloning a kernel thread?
861 *
862 * We need to steal a active VM for that..
863 */
864 oldmm = current->mm;
865 if (!oldmm)
866 return 0;
867
868 if (clone_flags & CLONE_VM) {
869 atomic_inc(&oldmm->mm_users);
870 mm = oldmm;
871 goto good_mm;
872 }
873
874 retval = -ENOMEM;
875 mm = dup_mm(tsk);
876 if (!mm)
877 goto fail_nomem;
878
879 good_mm:
880 /* Initializing for Swap token stuff */
881 mm->token_priority = 0;
882 mm->last_interval = 0;
883
884 tsk->mm = mm;
885 tsk->active_mm = mm;
886 return 0;
887
888 fail_nomem:
889 return retval;
890 }
891
copy_fs(unsigned long clone_flags,struct task_struct * tsk)892 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
893 {
894 struct fs_struct *fs = current->fs;
895 if (clone_flags & CLONE_FS) {
896 /* tsk->fs is already what we want */
897 spin_lock(&fs->lock);
898 if (fs->in_exec) {
899 spin_unlock(&fs->lock);
900 return -EAGAIN;
901 }
902 fs->users++;
903 spin_unlock(&fs->lock);
904 return 0;
905 }
906 tsk->fs = copy_fs_struct(fs);
907 if (!tsk->fs)
908 return -ENOMEM;
909 return 0;
910 }
911
copy_files(unsigned long clone_flags,struct task_struct * tsk)912 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
913 {
914 struct files_struct *oldf, *newf;
915 int error = 0;
916
917 /*
918 * A background process may not have any files ...
919 */
920 oldf = current->files;
921 if (!oldf)
922 goto out;
923
924 if (clone_flags & CLONE_FILES) {
925 atomic_inc(&oldf->count);
926 goto out;
927 }
928
929 newf = dup_fd(oldf, &error);
930 if (!newf)
931 goto out;
932
933 tsk->files = newf;
934 error = 0;
935 out:
936 return error;
937 }
938
copy_io(unsigned long clone_flags,struct task_struct * tsk)939 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 #ifdef CONFIG_BLOCK
942 struct io_context *ioc = current->io_context;
943 struct io_context *new_ioc;
944
945 if (!ioc)
946 return 0;
947 /*
948 * Share io context with parent, if CLONE_IO is set
949 */
950 if (clone_flags & CLONE_IO) {
951 tsk->io_context = ioc_task_link(ioc);
952 if (unlikely(!tsk->io_context))
953 return -ENOMEM;
954 } else if (ioprio_valid(ioc->ioprio)) {
955 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
956 if (unlikely(!new_ioc))
957 return -ENOMEM;
958
959 new_ioc->ioprio = ioc->ioprio;
960 put_io_context(new_ioc);
961 }
962 #endif
963 return 0;
964 }
965
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)966 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
967 {
968 struct sighand_struct *sig;
969
970 if (clone_flags & CLONE_SIGHAND) {
971 atomic_inc(¤t->sighand->count);
972 return 0;
973 }
974 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
975 rcu_assign_pointer(tsk->sighand, sig);
976 if (!sig)
977 return -ENOMEM;
978 atomic_set(&sig->count, 1);
979 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
980 return 0;
981 }
982
__cleanup_sighand(struct sighand_struct * sighand)983 void __cleanup_sighand(struct sighand_struct *sighand)
984 {
985 if (atomic_dec_and_test(&sighand->count)) {
986 signalfd_cleanup(sighand);
987 kmem_cache_free(sighand_cachep, sighand);
988 }
989 }
990
991
992 /*
993 * Initialize POSIX timer handling for a thread group.
994 */
posix_cpu_timers_init_group(struct signal_struct * sig)995 static void posix_cpu_timers_init_group(struct signal_struct *sig)
996 {
997 unsigned long cpu_limit;
998
999 /* Thread group counters. */
1000 thread_group_cputime_init(sig);
1001
1002 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1003 if (cpu_limit != RLIM_INFINITY) {
1004 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1005 sig->cputimer.running = 1;
1006 }
1007
1008 /* The timer lists. */
1009 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1010 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1011 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1012 }
1013
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1014 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1015 {
1016 struct signal_struct *sig;
1017
1018 if (clone_flags & CLONE_THREAD)
1019 return 0;
1020
1021 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1022 tsk->signal = sig;
1023 if (!sig)
1024 return -ENOMEM;
1025
1026 sig->nr_threads = 1;
1027 atomic_set(&sig->live, 1);
1028 atomic_set(&sig->sigcnt, 1);
1029 init_waitqueue_head(&sig->wait_chldexit);
1030 if (clone_flags & CLONE_NEWPID)
1031 sig->flags |= SIGNAL_UNKILLABLE;
1032 sig->curr_target = tsk;
1033 init_sigpending(&sig->shared_pending);
1034 INIT_LIST_HEAD(&sig->posix_timers);
1035
1036 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1037 sig->real_timer.function = it_real_fn;
1038
1039 task_lock(current->group_leader);
1040 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1041 task_unlock(current->group_leader);
1042
1043 posix_cpu_timers_init_group(sig);
1044
1045 tty_audit_fork(sig);
1046 sched_autogroup_fork(sig);
1047
1048 #ifdef CONFIG_CGROUPS
1049 init_rwsem(&sig->group_rwsem);
1050 #endif
1051
1052 sig->oom_adj = current->signal->oom_adj;
1053 sig->oom_score_adj = current->signal->oom_score_adj;
1054 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1055
1056 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1057 current->signal->is_child_subreaper;
1058
1059 mutex_init(&sig->cred_guard_mutex);
1060
1061 return 0;
1062 }
1063
copy_flags(unsigned long clone_flags,struct task_struct * p)1064 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1065 {
1066 unsigned long new_flags = p->flags;
1067
1068 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1069 new_flags |= PF_FORKNOEXEC;
1070 p->flags = new_flags;
1071 }
1072
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1073 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1074 {
1075 current->clear_child_tid = tidptr;
1076
1077 return task_pid_vnr(current);
1078 }
1079
rt_mutex_init_task(struct task_struct * p)1080 static void rt_mutex_init_task(struct task_struct *p)
1081 {
1082 raw_spin_lock_init(&p->pi_lock);
1083 #ifdef CONFIG_RT_MUTEXES
1084 plist_head_init(&p->pi_waiters);
1085 p->pi_blocked_on = NULL;
1086 #endif
1087 }
1088
1089 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1090 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1091 {
1092 mm->owner = p;
1093 }
1094 #endif /* CONFIG_MM_OWNER */
1095
1096 /*
1097 * Initialize POSIX timer handling for a single task.
1098 */
posix_cpu_timers_init(struct task_struct * tsk)1099 static void posix_cpu_timers_init(struct task_struct *tsk)
1100 {
1101 tsk->cputime_expires.prof_exp = 0;
1102 tsk->cputime_expires.virt_exp = 0;
1103 tsk->cputime_expires.sched_exp = 0;
1104 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1105 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1106 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1107 }
1108
1109 /*
1110 * This creates a new process as a copy of the old one,
1111 * but does not actually start it yet.
1112 *
1113 * It copies the registers, and all the appropriate
1114 * parts of the process environment (as per the clone
1115 * flags). The actual kick-off is left to the caller.
1116 */
copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)1117 static struct task_struct *copy_process(unsigned long clone_flags,
1118 unsigned long stack_start,
1119 struct pt_regs *regs,
1120 unsigned long stack_size,
1121 int __user *child_tidptr,
1122 struct pid *pid,
1123 int trace)
1124 {
1125 int retval;
1126 struct task_struct *p;
1127
1128 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1129 return ERR_PTR(-EINVAL);
1130
1131 /*
1132 * Thread groups must share signals as well, and detached threads
1133 * can only be started up within the thread group.
1134 */
1135 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1136 return ERR_PTR(-EINVAL);
1137
1138 /*
1139 * Shared signal handlers imply shared VM. By way of the above,
1140 * thread groups also imply shared VM. Blocking this case allows
1141 * for various simplifications in other code.
1142 */
1143 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1144 return ERR_PTR(-EINVAL);
1145
1146 /*
1147 * Siblings of global init remain as zombies on exit since they are
1148 * not reaped by their parent (swapper). To solve this and to avoid
1149 * multi-rooted process trees, prevent global and container-inits
1150 * from creating siblings.
1151 */
1152 if ((clone_flags & CLONE_PARENT) &&
1153 current->signal->flags & SIGNAL_UNKILLABLE)
1154 return ERR_PTR(-EINVAL);
1155
1156 retval = security_task_create(clone_flags);
1157 if (retval)
1158 goto fork_out;
1159
1160 retval = -ENOMEM;
1161 p = dup_task_struct(current);
1162 if (!p)
1163 goto fork_out;
1164
1165 ftrace_graph_init_task(p);
1166
1167 rt_mutex_init_task(p);
1168
1169 #ifdef CONFIG_PROVE_LOCKING
1170 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1171 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1172 #endif
1173 retval = -EAGAIN;
1174 if (atomic_read(&p->real_cred->user->processes) >=
1175 task_rlimit(p, RLIMIT_NPROC)) {
1176 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1177 p->real_cred->user != INIT_USER)
1178 goto bad_fork_free;
1179 }
1180 current->flags &= ~PF_NPROC_EXCEEDED;
1181
1182 retval = copy_creds(p, clone_flags);
1183 if (retval < 0)
1184 goto bad_fork_free;
1185
1186 /*
1187 * If multiple threads are within copy_process(), then this check
1188 * triggers too late. This doesn't hurt, the check is only there
1189 * to stop root fork bombs.
1190 */
1191 retval = -EAGAIN;
1192 if (nr_threads >= max_threads)
1193 goto bad_fork_cleanup_count;
1194
1195 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1196 goto bad_fork_cleanup_count;
1197
1198 p->did_exec = 0;
1199 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1200 copy_flags(clone_flags, p);
1201 INIT_LIST_HEAD(&p->children);
1202 INIT_LIST_HEAD(&p->sibling);
1203 rcu_copy_process(p);
1204 p->vfork_done = NULL;
1205 spin_lock_init(&p->alloc_lock);
1206
1207 init_sigpending(&p->pending);
1208
1209 p->utime = p->stime = p->gtime = 0;
1210 p->utimescaled = p->stimescaled = 0;
1211 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1212 p->prev_utime = p->prev_stime = 0;
1213 #endif
1214 #if defined(SPLIT_RSS_COUNTING)
1215 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1216 #endif
1217
1218 p->default_timer_slack_ns = current->timer_slack_ns;
1219
1220 task_io_accounting_init(&p->ioac);
1221 acct_clear_integrals(p);
1222
1223 posix_cpu_timers_init(p);
1224
1225 do_posix_clock_monotonic_gettime(&p->start_time);
1226 p->real_start_time = p->start_time;
1227 monotonic_to_bootbased(&p->real_start_time);
1228 p->io_context = NULL;
1229 p->audit_context = NULL;
1230 if (clone_flags & CLONE_THREAD)
1231 threadgroup_change_begin(current);
1232 cgroup_fork(p);
1233 #ifdef CONFIG_NUMA
1234 p->mempolicy = mpol_dup(p->mempolicy);
1235 if (IS_ERR(p->mempolicy)) {
1236 retval = PTR_ERR(p->mempolicy);
1237 p->mempolicy = NULL;
1238 goto bad_fork_cleanup_cgroup;
1239 }
1240 mpol_fix_fork_child_flag(p);
1241 #endif
1242 #ifdef CONFIG_CPUSETS
1243 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1244 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1245 seqcount_init(&p->mems_allowed_seq);
1246 #endif
1247 #ifdef CONFIG_TRACE_IRQFLAGS
1248 p->irq_events = 0;
1249 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1250 p->hardirqs_enabled = 1;
1251 #else
1252 p->hardirqs_enabled = 0;
1253 #endif
1254 p->hardirq_enable_ip = 0;
1255 p->hardirq_enable_event = 0;
1256 p->hardirq_disable_ip = _THIS_IP_;
1257 p->hardirq_disable_event = 0;
1258 p->softirqs_enabled = 1;
1259 p->softirq_enable_ip = _THIS_IP_;
1260 p->softirq_enable_event = 0;
1261 p->softirq_disable_ip = 0;
1262 p->softirq_disable_event = 0;
1263 p->hardirq_context = 0;
1264 p->softirq_context = 0;
1265 #endif
1266 #ifdef CONFIG_LOCKDEP
1267 p->lockdep_depth = 0; /* no locks held yet */
1268 p->curr_chain_key = 0;
1269 p->lockdep_recursion = 0;
1270 #endif
1271
1272 #ifdef CONFIG_DEBUG_MUTEXES
1273 p->blocked_on = NULL; /* not blocked yet */
1274 #endif
1275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1276 p->memcg_batch.do_batch = 0;
1277 p->memcg_batch.memcg = NULL;
1278 #endif
1279
1280 /* Perform scheduler related setup. Assign this task to a CPU. */
1281 sched_fork(p);
1282
1283 retval = perf_event_init_task(p);
1284 if (retval)
1285 goto bad_fork_cleanup_policy;
1286 retval = audit_alloc(p);
1287 if (retval)
1288 goto bad_fork_cleanup_policy;
1289 /* copy all the process information */
1290 retval = copy_semundo(clone_flags, p);
1291 if (retval)
1292 goto bad_fork_cleanup_audit;
1293 retval = copy_files(clone_flags, p);
1294 if (retval)
1295 goto bad_fork_cleanup_semundo;
1296 retval = copy_fs(clone_flags, p);
1297 if (retval)
1298 goto bad_fork_cleanup_files;
1299 retval = copy_sighand(clone_flags, p);
1300 if (retval)
1301 goto bad_fork_cleanup_fs;
1302 retval = copy_signal(clone_flags, p);
1303 if (retval)
1304 goto bad_fork_cleanup_sighand;
1305 retval = copy_mm(clone_flags, p);
1306 if (retval)
1307 goto bad_fork_cleanup_signal;
1308 retval = copy_namespaces(clone_flags, p);
1309 if (retval)
1310 goto bad_fork_cleanup_mm;
1311 retval = copy_io(clone_flags, p);
1312 if (retval)
1313 goto bad_fork_cleanup_namespaces;
1314 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1315 if (retval)
1316 goto bad_fork_cleanup_io;
1317
1318 if (pid != &init_struct_pid) {
1319 retval = -ENOMEM;
1320 pid = alloc_pid(p->nsproxy->pid_ns);
1321 if (!pid)
1322 goto bad_fork_cleanup_io;
1323 }
1324
1325 p->pid = pid_nr(pid);
1326 p->tgid = p->pid;
1327 if (clone_flags & CLONE_THREAD)
1328 p->tgid = current->tgid;
1329
1330 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1331 /*
1332 * Clear TID on mm_release()?
1333 */
1334 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1335 #ifdef CONFIG_BLOCK
1336 p->plug = NULL;
1337 #endif
1338 #ifdef CONFIG_FUTEX
1339 p->robust_list = NULL;
1340 #ifdef CONFIG_COMPAT
1341 p->compat_robust_list = NULL;
1342 #endif
1343 INIT_LIST_HEAD(&p->pi_state_list);
1344 p->pi_state_cache = NULL;
1345 #endif
1346 /*
1347 * sigaltstack should be cleared when sharing the same VM
1348 */
1349 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1350 p->sas_ss_sp = p->sas_ss_size = 0;
1351
1352 /*
1353 * Syscall tracing and stepping should be turned off in the
1354 * child regardless of CLONE_PTRACE.
1355 */
1356 user_disable_single_step(p);
1357 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1358 #ifdef TIF_SYSCALL_EMU
1359 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1360 #endif
1361 clear_all_latency_tracing(p);
1362
1363 /* ok, now we should be set up.. */
1364 if (clone_flags & CLONE_THREAD)
1365 p->exit_signal = -1;
1366 else if (clone_flags & CLONE_PARENT)
1367 p->exit_signal = current->group_leader->exit_signal;
1368 else
1369 p->exit_signal = (clone_flags & CSIGNAL);
1370
1371 p->pdeath_signal = 0;
1372 p->exit_state = 0;
1373
1374 p->nr_dirtied = 0;
1375 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1376 p->dirty_paused_when = 0;
1377
1378 /*
1379 * Ok, make it visible to the rest of the system.
1380 * We dont wake it up yet.
1381 */
1382 p->group_leader = p;
1383 INIT_LIST_HEAD(&p->thread_group);
1384
1385 /* Need tasklist lock for parent etc handling! */
1386 write_lock_irq(&tasklist_lock);
1387
1388 /* CLONE_PARENT re-uses the old parent */
1389 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1390 p->real_parent = current->real_parent;
1391 p->parent_exec_id = current->parent_exec_id;
1392 } else {
1393 p->real_parent = current;
1394 p->parent_exec_id = current->self_exec_id;
1395 }
1396
1397 spin_lock(¤t->sighand->siglock);
1398
1399 /*
1400 * Process group and session signals need to be delivered to just the
1401 * parent before the fork or both the parent and the child after the
1402 * fork. Restart if a signal comes in before we add the new process to
1403 * it's process group.
1404 * A fatal signal pending means that current will exit, so the new
1405 * thread can't slip out of an OOM kill (or normal SIGKILL).
1406 */
1407 recalc_sigpending();
1408 if (signal_pending(current)) {
1409 spin_unlock(¤t->sighand->siglock);
1410 write_unlock_irq(&tasklist_lock);
1411 retval = -ERESTARTNOINTR;
1412 goto bad_fork_free_pid;
1413 }
1414
1415 if (clone_flags & CLONE_THREAD) {
1416 current->signal->nr_threads++;
1417 atomic_inc(¤t->signal->live);
1418 atomic_inc(¤t->signal->sigcnt);
1419 p->group_leader = current->group_leader;
1420 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1421 }
1422
1423 if (likely(p->pid)) {
1424 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1425
1426 if (thread_group_leader(p)) {
1427 if (is_child_reaper(pid))
1428 p->nsproxy->pid_ns->child_reaper = p;
1429
1430 p->signal->leader_pid = pid;
1431 p->signal->tty = tty_kref_get(current->signal->tty);
1432 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1433 attach_pid(p, PIDTYPE_SID, task_session(current));
1434 list_add_tail(&p->sibling, &p->real_parent->children);
1435 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1436 __this_cpu_inc(process_counts);
1437 }
1438 attach_pid(p, PIDTYPE_PID, pid);
1439 nr_threads++;
1440 }
1441
1442 total_forks++;
1443 spin_unlock(¤t->sighand->siglock);
1444 syscall_tracepoint_update(p);
1445 write_unlock_irq(&tasklist_lock);
1446
1447 proc_fork_connector(p);
1448 cgroup_post_fork(p);
1449 if (clone_flags & CLONE_THREAD)
1450 threadgroup_change_end(current);
1451 perf_event_fork(p);
1452
1453 trace_task_newtask(p, clone_flags);
1454
1455 return p;
1456
1457 bad_fork_free_pid:
1458 if (pid != &init_struct_pid)
1459 free_pid(pid);
1460 bad_fork_cleanup_io:
1461 if (p->io_context)
1462 exit_io_context(p);
1463 bad_fork_cleanup_namespaces:
1464 if (unlikely(clone_flags & CLONE_NEWPID))
1465 pid_ns_release_proc(p->nsproxy->pid_ns);
1466 exit_task_namespaces(p);
1467 bad_fork_cleanup_mm:
1468 if (p->mm)
1469 mmput(p->mm);
1470 bad_fork_cleanup_signal:
1471 if (!(clone_flags & CLONE_THREAD))
1472 free_signal_struct(p->signal);
1473 bad_fork_cleanup_sighand:
1474 __cleanup_sighand(p->sighand);
1475 bad_fork_cleanup_fs:
1476 exit_fs(p); /* blocking */
1477 bad_fork_cleanup_files:
1478 exit_files(p); /* blocking */
1479 bad_fork_cleanup_semundo:
1480 exit_sem(p);
1481 bad_fork_cleanup_audit:
1482 audit_free(p);
1483 bad_fork_cleanup_policy:
1484 perf_event_free_task(p);
1485 #ifdef CONFIG_NUMA
1486 mpol_put(p->mempolicy);
1487 bad_fork_cleanup_cgroup:
1488 #endif
1489 if (clone_flags & CLONE_THREAD)
1490 threadgroup_change_end(current);
1491 cgroup_exit(p, 0);
1492 delayacct_tsk_free(p);
1493 module_put(task_thread_info(p)->exec_domain->module);
1494 bad_fork_cleanup_count:
1495 atomic_dec(&p->cred->user->processes);
1496 exit_creds(p);
1497 bad_fork_free:
1498 free_task(p);
1499 fork_out:
1500 return ERR_PTR(retval);
1501 }
1502
idle_regs(struct pt_regs * regs)1503 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1504 {
1505 memset(regs, 0, sizeof(struct pt_regs));
1506 return regs;
1507 }
1508
init_idle_pids(struct pid_link * links)1509 static inline void init_idle_pids(struct pid_link *links)
1510 {
1511 enum pid_type type;
1512
1513 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1514 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1515 links[type].pid = &init_struct_pid;
1516 }
1517 }
1518
fork_idle(int cpu)1519 struct task_struct * __cpuinit fork_idle(int cpu)
1520 {
1521 struct task_struct *task;
1522 struct pt_regs regs;
1523
1524 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
1525 &init_struct_pid, 0);
1526 if (!IS_ERR(task)) {
1527 init_idle_pids(task->pids);
1528 init_idle(task, cpu);
1529 }
1530
1531 return task;
1532 }
1533
1534 /*
1535 * Ok, this is the main fork-routine.
1536 *
1537 * It copies the process, and if successful kick-starts
1538 * it and waits for it to finish using the VM if required.
1539 */
do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1540 long do_fork(unsigned long clone_flags,
1541 unsigned long stack_start,
1542 struct pt_regs *regs,
1543 unsigned long stack_size,
1544 int __user *parent_tidptr,
1545 int __user *child_tidptr)
1546 {
1547 struct task_struct *p;
1548 int trace = 0;
1549 long nr;
1550
1551 /*
1552 * Do some preliminary argument and permissions checking before we
1553 * actually start allocating stuff
1554 */
1555 if (clone_flags & CLONE_NEWUSER) {
1556 if (clone_flags & CLONE_THREAD)
1557 return -EINVAL;
1558 /* hopefully this check will go away when userns support is
1559 * complete
1560 */
1561 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1562 !capable(CAP_SETGID))
1563 return -EPERM;
1564 }
1565
1566 /*
1567 * Determine whether and which event to report to ptracer. When
1568 * called from kernel_thread or CLONE_UNTRACED is explicitly
1569 * requested, no event is reported; otherwise, report if the event
1570 * for the type of forking is enabled.
1571 */
1572 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1573 if (clone_flags & CLONE_VFORK)
1574 trace = PTRACE_EVENT_VFORK;
1575 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1576 trace = PTRACE_EVENT_CLONE;
1577 else
1578 trace = PTRACE_EVENT_FORK;
1579
1580 if (likely(!ptrace_event_enabled(current, trace)))
1581 trace = 0;
1582 }
1583
1584 p = copy_process(clone_flags, stack_start, regs, stack_size,
1585 child_tidptr, NULL, trace);
1586 /*
1587 * Do this prior waking up the new thread - the thread pointer
1588 * might get invalid after that point, if the thread exits quickly.
1589 */
1590 if (!IS_ERR(p)) {
1591 struct completion vfork;
1592
1593 trace_sched_process_fork(current, p);
1594
1595 nr = task_pid_vnr(p);
1596
1597 if (clone_flags & CLONE_PARENT_SETTID)
1598 put_user(nr, parent_tidptr);
1599
1600 if (clone_flags & CLONE_VFORK) {
1601 p->vfork_done = &vfork;
1602 init_completion(&vfork);
1603 get_task_struct(p);
1604 }
1605
1606 wake_up_new_task(p);
1607
1608 /* forking complete and child started to run, tell ptracer */
1609 if (unlikely(trace))
1610 ptrace_event(trace, nr);
1611
1612 if (clone_flags & CLONE_VFORK) {
1613 if (!wait_for_vfork_done(p, &vfork))
1614 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1615 }
1616 } else {
1617 nr = PTR_ERR(p);
1618 }
1619 return nr;
1620 }
1621
1622 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1623 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1624 #endif
1625
sighand_ctor(void * data)1626 static void sighand_ctor(void *data)
1627 {
1628 struct sighand_struct *sighand = data;
1629
1630 spin_lock_init(&sighand->siglock);
1631 init_waitqueue_head(&sighand->signalfd_wqh);
1632 }
1633
proc_caches_init(void)1634 void __init proc_caches_init(void)
1635 {
1636 sighand_cachep = kmem_cache_create("sighand_cache",
1637 sizeof(struct sighand_struct), 0,
1638 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1639 SLAB_NOTRACK, sighand_ctor);
1640 signal_cachep = kmem_cache_create("signal_cache",
1641 sizeof(struct signal_struct), 0,
1642 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1643 files_cachep = kmem_cache_create("files_cache",
1644 sizeof(struct files_struct), 0,
1645 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1646 fs_cachep = kmem_cache_create("fs_cache",
1647 sizeof(struct fs_struct), 0,
1648 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1649 /*
1650 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1651 * whole struct cpumask for the OFFSTACK case. We could change
1652 * this to *only* allocate as much of it as required by the
1653 * maximum number of CPU's we can ever have. The cpumask_allocation
1654 * is at the end of the structure, exactly for that reason.
1655 */
1656 mm_cachep = kmem_cache_create("mm_struct",
1657 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1658 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1659 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1660 mmap_init();
1661 nsproxy_cache_init();
1662 }
1663
1664 /*
1665 * Check constraints on flags passed to the unshare system call.
1666 */
check_unshare_flags(unsigned long unshare_flags)1667 static int check_unshare_flags(unsigned long unshare_flags)
1668 {
1669 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1670 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1671 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1672 return -EINVAL;
1673 /*
1674 * Not implemented, but pretend it works if there is nothing to
1675 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1676 * needs to unshare vm.
1677 */
1678 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1679 /* FIXME: get_task_mm() increments ->mm_users */
1680 if (atomic_read(¤t->mm->mm_users) > 1)
1681 return -EINVAL;
1682 }
1683
1684 return 0;
1685 }
1686
1687 /*
1688 * Unshare the filesystem structure if it is being shared
1689 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1690 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1691 {
1692 struct fs_struct *fs = current->fs;
1693
1694 if (!(unshare_flags & CLONE_FS) || !fs)
1695 return 0;
1696
1697 /* don't need lock here; in the worst case we'll do useless copy */
1698 if (fs->users == 1)
1699 return 0;
1700
1701 *new_fsp = copy_fs_struct(fs);
1702 if (!*new_fsp)
1703 return -ENOMEM;
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * Unshare file descriptor table if it is being shared
1710 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1711 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1712 {
1713 struct files_struct *fd = current->files;
1714 int error = 0;
1715
1716 if ((unshare_flags & CLONE_FILES) &&
1717 (fd && atomic_read(&fd->count) > 1)) {
1718 *new_fdp = dup_fd(fd, &error);
1719 if (!*new_fdp)
1720 return error;
1721 }
1722
1723 return 0;
1724 }
1725
1726 /*
1727 * unshare allows a process to 'unshare' part of the process
1728 * context which was originally shared using clone. copy_*
1729 * functions used by do_fork() cannot be used here directly
1730 * because they modify an inactive task_struct that is being
1731 * constructed. Here we are modifying the current, active,
1732 * task_struct.
1733 */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1734 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1735 {
1736 struct fs_struct *fs, *new_fs = NULL;
1737 struct files_struct *fd, *new_fd = NULL;
1738 struct nsproxy *new_nsproxy = NULL;
1739 int do_sysvsem = 0;
1740 int err;
1741
1742 err = check_unshare_flags(unshare_flags);
1743 if (err)
1744 goto bad_unshare_out;
1745
1746 /*
1747 * If unsharing namespace, must also unshare filesystem information.
1748 */
1749 if (unshare_flags & CLONE_NEWNS)
1750 unshare_flags |= CLONE_FS;
1751 /*
1752 * CLONE_NEWIPC must also detach from the undolist: after switching
1753 * to a new ipc namespace, the semaphore arrays from the old
1754 * namespace are unreachable.
1755 */
1756 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1757 do_sysvsem = 1;
1758 err = unshare_fs(unshare_flags, &new_fs);
1759 if (err)
1760 goto bad_unshare_out;
1761 err = unshare_fd(unshare_flags, &new_fd);
1762 if (err)
1763 goto bad_unshare_cleanup_fs;
1764 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1765 if (err)
1766 goto bad_unshare_cleanup_fd;
1767
1768 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1769 if (do_sysvsem) {
1770 /*
1771 * CLONE_SYSVSEM is equivalent to sys_exit().
1772 */
1773 exit_sem(current);
1774 }
1775
1776 if (new_nsproxy) {
1777 switch_task_namespaces(current, new_nsproxy);
1778 new_nsproxy = NULL;
1779 }
1780
1781 task_lock(current);
1782
1783 if (new_fs) {
1784 fs = current->fs;
1785 spin_lock(&fs->lock);
1786 current->fs = new_fs;
1787 if (--fs->users)
1788 new_fs = NULL;
1789 else
1790 new_fs = fs;
1791 spin_unlock(&fs->lock);
1792 }
1793
1794 if (new_fd) {
1795 fd = current->files;
1796 current->files = new_fd;
1797 new_fd = fd;
1798 }
1799
1800 task_unlock(current);
1801 }
1802
1803 if (new_nsproxy)
1804 put_nsproxy(new_nsproxy);
1805
1806 bad_unshare_cleanup_fd:
1807 if (new_fd)
1808 put_files_struct(new_fd);
1809
1810 bad_unshare_cleanup_fs:
1811 if (new_fs)
1812 free_fs_struct(new_fs);
1813
1814 bad_unshare_out:
1815 return err;
1816 }
1817
1818 /*
1819 * Helper to unshare the files of the current task.
1820 * We don't want to expose copy_files internals to
1821 * the exec layer of the kernel.
1822 */
1823
unshare_files(struct files_struct ** displaced)1824 int unshare_files(struct files_struct **displaced)
1825 {
1826 struct task_struct *task = current;
1827 struct files_struct *copy = NULL;
1828 int error;
1829
1830 error = unshare_fd(CLONE_FILES, ©);
1831 if (error || !copy) {
1832 *displaced = NULL;
1833 return error;
1834 }
1835 *displaced = task->files;
1836 task_lock(task);
1837 task->files = copy;
1838 task_unlock(task);
1839 return 0;
1840 }
1841