1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121 * support it?
122 */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
128 */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
134 */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
dump_cpu_features(void)137 void dump_cpu_features(void)
138 {
139 /* file-wide pr_fmt adds "CPU features: " prefix */
140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
144 .sys_reg = SYS_##reg, \
145 .field_pos = reg##_##field##_SHIFT, \
146 .field_width = reg##_##field##_WIDTH, \
147 .sign = reg##_##field##_SIGNED, \
148 .min_field_value = reg##_##field##_##min_value,
149
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151 { \
152 .sign = SIGNED, \
153 .visible = VISIBLE, \
154 .strict = STRICT, \
155 .type = TYPE, \
156 .shift = SHIFT, \
157 .width = WIDTH, \
158 .safe_val = SAFE_VAL, \
159 }
160
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168
169 #define ARM64_FTR_END \
170 { \
171 .width = 0, \
172 }
173
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175
176 static bool __system_matches_cap(unsigned int n);
177
178 /*
179 * NOTE: Any changes to the visibility of features should be kept in
180 * sync with the documentation of the CPU feature register ABI.
181 */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197 ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219 ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
231 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
234 ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
248 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
249 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
254 ARM64_FTR_END,
255 };
256
257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
258 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
259 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
262 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
263 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
264 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
265 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
266 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
267 ARM64_FTR_END,
268 };
269
270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
271 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
279 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
285 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
287 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
289 ARM64_FTR_END,
290 };
291
292 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
293 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
294 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
295 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
299 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
303 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
307 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
311 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
315 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
316 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
317 ARM64_FTR_END,
318 };
319
320 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
321 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
324 /*
325 * Page size not being supported at Stage-2 is not fatal. You
326 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
327 * your favourite nesting hypervisor.
328 *
329 * There is a small corner case where the hypervisor explicitly
330 * advertises a given granule size at Stage-2 (value 2) on some
331 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
332 * vCPUs. Although this is not forbidden by the architecture, it
333 * indicates that the hypervisor is being silly (or buggy).
334 *
335 * We make no effort to cope with this and pretend that if these
336 * fields are inconsistent across vCPUs, then it isn't worth
337 * trying to bring KVM up.
338 */
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
340 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
341 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
342 /*
343 * We already refuse to boot CPUs that don't support our configured
344 * page size, so we can only detect mismatches for a page size other
345 * than the one we're currently using. Unfortunately, SoCs like this
346 * exist in the wild so, even though we don't like it, we'll have to go
347 * along with it and treat them as non-strict.
348 */
349 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
350 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
352
353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
354 /* Linux shouldn't care about secure memory */
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
357 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
358 /*
359 * Differing PARange is fine as long as all peripherals and memory are mapped
360 * within the minimum PARange of all CPUs
361 */
362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
363 ARM64_FTR_END,
364 };
365
366 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
368 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
380 ARM64_FTR_END,
381 };
382
383 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
390 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
394 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
395 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
396 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
397 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
398 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
399 ARM64_FTR_END,
400 };
401
402 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
405 ARM64_FTR_END,
406 };
407
408 static const struct arm64_ftr_bits ftr_ctr[] = {
409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
414 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
415 /*
416 * Linux can handle differing I-cache policies. Userspace JITs will
417 * make use of *minLine.
418 * If we have differing I-cache policies, report it as the weakest - VIPT.
419 */
420 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
421 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
422 ARM64_FTR_END,
423 };
424
425 static struct arm64_ftr_override __ro_after_init no_override = { };
426
427 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
428 .name = "SYS_CTR_EL0",
429 .ftr_bits = ftr_ctr,
430 .override = &no_override,
431 };
432
433 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
434 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
439 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
442 ARM64_FTR_END,
443 };
444
445 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
446 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
451 /*
452 * We can instantiate multiple PMU instances with different levels
453 * of support.
454 */
455 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
457 ARM64_FTR_END,
458 };
459
460 static const struct arm64_ftr_bits ftr_mvfr0[] = {
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
469 ARM64_FTR_END,
470 };
471
472 static const struct arm64_ftr_bits ftr_mvfr1[] = {
473 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
478 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
481 ARM64_FTR_END,
482 };
483
484 static const struct arm64_ftr_bits ftr_mvfr2[] = {
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
487 ARM64_FTR_END,
488 };
489
490 static const struct arm64_ftr_bits ftr_dczid[] = {
491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
492 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
493 ARM64_FTR_END,
494 };
495
496 static const struct arm64_ftr_bits ftr_gmid[] = {
497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
498 ARM64_FTR_END,
499 };
500
501 static const struct arm64_ftr_bits ftr_id_isar0[] = {
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
505 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
509 ARM64_FTR_END,
510 };
511
512 static const struct arm64_ftr_bits ftr_id_isar5[] = {
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
516 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
517 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
518 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
519 ARM64_FTR_END,
520 };
521
522 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
523 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
524 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
530
531 /*
532 * SpecSEI = 1 indicates that the PE might generate an SError on an
533 * external abort on speculative read. It is safe to assume that an
534 * SError might be generated than it will not be. Hence it has been
535 * classified as FTR_HIGHER_SAFE.
536 */
537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
538 ARM64_FTR_END,
539 };
540
541 static const struct arm64_ftr_bits ftr_id_isar4[] = {
542 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
543 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
544 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
550 ARM64_FTR_END,
551 };
552
553 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
554 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
555 ARM64_FTR_END,
556 };
557
558 static const struct arm64_ftr_bits ftr_id_isar6[] = {
559 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
560 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
562 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
563 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
564 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
565 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
566 ARM64_FTR_END,
567 };
568
569 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
576 ARM64_FTR_END,
577 };
578
579 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
582 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
583 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
586 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
587 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
588 ARM64_FTR_END,
589 };
590
591 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
592 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
593 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
594 ARM64_FTR_END,
595 };
596
597 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
598 /* [31:28] TraceFilt */
599 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
605 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
606 ARM64_FTR_END,
607 };
608
609 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
610 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
611 ARM64_FTR_END,
612 };
613
614 static const struct arm64_ftr_bits ftr_zcr[] = {
615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
616 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */
617 ARM64_FTR_END,
618 };
619
620 static const struct arm64_ftr_bits ftr_smcr[] = {
621 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
622 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
623 ARM64_FTR_END,
624 };
625
626 /*
627 * Common ftr bits for a 32bit register with all hidden, strict
628 * attributes, with 4bit feature fields and a default safe value of
629 * 0. Covers the following 32bit registers:
630 * id_isar[1-3], id_mmfr[1-3]
631 */
632 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
633 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
640 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
641 ARM64_FTR_END,
642 };
643
644 /* Table for a single 32bit feature value */
645 static const struct arm64_ftr_bits ftr_single32[] = {
646 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
647 ARM64_FTR_END,
648 };
649
650 static const struct arm64_ftr_bits ftr_raz[] = {
651 ARM64_FTR_END,
652 };
653
654 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
655 .sys_id = id, \
656 .reg = &(struct arm64_ftr_reg){ \
657 .name = id_str, \
658 .override = (ovr), \
659 .ftr_bits = &((table)[0]), \
660 }}
661
662 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
663 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
664
665 #define ARM64_FTR_REG(id, table) \
666 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
667
668 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
669 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
670 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
671 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
672 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
673 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
674 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
675
676 struct arm64_ftr_override arm64_sw_feature_override;
677
678 static const struct __ftr_reg_entry {
679 u32 sys_id;
680 struct arm64_ftr_reg *reg;
681 } arm64_ftr_regs[] = {
682
683 /* Op1 = 0, CRn = 0, CRm = 1 */
684 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
685 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
686 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
687 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
688 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
689 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
690 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
691
692 /* Op1 = 0, CRn = 0, CRm = 2 */
693 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
694 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
695 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
696 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
697 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
698 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
699 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
700 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
701
702 /* Op1 = 0, CRn = 0, CRm = 3 */
703 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
704 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
705 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
706 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
707 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
708 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
709
710 /* Op1 = 0, CRn = 0, CRm = 4 */
711 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
712 &id_aa64pfr0_override),
713 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
714 &id_aa64pfr1_override),
715 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
716 &id_aa64zfr0_override),
717 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
718 &id_aa64smfr0_override),
719
720 /* Op1 = 0, CRn = 0, CRm = 5 */
721 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
722 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
723
724 /* Op1 = 0, CRn = 0, CRm = 6 */
725 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
726 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
727 &id_aa64isar1_override),
728 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
729 &id_aa64isar2_override),
730
731 /* Op1 = 0, CRn = 0, CRm = 7 */
732 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
733 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
734 &id_aa64mmfr1_override),
735 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
736 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
737
738 /* Op1 = 0, CRn = 1, CRm = 2 */
739 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
740 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
741
742 /* Op1 = 1, CRn = 0, CRm = 0 */
743 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
744
745 /* Op1 = 3, CRn = 0, CRm = 0 */
746 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
747 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
748
749 /* Op1 = 3, CRn = 14, CRm = 0 */
750 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
751 };
752
search_cmp_ftr_reg(const void * id,const void * regp)753 static int search_cmp_ftr_reg(const void *id, const void *regp)
754 {
755 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
756 }
757
758 /*
759 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
760 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
761 * ascending order of sys_id, we use binary search to find a matching
762 * entry.
763 *
764 * returns - Upon success, matching ftr_reg entry for id.
765 * - NULL on failure. It is upto the caller to decide
766 * the impact of a failure.
767 */
get_arm64_ftr_reg_nowarn(u32 sys_id)768 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
769 {
770 const struct __ftr_reg_entry *ret;
771
772 ret = bsearch((const void *)(unsigned long)sys_id,
773 arm64_ftr_regs,
774 ARRAY_SIZE(arm64_ftr_regs),
775 sizeof(arm64_ftr_regs[0]),
776 search_cmp_ftr_reg);
777 if (ret)
778 return ret->reg;
779 return NULL;
780 }
781
782 /*
783 * get_arm64_ftr_reg - Looks up a feature register entry using
784 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
785 *
786 * returns - Upon success, matching ftr_reg entry for id.
787 * - NULL on failure but with an WARN_ON().
788 */
get_arm64_ftr_reg(u32 sys_id)789 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
790 {
791 struct arm64_ftr_reg *reg;
792
793 reg = get_arm64_ftr_reg_nowarn(sys_id);
794
795 /*
796 * Requesting a non-existent register search is an error. Warn
797 * and let the caller handle it.
798 */
799 WARN_ON(!reg);
800 return reg;
801 }
802
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)803 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
804 s64 ftr_val)
805 {
806 u64 mask = arm64_ftr_mask(ftrp);
807
808 reg &= ~mask;
809 reg |= (ftr_val << ftrp->shift) & mask;
810 return reg;
811 }
812
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)813 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
814 s64 cur)
815 {
816 s64 ret = 0;
817
818 switch (ftrp->type) {
819 case FTR_EXACT:
820 ret = ftrp->safe_val;
821 break;
822 case FTR_LOWER_SAFE:
823 ret = min(new, cur);
824 break;
825 case FTR_HIGHER_OR_ZERO_SAFE:
826 if (!cur || !new)
827 break;
828 fallthrough;
829 case FTR_HIGHER_SAFE:
830 ret = max(new, cur);
831 break;
832 default:
833 BUG();
834 }
835
836 return ret;
837 }
838
sort_ftr_regs(void)839 static void __init sort_ftr_regs(void)
840 {
841 unsigned int i;
842
843 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
844 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
845 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
846 unsigned int j = 0;
847
848 /*
849 * Features here must be sorted in descending order with respect
850 * to their shift values and should not overlap with each other.
851 */
852 for (; ftr_bits->width != 0; ftr_bits++, j++) {
853 unsigned int width = ftr_reg->ftr_bits[j].width;
854 unsigned int shift = ftr_reg->ftr_bits[j].shift;
855 unsigned int prev_shift;
856
857 WARN((shift + width) > 64,
858 "%s has invalid feature at shift %d\n",
859 ftr_reg->name, shift);
860
861 /*
862 * Skip the first feature. There is nothing to
863 * compare against for now.
864 */
865 if (j == 0)
866 continue;
867
868 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
869 WARN((shift + width) > prev_shift,
870 "%s has feature overlap at shift %d\n",
871 ftr_reg->name, shift);
872 }
873
874 /*
875 * Skip the first register. There is nothing to
876 * compare against for now.
877 */
878 if (i == 0)
879 continue;
880 /*
881 * Registers here must be sorted in ascending order with respect
882 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
883 * to work correctly.
884 */
885 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
886 }
887 }
888
889 /*
890 * Initialise the CPU feature register from Boot CPU values.
891 * Also initiliases the strict_mask for the register.
892 * Any bits that are not covered by an arm64_ftr_bits entry are considered
893 * RES0 for the system-wide value, and must strictly match.
894 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)895 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
896 {
897 u64 val = 0;
898 u64 strict_mask = ~0x0ULL;
899 u64 user_mask = 0;
900 u64 valid_mask = 0;
901
902 const struct arm64_ftr_bits *ftrp;
903 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
904
905 if (!reg)
906 return;
907
908 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
909 u64 ftr_mask = arm64_ftr_mask(ftrp);
910 s64 ftr_new = arm64_ftr_value(ftrp, new);
911 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
912
913 if ((ftr_mask & reg->override->mask) == ftr_mask) {
914 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
915 char *str = NULL;
916
917 if (ftr_ovr != tmp) {
918 /* Unsafe, remove the override */
919 reg->override->mask &= ~ftr_mask;
920 reg->override->val &= ~ftr_mask;
921 tmp = ftr_ovr;
922 str = "ignoring override";
923 } else if (ftr_new != tmp) {
924 /* Override was valid */
925 ftr_new = tmp;
926 str = "forced";
927 } else if (ftr_ovr == tmp) {
928 /* Override was the safe value */
929 str = "already set";
930 }
931
932 if (str)
933 pr_warn("%s[%d:%d]: %s to %llx\n",
934 reg->name,
935 ftrp->shift + ftrp->width - 1,
936 ftrp->shift, str, tmp);
937 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
938 reg->override->val &= ~ftr_mask;
939 pr_warn("%s[%d:%d]: impossible override, ignored\n",
940 reg->name,
941 ftrp->shift + ftrp->width - 1,
942 ftrp->shift);
943 }
944
945 val = arm64_ftr_set_value(ftrp, val, ftr_new);
946
947 valid_mask |= ftr_mask;
948 if (!ftrp->strict)
949 strict_mask &= ~ftr_mask;
950 if (ftrp->visible)
951 user_mask |= ftr_mask;
952 else
953 reg->user_val = arm64_ftr_set_value(ftrp,
954 reg->user_val,
955 ftrp->safe_val);
956 }
957
958 val &= valid_mask;
959
960 reg->sys_val = val;
961 reg->strict_mask = strict_mask;
962 reg->user_mask = user_mask;
963 }
964
965 extern const struct arm64_cpu_capabilities arm64_errata[];
966 static const struct arm64_cpu_capabilities arm64_features[];
967
968 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)969 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
970 {
971 for (; caps->matches; caps++) {
972 if (WARN(caps->capability >= ARM64_NCAPS,
973 "Invalid capability %d\n", caps->capability))
974 continue;
975 if (WARN(cpucap_ptrs[caps->capability],
976 "Duplicate entry for capability %d\n",
977 caps->capability))
978 continue;
979 cpucap_ptrs[caps->capability] = caps;
980 }
981 }
982
init_cpucap_indirect_list(void)983 static void __init init_cpucap_indirect_list(void)
984 {
985 init_cpucap_indirect_list_from_array(arm64_features);
986 init_cpucap_indirect_list_from_array(arm64_errata);
987 }
988
989 static void __init setup_boot_cpu_capabilities(void);
990
init_32bit_cpu_features(struct cpuinfo_32bit * info)991 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
992 {
993 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
994 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
995 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
996 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
997 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
998 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
999 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1000 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1001 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1002 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1003 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1004 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1005 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1006 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1007 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1008 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1009 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1010 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1011 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1012 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1013 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1014 }
1015
init_cpu_features(struct cpuinfo_arm64 * info)1016 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1017 {
1018 /* Before we start using the tables, make sure it is sorted */
1019 sort_ftr_regs();
1020
1021 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1022 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1023 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1024 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1025 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1026 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1027 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1028 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1029 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1030 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1031 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1032 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1033 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1034 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1035 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1036 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1037
1038 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1039 init_32bit_cpu_features(&info->aarch32);
1040
1041 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1042 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1043 info->reg_zcr = read_zcr_features();
1044 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1045 vec_init_vq_map(ARM64_VEC_SVE);
1046 }
1047
1048 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1049 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1050 info->reg_smcr = read_smcr_features();
1051 /*
1052 * We mask out SMPS since even if the hardware
1053 * supports priorities the kernel does not at present
1054 * and we block access to them.
1055 */
1056 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1057 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1058 vec_init_vq_map(ARM64_VEC_SME);
1059 }
1060
1061 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1062 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1063
1064 /*
1065 * Initialize the indirect array of CPU capabilities pointers before we
1066 * handle the boot CPU below.
1067 */
1068 init_cpucap_indirect_list();
1069
1070 /*
1071 * Detect and enable early CPU capabilities based on the boot CPU,
1072 * after we have initialised the CPU feature infrastructure.
1073 */
1074 setup_boot_cpu_capabilities();
1075 }
1076
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1077 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1078 {
1079 const struct arm64_ftr_bits *ftrp;
1080
1081 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1082 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1083 s64 ftr_new = arm64_ftr_value(ftrp, new);
1084
1085 if (ftr_cur == ftr_new)
1086 continue;
1087 /* Find a safe value */
1088 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1089 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1090 }
1091
1092 }
1093
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1094 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1095 {
1096 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1097
1098 if (!regp)
1099 return 0;
1100
1101 update_cpu_ftr_reg(regp, val);
1102 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1103 return 0;
1104 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1105 regp->name, boot, cpu, val);
1106 return 1;
1107 }
1108
relax_cpu_ftr_reg(u32 sys_id,int field)1109 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1110 {
1111 const struct arm64_ftr_bits *ftrp;
1112 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1113
1114 if (!regp)
1115 return;
1116
1117 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1118 if (ftrp->shift == field) {
1119 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1120 break;
1121 }
1122 }
1123
1124 /* Bogus field? */
1125 WARN_ON(!ftrp->width);
1126 }
1127
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1128 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1129 struct cpuinfo_arm64 *boot)
1130 {
1131 static bool boot_cpu_32bit_regs_overridden = false;
1132
1133 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1134 return;
1135
1136 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1137 return;
1138
1139 boot->aarch32 = info->aarch32;
1140 init_32bit_cpu_features(&boot->aarch32);
1141 boot_cpu_32bit_regs_overridden = true;
1142 }
1143
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1144 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1145 struct cpuinfo_32bit *boot)
1146 {
1147 int taint = 0;
1148 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1149
1150 /*
1151 * If we don't have AArch32 at EL1, then relax the strictness of
1152 * EL1-dependent register fields to avoid spurious sanity check fails.
1153 */
1154 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1155 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1156 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1157 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1158 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1159 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1160 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1161 }
1162
1163 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1164 info->reg_id_dfr0, boot->reg_id_dfr0);
1165 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1166 info->reg_id_dfr1, boot->reg_id_dfr1);
1167 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1168 info->reg_id_isar0, boot->reg_id_isar0);
1169 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1170 info->reg_id_isar1, boot->reg_id_isar1);
1171 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1172 info->reg_id_isar2, boot->reg_id_isar2);
1173 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1174 info->reg_id_isar3, boot->reg_id_isar3);
1175 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1176 info->reg_id_isar4, boot->reg_id_isar4);
1177 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1178 info->reg_id_isar5, boot->reg_id_isar5);
1179 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1180 info->reg_id_isar6, boot->reg_id_isar6);
1181
1182 /*
1183 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1184 * ACTLR formats could differ across CPUs and therefore would have to
1185 * be trapped for virtualization anyway.
1186 */
1187 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1188 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1189 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1190 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1191 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1192 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1193 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1194 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1195 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1196 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1197 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1198 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1199 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1200 info->reg_id_pfr0, boot->reg_id_pfr0);
1201 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1202 info->reg_id_pfr1, boot->reg_id_pfr1);
1203 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1204 info->reg_id_pfr2, boot->reg_id_pfr2);
1205 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1206 info->reg_mvfr0, boot->reg_mvfr0);
1207 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1208 info->reg_mvfr1, boot->reg_mvfr1);
1209 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1210 info->reg_mvfr2, boot->reg_mvfr2);
1211
1212 return taint;
1213 }
1214
1215 /*
1216 * Update system wide CPU feature registers with the values from a
1217 * non-boot CPU. Also performs SANITY checks to make sure that there
1218 * aren't any insane variations from that of the boot CPU.
1219 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1220 void update_cpu_features(int cpu,
1221 struct cpuinfo_arm64 *info,
1222 struct cpuinfo_arm64 *boot)
1223 {
1224 int taint = 0;
1225
1226 /*
1227 * The kernel can handle differing I-cache policies, but otherwise
1228 * caches should look identical. Userspace JITs will make use of
1229 * *minLine.
1230 */
1231 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1232 info->reg_ctr, boot->reg_ctr);
1233
1234 /*
1235 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1236 * could result in too much or too little memory being zeroed if a
1237 * process is preempted and migrated between CPUs.
1238 */
1239 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1240 info->reg_dczid, boot->reg_dczid);
1241
1242 /* If different, timekeeping will be broken (especially with KVM) */
1243 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1244 info->reg_cntfrq, boot->reg_cntfrq);
1245
1246 /*
1247 * The kernel uses self-hosted debug features and expects CPUs to
1248 * support identical debug features. We presently need CTX_CMPs, WRPs,
1249 * and BRPs to be identical.
1250 * ID_AA64DFR1 is currently RES0.
1251 */
1252 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1253 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1254 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1255 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1256 /*
1257 * Even in big.LITTLE, processors should be identical instruction-set
1258 * wise.
1259 */
1260 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1261 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1262 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1263 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1264 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1265 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1266
1267 /*
1268 * Differing PARange support is fine as long as all peripherals and
1269 * memory are mapped within the minimum PARange of all CPUs.
1270 * Linux should not care about secure memory.
1271 */
1272 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1273 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1274 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1275 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1276 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1277 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1278 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1279 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1280
1281 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1282 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1283 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1284 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1285
1286 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1287 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1288
1289 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1290 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1291
1292 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1293 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1294 info->reg_zcr = read_zcr_features();
1295 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1296 info->reg_zcr, boot->reg_zcr);
1297
1298 /* Probe vector lengths */
1299 if (!system_capabilities_finalized())
1300 vec_update_vq_map(ARM64_VEC_SVE);
1301 }
1302
1303 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1304 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1305 info->reg_smcr = read_smcr_features();
1306 /*
1307 * We mask out SMPS since even if the hardware
1308 * supports priorities the kernel does not at present
1309 * and we block access to them.
1310 */
1311 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1312 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1313 info->reg_smcr, boot->reg_smcr);
1314
1315 /* Probe vector lengths */
1316 if (!system_capabilities_finalized())
1317 vec_update_vq_map(ARM64_VEC_SME);
1318 }
1319
1320 /*
1321 * The kernel uses the LDGM/STGM instructions and the number of tags
1322 * they read/write depends on the GMID_EL1.BS field. Check that the
1323 * value is the same on all CPUs.
1324 */
1325 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1326 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1327 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1328 info->reg_gmid, boot->reg_gmid);
1329 }
1330
1331 /*
1332 * If we don't have AArch32 at all then skip the checks entirely
1333 * as the register values may be UNKNOWN and we're not going to be
1334 * using them for anything.
1335 *
1336 * This relies on a sanitised view of the AArch64 ID registers
1337 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1338 */
1339 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1340 lazy_init_32bit_cpu_features(info, boot);
1341 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1342 &boot->aarch32);
1343 }
1344
1345 /*
1346 * Mismatched CPU features are a recipe for disaster. Don't even
1347 * pretend to support them.
1348 */
1349 if (taint) {
1350 pr_warn_once("Unsupported CPU feature variation detected.\n");
1351 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1352 }
1353 }
1354
read_sanitised_ftr_reg(u32 id)1355 u64 read_sanitised_ftr_reg(u32 id)
1356 {
1357 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1358
1359 if (!regp)
1360 return 0;
1361 return regp->sys_val;
1362 }
1363 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1364
1365 #define read_sysreg_case(r) \
1366 case r: val = read_sysreg_s(r); break;
1367
1368 /*
1369 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1370 * Read the system register on the current CPU
1371 */
__read_sysreg_by_encoding(u32 sys_id)1372 u64 __read_sysreg_by_encoding(u32 sys_id)
1373 {
1374 struct arm64_ftr_reg *regp;
1375 u64 val;
1376
1377 switch (sys_id) {
1378 read_sysreg_case(SYS_ID_PFR0_EL1);
1379 read_sysreg_case(SYS_ID_PFR1_EL1);
1380 read_sysreg_case(SYS_ID_PFR2_EL1);
1381 read_sysreg_case(SYS_ID_DFR0_EL1);
1382 read_sysreg_case(SYS_ID_DFR1_EL1);
1383 read_sysreg_case(SYS_ID_MMFR0_EL1);
1384 read_sysreg_case(SYS_ID_MMFR1_EL1);
1385 read_sysreg_case(SYS_ID_MMFR2_EL1);
1386 read_sysreg_case(SYS_ID_MMFR3_EL1);
1387 read_sysreg_case(SYS_ID_MMFR4_EL1);
1388 read_sysreg_case(SYS_ID_MMFR5_EL1);
1389 read_sysreg_case(SYS_ID_ISAR0_EL1);
1390 read_sysreg_case(SYS_ID_ISAR1_EL1);
1391 read_sysreg_case(SYS_ID_ISAR2_EL1);
1392 read_sysreg_case(SYS_ID_ISAR3_EL1);
1393 read_sysreg_case(SYS_ID_ISAR4_EL1);
1394 read_sysreg_case(SYS_ID_ISAR5_EL1);
1395 read_sysreg_case(SYS_ID_ISAR6_EL1);
1396 read_sysreg_case(SYS_MVFR0_EL1);
1397 read_sysreg_case(SYS_MVFR1_EL1);
1398 read_sysreg_case(SYS_MVFR2_EL1);
1399
1400 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1401 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1402 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1403 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1404 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1405 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1406 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1407 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1408 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1409 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1410 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1411 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1412 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1413
1414 read_sysreg_case(SYS_CNTFRQ_EL0);
1415 read_sysreg_case(SYS_CTR_EL0);
1416 read_sysreg_case(SYS_DCZID_EL0);
1417
1418 default:
1419 BUG();
1420 return 0;
1421 }
1422
1423 regp = get_arm64_ftr_reg(sys_id);
1424 if (regp) {
1425 val &= ~regp->override->mask;
1426 val |= (regp->override->val & regp->override->mask);
1427 }
1428
1429 return val;
1430 }
1431
1432 #include <linux/irqchip/arm-gic-v3.h>
1433
1434 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1435 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1436 {
1437 return true;
1438 }
1439
1440 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1441 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1442 {
1443 int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1444 entry->field_width,
1445 entry->sign);
1446
1447 return val >= entry->min_field_value;
1448 }
1449
1450 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1451 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1452 {
1453 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1454 if (scope == SCOPE_SYSTEM)
1455 return read_sanitised_ftr_reg(entry->sys_reg);
1456 else
1457 return __read_sysreg_by_encoding(entry->sys_reg);
1458 }
1459
1460 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1461 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1462 {
1463 int mask;
1464 struct arm64_ftr_reg *regp;
1465 u64 val = read_scoped_sysreg(entry, scope);
1466
1467 regp = get_arm64_ftr_reg(entry->sys_reg);
1468 if (!regp)
1469 return false;
1470
1471 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1472 entry->field_pos,
1473 entry->field_width);
1474 if (!mask)
1475 return false;
1476
1477 return feature_matches(val, entry);
1478 }
1479
1480 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1481 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1482 {
1483 u64 val = read_scoped_sysreg(entry, scope);
1484 return feature_matches(val, entry);
1485 }
1486
system_32bit_el0_cpumask(void)1487 const struct cpumask *system_32bit_el0_cpumask(void)
1488 {
1489 if (!system_supports_32bit_el0())
1490 return cpu_none_mask;
1491
1492 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1493 return cpu_32bit_el0_mask;
1494
1495 return cpu_possible_mask;
1496 }
1497
parse_32bit_el0_param(char * str)1498 static int __init parse_32bit_el0_param(char *str)
1499 {
1500 allow_mismatched_32bit_el0 = true;
1501 return 0;
1502 }
1503 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1504
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1505 static ssize_t aarch32_el0_show(struct device *dev,
1506 struct device_attribute *attr, char *buf)
1507 {
1508 const struct cpumask *mask = system_32bit_el0_cpumask();
1509
1510 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1511 }
1512 static const DEVICE_ATTR_RO(aarch32_el0);
1513
aarch32_el0_sysfs_init(void)1514 static int __init aarch32_el0_sysfs_init(void)
1515 {
1516 struct device *dev_root;
1517 int ret = 0;
1518
1519 if (!allow_mismatched_32bit_el0)
1520 return 0;
1521
1522 dev_root = bus_get_dev_root(&cpu_subsys);
1523 if (dev_root) {
1524 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1525 put_device(dev_root);
1526 }
1527 return ret;
1528 }
1529 device_initcall(aarch32_el0_sysfs_init);
1530
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1531 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1532 {
1533 if (!has_cpuid_feature(entry, scope))
1534 return allow_mismatched_32bit_el0;
1535
1536 if (scope == SCOPE_SYSTEM)
1537 pr_info("detected: 32-bit EL0 Support\n");
1538
1539 return true;
1540 }
1541
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1542 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1543 {
1544 bool has_sre;
1545
1546 if (!has_cpuid_feature(entry, scope))
1547 return false;
1548
1549 has_sre = gic_enable_sre();
1550 if (!has_sre)
1551 pr_warn_once("%s present but disabled by higher exception level\n",
1552 entry->desc);
1553
1554 return has_sre;
1555 }
1556
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry,int __unused)1557 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1558 {
1559 u32 midr = read_cpuid_id();
1560
1561 /* Cavium ThunderX pass 1.x and 2.x */
1562 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1563 MIDR_CPU_VAR_REV(0, 0),
1564 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1565 }
1566
has_no_fpsimd(const struct arm64_cpu_capabilities * entry,int __unused)1567 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1568 {
1569 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1570
1571 return cpuid_feature_extract_signed_field(pfr0,
1572 ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1573 }
1574
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1575 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1576 int scope)
1577 {
1578 u64 ctr;
1579
1580 if (scope == SCOPE_SYSTEM)
1581 ctr = arm64_ftr_reg_ctrel0.sys_val;
1582 else
1583 ctr = read_cpuid_effective_cachetype();
1584
1585 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1586 }
1587
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1588 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1589 {
1590 /*
1591 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1592 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1593 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1594 * value.
1595 */
1596 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1597 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1598 }
1599
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1600 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1601 int scope)
1602 {
1603 u64 ctr;
1604
1605 if (scope == SCOPE_SYSTEM)
1606 ctr = arm64_ftr_reg_ctrel0.sys_val;
1607 else
1608 ctr = read_cpuid_cachetype();
1609
1610 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1611 }
1612
1613 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1614 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1615 {
1616 /*
1617 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1618 * may share TLB entries with a CPU stuck in the crashed
1619 * kernel.
1620 */
1621 if (is_kdump_kernel())
1622 return false;
1623
1624 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1625 return false;
1626
1627 return has_cpuid_feature(entry, scope);
1628 }
1629
1630 /*
1631 * This check is triggered during the early boot before the cpufeature
1632 * is initialised. Checking the status on the local CPU allows the boot
1633 * CPU to detect the need for non-global mappings and thus avoiding a
1634 * pagetable re-write after all the CPUs are booted. This check will be
1635 * anyway run on individual CPUs, allowing us to get the consistent
1636 * state once the SMP CPUs are up and thus make the switch to non-global
1637 * mappings if required.
1638 */
kaslr_requires_kpti(void)1639 bool kaslr_requires_kpti(void)
1640 {
1641 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1642 return false;
1643
1644 /*
1645 * E0PD does a similar job to KPTI so can be used instead
1646 * where available.
1647 */
1648 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1649 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1650 if (cpuid_feature_extract_unsigned_field(mmfr2,
1651 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1652 return false;
1653 }
1654
1655 /*
1656 * Systems affected by Cavium erratum 24756 are incompatible
1657 * with KPTI.
1658 */
1659 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1660 extern const struct midr_range cavium_erratum_27456_cpus[];
1661
1662 if (is_midr_in_range_list(read_cpuid_id(),
1663 cavium_erratum_27456_cpus))
1664 return false;
1665 }
1666
1667 return kaslr_enabled();
1668 }
1669
1670 static bool __meltdown_safe = true;
1671 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1672
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1673 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1674 int scope)
1675 {
1676 /* List of CPUs that are not vulnerable and don't need KPTI */
1677 static const struct midr_range kpti_safe_list[] = {
1678 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1679 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1680 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1681 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1682 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1683 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1684 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1685 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1686 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1687 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1688 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1689 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1690 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1691 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1692 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1693 { /* sentinel */ }
1694 };
1695 char const *str = "kpti command line option";
1696 bool meltdown_safe;
1697
1698 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1699
1700 /* Defer to CPU feature registers */
1701 if (has_cpuid_feature(entry, scope))
1702 meltdown_safe = true;
1703
1704 if (!meltdown_safe)
1705 __meltdown_safe = false;
1706
1707 /*
1708 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1709 * ThunderX leads to apparent I-cache corruption of kernel text, which
1710 * ends as well as you might imagine. Don't even try. We cannot rely
1711 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1712 * because cpucap detection order may change. However, since we know
1713 * affected CPUs are always in a homogeneous configuration, it is
1714 * safe to rely on this_cpu_has_cap() here.
1715 */
1716 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1717 str = "ARM64_WORKAROUND_CAVIUM_27456";
1718 __kpti_forced = -1;
1719 }
1720
1721 /* Useful for KASLR robustness */
1722 if (kaslr_requires_kpti()) {
1723 if (!__kpti_forced) {
1724 str = "KASLR";
1725 __kpti_forced = 1;
1726 }
1727 }
1728
1729 if (cpu_mitigations_off() && !__kpti_forced) {
1730 str = "mitigations=off";
1731 __kpti_forced = -1;
1732 }
1733
1734 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1735 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1736 return false;
1737 }
1738
1739 /* Forced? */
1740 if (__kpti_forced) {
1741 pr_info_once("kernel page table isolation forced %s by %s\n",
1742 __kpti_forced > 0 ? "ON" : "OFF", str);
1743 return __kpti_forced > 0;
1744 }
1745
1746 return !meltdown_safe;
1747 }
1748
1749 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1750 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1751
1752 extern
1753 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1754 phys_addr_t size, pgprot_t prot,
1755 phys_addr_t (*pgtable_alloc)(int), int flags);
1756
1757 static phys_addr_t kpti_ng_temp_alloc;
1758
kpti_ng_pgd_alloc(int shift)1759 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1760 {
1761 kpti_ng_temp_alloc -= PAGE_SIZE;
1762 return kpti_ng_temp_alloc;
1763 }
1764
1765 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1766 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1767 {
1768 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1769 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1770 kpti_remap_fn *remap_fn;
1771
1772 int cpu = smp_processor_id();
1773 int levels = CONFIG_PGTABLE_LEVELS;
1774 int order = order_base_2(levels);
1775 u64 kpti_ng_temp_pgd_pa = 0;
1776 pgd_t *kpti_ng_temp_pgd;
1777 u64 alloc = 0;
1778
1779 if (__this_cpu_read(this_cpu_vector) == vectors) {
1780 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1781
1782 __this_cpu_write(this_cpu_vector, v);
1783 }
1784
1785 /*
1786 * We don't need to rewrite the page-tables if either we've done
1787 * it already or we have KASLR enabled and therefore have not
1788 * created any global mappings at all.
1789 */
1790 if (arm64_use_ng_mappings)
1791 return;
1792
1793 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1794
1795 if (!cpu) {
1796 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1797 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1798 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1799
1800 //
1801 // Create a minimal page table hierarchy that permits us to map
1802 // the swapper page tables temporarily as we traverse them.
1803 //
1804 // The physical pages are laid out as follows:
1805 //
1806 // +--------+-/-------+-/------ +-\\--------+
1807 // : PTE[] : | PMD[] : | PUD[] : || PGD[] :
1808 // +--------+-\-------+-\------ +-//--------+
1809 // ^
1810 // The first page is mapped into this hierarchy at a PMD_SHIFT
1811 // aligned virtual address, so that we can manipulate the PTE
1812 // level entries while the mapping is active. The first entry
1813 // covers the PTE[] page itself, the remaining entries are free
1814 // to be used as a ad-hoc fixmap.
1815 //
1816 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1817 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1818 kpti_ng_pgd_alloc, 0);
1819 }
1820
1821 cpu_install_idmap();
1822 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1823 cpu_uninstall_idmap();
1824
1825 if (!cpu) {
1826 free_pages(alloc, order);
1827 arm64_use_ng_mappings = true;
1828 }
1829 }
1830 #else
1831 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1832 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1833 {
1834 }
1835 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1836
parse_kpti(char * str)1837 static int __init parse_kpti(char *str)
1838 {
1839 bool enabled;
1840 int ret = kstrtobool(str, &enabled);
1841
1842 if (ret)
1843 return ret;
1844
1845 __kpti_forced = enabled ? 1 : -1;
1846 return 0;
1847 }
1848 early_param("kpti", parse_kpti);
1849
1850 #ifdef CONFIG_ARM64_HW_AFDBM
__cpu_enable_hw_dbm(void)1851 static inline void __cpu_enable_hw_dbm(void)
1852 {
1853 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1854
1855 write_sysreg(tcr, tcr_el1);
1856 isb();
1857 local_flush_tlb_all();
1858 }
1859
cpu_has_broken_dbm(void)1860 static bool cpu_has_broken_dbm(void)
1861 {
1862 /* List of CPUs which have broken DBM support. */
1863 static const struct midr_range cpus[] = {
1864 #ifdef CONFIG_ARM64_ERRATUM_1024718
1865 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1866 /* Kryo4xx Silver (rdpe => r1p0) */
1867 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1868 #endif
1869 #ifdef CONFIG_ARM64_ERRATUM_2051678
1870 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1871 #endif
1872 {},
1873 };
1874
1875 return is_midr_in_range_list(read_cpuid_id(), cpus);
1876 }
1877
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1878 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1879 {
1880 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1881 !cpu_has_broken_dbm();
1882 }
1883
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)1884 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1885 {
1886 if (cpu_can_use_dbm(cap))
1887 __cpu_enable_hw_dbm();
1888 }
1889
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)1890 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1891 int __unused)
1892 {
1893 static bool detected = false;
1894 /*
1895 * DBM is a non-conflicting feature. i.e, the kernel can safely
1896 * run a mix of CPUs with and without the feature. So, we
1897 * unconditionally enable the capability to allow any late CPU
1898 * to use the feature. We only enable the control bits on the
1899 * CPU, if it actually supports.
1900 *
1901 * We have to make sure we print the "feature" detection only
1902 * when at least one CPU actually uses it. So check if this CPU
1903 * can actually use it and print the message exactly once.
1904 *
1905 * This is safe as all CPUs (including secondary CPUs - due to the
1906 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1907 * goes through the "matches" check exactly once. Also if a CPU
1908 * matches the criteria, it is guaranteed that the CPU will turn
1909 * the DBM on, as the capability is unconditionally enabled.
1910 */
1911 if (!detected && cpu_can_use_dbm(cap)) {
1912 detected = true;
1913 pr_info("detected: Hardware dirty bit management\n");
1914 }
1915
1916 return true;
1917 }
1918
1919 #endif
1920
1921 #ifdef CONFIG_ARM64_AMU_EXTN
1922
1923 /*
1924 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1925 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1926 * information regarding all the events that it supports. When a CPU bit is
1927 * set in the cpumask, the user of this feature can only rely on the presence
1928 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1929 * counters are enabled or access to these counters is enabled by code
1930 * executed at higher exception levels (firmware).
1931 */
1932 static struct cpumask amu_cpus __read_mostly;
1933
cpu_has_amu_feat(int cpu)1934 bool cpu_has_amu_feat(int cpu)
1935 {
1936 return cpumask_test_cpu(cpu, &amu_cpus);
1937 }
1938
get_cpu_with_amu_feat(void)1939 int get_cpu_with_amu_feat(void)
1940 {
1941 return cpumask_any(&amu_cpus);
1942 }
1943
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)1944 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1945 {
1946 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1947 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1948 smp_processor_id());
1949 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1950
1951 /* 0 reference values signal broken/disabled counters */
1952 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1953 update_freq_counters_refs();
1954 }
1955 }
1956
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)1957 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1958 int __unused)
1959 {
1960 /*
1961 * The AMU extension is a non-conflicting feature: the kernel can
1962 * safely run a mix of CPUs with and without support for the
1963 * activity monitors extension. Therefore, unconditionally enable
1964 * the capability to allow any late CPU to use the feature.
1965 *
1966 * With this feature unconditionally enabled, the cpu_enable
1967 * function will be called for all CPUs that match the criteria,
1968 * including secondary and hotplugged, marking this feature as
1969 * present on that respective CPU. The enable function will also
1970 * print a detection message.
1971 */
1972
1973 return true;
1974 }
1975 #else
get_cpu_with_amu_feat(void)1976 int get_cpu_with_amu_feat(void)
1977 {
1978 return nr_cpu_ids;
1979 }
1980 #endif
1981
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)1982 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1983 {
1984 return is_kernel_in_hyp_mode();
1985 }
1986
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)1987 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1988 {
1989 /*
1990 * Copy register values that aren't redirected by hardware.
1991 *
1992 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1993 * this value to tpidr_el2 before we patch the code. Once we've done
1994 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1995 * do anything here.
1996 */
1997 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1998 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1999 }
2000
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2001 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2002 int scope)
2003 {
2004 if (kvm_get_mode() != KVM_MODE_NV)
2005 return false;
2006
2007 if (!has_cpuid_feature(cap, scope)) {
2008 pr_warn("unavailable: %s\n", cap->desc);
2009 return false;
2010 }
2011
2012 return true;
2013 }
2014
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2015 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2016 int __unused)
2017 {
2018 u64 val;
2019
2020 val = read_sysreg(id_aa64mmfr1_el1);
2021 if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2022 return false;
2023
2024 val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2025 return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2026 }
2027
2028 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2029 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2030 {
2031 /*
2032 * We modify PSTATE. This won't work from irq context as the PSTATE
2033 * is discarded once we return from the exception.
2034 */
2035 WARN_ON_ONCE(in_interrupt());
2036
2037 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2038 set_pstate_pan(1);
2039 }
2040 #endif /* CONFIG_ARM64_PAN */
2041
2042 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2043 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2044 {
2045 /* Firmware may have left a deferred SError in this register. */
2046 write_sysreg_s(0, SYS_DISR_EL1);
2047 }
2048 #endif /* CONFIG_ARM64_RAS_EXTN */
2049
2050 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2051 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2052 {
2053 int boot_val, sec_val;
2054
2055 /* We don't expect to be called with SCOPE_SYSTEM */
2056 WARN_ON(scope == SCOPE_SYSTEM);
2057 /*
2058 * The ptr-auth feature levels are not intercompatible with lower
2059 * levels. Hence we must match ptr-auth feature level of the secondary
2060 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2061 * from the sanitised register whereas direct register read is done for
2062 * the secondary CPUs.
2063 * The sanitised feature state is guaranteed to match that of the
2064 * boot CPU as a mismatched secondary CPU is parked before it gets
2065 * a chance to update the state, with the capability.
2066 */
2067 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2068 entry->field_pos, entry->sign);
2069 if (scope & SCOPE_BOOT_CPU)
2070 return boot_val >= entry->min_field_value;
2071 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2072 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2073 entry->field_pos, entry->sign);
2074 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2075 }
2076
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2077 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2078 int scope)
2079 {
2080 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2081 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2082 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2083
2084 return apa || apa3 || api;
2085 }
2086
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2087 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2088 int __unused)
2089 {
2090 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2091 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2092 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2093
2094 return gpa || gpa3 || gpi;
2095 }
2096 #endif /* CONFIG_ARM64_PTR_AUTH */
2097
2098 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2099 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2100 {
2101 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2102 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2103 }
2104 #endif /* CONFIG_ARM64_E0PD */
2105
2106 #ifdef CONFIG_ARM64_PSEUDO_NMI
2107 static bool enable_pseudo_nmi;
2108
early_enable_pseudo_nmi(char * p)2109 static int __init early_enable_pseudo_nmi(char *p)
2110 {
2111 return kstrtobool(p, &enable_pseudo_nmi);
2112 }
2113 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2114
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2115 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2116 int scope)
2117 {
2118 /*
2119 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2120 * feature, so will be detected earlier.
2121 */
2122 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2123 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2124 return false;
2125
2126 return enable_pseudo_nmi;
2127 }
2128
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2129 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2130 int scope)
2131 {
2132 /*
2133 * If we're not using priority masking then we won't be poking PMR_EL1,
2134 * and there's no need to relax synchronization of writes to it, and
2135 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2136 * that.
2137 *
2138 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2139 * feature, so will be detected earlier.
2140 */
2141 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2142 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2143 return false;
2144
2145 /*
2146 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2147 * hint for interrupt distribution, a DSB is not necessary when
2148 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2149 *
2150 * Linux itself doesn't use 1:N distribution, so has no need to
2151 * set PMHE. The only reason to have it set is if EL3 requires it
2152 * (and we can't change it).
2153 */
2154 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2155 }
2156 #endif
2157
2158 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2159 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2160 {
2161 /*
2162 * Use of X16/X17 for tail-calls and trampolines that jump to
2163 * function entry points using BR is a requirement for
2164 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2165 * So, be strict and forbid other BRs using other registers to
2166 * jump onto a PACIxSP instruction:
2167 */
2168 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2169 isb();
2170 }
2171 #endif /* CONFIG_ARM64_BTI */
2172
2173 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2174 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2175 {
2176 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2177
2178 mte_cpu_setup();
2179
2180 /*
2181 * Clear the tags in the zero page. This needs to be done via the
2182 * linear map which has the Tagged attribute.
2183 */
2184 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2185 mte_clear_page_tags(lm_alias(empty_zero_page));
2186 set_page_mte_tagged(ZERO_PAGE(0));
2187 }
2188
2189 kasan_init_hw_tags_cpu();
2190 }
2191 #endif /* CONFIG_ARM64_MTE */
2192
elf_hwcap_fixup(void)2193 static void elf_hwcap_fixup(void)
2194 {
2195 #ifdef CONFIG_ARM64_ERRATUM_1742098
2196 if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2197 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2198 #endif /* ARM64_ERRATUM_1742098 */
2199 }
2200
2201 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2202 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2203 {
2204 return kvm_get_mode() == KVM_MODE_PROTECTED;
2205 }
2206 #endif /* CONFIG_KVM */
2207
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2208 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2209 {
2210 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2211 }
2212
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2213 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2214 {
2215 set_pstate_dit(1);
2216 }
2217
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2218 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2219 {
2220 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2221 }
2222
2223 /* Internal helper functions to match cpu capability type */
2224 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2225 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2226 {
2227 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2228 }
2229
2230 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2231 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2232 {
2233 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2234 }
2235
2236 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2237 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2238 {
2239 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2240 }
2241
2242 static const struct arm64_cpu_capabilities arm64_features[] = {
2243 {
2244 .capability = ARM64_ALWAYS_BOOT,
2245 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2246 .matches = has_always,
2247 },
2248 {
2249 .capability = ARM64_ALWAYS_SYSTEM,
2250 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2251 .matches = has_always,
2252 },
2253 {
2254 .desc = "GIC system register CPU interface",
2255 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2256 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2257 .matches = has_useable_gicv3_cpuif,
2258 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2259 },
2260 {
2261 .desc = "Enhanced Counter Virtualization",
2262 .capability = ARM64_HAS_ECV,
2263 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2264 .matches = has_cpuid_feature,
2265 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2266 },
2267 {
2268 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2269 .capability = ARM64_HAS_ECV_CNTPOFF,
2270 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2271 .matches = has_cpuid_feature,
2272 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2273 },
2274 #ifdef CONFIG_ARM64_PAN
2275 {
2276 .desc = "Privileged Access Never",
2277 .capability = ARM64_HAS_PAN,
2278 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2279 .matches = has_cpuid_feature,
2280 .cpu_enable = cpu_enable_pan,
2281 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2282 },
2283 #endif /* CONFIG_ARM64_PAN */
2284 #ifdef CONFIG_ARM64_EPAN
2285 {
2286 .desc = "Enhanced Privileged Access Never",
2287 .capability = ARM64_HAS_EPAN,
2288 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2289 .matches = has_cpuid_feature,
2290 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2291 },
2292 #endif /* CONFIG_ARM64_EPAN */
2293 #ifdef CONFIG_ARM64_LSE_ATOMICS
2294 {
2295 .desc = "LSE atomic instructions",
2296 .capability = ARM64_HAS_LSE_ATOMICS,
2297 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2298 .matches = has_cpuid_feature,
2299 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2300 },
2301 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2302 {
2303 .desc = "Software prefetching using PRFM",
2304 .capability = ARM64_HAS_NO_HW_PREFETCH,
2305 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2306 .matches = has_no_hw_prefetch,
2307 },
2308 {
2309 .desc = "Virtualization Host Extensions",
2310 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2311 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2312 .matches = runs_at_el2,
2313 .cpu_enable = cpu_copy_el2regs,
2314 },
2315 {
2316 .desc = "Nested Virtualization Support",
2317 .capability = ARM64_HAS_NESTED_VIRT,
2318 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2319 .matches = has_nested_virt_support,
2320 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP)
2321 },
2322 {
2323 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2324 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2325 .matches = has_32bit_el0,
2326 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2327 },
2328 #ifdef CONFIG_KVM
2329 {
2330 .desc = "32-bit EL1 Support",
2331 .capability = ARM64_HAS_32BIT_EL1,
2332 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2333 .matches = has_cpuid_feature,
2334 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2335 },
2336 {
2337 .desc = "Protected KVM",
2338 .capability = ARM64_KVM_PROTECTED_MODE,
2339 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2340 .matches = is_kvm_protected_mode,
2341 },
2342 {
2343 .desc = "HCRX_EL2 register",
2344 .capability = ARM64_HAS_HCX,
2345 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2346 .matches = has_cpuid_feature,
2347 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2348 },
2349 #endif
2350 {
2351 .desc = "Kernel page table isolation (KPTI)",
2352 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2353 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2354 .cpu_enable = kpti_install_ng_mappings,
2355 .matches = unmap_kernel_at_el0,
2356 /*
2357 * The ID feature fields below are used to indicate that
2358 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2359 * more details.
2360 */
2361 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2362 },
2363 {
2364 /* FP/SIMD is not implemented */
2365 .capability = ARM64_HAS_NO_FPSIMD,
2366 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2367 .min_field_value = 0,
2368 .matches = has_no_fpsimd,
2369 },
2370 #ifdef CONFIG_ARM64_PMEM
2371 {
2372 .desc = "Data cache clean to Point of Persistence",
2373 .capability = ARM64_HAS_DCPOP,
2374 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2375 .matches = has_cpuid_feature,
2376 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2377 },
2378 {
2379 .desc = "Data cache clean to Point of Deep Persistence",
2380 .capability = ARM64_HAS_DCPODP,
2381 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2382 .matches = has_cpuid_feature,
2383 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2384 },
2385 #endif
2386 #ifdef CONFIG_ARM64_SVE
2387 {
2388 .desc = "Scalable Vector Extension",
2389 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390 .capability = ARM64_SVE,
2391 .cpu_enable = sve_kernel_enable,
2392 .matches = has_cpuid_feature,
2393 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2394 },
2395 #endif /* CONFIG_ARM64_SVE */
2396 #ifdef CONFIG_ARM64_RAS_EXTN
2397 {
2398 .desc = "RAS Extension Support",
2399 .capability = ARM64_HAS_RAS_EXTN,
2400 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2401 .matches = has_cpuid_feature,
2402 .cpu_enable = cpu_clear_disr,
2403 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2404 },
2405 #endif /* CONFIG_ARM64_RAS_EXTN */
2406 #ifdef CONFIG_ARM64_AMU_EXTN
2407 {
2408 /*
2409 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2410 * Therefore, don't provide .desc as we don't want the detection
2411 * message to be shown until at least one CPU is detected to
2412 * support the feature.
2413 */
2414 .capability = ARM64_HAS_AMU_EXTN,
2415 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2416 .matches = has_amu,
2417 .cpu_enable = cpu_amu_enable,
2418 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2419 },
2420 #endif /* CONFIG_ARM64_AMU_EXTN */
2421 {
2422 .desc = "Data cache clean to the PoU not required for I/D coherence",
2423 .capability = ARM64_HAS_CACHE_IDC,
2424 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2425 .matches = has_cache_idc,
2426 .cpu_enable = cpu_emulate_effective_ctr,
2427 },
2428 {
2429 .desc = "Instruction cache invalidation not required for I/D coherence",
2430 .capability = ARM64_HAS_CACHE_DIC,
2431 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2432 .matches = has_cache_dic,
2433 },
2434 {
2435 .desc = "Stage-2 Force Write-Back",
2436 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2437 .capability = ARM64_HAS_STAGE2_FWB,
2438 .matches = has_cpuid_feature,
2439 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2440 },
2441 {
2442 .desc = "ARMv8.4 Translation Table Level",
2443 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2444 .capability = ARM64_HAS_ARMv8_4_TTL,
2445 .matches = has_cpuid_feature,
2446 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2447 },
2448 {
2449 .desc = "TLB range maintenance instructions",
2450 .capability = ARM64_HAS_TLB_RANGE,
2451 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2452 .matches = has_cpuid_feature,
2453 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2454 },
2455 #ifdef CONFIG_ARM64_HW_AFDBM
2456 {
2457 /*
2458 * Since we turn this on always, we don't want the user to
2459 * think that the feature is available when it may not be.
2460 * So hide the description.
2461 *
2462 * .desc = "Hardware pagetable Dirty Bit Management",
2463 *
2464 */
2465 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2466 .capability = ARM64_HW_DBM,
2467 .matches = has_hw_dbm,
2468 .cpu_enable = cpu_enable_hw_dbm,
2469 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2470 },
2471 #endif
2472 {
2473 .desc = "CRC32 instructions",
2474 .capability = ARM64_HAS_CRC32,
2475 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2476 .matches = has_cpuid_feature,
2477 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2478 },
2479 {
2480 .desc = "Speculative Store Bypassing Safe (SSBS)",
2481 .capability = ARM64_SSBS,
2482 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2483 .matches = has_cpuid_feature,
2484 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2485 },
2486 #ifdef CONFIG_ARM64_CNP
2487 {
2488 .desc = "Common not Private translations",
2489 .capability = ARM64_HAS_CNP,
2490 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2491 .matches = has_useable_cnp,
2492 .cpu_enable = cpu_enable_cnp,
2493 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2494 },
2495 #endif
2496 {
2497 .desc = "Speculation barrier (SB)",
2498 .capability = ARM64_HAS_SB,
2499 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2500 .matches = has_cpuid_feature,
2501 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2502 },
2503 #ifdef CONFIG_ARM64_PTR_AUTH
2504 {
2505 .desc = "Address authentication (architected QARMA5 algorithm)",
2506 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2507 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2508 .matches = has_address_auth_cpucap,
2509 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2510 },
2511 {
2512 .desc = "Address authentication (architected QARMA3 algorithm)",
2513 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2514 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2515 .matches = has_address_auth_cpucap,
2516 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2517 },
2518 {
2519 .desc = "Address authentication (IMP DEF algorithm)",
2520 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2521 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2522 .matches = has_address_auth_cpucap,
2523 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2524 },
2525 {
2526 .capability = ARM64_HAS_ADDRESS_AUTH,
2527 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2528 .matches = has_address_auth_metacap,
2529 },
2530 {
2531 .desc = "Generic authentication (architected QARMA5 algorithm)",
2532 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2533 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2534 .matches = has_cpuid_feature,
2535 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2536 },
2537 {
2538 .desc = "Generic authentication (architected QARMA3 algorithm)",
2539 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2540 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2541 .matches = has_cpuid_feature,
2542 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2543 },
2544 {
2545 .desc = "Generic authentication (IMP DEF algorithm)",
2546 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2547 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2548 .matches = has_cpuid_feature,
2549 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2550 },
2551 {
2552 .capability = ARM64_HAS_GENERIC_AUTH,
2553 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2554 .matches = has_generic_auth,
2555 },
2556 #endif /* CONFIG_ARM64_PTR_AUTH */
2557 #ifdef CONFIG_ARM64_PSEUDO_NMI
2558 {
2559 /*
2560 * Depends on having GICv3
2561 */
2562 .desc = "IRQ priority masking",
2563 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2564 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2565 .matches = can_use_gic_priorities,
2566 },
2567 {
2568 /*
2569 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2570 */
2571 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2572 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2573 .matches = has_gic_prio_relaxed_sync,
2574 },
2575 #endif
2576 #ifdef CONFIG_ARM64_E0PD
2577 {
2578 .desc = "E0PD",
2579 .capability = ARM64_HAS_E0PD,
2580 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2581 .cpu_enable = cpu_enable_e0pd,
2582 .matches = has_cpuid_feature,
2583 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2584 },
2585 #endif
2586 {
2587 .desc = "Random Number Generator",
2588 .capability = ARM64_HAS_RNG,
2589 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590 .matches = has_cpuid_feature,
2591 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2592 },
2593 #ifdef CONFIG_ARM64_BTI
2594 {
2595 .desc = "Branch Target Identification",
2596 .capability = ARM64_BTI,
2597 #ifdef CONFIG_ARM64_BTI_KERNEL
2598 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2599 #else
2600 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2601 #endif
2602 .matches = has_cpuid_feature,
2603 .cpu_enable = bti_enable,
2604 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2605 },
2606 #endif
2607 #ifdef CONFIG_ARM64_MTE
2608 {
2609 .desc = "Memory Tagging Extension",
2610 .capability = ARM64_MTE,
2611 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2612 .matches = has_cpuid_feature,
2613 .cpu_enable = cpu_enable_mte,
2614 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2615 },
2616 {
2617 .desc = "Asymmetric MTE Tag Check Fault",
2618 .capability = ARM64_MTE_ASYMM,
2619 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2620 .matches = has_cpuid_feature,
2621 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2622 },
2623 #endif /* CONFIG_ARM64_MTE */
2624 {
2625 .desc = "RCpc load-acquire (LDAPR)",
2626 .capability = ARM64_HAS_LDAPR,
2627 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2628 .matches = has_cpuid_feature,
2629 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2630 },
2631 {
2632 .desc = "Fine Grained Traps",
2633 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2634 .capability = ARM64_HAS_FGT,
2635 .matches = has_cpuid_feature,
2636 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2637 },
2638 #ifdef CONFIG_ARM64_SME
2639 {
2640 .desc = "Scalable Matrix Extension",
2641 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2642 .capability = ARM64_SME,
2643 .matches = has_cpuid_feature,
2644 .cpu_enable = sme_kernel_enable,
2645 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2646 },
2647 /* FA64 should be sorted after the base SME capability */
2648 {
2649 .desc = "FA64",
2650 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2651 .capability = ARM64_SME_FA64,
2652 .matches = has_cpuid_feature,
2653 .cpu_enable = fa64_kernel_enable,
2654 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2655 },
2656 {
2657 .desc = "SME2",
2658 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2659 .capability = ARM64_SME2,
2660 .matches = has_cpuid_feature,
2661 .cpu_enable = sme2_kernel_enable,
2662 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2663 },
2664 #endif /* CONFIG_ARM64_SME */
2665 {
2666 .desc = "WFx with timeout",
2667 .capability = ARM64_HAS_WFXT,
2668 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2669 .matches = has_cpuid_feature,
2670 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2671 },
2672 {
2673 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2674 .capability = ARM64_HAS_TIDCP1,
2675 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2676 .matches = has_cpuid_feature,
2677 .cpu_enable = cpu_trap_el0_impdef,
2678 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2679 },
2680 {
2681 .desc = "Data independent timing control (DIT)",
2682 .capability = ARM64_HAS_DIT,
2683 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2684 .matches = has_cpuid_feature,
2685 .cpu_enable = cpu_enable_dit,
2686 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2687 },
2688 {
2689 .desc = "Memory Copy and Memory Set instructions",
2690 .capability = ARM64_HAS_MOPS,
2691 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2692 .matches = has_cpuid_feature,
2693 .cpu_enable = cpu_enable_mops,
2694 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2695 },
2696 {
2697 .capability = ARM64_HAS_TCR2,
2698 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2699 .matches = has_cpuid_feature,
2700 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2701 },
2702 {
2703 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2704 .capability = ARM64_HAS_S1PIE,
2705 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2706 .matches = has_cpuid_feature,
2707 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2708 },
2709 {
2710 .desc = "VHE for hypervisor only",
2711 .capability = ARM64_KVM_HVHE,
2712 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713 .matches = hvhe_possible,
2714 },
2715 {
2716 .desc = "Enhanced Virtualization Traps",
2717 .capability = ARM64_HAS_EVT,
2718 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2719 .matches = has_cpuid_feature,
2720 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2721 },
2722 {},
2723 };
2724
2725 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2726 .matches = has_user_cpuid_feature, \
2727 ARM64_CPUID_FIELDS(reg, field, min_value)
2728
2729 #define __HWCAP_CAP(name, cap_type, cap) \
2730 .desc = name, \
2731 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2732 .hwcap_type = cap_type, \
2733 .hwcap = cap, \
2734
2735 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
2736 { \
2737 __HWCAP_CAP(#cap, cap_type, cap) \
2738 HWCAP_CPUID_MATCH(reg, field, min_value) \
2739 }
2740
2741 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2742 { \
2743 __HWCAP_CAP(#cap, cap_type, cap) \
2744 .matches = cpucap_multi_entry_cap_matches, \
2745 .match_list = list, \
2746 }
2747
2748 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2749 { \
2750 __HWCAP_CAP(#cap, cap_type, cap) \
2751 .matches = match, \
2752 }
2753
2754 #ifdef CONFIG_ARM64_PTR_AUTH
2755 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2756 {
2757 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2758 },
2759 {
2760 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2761 },
2762 {
2763 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2764 },
2765 {},
2766 };
2767
2768 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2769 {
2770 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2771 },
2772 {
2773 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2774 },
2775 {
2776 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2777 },
2778 {},
2779 };
2780 #endif
2781
2782 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2783 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2784 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2785 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2786 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2787 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2788 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2789 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2790 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2791 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2792 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2793 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2794 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2795 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2796 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2797 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2798 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2799 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2800 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2801 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2802 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2803 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2804 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2805 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2806 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2807 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2808 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2809 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2810 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2811 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2812 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2813 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2814 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2815 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2816 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2817 #ifdef CONFIG_ARM64_SVE
2818 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2819 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2820 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2821 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2822 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2823 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2824 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2825 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2826 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2827 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2828 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2829 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2830 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2831 #endif
2832 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2833 #ifdef CONFIG_ARM64_BTI
2834 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2835 #endif
2836 #ifdef CONFIG_ARM64_PTR_AUTH
2837 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2838 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2839 #endif
2840 #ifdef CONFIG_ARM64_MTE
2841 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2842 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2843 #endif /* CONFIG_ARM64_MTE */
2844 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2845 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2846 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2847 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2848 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2849 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2850 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2851 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2852 #ifdef CONFIG_ARM64_SME
2853 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2854 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2855 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2856 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2857 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2858 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2859 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2860 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2861 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2862 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2863 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2864 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2865 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2866 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2867 #endif /* CONFIG_ARM64_SME */
2868 {},
2869 };
2870
2871 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)2872 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2873 {
2874 /*
2875 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2876 * in line with that of arm32 as in vfp_init(). We make sure that the
2877 * check is future proof, by making sure value is non-zero.
2878 */
2879 u32 mvfr1;
2880
2881 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2882 if (scope == SCOPE_SYSTEM)
2883 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2884 else
2885 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2886
2887 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2888 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2889 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2890 }
2891 #endif
2892
2893 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2894 #ifdef CONFIG_COMPAT
2895 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2896 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2897 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2898 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2899 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2900 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2901 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2902 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2903 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2904 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2905 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2906 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2907 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2908 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2909 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2910 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2911 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2912 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2913 #endif
2914 {},
2915 };
2916
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)2917 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2918 {
2919 switch (cap->hwcap_type) {
2920 case CAP_HWCAP:
2921 cpu_set_feature(cap->hwcap);
2922 break;
2923 #ifdef CONFIG_COMPAT
2924 case CAP_COMPAT_HWCAP:
2925 compat_elf_hwcap |= (u32)cap->hwcap;
2926 break;
2927 case CAP_COMPAT_HWCAP2:
2928 compat_elf_hwcap2 |= (u32)cap->hwcap;
2929 break;
2930 #endif
2931 default:
2932 WARN_ON(1);
2933 break;
2934 }
2935 }
2936
2937 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)2938 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2939 {
2940 bool rc;
2941
2942 switch (cap->hwcap_type) {
2943 case CAP_HWCAP:
2944 rc = cpu_have_feature(cap->hwcap);
2945 break;
2946 #ifdef CONFIG_COMPAT
2947 case CAP_COMPAT_HWCAP:
2948 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2949 break;
2950 case CAP_COMPAT_HWCAP2:
2951 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2952 break;
2953 #endif
2954 default:
2955 WARN_ON(1);
2956 rc = false;
2957 }
2958
2959 return rc;
2960 }
2961
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)2962 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2963 {
2964 /* We support emulation of accesses to CPU ID feature registers */
2965 cpu_set_named_feature(CPUID);
2966 for (; hwcaps->matches; hwcaps++)
2967 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2968 cap_set_elf_hwcap(hwcaps);
2969 }
2970
update_cpu_capabilities(u16 scope_mask)2971 static void update_cpu_capabilities(u16 scope_mask)
2972 {
2973 int i;
2974 const struct arm64_cpu_capabilities *caps;
2975
2976 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2977 for (i = 0; i < ARM64_NCAPS; i++) {
2978 caps = cpucap_ptrs[i];
2979 if (!caps || !(caps->type & scope_mask) ||
2980 cpus_have_cap(caps->capability) ||
2981 !caps->matches(caps, cpucap_default_scope(caps)))
2982 continue;
2983
2984 if (caps->desc)
2985 pr_info("detected: %s\n", caps->desc);
2986
2987 __set_bit(caps->capability, system_cpucaps);
2988
2989 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2990 set_bit(caps->capability, boot_cpucaps);
2991 }
2992 }
2993
2994 /*
2995 * Enable all the available capabilities on this CPU. The capabilities
2996 * with BOOT_CPU scope are handled separately and hence skipped here.
2997 */
cpu_enable_non_boot_scope_capabilities(void * __unused)2998 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2999 {
3000 int i;
3001 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3002
3003 for_each_available_cap(i) {
3004 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3005
3006 if (WARN_ON(!cap))
3007 continue;
3008
3009 if (!(cap->type & non_boot_scope))
3010 continue;
3011
3012 if (cap->cpu_enable)
3013 cap->cpu_enable(cap);
3014 }
3015 return 0;
3016 }
3017
3018 /*
3019 * Run through the enabled capabilities and enable() it on all active
3020 * CPUs
3021 */
enable_cpu_capabilities(u16 scope_mask)3022 static void __init enable_cpu_capabilities(u16 scope_mask)
3023 {
3024 int i;
3025 const struct arm64_cpu_capabilities *caps;
3026 bool boot_scope;
3027
3028 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3029 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3030
3031 for (i = 0; i < ARM64_NCAPS; i++) {
3032 unsigned int num;
3033
3034 caps = cpucap_ptrs[i];
3035 if (!caps || !(caps->type & scope_mask))
3036 continue;
3037 num = caps->capability;
3038 if (!cpus_have_cap(num))
3039 continue;
3040
3041 if (boot_scope && caps->cpu_enable)
3042 /*
3043 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3044 * before any secondary CPU boots. Thus, each secondary
3045 * will enable the capability as appropriate via
3046 * check_local_cpu_capabilities(). The only exception is
3047 * the boot CPU, for which the capability must be
3048 * enabled here. This approach avoids costly
3049 * stop_machine() calls for this case.
3050 */
3051 caps->cpu_enable(caps);
3052 }
3053
3054 /*
3055 * For all non-boot scope capabilities, use stop_machine()
3056 * as it schedules the work allowing us to modify PSTATE,
3057 * instead of on_each_cpu() which uses an IPI, giving us a
3058 * PSTATE that disappears when we return.
3059 */
3060 if (!boot_scope)
3061 stop_machine(cpu_enable_non_boot_scope_capabilities,
3062 NULL, cpu_online_mask);
3063 }
3064
3065 /*
3066 * Run through the list of capabilities to check for conflicts.
3067 * If the system has already detected a capability, take necessary
3068 * action on this CPU.
3069 */
verify_local_cpu_caps(u16 scope_mask)3070 static void verify_local_cpu_caps(u16 scope_mask)
3071 {
3072 int i;
3073 bool cpu_has_cap, system_has_cap;
3074 const struct arm64_cpu_capabilities *caps;
3075
3076 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3077
3078 for (i = 0; i < ARM64_NCAPS; i++) {
3079 caps = cpucap_ptrs[i];
3080 if (!caps || !(caps->type & scope_mask))
3081 continue;
3082
3083 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3084 system_has_cap = cpus_have_cap(caps->capability);
3085
3086 if (system_has_cap) {
3087 /*
3088 * Check if the new CPU misses an advertised feature,
3089 * which is not safe to miss.
3090 */
3091 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3092 break;
3093 /*
3094 * We have to issue cpu_enable() irrespective of
3095 * whether the CPU has it or not, as it is enabeld
3096 * system wide. It is upto the call back to take
3097 * appropriate action on this CPU.
3098 */
3099 if (caps->cpu_enable)
3100 caps->cpu_enable(caps);
3101 } else {
3102 /*
3103 * Check if the CPU has this capability if it isn't
3104 * safe to have when the system doesn't.
3105 */
3106 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3107 break;
3108 }
3109 }
3110
3111 if (i < ARM64_NCAPS) {
3112 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3113 smp_processor_id(), caps->capability,
3114 caps->desc, system_has_cap, cpu_has_cap);
3115
3116 if (cpucap_panic_on_conflict(caps))
3117 cpu_panic_kernel();
3118 else
3119 cpu_die_early();
3120 }
3121 }
3122
3123 /*
3124 * Check for CPU features that are used in early boot
3125 * based on the Boot CPU value.
3126 */
check_early_cpu_features(void)3127 static void check_early_cpu_features(void)
3128 {
3129 verify_cpu_asid_bits();
3130
3131 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3132 }
3133
3134 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3135 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3136 {
3137
3138 for (; caps->matches; caps++)
3139 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3140 pr_crit("CPU%d: missing HWCAP: %s\n",
3141 smp_processor_id(), caps->desc);
3142 cpu_die_early();
3143 }
3144 }
3145
verify_local_elf_hwcaps(void)3146 static void verify_local_elf_hwcaps(void)
3147 {
3148 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3149
3150 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3151 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3152 }
3153
verify_sve_features(void)3154 static void verify_sve_features(void)
3155 {
3156 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3157 u64 zcr = read_zcr_features();
3158
3159 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3160 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3161
3162 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3163 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3164 smp_processor_id());
3165 cpu_die_early();
3166 }
3167
3168 /* Add checks on other ZCR bits here if necessary */
3169 }
3170
verify_sme_features(void)3171 static void verify_sme_features(void)
3172 {
3173 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3174 u64 smcr = read_smcr_features();
3175
3176 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3177 unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3178
3179 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3180 pr_crit("CPU%d: SME: vector length support mismatch\n",
3181 smp_processor_id());
3182 cpu_die_early();
3183 }
3184
3185 /* Add checks on other SMCR bits here if necessary */
3186 }
3187
verify_hyp_capabilities(void)3188 static void verify_hyp_capabilities(void)
3189 {
3190 u64 safe_mmfr1, mmfr0, mmfr1;
3191 int parange, ipa_max;
3192 unsigned int safe_vmid_bits, vmid_bits;
3193
3194 if (!IS_ENABLED(CONFIG_KVM))
3195 return;
3196
3197 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3198 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3199 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3200
3201 /* Verify VMID bits */
3202 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3203 vmid_bits = get_vmid_bits(mmfr1);
3204 if (vmid_bits < safe_vmid_bits) {
3205 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3206 cpu_die_early();
3207 }
3208
3209 /* Verify IPA range */
3210 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3211 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3212 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3213 if (ipa_max < get_kvm_ipa_limit()) {
3214 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3215 cpu_die_early();
3216 }
3217 }
3218
3219 /*
3220 * Run through the enabled system capabilities and enable() it on this CPU.
3221 * The capabilities were decided based on the available CPUs at the boot time.
3222 * Any new CPU should match the system wide status of the capability. If the
3223 * new CPU doesn't have a capability which the system now has enabled, we
3224 * cannot do anything to fix it up and could cause unexpected failures. So
3225 * we park the CPU.
3226 */
verify_local_cpu_capabilities(void)3227 static void verify_local_cpu_capabilities(void)
3228 {
3229 /*
3230 * The capabilities with SCOPE_BOOT_CPU are checked from
3231 * check_early_cpu_features(), as they need to be verified
3232 * on all secondary CPUs.
3233 */
3234 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3235 verify_local_elf_hwcaps();
3236
3237 if (system_supports_sve())
3238 verify_sve_features();
3239
3240 if (system_supports_sme())
3241 verify_sme_features();
3242
3243 if (is_hyp_mode_available())
3244 verify_hyp_capabilities();
3245 }
3246
check_local_cpu_capabilities(void)3247 void check_local_cpu_capabilities(void)
3248 {
3249 /*
3250 * All secondary CPUs should conform to the early CPU features
3251 * in use by the kernel based on boot CPU.
3252 */
3253 check_early_cpu_features();
3254
3255 /*
3256 * If we haven't finalised the system capabilities, this CPU gets
3257 * a chance to update the errata work arounds and local features.
3258 * Otherwise, this CPU should verify that it has all the system
3259 * advertised capabilities.
3260 */
3261 if (!system_capabilities_finalized())
3262 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3263 else
3264 verify_local_cpu_capabilities();
3265 }
3266
setup_boot_cpu_capabilities(void)3267 static void __init setup_boot_cpu_capabilities(void)
3268 {
3269 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3270 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3271 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3272 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3273 }
3274
this_cpu_has_cap(unsigned int n)3275 bool this_cpu_has_cap(unsigned int n)
3276 {
3277 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3278 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3279
3280 if (cap)
3281 return cap->matches(cap, SCOPE_LOCAL_CPU);
3282 }
3283
3284 return false;
3285 }
3286 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3287
3288 /*
3289 * This helper function is used in a narrow window when,
3290 * - The system wide safe registers are set with all the SMP CPUs and,
3291 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3292 * In all other cases cpus_have_{const_}cap() should be used.
3293 */
__system_matches_cap(unsigned int n)3294 static bool __maybe_unused __system_matches_cap(unsigned int n)
3295 {
3296 if (n < ARM64_NCAPS) {
3297 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3298
3299 if (cap)
3300 return cap->matches(cap, SCOPE_SYSTEM);
3301 }
3302 return false;
3303 }
3304
cpu_set_feature(unsigned int num)3305 void cpu_set_feature(unsigned int num)
3306 {
3307 set_bit(num, elf_hwcap);
3308 }
3309
cpu_have_feature(unsigned int num)3310 bool cpu_have_feature(unsigned int num)
3311 {
3312 return test_bit(num, elf_hwcap);
3313 }
3314 EXPORT_SYMBOL_GPL(cpu_have_feature);
3315
cpu_get_elf_hwcap(void)3316 unsigned long cpu_get_elf_hwcap(void)
3317 {
3318 /*
3319 * We currently only populate the first 32 bits of AT_HWCAP. Please
3320 * note that for userspace compatibility we guarantee that bits 62
3321 * and 63 will always be returned as 0.
3322 */
3323 return elf_hwcap[0];
3324 }
3325
cpu_get_elf_hwcap2(void)3326 unsigned long cpu_get_elf_hwcap2(void)
3327 {
3328 return elf_hwcap[1];
3329 }
3330
setup_system_capabilities(void)3331 static void __init setup_system_capabilities(void)
3332 {
3333 /*
3334 * We have finalised the system-wide safe feature
3335 * registers, finalise the capabilities that depend
3336 * on it. Also enable all the available capabilities,
3337 * that are not enabled already.
3338 */
3339 update_cpu_capabilities(SCOPE_SYSTEM);
3340 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3341 }
3342
setup_cpu_features(void)3343 void __init setup_cpu_features(void)
3344 {
3345 u32 cwg;
3346
3347 setup_system_capabilities();
3348 setup_elf_hwcaps(arm64_elf_hwcaps);
3349
3350 if (system_supports_32bit_el0()) {
3351 setup_elf_hwcaps(compat_elf_hwcaps);
3352 elf_hwcap_fixup();
3353 }
3354
3355 if (system_uses_ttbr0_pan())
3356 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3357
3358 sve_setup();
3359 sme_setup();
3360 minsigstksz_setup();
3361
3362 /*
3363 * Check for sane CTR_EL0.CWG value.
3364 */
3365 cwg = cache_type_cwg();
3366 if (!cwg)
3367 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3368 ARCH_DMA_MINALIGN);
3369 }
3370
enable_mismatched_32bit_el0(unsigned int cpu)3371 static int enable_mismatched_32bit_el0(unsigned int cpu)
3372 {
3373 /*
3374 * The first 32-bit-capable CPU we detected and so can no longer
3375 * be offlined by userspace. -1 indicates we haven't yet onlined
3376 * a 32-bit-capable CPU.
3377 */
3378 static int lucky_winner = -1;
3379
3380 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3381 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3382
3383 if (cpu_32bit) {
3384 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3385 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3386 }
3387
3388 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3389 return 0;
3390
3391 if (lucky_winner >= 0)
3392 return 0;
3393
3394 /*
3395 * We've detected a mismatch. We need to keep one of our CPUs with
3396 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3397 * every CPU in the system for a 32-bit task.
3398 */
3399 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3400 cpu_active_mask);
3401 get_cpu_device(lucky_winner)->offline_disabled = true;
3402 setup_elf_hwcaps(compat_elf_hwcaps);
3403 elf_hwcap_fixup();
3404 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3405 cpu, lucky_winner);
3406 return 0;
3407 }
3408
init_32bit_el0_mask(void)3409 static int __init init_32bit_el0_mask(void)
3410 {
3411 if (!allow_mismatched_32bit_el0)
3412 return 0;
3413
3414 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3415 return -ENOMEM;
3416
3417 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3418 "arm64/mismatched_32bit_el0:online",
3419 enable_mismatched_32bit_el0, NULL);
3420 }
3421 subsys_initcall_sync(init_32bit_el0_mask);
3422
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3423 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3424 {
3425 cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3426 }
3427
3428 /*
3429 * We emulate only the following system register space.
3430 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3431 * See Table C5-6 System instruction encodings for System register accesses,
3432 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3433 */
is_emulated(u32 id)3434 static inline bool __attribute_const__ is_emulated(u32 id)
3435 {
3436 return (sys_reg_Op0(id) == 0x3 &&
3437 sys_reg_CRn(id) == 0x0 &&
3438 sys_reg_Op1(id) == 0x0 &&
3439 (sys_reg_CRm(id) == 0 ||
3440 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3441 }
3442
3443 /*
3444 * With CRm == 0, reg should be one of :
3445 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3446 */
emulate_id_reg(u32 id,u64 * valp)3447 static inline int emulate_id_reg(u32 id, u64 *valp)
3448 {
3449 switch (id) {
3450 case SYS_MIDR_EL1:
3451 *valp = read_cpuid_id();
3452 break;
3453 case SYS_MPIDR_EL1:
3454 *valp = SYS_MPIDR_SAFE_VAL;
3455 break;
3456 case SYS_REVIDR_EL1:
3457 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3458 *valp = 0;
3459 break;
3460 default:
3461 return -EINVAL;
3462 }
3463
3464 return 0;
3465 }
3466
emulate_sys_reg(u32 id,u64 * valp)3467 static int emulate_sys_reg(u32 id, u64 *valp)
3468 {
3469 struct arm64_ftr_reg *regp;
3470
3471 if (!is_emulated(id))
3472 return -EINVAL;
3473
3474 if (sys_reg_CRm(id) == 0)
3475 return emulate_id_reg(id, valp);
3476
3477 regp = get_arm64_ftr_reg_nowarn(id);
3478 if (regp)
3479 *valp = arm64_ftr_reg_user_value(regp);
3480 else
3481 /*
3482 * The untracked registers are either IMPLEMENTATION DEFINED
3483 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3484 */
3485 *valp = 0;
3486 return 0;
3487 }
3488
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)3489 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3490 {
3491 int rc;
3492 u64 val;
3493
3494 rc = emulate_sys_reg(sys_reg, &val);
3495 if (!rc) {
3496 pt_regs_write_reg(regs, rt, val);
3497 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3498 }
3499 return rc;
3500 }
3501
try_emulate_mrs(struct pt_regs * regs,u32 insn)3502 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3503 {
3504 u32 sys_reg, rt;
3505
3506 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3507 return false;
3508
3509 /*
3510 * sys_reg values are defined as used in mrs/msr instruction.
3511 * shift the imm value to get the encoding.
3512 */
3513 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3514 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3515 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3516 }
3517
arm64_get_meltdown_state(void)3518 enum mitigation_state arm64_get_meltdown_state(void)
3519 {
3520 if (__meltdown_safe)
3521 return SPECTRE_UNAFFECTED;
3522
3523 if (arm64_kernel_unmapped_at_el0())
3524 return SPECTRE_MITIGATED;
3525
3526 return SPECTRE_VULNERABLE;
3527 }
3528
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3529 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3530 char *buf)
3531 {
3532 switch (arm64_get_meltdown_state()) {
3533 case SPECTRE_UNAFFECTED:
3534 return sprintf(buf, "Not affected\n");
3535
3536 case SPECTRE_MITIGATED:
3537 return sprintf(buf, "Mitigation: PTI\n");
3538
3539 default:
3540 return sprintf(buf, "Vulnerable\n");
3541 }
3542 }
3543