1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27 
28 /*
29  * The max size that a non-root user is allowed to grow the pipe. Can
30  * be set by root in /proc/sys/fs/pipe-max-size
31  */
32 unsigned int pipe_max_size = 1048576;
33 
34 /*
35  * Minimum pipe size, as required by POSIX
36  */
37 unsigned int pipe_min_size = PAGE_SIZE;
38 
39 /*
40  * We use a start+len construction, which provides full use of the
41  * allocated memory.
42  * -- Florian Coosmann (FGC)
43  *
44  * Reads with count = 0 should always return 0.
45  * -- Julian Bradfield 1999-06-07.
46  *
47  * FIFOs and Pipes now generate SIGIO for both readers and writers.
48  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49  *
50  * pipe_read & write cleanup
51  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
52  */
53 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
55 {
56 	if (pipe->inode)
57 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
58 }
59 
pipe_lock(struct pipe_inode_info * pipe)60 void pipe_lock(struct pipe_inode_info *pipe)
61 {
62 	/*
63 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 	 */
65 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 }
67 EXPORT_SYMBOL(pipe_lock);
68 
pipe_unlock(struct pipe_inode_info * pipe)69 void pipe_unlock(struct pipe_inode_info *pipe)
70 {
71 	if (pipe->inode)
72 		mutex_unlock(&pipe->inode->i_mutex);
73 }
74 EXPORT_SYMBOL(pipe_unlock);
75 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 		      struct pipe_inode_info *pipe2)
78 {
79 	BUG_ON(pipe1 == pipe2);
80 
81 	if (pipe1 < pipe2) {
82 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84 	} else {
85 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
87 	}
88 }
89 
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
pipe_wait(struct pipe_inode_info * pipe)91 void pipe_wait(struct pipe_inode_info *pipe)
92 {
93 	DEFINE_WAIT(wait);
94 
95 	/*
96 	 * Pipes are system-local resources, so sleeping on them
97 	 * is considered a noninteractive wait:
98 	 */
99 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
100 	pipe_unlock(pipe);
101 	schedule();
102 	finish_wait(&pipe->wait, &wait);
103 	pipe_lock(pipe);
104 }
105 
106 static int
pipe_iov_copy_from_user(void * to,struct iovec * iov,unsigned long len,int atomic)107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
108 			int atomic)
109 {
110 	unsigned long copy;
111 
112 	while (len > 0) {
113 		while (!iov->iov_len)
114 			iov++;
115 		copy = min_t(unsigned long, len, iov->iov_len);
116 
117 		if (atomic) {
118 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
119 				return -EFAULT;
120 		} else {
121 			if (copy_from_user(to, iov->iov_base, copy))
122 				return -EFAULT;
123 		}
124 		to += copy;
125 		len -= copy;
126 		iov->iov_base += copy;
127 		iov->iov_len -= copy;
128 	}
129 	return 0;
130 }
131 
132 static int
pipe_iov_copy_to_user(struct iovec * iov,const void * from,unsigned long len,int atomic)133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
134 		      int atomic)
135 {
136 	unsigned long copy;
137 
138 	while (len > 0) {
139 		while (!iov->iov_len)
140 			iov++;
141 		copy = min_t(unsigned long, len, iov->iov_len);
142 
143 		if (atomic) {
144 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
145 				return -EFAULT;
146 		} else {
147 			if (copy_to_user(iov->iov_base, from, copy))
148 				return -EFAULT;
149 		}
150 		from += copy;
151 		len -= copy;
152 		iov->iov_base += copy;
153 		iov->iov_len -= copy;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * Attempt to pre-fault in the user memory, so we can use atomic copies.
160  * Returns the number of bytes not faulted in.
161  */
iov_fault_in_pages_write(struct iovec * iov,unsigned long len)162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
163 {
164 	while (!iov->iov_len)
165 		iov++;
166 
167 	while (len > 0) {
168 		unsigned long this_len;
169 
170 		this_len = min_t(unsigned long, len, iov->iov_len);
171 		if (fault_in_pages_writeable(iov->iov_base, this_len))
172 			break;
173 
174 		len -= this_len;
175 		iov++;
176 	}
177 
178 	return len;
179 }
180 
181 /*
182  * Pre-fault in the user memory, so we can use atomic copies.
183  */
iov_fault_in_pages_read(struct iovec * iov,unsigned long len)184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
185 {
186 	while (!iov->iov_len)
187 		iov++;
188 
189 	while (len > 0) {
190 		unsigned long this_len;
191 
192 		this_len = min_t(unsigned long, len, iov->iov_len);
193 		fault_in_pages_readable(iov->iov_base, this_len);
194 		len -= this_len;
195 		iov++;
196 	}
197 }
198 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200 				  struct pipe_buffer *buf)
201 {
202 	struct page *page = buf->page;
203 
204 	/*
205 	 * If nobody else uses this page, and we don't already have a
206 	 * temporary page, let's keep track of it as a one-deep
207 	 * allocation cache. (Otherwise just release our reference to it)
208 	 */
209 	if (page_count(page) == 1 && !pipe->tmp_page)
210 		pipe->tmp_page = page;
211 	else
212 		page_cache_release(page);
213 }
214 
215 /**
216  * generic_pipe_buf_map - virtually map a pipe buffer
217  * @pipe:	the pipe that the buffer belongs to
218  * @buf:	the buffer that should be mapped
219  * @atomic:	whether to use an atomic map
220  *
221  * Description:
222  *	This function returns a kernel virtual address mapping for the
223  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224  *	and the caller has to be careful not to fault before calling
225  *	the unmap function.
226  *
227  *	Note that this function occupies KM_USER0 if @atomic != 0.
228  */
generic_pipe_buf_map(struct pipe_inode_info * pipe,struct pipe_buffer * buf,int atomic)229 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
230 			   struct pipe_buffer *buf, int atomic)
231 {
232 	if (atomic) {
233 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234 		return kmap_atomic(buf->page);
235 	}
236 
237 	return kmap(buf->page);
238 }
239 EXPORT_SYMBOL(generic_pipe_buf_map);
240 
241 /**
242  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243  * @pipe:	the pipe that the buffer belongs to
244  * @buf:	the buffer that should be unmapped
245  * @map_data:	the data that the mapping function returned
246  *
247  * Description:
248  *	This function undoes the mapping that ->map() provided.
249  */
generic_pipe_buf_unmap(struct pipe_inode_info * pipe,struct pipe_buffer * buf,void * map_data)250 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
251 			    struct pipe_buffer *buf, void *map_data)
252 {
253 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255 		kunmap_atomic(map_data);
256 	} else
257 		kunmap(buf->page);
258 }
259 EXPORT_SYMBOL(generic_pipe_buf_unmap);
260 
261 /**
262  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263  * @pipe:	the pipe that the buffer belongs to
264  * @buf:	the buffer to attempt to steal
265  *
266  * Description:
267  *	This function attempts to steal the &struct page attached to
268  *	@buf. If successful, this function returns 0 and returns with
269  *	the page locked. The caller may then reuse the page for whatever
270  *	he wishes; the typical use is insertion into a different file
271  *	page cache.
272  */
generic_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)273 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
274 			   struct pipe_buffer *buf)
275 {
276 	struct page *page = buf->page;
277 
278 	/*
279 	 * A reference of one is golden, that means that the owner of this
280 	 * page is the only one holding a reference to it. lock the page
281 	 * and return OK.
282 	 */
283 	if (page_count(page) == 1) {
284 		lock_page(page);
285 		return 0;
286 	}
287 
288 	return 1;
289 }
290 EXPORT_SYMBOL(generic_pipe_buf_steal);
291 
292 /**
293  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294  * @pipe:	the pipe that the buffer belongs to
295  * @buf:	the buffer to get a reference to
296  *
297  * Description:
298  *	This function grabs an extra reference to @buf. It's used in
299  *	in the tee() system call, when we duplicate the buffers in one
300  *	pipe into another.
301  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
303 {
304 	page_cache_get(buf->page);
305 }
306 EXPORT_SYMBOL(generic_pipe_buf_get);
307 
308 /**
309  * generic_pipe_buf_confirm - verify contents of the pipe buffer
310  * @info:	the pipe that the buffer belongs to
311  * @buf:	the buffer to confirm
312  *
313  * Description:
314  *	This function does nothing, because the generic pipe code uses
315  *	pages that are always good when inserted into the pipe.
316  */
generic_pipe_buf_confirm(struct pipe_inode_info * info,struct pipe_buffer * buf)317 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
318 			     struct pipe_buffer *buf)
319 {
320 	return 0;
321 }
322 EXPORT_SYMBOL(generic_pipe_buf_confirm);
323 
324 /**
325  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326  * @pipe:	the pipe that the buffer belongs to
327  * @buf:	the buffer to put a reference to
328  *
329  * Description:
330  *	This function releases a reference to @buf.
331  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)332 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
333 			      struct pipe_buffer *buf)
334 {
335 	page_cache_release(buf->page);
336 }
337 EXPORT_SYMBOL(generic_pipe_buf_release);
338 
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
340 	.can_merge = 1,
341 	.map = generic_pipe_buf_map,
342 	.unmap = generic_pipe_buf_unmap,
343 	.confirm = generic_pipe_buf_confirm,
344 	.release = anon_pipe_buf_release,
345 	.steal = generic_pipe_buf_steal,
346 	.get = generic_pipe_buf_get,
347 };
348 
349 static const struct pipe_buf_operations packet_pipe_buf_ops = {
350 	.can_merge = 0,
351 	.map = generic_pipe_buf_map,
352 	.unmap = generic_pipe_buf_unmap,
353 	.confirm = generic_pipe_buf_confirm,
354 	.release = anon_pipe_buf_release,
355 	.steal = generic_pipe_buf_steal,
356 	.get = generic_pipe_buf_get,
357 };
358 
359 static ssize_t
pipe_read(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t pos)360 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
361 	   unsigned long nr_segs, loff_t pos)
362 {
363 	struct file *filp = iocb->ki_filp;
364 	struct inode *inode = filp->f_path.dentry->d_inode;
365 	struct pipe_inode_info *pipe;
366 	int do_wakeup;
367 	ssize_t ret;
368 	struct iovec *iov = (struct iovec *)_iov;
369 	size_t total_len;
370 
371 	total_len = iov_length(iov, nr_segs);
372 	/* Null read succeeds. */
373 	if (unlikely(total_len == 0))
374 		return 0;
375 
376 	do_wakeup = 0;
377 	ret = 0;
378 	mutex_lock(&inode->i_mutex);
379 	pipe = inode->i_pipe;
380 	for (;;) {
381 		int bufs = pipe->nrbufs;
382 		if (bufs) {
383 			int curbuf = pipe->curbuf;
384 			struct pipe_buffer *buf = pipe->bufs + curbuf;
385 			const struct pipe_buf_operations *ops = buf->ops;
386 			void *addr;
387 			size_t chars = buf->len;
388 			int error, atomic;
389 
390 			if (chars > total_len)
391 				chars = total_len;
392 
393 			error = ops->confirm(pipe, buf);
394 			if (error) {
395 				if (!ret)
396 					ret = error;
397 				break;
398 			}
399 
400 			atomic = !iov_fault_in_pages_write(iov, chars);
401 redo:
402 			addr = ops->map(pipe, buf, atomic);
403 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
404 			ops->unmap(pipe, buf, addr);
405 			if (unlikely(error)) {
406 				/*
407 				 * Just retry with the slow path if we failed.
408 				 */
409 				if (atomic) {
410 					atomic = 0;
411 					goto redo;
412 				}
413 				if (!ret)
414 					ret = error;
415 				break;
416 			}
417 			ret += chars;
418 			buf->offset += chars;
419 			buf->len -= chars;
420 
421 			/* Was it a packet buffer? Clean up and exit */
422 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
423 				total_len = chars;
424 				buf->len = 0;
425 			}
426 
427 			if (!buf->len) {
428 				buf->ops = NULL;
429 				ops->release(pipe, buf);
430 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
431 				pipe->curbuf = curbuf;
432 				pipe->nrbufs = --bufs;
433 				do_wakeup = 1;
434 			}
435 			total_len -= chars;
436 			if (!total_len)
437 				break;	/* common path: read succeeded */
438 		}
439 		if (bufs)	/* More to do? */
440 			continue;
441 		if (!pipe->writers)
442 			break;
443 		if (!pipe->waiting_writers) {
444 			/* syscall merging: Usually we must not sleep
445 			 * if O_NONBLOCK is set, or if we got some data.
446 			 * But if a writer sleeps in kernel space, then
447 			 * we can wait for that data without violating POSIX.
448 			 */
449 			if (ret)
450 				break;
451 			if (filp->f_flags & O_NONBLOCK) {
452 				ret = -EAGAIN;
453 				break;
454 			}
455 		}
456 		if (signal_pending(current)) {
457 			if (!ret)
458 				ret = -ERESTARTSYS;
459 			break;
460 		}
461 		if (do_wakeup) {
462 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
463  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
464 		}
465 		pipe_wait(pipe);
466 	}
467 	mutex_unlock(&inode->i_mutex);
468 
469 	/* Signal writers asynchronously that there is more room. */
470 	if (do_wakeup) {
471 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
472 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
473 	}
474 	if (ret > 0)
475 		file_accessed(filp);
476 	return ret;
477 }
478 
is_packetized(struct file * file)479 static inline int is_packetized(struct file *file)
480 {
481 	return (file->f_flags & O_DIRECT) != 0;
482 }
483 
484 static ssize_t
pipe_write(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t ppos)485 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
486 	    unsigned long nr_segs, loff_t ppos)
487 {
488 	struct file *filp = iocb->ki_filp;
489 	struct inode *inode = filp->f_path.dentry->d_inode;
490 	struct pipe_inode_info *pipe;
491 	ssize_t ret;
492 	int do_wakeup;
493 	struct iovec *iov = (struct iovec *)_iov;
494 	size_t total_len;
495 	ssize_t chars;
496 
497 	total_len = iov_length(iov, nr_segs);
498 	/* Null write succeeds. */
499 	if (unlikely(total_len == 0))
500 		return 0;
501 
502 	do_wakeup = 0;
503 	ret = 0;
504 	mutex_lock(&inode->i_mutex);
505 	pipe = inode->i_pipe;
506 
507 	if (!pipe->readers) {
508 		send_sig(SIGPIPE, current, 0);
509 		ret = -EPIPE;
510 		goto out;
511 	}
512 
513 	/* We try to merge small writes */
514 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
515 	if (pipe->nrbufs && chars != 0) {
516 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
517 							(pipe->buffers - 1);
518 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
519 		const struct pipe_buf_operations *ops = buf->ops;
520 		int offset = buf->offset + buf->len;
521 
522 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
523 			int error, atomic = 1;
524 			void *addr;
525 
526 			error = ops->confirm(pipe, buf);
527 			if (error)
528 				goto out;
529 
530 			iov_fault_in_pages_read(iov, chars);
531 redo1:
532 			addr = ops->map(pipe, buf, atomic);
533 			error = pipe_iov_copy_from_user(offset + addr, iov,
534 							chars, atomic);
535 			ops->unmap(pipe, buf, addr);
536 			ret = error;
537 			do_wakeup = 1;
538 			if (error) {
539 				if (atomic) {
540 					atomic = 0;
541 					goto redo1;
542 				}
543 				goto out;
544 			}
545 			buf->len += chars;
546 			total_len -= chars;
547 			ret = chars;
548 			if (!total_len)
549 				goto out;
550 		}
551 	}
552 
553 	for (;;) {
554 		int bufs;
555 
556 		if (!pipe->readers) {
557 			send_sig(SIGPIPE, current, 0);
558 			if (!ret)
559 				ret = -EPIPE;
560 			break;
561 		}
562 		bufs = pipe->nrbufs;
563 		if (bufs < pipe->buffers) {
564 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
565 			struct pipe_buffer *buf = pipe->bufs + newbuf;
566 			struct page *page = pipe->tmp_page;
567 			char *src;
568 			int error, atomic = 1;
569 
570 			if (!page) {
571 				page = alloc_page(GFP_HIGHUSER);
572 				if (unlikely(!page)) {
573 					ret = ret ? : -ENOMEM;
574 					break;
575 				}
576 				pipe->tmp_page = page;
577 			}
578 			/* Always wake up, even if the copy fails. Otherwise
579 			 * we lock up (O_NONBLOCK-)readers that sleep due to
580 			 * syscall merging.
581 			 * FIXME! Is this really true?
582 			 */
583 			do_wakeup = 1;
584 			chars = PAGE_SIZE;
585 			if (chars > total_len)
586 				chars = total_len;
587 
588 			iov_fault_in_pages_read(iov, chars);
589 redo2:
590 			if (atomic)
591 				src = kmap_atomic(page);
592 			else
593 				src = kmap(page);
594 
595 			error = pipe_iov_copy_from_user(src, iov, chars,
596 							atomic);
597 			if (atomic)
598 				kunmap_atomic(src);
599 			else
600 				kunmap(page);
601 
602 			if (unlikely(error)) {
603 				if (atomic) {
604 					atomic = 0;
605 					goto redo2;
606 				}
607 				if (!ret)
608 					ret = error;
609 				break;
610 			}
611 			ret += chars;
612 
613 			/* Insert it into the buffer array */
614 			buf->page = page;
615 			buf->ops = &anon_pipe_buf_ops;
616 			buf->offset = 0;
617 			buf->len = chars;
618 			buf->flags = 0;
619 			if (is_packetized(filp)) {
620 				buf->ops = &packet_pipe_buf_ops;
621 				buf->flags = PIPE_BUF_FLAG_PACKET;
622 			}
623 			pipe->nrbufs = ++bufs;
624 			pipe->tmp_page = NULL;
625 
626 			total_len -= chars;
627 			if (!total_len)
628 				break;
629 		}
630 		if (bufs < pipe->buffers)
631 			continue;
632 		if (filp->f_flags & O_NONBLOCK) {
633 			if (!ret)
634 				ret = -EAGAIN;
635 			break;
636 		}
637 		if (signal_pending(current)) {
638 			if (!ret)
639 				ret = -ERESTARTSYS;
640 			break;
641 		}
642 		if (do_wakeup) {
643 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
644 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
645 			do_wakeup = 0;
646 		}
647 		pipe->waiting_writers++;
648 		pipe_wait(pipe);
649 		pipe->waiting_writers--;
650 	}
651 out:
652 	mutex_unlock(&inode->i_mutex);
653 	if (do_wakeup) {
654 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
655 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
656 	}
657 	if (ret > 0)
658 		file_update_time(filp);
659 	return ret;
660 }
661 
662 static ssize_t
bad_pipe_r(struct file * filp,char __user * buf,size_t count,loff_t * ppos)663 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
664 {
665 	return -EBADF;
666 }
667 
668 static ssize_t
bad_pipe_w(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)669 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
670 	   loff_t *ppos)
671 {
672 	return -EBADF;
673 }
674 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)675 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
676 {
677 	struct inode *inode = filp->f_path.dentry->d_inode;
678 	struct pipe_inode_info *pipe;
679 	int count, buf, nrbufs;
680 
681 	switch (cmd) {
682 		case FIONREAD:
683 			mutex_lock(&inode->i_mutex);
684 			pipe = inode->i_pipe;
685 			count = 0;
686 			buf = pipe->curbuf;
687 			nrbufs = pipe->nrbufs;
688 			while (--nrbufs >= 0) {
689 				count += pipe->bufs[buf].len;
690 				buf = (buf+1) & (pipe->buffers - 1);
691 			}
692 			mutex_unlock(&inode->i_mutex);
693 
694 			return put_user(count, (int __user *)arg);
695 		default:
696 			return -EINVAL;
697 	}
698 }
699 
700 /* No kernel lock held - fine */
701 static unsigned int
pipe_poll(struct file * filp,poll_table * wait)702 pipe_poll(struct file *filp, poll_table *wait)
703 {
704 	unsigned int mask;
705 	struct inode *inode = filp->f_path.dentry->d_inode;
706 	struct pipe_inode_info *pipe = inode->i_pipe;
707 	int nrbufs;
708 
709 	poll_wait(filp, &pipe->wait, wait);
710 
711 	/* Reading only -- no need for acquiring the semaphore.  */
712 	nrbufs = pipe->nrbufs;
713 	mask = 0;
714 	if (filp->f_mode & FMODE_READ) {
715 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
716 		if (!pipe->writers && filp->f_version != pipe->w_counter)
717 			mask |= POLLHUP;
718 	}
719 
720 	if (filp->f_mode & FMODE_WRITE) {
721 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
722 		/*
723 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
724 		 * behave exactly like pipes for poll().
725 		 */
726 		if (!pipe->readers)
727 			mask |= POLLERR;
728 	}
729 
730 	return mask;
731 }
732 
733 static int
pipe_release(struct inode * inode,int decr,int decw)734 pipe_release(struct inode *inode, int decr, int decw)
735 {
736 	struct pipe_inode_info *pipe;
737 
738 	mutex_lock(&inode->i_mutex);
739 	pipe = inode->i_pipe;
740 	pipe->readers -= decr;
741 	pipe->writers -= decw;
742 
743 	if (!pipe->readers && !pipe->writers) {
744 		free_pipe_info(inode);
745 	} else {
746 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
747 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
748 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
749 	}
750 	mutex_unlock(&inode->i_mutex);
751 
752 	return 0;
753 }
754 
755 static int
pipe_read_fasync(int fd,struct file * filp,int on)756 pipe_read_fasync(int fd, struct file *filp, int on)
757 {
758 	struct inode *inode = filp->f_path.dentry->d_inode;
759 	int retval;
760 
761 	mutex_lock(&inode->i_mutex);
762 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
763 	mutex_unlock(&inode->i_mutex);
764 
765 	return retval;
766 }
767 
768 
769 static int
pipe_write_fasync(int fd,struct file * filp,int on)770 pipe_write_fasync(int fd, struct file *filp, int on)
771 {
772 	struct inode *inode = filp->f_path.dentry->d_inode;
773 	int retval;
774 
775 	mutex_lock(&inode->i_mutex);
776 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
777 	mutex_unlock(&inode->i_mutex);
778 
779 	return retval;
780 }
781 
782 
783 static int
pipe_rdwr_fasync(int fd,struct file * filp,int on)784 pipe_rdwr_fasync(int fd, struct file *filp, int on)
785 {
786 	struct inode *inode = filp->f_path.dentry->d_inode;
787 	struct pipe_inode_info *pipe = inode->i_pipe;
788 	int retval;
789 
790 	mutex_lock(&inode->i_mutex);
791 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
792 	if (retval >= 0) {
793 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
794 		if (retval < 0) /* this can happen only if on == T */
795 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
796 	}
797 	mutex_unlock(&inode->i_mutex);
798 	return retval;
799 }
800 
801 
802 static int
pipe_read_release(struct inode * inode,struct file * filp)803 pipe_read_release(struct inode *inode, struct file *filp)
804 {
805 	return pipe_release(inode, 1, 0);
806 }
807 
808 static int
pipe_write_release(struct inode * inode,struct file * filp)809 pipe_write_release(struct inode *inode, struct file *filp)
810 {
811 	return pipe_release(inode, 0, 1);
812 }
813 
814 static int
pipe_rdwr_release(struct inode * inode,struct file * filp)815 pipe_rdwr_release(struct inode *inode, struct file *filp)
816 {
817 	int decr, decw;
818 
819 	decr = (filp->f_mode & FMODE_READ) != 0;
820 	decw = (filp->f_mode & FMODE_WRITE) != 0;
821 	return pipe_release(inode, decr, decw);
822 }
823 
824 static int
pipe_read_open(struct inode * inode,struct file * filp)825 pipe_read_open(struct inode *inode, struct file *filp)
826 {
827 	int ret = -ENOENT;
828 
829 	mutex_lock(&inode->i_mutex);
830 
831 	if (inode->i_pipe) {
832 		ret = 0;
833 		inode->i_pipe->readers++;
834 	}
835 
836 	mutex_unlock(&inode->i_mutex);
837 
838 	return ret;
839 }
840 
841 static int
pipe_write_open(struct inode * inode,struct file * filp)842 pipe_write_open(struct inode *inode, struct file *filp)
843 {
844 	int ret = -ENOENT;
845 
846 	mutex_lock(&inode->i_mutex);
847 
848 	if (inode->i_pipe) {
849 		ret = 0;
850 		inode->i_pipe->writers++;
851 	}
852 
853 	mutex_unlock(&inode->i_mutex);
854 
855 	return ret;
856 }
857 
858 static int
pipe_rdwr_open(struct inode * inode,struct file * filp)859 pipe_rdwr_open(struct inode *inode, struct file *filp)
860 {
861 	int ret = -ENOENT;
862 
863 	if (!(filp->f_mode & (FMODE_READ|FMODE_WRITE)))
864 		return -EINVAL;
865 
866 	mutex_lock(&inode->i_mutex);
867 
868 	if (inode->i_pipe) {
869 		ret = 0;
870 		if (filp->f_mode & FMODE_READ)
871 			inode->i_pipe->readers++;
872 		if (filp->f_mode & FMODE_WRITE)
873 			inode->i_pipe->writers++;
874 	}
875 
876 	mutex_unlock(&inode->i_mutex);
877 
878 	return ret;
879 }
880 
881 /*
882  * The file_operations structs are not static because they
883  * are also used in linux/fs/fifo.c to do operations on FIFOs.
884  *
885  * Pipes reuse fifos' file_operations structs.
886  */
887 const struct file_operations read_pipefifo_fops = {
888 	.llseek		= no_llseek,
889 	.read		= do_sync_read,
890 	.aio_read	= pipe_read,
891 	.write		= bad_pipe_w,
892 	.poll		= pipe_poll,
893 	.unlocked_ioctl	= pipe_ioctl,
894 	.open		= pipe_read_open,
895 	.release	= pipe_read_release,
896 	.fasync		= pipe_read_fasync,
897 };
898 
899 const struct file_operations write_pipefifo_fops = {
900 	.llseek		= no_llseek,
901 	.read		= bad_pipe_r,
902 	.write		= do_sync_write,
903 	.aio_write	= pipe_write,
904 	.poll		= pipe_poll,
905 	.unlocked_ioctl	= pipe_ioctl,
906 	.open		= pipe_write_open,
907 	.release	= pipe_write_release,
908 	.fasync		= pipe_write_fasync,
909 };
910 
911 const struct file_operations rdwr_pipefifo_fops = {
912 	.llseek		= no_llseek,
913 	.read		= do_sync_read,
914 	.aio_read	= pipe_read,
915 	.write		= do_sync_write,
916 	.aio_write	= pipe_write,
917 	.poll		= pipe_poll,
918 	.unlocked_ioctl	= pipe_ioctl,
919 	.open		= pipe_rdwr_open,
920 	.release	= pipe_rdwr_release,
921 	.fasync		= pipe_rdwr_fasync,
922 };
923 
alloc_pipe_info(struct inode * inode)924 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
925 {
926 	struct pipe_inode_info *pipe;
927 
928 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
929 	if (pipe) {
930 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
931 		if (pipe->bufs) {
932 			init_waitqueue_head(&pipe->wait);
933 			pipe->r_counter = pipe->w_counter = 1;
934 			pipe->inode = inode;
935 			pipe->buffers = PIPE_DEF_BUFFERS;
936 			return pipe;
937 		}
938 		kfree(pipe);
939 	}
940 
941 	return NULL;
942 }
943 
__free_pipe_info(struct pipe_inode_info * pipe)944 void __free_pipe_info(struct pipe_inode_info *pipe)
945 {
946 	int i;
947 
948 	for (i = 0; i < pipe->buffers; i++) {
949 		struct pipe_buffer *buf = pipe->bufs + i;
950 		if (buf->ops)
951 			buf->ops->release(pipe, buf);
952 	}
953 	if (pipe->tmp_page)
954 		__free_page(pipe->tmp_page);
955 	kfree(pipe->bufs);
956 	kfree(pipe);
957 }
958 
free_pipe_info(struct inode * inode)959 void free_pipe_info(struct inode *inode)
960 {
961 	__free_pipe_info(inode->i_pipe);
962 	inode->i_pipe = NULL;
963 }
964 
965 static struct vfsmount *pipe_mnt __read_mostly;
966 
967 /*
968  * pipefs_dname() is called from d_path().
969  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)970 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
971 {
972 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
973 				dentry->d_inode->i_ino);
974 }
975 
976 static const struct dentry_operations pipefs_dentry_operations = {
977 	.d_dname	= pipefs_dname,
978 };
979 
get_pipe_inode(void)980 static struct inode * get_pipe_inode(void)
981 {
982 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
983 	struct pipe_inode_info *pipe;
984 
985 	if (!inode)
986 		goto fail_inode;
987 
988 	inode->i_ino = get_next_ino();
989 
990 	pipe = alloc_pipe_info(inode);
991 	if (!pipe)
992 		goto fail_iput;
993 	inode->i_pipe = pipe;
994 
995 	pipe->readers = pipe->writers = 1;
996 	inode->i_fop = &rdwr_pipefifo_fops;
997 
998 	/*
999 	 * Mark the inode dirty from the very beginning,
1000 	 * that way it will never be moved to the dirty
1001 	 * list because "mark_inode_dirty()" will think
1002 	 * that it already _is_ on the dirty list.
1003 	 */
1004 	inode->i_state = I_DIRTY;
1005 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1006 	inode->i_uid = current_fsuid();
1007 	inode->i_gid = current_fsgid();
1008 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1009 
1010 	return inode;
1011 
1012 fail_iput:
1013 	iput(inode);
1014 
1015 fail_inode:
1016 	return NULL;
1017 }
1018 
create_write_pipe(int flags)1019 struct file *create_write_pipe(int flags)
1020 {
1021 	int err;
1022 	struct inode *inode;
1023 	struct file *f;
1024 	struct path path;
1025 	struct qstr name = { .name = "" };
1026 
1027 	err = -ENFILE;
1028 	inode = get_pipe_inode();
1029 	if (!inode)
1030 		goto err;
1031 
1032 	err = -ENOMEM;
1033 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1034 	if (!path.dentry)
1035 		goto err_inode;
1036 	path.mnt = mntget(pipe_mnt);
1037 
1038 	d_instantiate(path.dentry, inode);
1039 
1040 	err = -ENFILE;
1041 	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1042 	if (!f)
1043 		goto err_dentry;
1044 	f->f_mapping = inode->i_mapping;
1045 
1046 	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1047 	f->f_version = 0;
1048 
1049 	return f;
1050 
1051  err_dentry:
1052 	free_pipe_info(inode);
1053 	path_put(&path);
1054 	return ERR_PTR(err);
1055 
1056  err_inode:
1057 	free_pipe_info(inode);
1058 	iput(inode);
1059  err:
1060 	return ERR_PTR(err);
1061 }
1062 
free_write_pipe(struct file * f)1063 void free_write_pipe(struct file *f)
1064 {
1065 	free_pipe_info(f->f_dentry->d_inode);
1066 	path_put(&f->f_path);
1067 	put_filp(f);
1068 }
1069 
create_read_pipe(struct file * wrf,int flags)1070 struct file *create_read_pipe(struct file *wrf, int flags)
1071 {
1072 	/* Grab pipe from the writer */
1073 	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1074 				    &read_pipefifo_fops);
1075 	if (!f)
1076 		return ERR_PTR(-ENFILE);
1077 
1078 	path_get(&wrf->f_path);
1079 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1080 
1081 	return f;
1082 }
1083 
do_pipe_flags(int * fd,int flags)1084 int do_pipe_flags(int *fd, int flags)
1085 {
1086 	struct file *fw, *fr;
1087 	int error;
1088 	int fdw, fdr;
1089 
1090 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1091 		return -EINVAL;
1092 
1093 	fw = create_write_pipe(flags);
1094 	if (IS_ERR(fw))
1095 		return PTR_ERR(fw);
1096 	fr = create_read_pipe(fw, flags);
1097 	error = PTR_ERR(fr);
1098 	if (IS_ERR(fr))
1099 		goto err_write_pipe;
1100 
1101 	error = get_unused_fd_flags(flags);
1102 	if (error < 0)
1103 		goto err_read_pipe;
1104 	fdr = error;
1105 
1106 	error = get_unused_fd_flags(flags);
1107 	if (error < 0)
1108 		goto err_fdr;
1109 	fdw = error;
1110 
1111 	audit_fd_pair(fdr, fdw);
1112 	fd_install(fdr, fr);
1113 	fd_install(fdw, fw);
1114 	fd[0] = fdr;
1115 	fd[1] = fdw;
1116 
1117 	return 0;
1118 
1119  err_fdr:
1120 	put_unused_fd(fdr);
1121  err_read_pipe:
1122 	path_put(&fr->f_path);
1123 	put_filp(fr);
1124  err_write_pipe:
1125 	free_write_pipe(fw);
1126 	return error;
1127 }
1128 
1129 /*
1130  * sys_pipe() is the normal C calling standard for creating
1131  * a pipe. It's not the way Unix traditionally does this, though.
1132  */
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1133 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1134 {
1135 	int fd[2];
1136 	int error;
1137 
1138 	error = do_pipe_flags(fd, flags);
1139 	if (!error) {
1140 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1141 			sys_close(fd[0]);
1142 			sys_close(fd[1]);
1143 			error = -EFAULT;
1144 		}
1145 	}
1146 	return error;
1147 }
1148 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1149 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1150 {
1151 	return sys_pipe2(fildes, 0);
1152 }
1153 
1154 /*
1155  * Allocate a new array of pipe buffers and copy the info over. Returns the
1156  * pipe size if successful, or return -ERROR on error.
1157  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long nr_pages)1158 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1159 {
1160 	struct pipe_buffer *bufs;
1161 
1162 	/*
1163 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1164 	 * expect a lot of shrink+grow operations, just free and allocate
1165 	 * again like we would do for growing. If the pipe currently
1166 	 * contains more buffers than arg, then return busy.
1167 	 */
1168 	if (nr_pages < pipe->nrbufs)
1169 		return -EBUSY;
1170 
1171 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1172 	if (unlikely(!bufs))
1173 		return -ENOMEM;
1174 
1175 	/*
1176 	 * The pipe array wraps around, so just start the new one at zero
1177 	 * and adjust the indexes.
1178 	 */
1179 	if (pipe->nrbufs) {
1180 		unsigned int tail;
1181 		unsigned int head;
1182 
1183 		tail = pipe->curbuf + pipe->nrbufs;
1184 		if (tail < pipe->buffers)
1185 			tail = 0;
1186 		else
1187 			tail &= (pipe->buffers - 1);
1188 
1189 		head = pipe->nrbufs - tail;
1190 		if (head)
1191 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1192 		if (tail)
1193 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1194 	}
1195 
1196 	pipe->curbuf = 0;
1197 	kfree(pipe->bufs);
1198 	pipe->bufs = bufs;
1199 	pipe->buffers = nr_pages;
1200 	return nr_pages * PAGE_SIZE;
1201 }
1202 
1203 /*
1204  * Currently we rely on the pipe array holding a power-of-2 number
1205  * of pages.
1206  */
round_pipe_size(unsigned int size)1207 static inline unsigned int round_pipe_size(unsigned int size)
1208 {
1209 	unsigned long nr_pages;
1210 
1211 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1212 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1213 }
1214 
1215 /*
1216  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1217  * will return an error.
1218  */
pipe_proc_fn(struct ctl_table * table,int write,void __user * buf,size_t * lenp,loff_t * ppos)1219 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1220 		 size_t *lenp, loff_t *ppos)
1221 {
1222 	int ret;
1223 
1224 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1225 	if (ret < 0 || !write)
1226 		return ret;
1227 
1228 	pipe_max_size = round_pipe_size(pipe_max_size);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1234  * location, so checking ->i_pipe is not enough to verify that this is a
1235  * pipe.
1236  */
get_pipe_info(struct file * file)1237 struct pipe_inode_info *get_pipe_info(struct file *file)
1238 {
1239 	struct inode *i = file->f_path.dentry->d_inode;
1240 
1241 	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1242 }
1243 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1244 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1245 {
1246 	struct pipe_inode_info *pipe;
1247 	long ret;
1248 
1249 	pipe = get_pipe_info(file);
1250 	if (!pipe)
1251 		return -EBADF;
1252 
1253 	mutex_lock(&pipe->inode->i_mutex);
1254 
1255 	switch (cmd) {
1256 	case F_SETPIPE_SZ: {
1257 		unsigned int size, nr_pages;
1258 
1259 		size = round_pipe_size(arg);
1260 		nr_pages = size >> PAGE_SHIFT;
1261 
1262 		ret = -EINVAL;
1263 		if (!nr_pages)
1264 			goto out;
1265 
1266 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1267 			ret = -EPERM;
1268 			goto out;
1269 		}
1270 		ret = pipe_set_size(pipe, nr_pages);
1271 		break;
1272 		}
1273 	case F_GETPIPE_SZ:
1274 		ret = pipe->buffers * PAGE_SIZE;
1275 		break;
1276 	default:
1277 		ret = -EINVAL;
1278 		break;
1279 	}
1280 
1281 out:
1282 	mutex_unlock(&pipe->inode->i_mutex);
1283 	return ret;
1284 }
1285 
1286 static const struct super_operations pipefs_ops = {
1287 	.destroy_inode = free_inode_nonrcu,
1288 	.statfs = simple_statfs,
1289 };
1290 
1291 /*
1292  * pipefs should _never_ be mounted by userland - too much of security hassle,
1293  * no real gain from having the whole whorehouse mounted. So we don't need
1294  * any operations on the root directory. However, we need a non-trivial
1295  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1296  */
pipefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1297 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1298 			 int flags, const char *dev_name, void *data)
1299 {
1300 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1301 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1302 }
1303 
1304 static struct file_system_type pipe_fs_type = {
1305 	.name		= "pipefs",
1306 	.mount		= pipefs_mount,
1307 	.kill_sb	= kill_anon_super,
1308 };
1309 
init_pipe_fs(void)1310 static int __init init_pipe_fs(void)
1311 {
1312 	int err = register_filesystem(&pipe_fs_type);
1313 
1314 	if (!err) {
1315 		pipe_mnt = kern_mount(&pipe_fs_type);
1316 		if (IS_ERR(pipe_mnt)) {
1317 			err = PTR_ERR(pipe_mnt);
1318 			unregister_filesystem(&pipe_fs_type);
1319 		}
1320 	}
1321 	return err;
1322 }
1323 
1324 fs_initcall(init_pipe_fs);
1325