1 /*
2 * Generic helpers for smp ipi calls
3 *
4 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
5 */
6 #include <linux/rcupdate.h>
7 #include <linux/rculist.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/percpu.h>
11 #include <linux/init.h>
12 #include <linux/gfp.h>
13 #include <linux/smp.h>
14 #include <linux/cpu.h>
15
16 #ifdef CONFIG_USE_GENERIC_SMP_HELPERS
17 static struct {
18 struct list_head queue;
19 raw_spinlock_t lock;
20 } call_function __cacheline_aligned_in_smp =
21 {
22 .queue = LIST_HEAD_INIT(call_function.queue),
23 .lock = __RAW_SPIN_LOCK_UNLOCKED(call_function.lock),
24 };
25
26 enum {
27 CSD_FLAG_LOCK = 0x01,
28 };
29
30 struct call_function_data {
31 struct call_single_data csd;
32 atomic_t refs;
33 cpumask_var_t cpumask;
34 };
35
36 static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
37
38 struct call_single_queue {
39 struct list_head list;
40 raw_spinlock_t lock;
41 };
42
43 static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_queue, call_single_queue);
44
45 static int
hotplug_cfd(struct notifier_block * nfb,unsigned long action,void * hcpu)46 hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
47 {
48 long cpu = (long)hcpu;
49 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
50
51 switch (action) {
52 case CPU_UP_PREPARE:
53 case CPU_UP_PREPARE_FROZEN:
54 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
55 cpu_to_node(cpu)))
56 return notifier_from_errno(-ENOMEM);
57 break;
58
59 #ifdef CONFIG_HOTPLUG_CPU
60 case CPU_UP_CANCELED:
61 case CPU_UP_CANCELED_FROZEN:
62
63 case CPU_DEAD:
64 case CPU_DEAD_FROZEN:
65 free_cpumask_var(cfd->cpumask);
66 break;
67 #endif
68 };
69
70 return NOTIFY_OK;
71 }
72
73 static struct notifier_block __cpuinitdata hotplug_cfd_notifier = {
74 .notifier_call = hotplug_cfd,
75 };
76
init_call_single_data(void)77 static int __cpuinit init_call_single_data(void)
78 {
79 void *cpu = (void *)(long)smp_processor_id();
80 int i;
81
82 for_each_possible_cpu(i) {
83 struct call_single_queue *q = &per_cpu(call_single_queue, i);
84
85 raw_spin_lock_init(&q->lock);
86 INIT_LIST_HEAD(&q->list);
87 }
88
89 hotplug_cfd(&hotplug_cfd_notifier, CPU_UP_PREPARE, cpu);
90 register_cpu_notifier(&hotplug_cfd_notifier);
91
92 return 0;
93 }
94 early_initcall(init_call_single_data);
95
96 /*
97 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
98 *
99 * For non-synchronous ipi calls the csd can still be in use by the
100 * previous function call. For multi-cpu calls its even more interesting
101 * as we'll have to ensure no other cpu is observing our csd.
102 */
csd_lock_wait(struct call_single_data * data)103 static void csd_lock_wait(struct call_single_data *data)
104 {
105 while (data->flags & CSD_FLAG_LOCK)
106 cpu_relax();
107 }
108
csd_lock(struct call_single_data * data)109 static void csd_lock(struct call_single_data *data)
110 {
111 csd_lock_wait(data);
112 data->flags = CSD_FLAG_LOCK;
113
114 /*
115 * prevent CPU from reordering the above assignment
116 * to ->flags with any subsequent assignments to other
117 * fields of the specified call_single_data structure:
118 */
119 smp_mb();
120 }
121
csd_unlock(struct call_single_data * data)122 static void csd_unlock(struct call_single_data *data)
123 {
124 WARN_ON(!(data->flags & CSD_FLAG_LOCK));
125
126 /*
127 * ensure we're all done before releasing data:
128 */
129 smp_mb();
130
131 data->flags &= ~CSD_FLAG_LOCK;
132 }
133
134 /*
135 * Insert a previously allocated call_single_data element
136 * for execution on the given CPU. data must already have
137 * ->func, ->info, and ->flags set.
138 */
139 static
generic_exec_single(int cpu,struct call_single_data * data,int wait)140 void generic_exec_single(int cpu, struct call_single_data *data, int wait)
141 {
142 struct call_single_queue *dst = &per_cpu(call_single_queue, cpu);
143 unsigned long flags;
144 int ipi;
145
146 raw_spin_lock_irqsave(&dst->lock, flags);
147 ipi = list_empty(&dst->list);
148 list_add_tail(&data->list, &dst->list);
149 raw_spin_unlock_irqrestore(&dst->lock, flags);
150
151 /*
152 * The list addition should be visible before sending the IPI
153 * handler locks the list to pull the entry off it because of
154 * normal cache coherency rules implied by spinlocks.
155 *
156 * If IPIs can go out of order to the cache coherency protocol
157 * in an architecture, sufficient synchronisation should be added
158 * to arch code to make it appear to obey cache coherency WRT
159 * locking and barrier primitives. Generic code isn't really
160 * equipped to do the right thing...
161 */
162 if (ipi)
163 arch_send_call_function_single_ipi(cpu);
164
165 if (wait)
166 csd_lock_wait(data);
167 }
168
169 /*
170 * Invoked by arch to handle an IPI for call function. Must be called with
171 * interrupts disabled.
172 */
generic_smp_call_function_interrupt(void)173 void generic_smp_call_function_interrupt(void)
174 {
175 struct call_function_data *data;
176 int cpu = smp_processor_id();
177
178 /*
179 * Shouldn't receive this interrupt on a cpu that is not yet online.
180 */
181 WARN_ON_ONCE(!cpu_online(cpu));
182
183 /*
184 * Ensure entry is visible on call_function_queue after we have
185 * entered the IPI. See comment in smp_call_function_many.
186 * If we don't have this, then we may miss an entry on the list
187 * and never get another IPI to process it.
188 */
189 smp_mb();
190
191 /*
192 * It's ok to use list_for_each_rcu() here even though we may
193 * delete 'pos', since list_del_rcu() doesn't clear ->next
194 */
195 list_for_each_entry_rcu(data, &call_function.queue, csd.list) {
196 int refs;
197 smp_call_func_t func;
198
199 /*
200 * Since we walk the list without any locks, we might
201 * see an entry that was completed, removed from the
202 * list and is in the process of being reused.
203 *
204 * We must check that the cpu is in the cpumask before
205 * checking the refs, and both must be set before
206 * executing the callback on this cpu.
207 */
208
209 if (!cpumask_test_cpu(cpu, data->cpumask))
210 continue;
211
212 smp_rmb();
213
214 if (atomic_read(&data->refs) == 0)
215 continue;
216
217 func = data->csd.func; /* save for later warn */
218 func(data->csd.info);
219
220 /*
221 * If the cpu mask is not still set then func enabled
222 * interrupts (BUG), and this cpu took another smp call
223 * function interrupt and executed func(info) twice
224 * on this cpu. That nested execution decremented refs.
225 */
226 if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) {
227 WARN(1, "%pf enabled interrupts and double executed\n", func);
228 continue;
229 }
230
231 refs = atomic_dec_return(&data->refs);
232 WARN_ON(refs < 0);
233
234 if (refs)
235 continue;
236
237 WARN_ON(!cpumask_empty(data->cpumask));
238
239 raw_spin_lock(&call_function.lock);
240 list_del_rcu(&data->csd.list);
241 raw_spin_unlock(&call_function.lock);
242
243 csd_unlock(&data->csd);
244 }
245
246 }
247
248 /*
249 * Invoked by arch to handle an IPI for call function single. Must be
250 * called from the arch with interrupts disabled.
251 */
generic_smp_call_function_single_interrupt(void)252 void generic_smp_call_function_single_interrupt(void)
253 {
254 struct call_single_queue *q = &__get_cpu_var(call_single_queue);
255 unsigned int data_flags;
256 LIST_HEAD(list);
257
258 /*
259 * Shouldn't receive this interrupt on a cpu that is not yet online.
260 */
261 WARN_ON_ONCE(!cpu_online(smp_processor_id()));
262
263 raw_spin_lock(&q->lock);
264 list_replace_init(&q->list, &list);
265 raw_spin_unlock(&q->lock);
266
267 while (!list_empty(&list)) {
268 struct call_single_data *data;
269
270 data = list_entry(list.next, struct call_single_data, list);
271 list_del(&data->list);
272
273 /*
274 * 'data' can be invalid after this call if flags == 0
275 * (when called through generic_exec_single()),
276 * so save them away before making the call:
277 */
278 data_flags = data->flags;
279
280 data->func(data->info);
281
282 /*
283 * Unlocked CSDs are valid through generic_exec_single():
284 */
285 if (data_flags & CSD_FLAG_LOCK)
286 csd_unlock(data);
287 }
288 }
289
290 static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data);
291
292 /*
293 * smp_call_function_single - Run a function on a specific CPU
294 * @func: The function to run. This must be fast and non-blocking.
295 * @info: An arbitrary pointer to pass to the function.
296 * @wait: If true, wait until function has completed on other CPUs.
297 *
298 * Returns 0 on success, else a negative status code.
299 */
smp_call_function_single(int cpu,smp_call_func_t func,void * info,int wait)300 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
301 int wait)
302 {
303 struct call_single_data d = {
304 .flags = 0,
305 };
306 unsigned long flags;
307 int this_cpu;
308 int err = 0;
309
310 /*
311 * prevent preemption and reschedule on another processor,
312 * as well as CPU removal
313 */
314 this_cpu = get_cpu();
315
316 /*
317 * Can deadlock when called with interrupts disabled.
318 * We allow cpu's that are not yet online though, as no one else can
319 * send smp call function interrupt to this cpu and as such deadlocks
320 * can't happen.
321 */
322 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
323 && !oops_in_progress);
324
325 if (cpu == this_cpu) {
326 local_irq_save(flags);
327 func(info);
328 local_irq_restore(flags);
329 } else {
330 if ((unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) {
331 struct call_single_data *data = &d;
332
333 if (!wait)
334 data = &__get_cpu_var(csd_data);
335
336 csd_lock(data);
337
338 data->func = func;
339 data->info = info;
340 generic_exec_single(cpu, data, wait);
341 } else {
342 err = -ENXIO; /* CPU not online */
343 }
344 }
345
346 put_cpu();
347
348 return err;
349 }
350 EXPORT_SYMBOL(smp_call_function_single);
351
352 /*
353 * smp_call_function_any - Run a function on any of the given cpus
354 * @mask: The mask of cpus it can run on.
355 * @func: The function to run. This must be fast and non-blocking.
356 * @info: An arbitrary pointer to pass to the function.
357 * @wait: If true, wait until function has completed.
358 *
359 * Returns 0 on success, else a negative status code (if no cpus were online).
360 * Note that @wait will be implicitly turned on in case of allocation failures,
361 * since we fall back to on-stack allocation.
362 *
363 * Selection preference:
364 * 1) current cpu if in @mask
365 * 2) any cpu of current node if in @mask
366 * 3) any other online cpu in @mask
367 */
smp_call_function_any(const struct cpumask * mask,smp_call_func_t func,void * info,int wait)368 int smp_call_function_any(const struct cpumask *mask,
369 smp_call_func_t func, void *info, int wait)
370 {
371 unsigned int cpu;
372 const struct cpumask *nodemask;
373 int ret;
374
375 /* Try for same CPU (cheapest) */
376 cpu = get_cpu();
377 if (cpumask_test_cpu(cpu, mask))
378 goto call;
379
380 /* Try for same node. */
381 nodemask = cpumask_of_node(cpu_to_node(cpu));
382 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
383 cpu = cpumask_next_and(cpu, nodemask, mask)) {
384 if (cpu_online(cpu))
385 goto call;
386 }
387
388 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */
389 cpu = cpumask_any_and(mask, cpu_online_mask);
390 call:
391 ret = smp_call_function_single(cpu, func, info, wait);
392 put_cpu();
393 return ret;
394 }
395 EXPORT_SYMBOL_GPL(smp_call_function_any);
396
397 /**
398 * __smp_call_function_single(): Run a function on a specific CPU
399 * @cpu: The CPU to run on.
400 * @data: Pre-allocated and setup data structure
401 * @wait: If true, wait until function has completed on specified CPU.
402 *
403 * Like smp_call_function_single(), but allow caller to pass in a
404 * pre-allocated data structure. Useful for embedding @data inside
405 * other structures, for instance.
406 */
__smp_call_function_single(int cpu,struct call_single_data * data,int wait)407 void __smp_call_function_single(int cpu, struct call_single_data *data,
408 int wait)
409 {
410 unsigned int this_cpu;
411 unsigned long flags;
412
413 this_cpu = get_cpu();
414 /*
415 * Can deadlock when called with interrupts disabled.
416 * We allow cpu's that are not yet online though, as no one else can
417 * send smp call function interrupt to this cpu and as such deadlocks
418 * can't happen.
419 */
420 WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled()
421 && !oops_in_progress);
422
423 if (cpu == this_cpu) {
424 local_irq_save(flags);
425 data->func(data->info);
426 local_irq_restore(flags);
427 } else {
428 csd_lock(data);
429 generic_exec_single(cpu, data, wait);
430 }
431 put_cpu();
432 }
433
434 /**
435 * smp_call_function_many(): Run a function on a set of other CPUs.
436 * @mask: The set of cpus to run on (only runs on online subset).
437 * @func: The function to run. This must be fast and non-blocking.
438 * @info: An arbitrary pointer to pass to the function.
439 * @wait: If true, wait (atomically) until function has completed
440 * on other CPUs.
441 *
442 * If @wait is true, then returns once @func has returned.
443 *
444 * You must not call this function with disabled interrupts or from a
445 * hardware interrupt handler or from a bottom half handler. Preemption
446 * must be disabled when calling this function.
447 */
smp_call_function_many(const struct cpumask * mask,smp_call_func_t func,void * info,bool wait)448 void smp_call_function_many(const struct cpumask *mask,
449 smp_call_func_t func, void *info, bool wait)
450 {
451 struct call_function_data *data;
452 unsigned long flags;
453 int refs, cpu, next_cpu, this_cpu = smp_processor_id();
454
455 /*
456 * Can deadlock when called with interrupts disabled.
457 * We allow cpu's that are not yet online though, as no one else can
458 * send smp call function interrupt to this cpu and as such deadlocks
459 * can't happen.
460 */
461 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
462 && !oops_in_progress && !early_boot_irqs_disabled);
463
464 /* Try to fastpath. So, what's a CPU they want? Ignoring this one. */
465 cpu = cpumask_first_and(mask, cpu_online_mask);
466 if (cpu == this_cpu)
467 cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
468
469 /* No online cpus? We're done. */
470 if (cpu >= nr_cpu_ids)
471 return;
472
473 /* Do we have another CPU which isn't us? */
474 next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
475 if (next_cpu == this_cpu)
476 next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
477
478 /* Fastpath: do that cpu by itself. */
479 if (next_cpu >= nr_cpu_ids) {
480 smp_call_function_single(cpu, func, info, wait);
481 return;
482 }
483
484 data = &__get_cpu_var(cfd_data);
485 csd_lock(&data->csd);
486
487 /* This BUG_ON verifies our reuse assertions and can be removed */
488 BUG_ON(atomic_read(&data->refs) || !cpumask_empty(data->cpumask));
489
490 /*
491 * The global call function queue list add and delete are protected
492 * by a lock, but the list is traversed without any lock, relying
493 * on the rcu list add and delete to allow safe concurrent traversal.
494 * We reuse the call function data without waiting for any grace
495 * period after some other cpu removes it from the global queue.
496 * This means a cpu might find our data block as it is being
497 * filled out.
498 *
499 * We hold off the interrupt handler on the other cpu by
500 * ordering our writes to the cpu mask vs our setting of the
501 * refs counter. We assert only the cpu owning the data block
502 * will set a bit in cpumask, and each bit will only be cleared
503 * by the subject cpu. Each cpu must first find its bit is
504 * set and then check that refs is set indicating the element is
505 * ready to be processed, otherwise it must skip the entry.
506 *
507 * On the previous iteration refs was set to 0 by another cpu.
508 * To avoid the use of transitivity, set the counter to 0 here
509 * so the wmb will pair with the rmb in the interrupt handler.
510 */
511 atomic_set(&data->refs, 0); /* convert 3rd to 1st party write */
512
513 data->csd.func = func;
514 data->csd.info = info;
515
516 /* Ensure 0 refs is visible before mask. Also orders func and info */
517 smp_wmb();
518
519 /* We rely on the "and" being processed before the store */
520 cpumask_and(data->cpumask, mask, cpu_online_mask);
521 cpumask_clear_cpu(this_cpu, data->cpumask);
522 refs = cpumask_weight(data->cpumask);
523
524 /* Some callers race with other cpus changing the passed mask */
525 if (unlikely(!refs)) {
526 csd_unlock(&data->csd);
527 return;
528 }
529
530 raw_spin_lock_irqsave(&call_function.lock, flags);
531 /*
532 * Place entry at the _HEAD_ of the list, so that any cpu still
533 * observing the entry in generic_smp_call_function_interrupt()
534 * will not miss any other list entries:
535 */
536 list_add_rcu(&data->csd.list, &call_function.queue);
537 /*
538 * We rely on the wmb() in list_add_rcu to complete our writes
539 * to the cpumask before this write to refs, which indicates
540 * data is on the list and is ready to be processed.
541 */
542 atomic_set(&data->refs, refs);
543 raw_spin_unlock_irqrestore(&call_function.lock, flags);
544
545 /*
546 * Make the list addition visible before sending the ipi.
547 * (IPIs must obey or appear to obey normal Linux cache
548 * coherency rules -- see comment in generic_exec_single).
549 */
550 smp_mb();
551
552 /* Send a message to all CPUs in the map */
553 arch_send_call_function_ipi_mask(data->cpumask);
554
555 /* Optionally wait for the CPUs to complete */
556 if (wait)
557 csd_lock_wait(&data->csd);
558 }
559 EXPORT_SYMBOL(smp_call_function_many);
560
561 /**
562 * smp_call_function(): Run a function on all other CPUs.
563 * @func: The function to run. This must be fast and non-blocking.
564 * @info: An arbitrary pointer to pass to the function.
565 * @wait: If true, wait (atomically) until function has completed
566 * on other CPUs.
567 *
568 * Returns 0.
569 *
570 * If @wait is true, then returns once @func has returned; otherwise
571 * it returns just before the target cpu calls @func.
572 *
573 * You must not call this function with disabled interrupts or from a
574 * hardware interrupt handler or from a bottom half handler.
575 */
smp_call_function(smp_call_func_t func,void * info,int wait)576 int smp_call_function(smp_call_func_t func, void *info, int wait)
577 {
578 preempt_disable();
579 smp_call_function_many(cpu_online_mask, func, info, wait);
580 preempt_enable();
581
582 return 0;
583 }
584 EXPORT_SYMBOL(smp_call_function);
585
ipi_call_lock(void)586 void ipi_call_lock(void)
587 {
588 raw_spin_lock(&call_function.lock);
589 }
590
ipi_call_unlock(void)591 void ipi_call_unlock(void)
592 {
593 raw_spin_unlock(&call_function.lock);
594 }
595
ipi_call_lock_irq(void)596 void ipi_call_lock_irq(void)
597 {
598 raw_spin_lock_irq(&call_function.lock);
599 }
600
ipi_call_unlock_irq(void)601 void ipi_call_unlock_irq(void)
602 {
603 raw_spin_unlock_irq(&call_function.lock);
604 }
605 #endif /* USE_GENERIC_SMP_HELPERS */
606
607 /* Setup configured maximum number of CPUs to activate */
608 unsigned int setup_max_cpus = NR_CPUS;
609 EXPORT_SYMBOL(setup_max_cpus);
610
611
612 /*
613 * Setup routine for controlling SMP activation
614 *
615 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
616 * activation entirely (the MPS table probe still happens, though).
617 *
618 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
619 * greater than 0, limits the maximum number of CPUs activated in
620 * SMP mode to <NUM>.
621 */
622
arch_disable_smp_support(void)623 void __weak arch_disable_smp_support(void) { }
624
nosmp(char * str)625 static int __init nosmp(char *str)
626 {
627 setup_max_cpus = 0;
628 arch_disable_smp_support();
629
630 return 0;
631 }
632
633 early_param("nosmp", nosmp);
634
635 /* this is hard limit */
nrcpus(char * str)636 static int __init nrcpus(char *str)
637 {
638 int nr_cpus;
639
640 get_option(&str, &nr_cpus);
641 if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
642 nr_cpu_ids = nr_cpus;
643
644 return 0;
645 }
646
647 early_param("nr_cpus", nrcpus);
648
maxcpus(char * str)649 static int __init maxcpus(char *str)
650 {
651 get_option(&str, &setup_max_cpus);
652 if (setup_max_cpus == 0)
653 arch_disable_smp_support();
654
655 return 0;
656 }
657
658 early_param("maxcpus", maxcpus);
659
660 /* Setup number of possible processor ids */
661 int nr_cpu_ids __read_mostly = NR_CPUS;
662 EXPORT_SYMBOL(nr_cpu_ids);
663
664 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
setup_nr_cpu_ids(void)665 void __init setup_nr_cpu_ids(void)
666 {
667 nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
668 }
669
670 /* Called by boot processor to activate the rest. */
smp_init(void)671 void __init smp_init(void)
672 {
673 unsigned int cpu;
674
675 /* FIXME: This should be done in userspace --RR */
676 for_each_present_cpu(cpu) {
677 if (num_online_cpus() >= setup_max_cpus)
678 break;
679 if (!cpu_online(cpu))
680 cpu_up(cpu);
681 }
682
683 /* Any cleanup work */
684 printk(KERN_INFO "Brought up %ld CPUs\n", (long)num_online_cpus());
685 smp_cpus_done(setup_max_cpus);
686 }
687
688 /*
689 * Call a function on all processors. May be used during early boot while
690 * early_boot_irqs_disabled is set. Use local_irq_save/restore() instead
691 * of local_irq_disable/enable().
692 */
on_each_cpu(void (* func)(void * info),void * info,int wait)693 int on_each_cpu(void (*func) (void *info), void *info, int wait)
694 {
695 unsigned long flags;
696 int ret = 0;
697
698 preempt_disable();
699 ret = smp_call_function(func, info, wait);
700 local_irq_save(flags);
701 func(info);
702 local_irq_restore(flags);
703 preempt_enable();
704 return ret;
705 }
706 EXPORT_SYMBOL(on_each_cpu);
707