1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51
52 /*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57 #include <asm/mman.h>
58
59 /*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71 /*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_rwsem
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 *
83 * ->mmap_lock
84 * ->i_mmap_rwsem
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 *
88 * ->mmap_lock
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
91 *
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
94 *
95 * bdi->wb.list_lock
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
98 *
99 * ->i_mmap_rwsem
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 *
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
119 *
120 * ->i_mmap_rwsem
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 */
123
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)124 static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
126 {
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
129
130 mapping_set_update(&xas, mapping);
131
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
136 }
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146 }
147
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)148 static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150 {
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211
212 /*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
__filemap_remove_folio(struct folio * folio,void * shadow)217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224 }
225
filemap_free_folio(struct address_space * mapping,struct folio * folio)226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 void (*free_folio)(struct folio *);
229 int refs = 1;
230
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
234
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238 }
239
240 /**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
filemap_remove_folio(struct folio * folio)248 void filemap_remove_folio(struct folio *folio)
249 {
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262 }
263
264 /*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279 {
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316 }
317
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320 {
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343
filemap_check_errors(struct address_space * mapping)344 int filemap_check_errors(struct address_space *mapping)
345 {
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357
filemap_check_and_keep_errors(struct address_space * mapping)358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366 }
367
368 /**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380 {
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394 /**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413 {
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426 {
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429
filemap_fdatawrite(struct address_space * mapping)430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438 {
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443 /**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
449 *
450 * Return: %0 on success, negative error code otherwise.
451 */
filemap_flush(struct address_space * mapping)452 int filemap_flush(struct address_space *mapping)
453 {
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457
458 /**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
469 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472 {
473 struct page *page;
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
476
477 if (end_byte < start_byte)
478 return false;
479
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
496
497 return page != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
503 {
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
506 struct pagevec pvec;
507 int nr_pages;
508
509 if (end_byte < start_byte)
510 return;
511
512 pagevec_init(&pvec);
513 while (index <= end) {
514 unsigned i;
515
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
518 if (!nr_pages)
519 break;
520
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
523
524 wait_on_page_writeback(page);
525 ClearPageError(page);
526 }
527 pagevec_release(&pvec);
528 cond_resched();
529 }
530 }
531
532 /**
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
537 *
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
541 *
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
545 *
546 * Return: error status of the address space.
547 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 loff_t end_byte)
550 {
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
553 }
554 EXPORT_SYMBOL(filemap_fdatawait_range);
555
556 /**
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
561 *
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
565 *
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 * fsfreeze(8)
569 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
572 {
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
575 }
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577
578 /**
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
583 *
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
587 *
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
591 *
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595 {
596 struct address_space *mapping = file->f_mapping;
597
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
600 }
601 EXPORT_SYMBOL(file_fdatawait_range);
602
603 /**
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
606 *
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
610 *
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * fsfreeze(8)
614 *
615 * Return: error status of the address space.
616 */
filemap_fdatawait_keep_errors(struct address_space * mapping)617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
618 {
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
621 }
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623
624 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)625 static bool mapping_needs_writeback(struct address_space *mapping)
626 {
627 return mapping->nrpages;
628 }
629
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)630 bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
632 {
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
635 struct folio *folio;
636
637 if (end_byte < start_byte)
638 return false;
639
640 rcu_read_lock();
641 xas_for_each(&xas, folio, max) {
642 if (xas_retry(&xas, folio))
643 continue;
644 if (xa_is_value(folio))
645 continue;
646 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
647 folio_test_writeback(folio))
648 break;
649 }
650 rcu_read_unlock();
651 return folio != NULL;
652 }
653 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
654
655 /**
656 * filemap_write_and_wait_range - write out & wait on a file range
657 * @mapping: the address_space for the pages
658 * @lstart: offset in bytes where the range starts
659 * @lend: offset in bytes where the range ends (inclusive)
660 *
661 * Write out and wait upon file offsets lstart->lend, inclusive.
662 *
663 * Note that @lend is inclusive (describes the last byte to be written) so
664 * that this function can be used to write to the very end-of-file (end = -1).
665 *
666 * Return: error status of the address space.
667 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)668 int filemap_write_and_wait_range(struct address_space *mapping,
669 loff_t lstart, loff_t lend)
670 {
671 int err = 0, err2;
672
673 if (mapping_needs_writeback(mapping)) {
674 err = __filemap_fdatawrite_range(mapping, lstart, lend,
675 WB_SYNC_ALL);
676 /*
677 * Even if the above returned error, the pages may be
678 * written partially (e.g. -ENOSPC), so we wait for it.
679 * But the -EIO is special case, it may indicate the worst
680 * thing (e.g. bug) happened, so we avoid waiting for it.
681 */
682 if (err != -EIO)
683 __filemap_fdatawait_range(mapping, lstart, lend);
684 }
685 err2 = filemap_check_errors(mapping);
686 if (!err)
687 err = err2;
688 return err;
689 }
690 EXPORT_SYMBOL(filemap_write_and_wait_range);
691
__filemap_set_wb_err(struct address_space * mapping,int err)692 void __filemap_set_wb_err(struct address_space *mapping, int err)
693 {
694 errseq_t eseq = errseq_set(&mapping->wb_err, err);
695
696 trace_filemap_set_wb_err(mapping, eseq);
697 }
698 EXPORT_SYMBOL(__filemap_set_wb_err);
699
700 /**
701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
702 * and advance wb_err to current one
703 * @file: struct file on which the error is being reported
704 *
705 * When userland calls fsync (or something like nfsd does the equivalent), we
706 * want to report any writeback errors that occurred since the last fsync (or
707 * since the file was opened if there haven't been any).
708 *
709 * Grab the wb_err from the mapping. If it matches what we have in the file,
710 * then just quickly return 0. The file is all caught up.
711 *
712 * If it doesn't match, then take the mapping value, set the "seen" flag in
713 * it and try to swap it into place. If it works, or another task beat us
714 * to it with the new value, then update the f_wb_err and return the error
715 * portion. The error at this point must be reported via proper channels
716 * (a'la fsync, or NFS COMMIT operation, etc.).
717 *
718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
719 * value is protected by the f_lock since we must ensure that it reflects
720 * the latest value swapped in for this file descriptor.
721 *
722 * Return: %0 on success, negative error code otherwise.
723 */
file_check_and_advance_wb_err(struct file * file)724 int file_check_and_advance_wb_err(struct file *file)
725 {
726 int err = 0;
727 errseq_t old = READ_ONCE(file->f_wb_err);
728 struct address_space *mapping = file->f_mapping;
729
730 /* Locklessly handle the common case where nothing has changed */
731 if (errseq_check(&mapping->wb_err, old)) {
732 /* Something changed, must use slow path */
733 spin_lock(&file->f_lock);
734 old = file->f_wb_err;
735 err = errseq_check_and_advance(&mapping->wb_err,
736 &file->f_wb_err);
737 trace_file_check_and_advance_wb_err(file, old);
738 spin_unlock(&file->f_lock);
739 }
740
741 /*
742 * We're mostly using this function as a drop in replacement for
743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
744 * that the legacy code would have had on these flags.
745 */
746 clear_bit(AS_EIO, &mapping->flags);
747 clear_bit(AS_ENOSPC, &mapping->flags);
748 return err;
749 }
750 EXPORT_SYMBOL(file_check_and_advance_wb_err);
751
752 /**
753 * file_write_and_wait_range - write out & wait on a file range
754 * @file: file pointing to address_space with pages
755 * @lstart: offset in bytes where the range starts
756 * @lend: offset in bytes where the range ends (inclusive)
757 *
758 * Write out and wait upon file offsets lstart->lend, inclusive.
759 *
760 * Note that @lend is inclusive (describes the last byte to be written) so
761 * that this function can be used to write to the very end-of-file (end = -1).
762 *
763 * After writing out and waiting on the data, we check and advance the
764 * f_wb_err cursor to the latest value, and return any errors detected there.
765 *
766 * Return: %0 on success, negative error code otherwise.
767 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
769 {
770 int err = 0, err2;
771 struct address_space *mapping = file->f_mapping;
772
773 if (mapping_needs_writeback(mapping)) {
774 err = __filemap_fdatawrite_range(mapping, lstart, lend,
775 WB_SYNC_ALL);
776 /* See comment of filemap_write_and_wait() */
777 if (err != -EIO)
778 __filemap_fdatawait_range(mapping, lstart, lend);
779 }
780 err2 = file_check_and_advance_wb_err(file);
781 if (!err)
782 err = err2;
783 return err;
784 }
785 EXPORT_SYMBOL(file_write_and_wait_range);
786
787 /**
788 * replace_page_cache_page - replace a pagecache page with a new one
789 * @old: page to be replaced
790 * @new: page to replace with
791 *
792 * This function replaces a page in the pagecache with a new one. On
793 * success it acquires the pagecache reference for the new page and
794 * drops it for the old page. Both the old and new pages must be
795 * locked. This function does not add the new page to the LRU, the
796 * caller must do that.
797 *
798 * The remove + add is atomic. This function cannot fail.
799 */
replace_page_cache_page(struct page * old,struct page * new)800 void replace_page_cache_page(struct page *old, struct page *new)
801 {
802 struct folio *fold = page_folio(old);
803 struct folio *fnew = page_folio(new);
804 struct address_space *mapping = old->mapping;
805 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
806 pgoff_t offset = old->index;
807 XA_STATE(xas, &mapping->i_pages, offset);
808
809 VM_BUG_ON_PAGE(!PageLocked(old), old);
810 VM_BUG_ON_PAGE(!PageLocked(new), new);
811 VM_BUG_ON_PAGE(new->mapping, new);
812
813 get_page(new);
814 new->mapping = mapping;
815 new->index = offset;
816
817 mem_cgroup_migrate(fold, fnew);
818
819 xas_lock_irq(&xas);
820 xas_store(&xas, new);
821
822 old->mapping = NULL;
823 /* hugetlb pages do not participate in page cache accounting. */
824 if (!PageHuge(old))
825 __dec_lruvec_page_state(old, NR_FILE_PAGES);
826 if (!PageHuge(new))
827 __inc_lruvec_page_state(new, NR_FILE_PAGES);
828 if (PageSwapBacked(old))
829 __dec_lruvec_page_state(old, NR_SHMEM);
830 if (PageSwapBacked(new))
831 __inc_lruvec_page_state(new, NR_SHMEM);
832 xas_unlock_irq(&xas);
833 if (free_folio)
834 free_folio(fold);
835 folio_put(fold);
836 }
837 EXPORT_SYMBOL_GPL(replace_page_cache_page);
838
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)839 noinline int __filemap_add_folio(struct address_space *mapping,
840 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
841 {
842 XA_STATE(xas, &mapping->i_pages, index);
843 int huge = folio_test_hugetlb(folio);
844 bool charged = false;
845 long nr = 1;
846
847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
848 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
849 mapping_set_update(&xas, mapping);
850
851 if (!huge) {
852 int error = mem_cgroup_charge(folio, NULL, gfp);
853 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
854 if (error)
855 return error;
856 charged = true;
857 xas_set_order(&xas, index, folio_order(folio));
858 nr = folio_nr_pages(folio);
859 }
860
861 gfp &= GFP_RECLAIM_MASK;
862 folio_ref_add(folio, nr);
863 folio->mapping = mapping;
864 folio->index = xas.xa_index;
865
866 do {
867 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
868 void *entry, *old = NULL;
869
870 if (order > folio_order(folio))
871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
872 order, gfp);
873 xas_lock_irq(&xas);
874 xas_for_each_conflict(&xas, entry) {
875 old = entry;
876 if (!xa_is_value(entry)) {
877 xas_set_err(&xas, -EEXIST);
878 goto unlock;
879 }
880 }
881
882 if (old) {
883 if (shadowp)
884 *shadowp = old;
885 /* entry may have been split before we acquired lock */
886 order = xa_get_order(xas.xa, xas.xa_index);
887 if (order > folio_order(folio)) {
888 /* How to handle large swap entries? */
889 BUG_ON(shmem_mapping(mapping));
890 xas_split(&xas, old, order);
891 xas_reset(&xas);
892 }
893 }
894
895 xas_store(&xas, folio);
896 if (xas_error(&xas))
897 goto unlock;
898
899 mapping->nrpages += nr;
900
901 /* hugetlb pages do not participate in page cache accounting */
902 if (!huge) {
903 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
904 if (folio_test_pmd_mappable(folio))
905 __lruvec_stat_mod_folio(folio,
906 NR_FILE_THPS, nr);
907 }
908 unlock:
909 xas_unlock_irq(&xas);
910 } while (xas_nomem(&xas, gfp));
911
912 if (xas_error(&xas))
913 goto error;
914
915 trace_mm_filemap_add_to_page_cache(folio);
916 return 0;
917 error:
918 if (charged)
919 mem_cgroup_uncharge(folio);
920 folio->mapping = NULL;
921 /* Leave page->index set: truncation relies upon it */
922 folio_put_refs(folio, nr);
923 return xas_error(&xas);
924 }
925 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
926
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)927 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
928 pgoff_t index, gfp_t gfp)
929 {
930 void *shadow = NULL;
931 int ret;
932
933 __folio_set_locked(folio);
934 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
935 if (unlikely(ret))
936 __folio_clear_locked(folio);
937 else {
938 /*
939 * The folio might have been evicted from cache only
940 * recently, in which case it should be activated like
941 * any other repeatedly accessed folio.
942 * The exception is folios getting rewritten; evicting other
943 * data from the working set, only to cache data that will
944 * get overwritten with something else, is a waste of memory.
945 */
946 WARN_ON_ONCE(folio_test_active(folio));
947 if (!(gfp & __GFP_WRITE) && shadow)
948 workingset_refault(folio, shadow);
949 folio_add_lru(folio);
950 }
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(filemap_add_folio);
954
955 #ifdef CONFIG_NUMA
filemap_alloc_folio(gfp_t gfp,unsigned int order)956 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
957 {
958 int n;
959 struct folio *folio;
960
961 if (cpuset_do_page_mem_spread()) {
962 unsigned int cpuset_mems_cookie;
963 do {
964 cpuset_mems_cookie = read_mems_allowed_begin();
965 n = cpuset_mem_spread_node();
966 folio = __folio_alloc_node(gfp, order, n);
967 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
968
969 return folio;
970 }
971 return folio_alloc(gfp, order);
972 }
973 EXPORT_SYMBOL(filemap_alloc_folio);
974 #endif
975
976 /*
977 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
978 *
979 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
980 *
981 * @mapping1: the first mapping to lock
982 * @mapping2: the second mapping to lock
983 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)984 void filemap_invalidate_lock_two(struct address_space *mapping1,
985 struct address_space *mapping2)
986 {
987 if (mapping1 > mapping2)
988 swap(mapping1, mapping2);
989 if (mapping1)
990 down_write(&mapping1->invalidate_lock);
991 if (mapping2 && mapping1 != mapping2)
992 down_write_nested(&mapping2->invalidate_lock, 1);
993 }
994 EXPORT_SYMBOL(filemap_invalidate_lock_two);
995
996 /*
997 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
998 *
999 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1000 *
1001 * @mapping1: the first mapping to unlock
1002 * @mapping2: the second mapping to unlock
1003 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1004 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1005 struct address_space *mapping2)
1006 {
1007 if (mapping1)
1008 up_write(&mapping1->invalidate_lock);
1009 if (mapping2 && mapping1 != mapping2)
1010 up_write(&mapping2->invalidate_lock);
1011 }
1012 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1013
1014 /*
1015 * In order to wait for pages to become available there must be
1016 * waitqueues associated with pages. By using a hash table of
1017 * waitqueues where the bucket discipline is to maintain all
1018 * waiters on the same queue and wake all when any of the pages
1019 * become available, and for the woken contexts to check to be
1020 * sure the appropriate page became available, this saves space
1021 * at a cost of "thundering herd" phenomena during rare hash
1022 * collisions.
1023 */
1024 #define PAGE_WAIT_TABLE_BITS 8
1025 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1026 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1027
folio_waitqueue(struct folio * folio)1028 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1029 {
1030 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1031 }
1032
pagecache_init(void)1033 void __init pagecache_init(void)
1034 {
1035 int i;
1036
1037 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1038 init_waitqueue_head(&folio_wait_table[i]);
1039
1040 page_writeback_init();
1041 }
1042
1043 /*
1044 * The page wait code treats the "wait->flags" somewhat unusually, because
1045 * we have multiple different kinds of waits, not just the usual "exclusive"
1046 * one.
1047 *
1048 * We have:
1049 *
1050 * (a) no special bits set:
1051 *
1052 * We're just waiting for the bit to be released, and when a waker
1053 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1054 * and remove it from the wait queue.
1055 *
1056 * Simple and straightforward.
1057 *
1058 * (b) WQ_FLAG_EXCLUSIVE:
1059 *
1060 * The waiter is waiting to get the lock, and only one waiter should
1061 * be woken up to avoid any thundering herd behavior. We'll set the
1062 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1063 *
1064 * This is the traditional exclusive wait.
1065 *
1066 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1067 *
1068 * The waiter is waiting to get the bit, and additionally wants the
1069 * lock to be transferred to it for fair lock behavior. If the lock
1070 * cannot be taken, we stop walking the wait queue without waking
1071 * the waiter.
1072 *
1073 * This is the "fair lock handoff" case, and in addition to setting
1074 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1075 * that it now has the lock.
1076 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1077 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1078 {
1079 unsigned int flags;
1080 struct wait_page_key *key = arg;
1081 struct wait_page_queue *wait_page
1082 = container_of(wait, struct wait_page_queue, wait);
1083
1084 if (!wake_page_match(wait_page, key))
1085 return 0;
1086
1087 /*
1088 * If it's a lock handoff wait, we get the bit for it, and
1089 * stop walking (and do not wake it up) if we can't.
1090 */
1091 flags = wait->flags;
1092 if (flags & WQ_FLAG_EXCLUSIVE) {
1093 if (test_bit(key->bit_nr, &key->folio->flags))
1094 return -1;
1095 if (flags & WQ_FLAG_CUSTOM) {
1096 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1097 return -1;
1098 flags |= WQ_FLAG_DONE;
1099 }
1100 }
1101
1102 /*
1103 * We are holding the wait-queue lock, but the waiter that
1104 * is waiting for this will be checking the flags without
1105 * any locking.
1106 *
1107 * So update the flags atomically, and wake up the waiter
1108 * afterwards to avoid any races. This store-release pairs
1109 * with the load-acquire in folio_wait_bit_common().
1110 */
1111 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1112 wake_up_state(wait->private, mode);
1113
1114 /*
1115 * Ok, we have successfully done what we're waiting for,
1116 * and we can unconditionally remove the wait entry.
1117 *
1118 * Note that this pairs with the "finish_wait()" in the
1119 * waiter, and has to be the absolute last thing we do.
1120 * After this list_del_init(&wait->entry) the wait entry
1121 * might be de-allocated and the process might even have
1122 * exited.
1123 */
1124 list_del_init_careful(&wait->entry);
1125 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1126 }
1127
folio_wake_bit(struct folio * folio,int bit_nr)1128 static void folio_wake_bit(struct folio *folio, int bit_nr)
1129 {
1130 wait_queue_head_t *q = folio_waitqueue(folio);
1131 struct wait_page_key key;
1132 unsigned long flags;
1133 wait_queue_entry_t bookmark;
1134
1135 key.folio = folio;
1136 key.bit_nr = bit_nr;
1137 key.page_match = 0;
1138
1139 bookmark.flags = 0;
1140 bookmark.private = NULL;
1141 bookmark.func = NULL;
1142 INIT_LIST_HEAD(&bookmark.entry);
1143
1144 spin_lock_irqsave(&q->lock, flags);
1145 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1146
1147 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1148 /*
1149 * Take a breather from holding the lock,
1150 * allow pages that finish wake up asynchronously
1151 * to acquire the lock and remove themselves
1152 * from wait queue
1153 */
1154 spin_unlock_irqrestore(&q->lock, flags);
1155 cpu_relax();
1156 spin_lock_irqsave(&q->lock, flags);
1157 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1158 }
1159
1160 /*
1161 * It's possible to miss clearing waiters here, when we woke our page
1162 * waiters, but the hashed waitqueue has waiters for other pages on it.
1163 * That's okay, it's a rare case. The next waker will clear it.
1164 *
1165 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1166 * other), the flag may be cleared in the course of freeing the page;
1167 * but that is not required for correctness.
1168 */
1169 if (!waitqueue_active(q) || !key.page_match)
1170 folio_clear_waiters(folio);
1171
1172 spin_unlock_irqrestore(&q->lock, flags);
1173 }
1174
folio_wake(struct folio * folio,int bit)1175 static void folio_wake(struct folio *folio, int bit)
1176 {
1177 if (!folio_test_waiters(folio))
1178 return;
1179 folio_wake_bit(folio, bit);
1180 }
1181
1182 /*
1183 * A choice of three behaviors for folio_wait_bit_common():
1184 */
1185 enum behavior {
1186 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1187 * __folio_lock() waiting on then setting PG_locked.
1188 */
1189 SHARED, /* Hold ref to page and check the bit when woken, like
1190 * folio_wait_writeback() waiting on PG_writeback.
1191 */
1192 DROP, /* Drop ref to page before wait, no check when woken,
1193 * like folio_put_wait_locked() on PG_locked.
1194 */
1195 };
1196
1197 /*
1198 * Attempt to check (or get) the folio flag, and mark us done
1199 * if successful.
1200 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1201 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1202 struct wait_queue_entry *wait)
1203 {
1204 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1205 if (test_and_set_bit(bit_nr, &folio->flags))
1206 return false;
1207 } else if (test_bit(bit_nr, &folio->flags))
1208 return false;
1209
1210 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1211 return true;
1212 }
1213
1214 /* How many times do we accept lock stealing from under a waiter? */
1215 int sysctl_page_lock_unfairness = 5;
1216
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1217 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1218 int state, enum behavior behavior)
1219 {
1220 wait_queue_head_t *q = folio_waitqueue(folio);
1221 int unfairness = sysctl_page_lock_unfairness;
1222 struct wait_page_queue wait_page;
1223 wait_queue_entry_t *wait = &wait_page.wait;
1224 bool thrashing = false;
1225 unsigned long pflags;
1226 bool in_thrashing;
1227
1228 if (bit_nr == PG_locked &&
1229 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1230 delayacct_thrashing_start(&in_thrashing);
1231 psi_memstall_enter(&pflags);
1232 thrashing = true;
1233 }
1234
1235 init_wait(wait);
1236 wait->func = wake_page_function;
1237 wait_page.folio = folio;
1238 wait_page.bit_nr = bit_nr;
1239
1240 repeat:
1241 wait->flags = 0;
1242 if (behavior == EXCLUSIVE) {
1243 wait->flags = WQ_FLAG_EXCLUSIVE;
1244 if (--unfairness < 0)
1245 wait->flags |= WQ_FLAG_CUSTOM;
1246 }
1247
1248 /*
1249 * Do one last check whether we can get the
1250 * page bit synchronously.
1251 *
1252 * Do the folio_set_waiters() marking before that
1253 * to let any waker we _just_ missed know they
1254 * need to wake us up (otherwise they'll never
1255 * even go to the slow case that looks at the
1256 * page queue), and add ourselves to the wait
1257 * queue if we need to sleep.
1258 *
1259 * This part needs to be done under the queue
1260 * lock to avoid races.
1261 */
1262 spin_lock_irq(&q->lock);
1263 folio_set_waiters(folio);
1264 if (!folio_trylock_flag(folio, bit_nr, wait))
1265 __add_wait_queue_entry_tail(q, wait);
1266 spin_unlock_irq(&q->lock);
1267
1268 /*
1269 * From now on, all the logic will be based on
1270 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1271 * see whether the page bit testing has already
1272 * been done by the wake function.
1273 *
1274 * We can drop our reference to the folio.
1275 */
1276 if (behavior == DROP)
1277 folio_put(folio);
1278
1279 /*
1280 * Note that until the "finish_wait()", or until
1281 * we see the WQ_FLAG_WOKEN flag, we need to
1282 * be very careful with the 'wait->flags', because
1283 * we may race with a waker that sets them.
1284 */
1285 for (;;) {
1286 unsigned int flags;
1287
1288 set_current_state(state);
1289
1290 /* Loop until we've been woken or interrupted */
1291 flags = smp_load_acquire(&wait->flags);
1292 if (!(flags & WQ_FLAG_WOKEN)) {
1293 if (signal_pending_state(state, current))
1294 break;
1295
1296 io_schedule();
1297 continue;
1298 }
1299
1300 /* If we were non-exclusive, we're done */
1301 if (behavior != EXCLUSIVE)
1302 break;
1303
1304 /* If the waker got the lock for us, we're done */
1305 if (flags & WQ_FLAG_DONE)
1306 break;
1307
1308 /*
1309 * Otherwise, if we're getting the lock, we need to
1310 * try to get it ourselves.
1311 *
1312 * And if that fails, we'll have to retry this all.
1313 */
1314 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1315 goto repeat;
1316
1317 wait->flags |= WQ_FLAG_DONE;
1318 break;
1319 }
1320
1321 /*
1322 * If a signal happened, this 'finish_wait()' may remove the last
1323 * waiter from the wait-queues, but the folio waiters bit will remain
1324 * set. That's ok. The next wakeup will take care of it, and trying
1325 * to do it here would be difficult and prone to races.
1326 */
1327 finish_wait(q, wait);
1328
1329 if (thrashing) {
1330 delayacct_thrashing_end(&in_thrashing);
1331 psi_memstall_leave(&pflags);
1332 }
1333
1334 /*
1335 * NOTE! The wait->flags weren't stable until we've done the
1336 * 'finish_wait()', and we could have exited the loop above due
1337 * to a signal, and had a wakeup event happen after the signal
1338 * test but before the 'finish_wait()'.
1339 *
1340 * So only after the finish_wait() can we reliably determine
1341 * if we got woken up or not, so we can now figure out the final
1342 * return value based on that state without races.
1343 *
1344 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1345 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1346 */
1347 if (behavior == EXCLUSIVE)
1348 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1349
1350 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1351 }
1352
1353 #ifdef CONFIG_MIGRATION
1354 /**
1355 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1356 * @entry: migration swap entry.
1357 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1358 * for pte entries, pass NULL for pmd entries.
1359 * @ptl: already locked ptl. This function will drop the lock.
1360 *
1361 * Wait for a migration entry referencing the given page to be removed. This is
1362 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1363 * this can be called without taking a reference on the page. Instead this
1364 * should be called while holding the ptl for the migration entry referencing
1365 * the page.
1366 *
1367 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1368 *
1369 * This follows the same logic as folio_wait_bit_common() so see the comments
1370 * there.
1371 */
migration_entry_wait_on_locked(swp_entry_t entry,pte_t * ptep,spinlock_t * ptl)1372 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1373 spinlock_t *ptl)
1374 {
1375 struct wait_page_queue wait_page;
1376 wait_queue_entry_t *wait = &wait_page.wait;
1377 bool thrashing = false;
1378 unsigned long pflags;
1379 bool in_thrashing;
1380 wait_queue_head_t *q;
1381 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1382
1383 q = folio_waitqueue(folio);
1384 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1385 delayacct_thrashing_start(&in_thrashing);
1386 psi_memstall_enter(&pflags);
1387 thrashing = true;
1388 }
1389
1390 init_wait(wait);
1391 wait->func = wake_page_function;
1392 wait_page.folio = folio;
1393 wait_page.bit_nr = PG_locked;
1394 wait->flags = 0;
1395
1396 spin_lock_irq(&q->lock);
1397 folio_set_waiters(folio);
1398 if (!folio_trylock_flag(folio, PG_locked, wait))
1399 __add_wait_queue_entry_tail(q, wait);
1400 spin_unlock_irq(&q->lock);
1401
1402 /*
1403 * If a migration entry exists for the page the migration path must hold
1404 * a valid reference to the page, and it must take the ptl to remove the
1405 * migration entry. So the page is valid until the ptl is dropped.
1406 */
1407 if (ptep)
1408 pte_unmap_unlock(ptep, ptl);
1409 else
1410 spin_unlock(ptl);
1411
1412 for (;;) {
1413 unsigned int flags;
1414
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416
1417 /* Loop until we've been woken or interrupted */
1418 flags = smp_load_acquire(&wait->flags);
1419 if (!(flags & WQ_FLAG_WOKEN)) {
1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1421 break;
1422
1423 io_schedule();
1424 continue;
1425 }
1426 break;
1427 }
1428
1429 finish_wait(q, wait);
1430
1431 if (thrashing) {
1432 delayacct_thrashing_end(&in_thrashing);
1433 psi_memstall_leave(&pflags);
1434 }
1435 }
1436 #endif
1437
folio_wait_bit(struct folio * folio,int bit_nr)1438 void folio_wait_bit(struct folio *folio, int bit_nr)
1439 {
1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1441 }
1442 EXPORT_SYMBOL(folio_wait_bit);
1443
folio_wait_bit_killable(struct folio * folio,int bit_nr)1444 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1445 {
1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1447 }
1448 EXPORT_SYMBOL(folio_wait_bit_killable);
1449
1450 /**
1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1452 * @folio: The folio to wait for.
1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1454 *
1455 * The caller should hold a reference on @folio. They expect the page to
1456 * become unlocked relatively soon, but do not wish to hold up migration
1457 * (for example) by holding the reference while waiting for the folio to
1458 * come unlocked. After this function returns, the caller should not
1459 * dereference @folio.
1460 *
1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1462 */
folio_put_wait_locked(struct folio * folio,int state)1463 static int folio_put_wait_locked(struct folio *folio, int state)
1464 {
1465 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1466 }
1467
1468 /**
1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1470 * @folio: Folio defining the wait queue of interest
1471 * @waiter: Waiter to add to the queue
1472 *
1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1474 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1475 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1476 {
1477 wait_queue_head_t *q = folio_waitqueue(folio);
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&q->lock, flags);
1481 __add_wait_queue_entry_tail(q, waiter);
1482 folio_set_waiters(folio);
1483 spin_unlock_irqrestore(&q->lock, flags);
1484 }
1485 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1486
1487 #ifndef clear_bit_unlock_is_negative_byte
1488
1489 /*
1490 * PG_waiters is the high bit in the same byte as PG_lock.
1491 *
1492 * On x86 (and on many other architectures), we can clear PG_lock and
1493 * test the sign bit at the same time. But if the architecture does
1494 * not support that special operation, we just do this all by hand
1495 * instead.
1496 *
1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1498 * being cleared, but a memory barrier should be unnecessary since it is
1499 * in the same byte as PG_locked.
1500 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1501 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1502 {
1503 clear_bit_unlock(nr, mem);
1504 /* smp_mb__after_atomic(); */
1505 return test_bit(PG_waiters, mem);
1506 }
1507
1508 #endif
1509
1510 /**
1511 * folio_unlock - Unlock a locked folio.
1512 * @folio: The folio.
1513 *
1514 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1515 *
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1518 */
folio_unlock(struct folio * folio)1519 void folio_unlock(struct folio *folio)
1520 {
1521 /* Bit 7 allows x86 to check the byte's sign bit */
1522 BUILD_BUG_ON(PG_waiters != 7);
1523 BUILD_BUG_ON(PG_locked > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1526 folio_wake_bit(folio, PG_locked);
1527 }
1528 EXPORT_SYMBOL(folio_unlock);
1529
1530 /**
1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1532 * @folio: The folio.
1533 *
1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1535 * it. The folio reference held for PG_private_2 being set is released.
1536 *
1537 * This is, for example, used when a netfs folio is being written to a local
1538 * disk cache, thereby allowing writes to the cache for the same folio to be
1539 * serialised.
1540 */
folio_end_private_2(struct folio * folio)1541 void folio_end_private_2(struct folio *folio)
1542 {
1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1545 folio_wake_bit(folio, PG_private_2);
1546 folio_put(folio);
1547 }
1548 EXPORT_SYMBOL(folio_end_private_2);
1549
1550 /**
1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1552 * @folio: The folio to wait on.
1553 *
1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1555 */
folio_wait_private_2(struct folio * folio)1556 void folio_wait_private_2(struct folio *folio)
1557 {
1558 while (folio_test_private_2(folio))
1559 folio_wait_bit(folio, PG_private_2);
1560 }
1561 EXPORT_SYMBOL(folio_wait_private_2);
1562
1563 /**
1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1565 * @folio: The folio to wait on.
1566 *
1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1568 * fatal signal is received by the calling task.
1569 *
1570 * Return:
1571 * - 0 if successful.
1572 * - -EINTR if a fatal signal was encountered.
1573 */
folio_wait_private_2_killable(struct folio * folio)1574 int folio_wait_private_2_killable(struct folio *folio)
1575 {
1576 int ret = 0;
1577
1578 while (folio_test_private_2(folio)) {
1579 ret = folio_wait_bit_killable(folio, PG_private_2);
1580 if (ret < 0)
1581 break;
1582 }
1583
1584 return ret;
1585 }
1586 EXPORT_SYMBOL(folio_wait_private_2_killable);
1587
1588 /**
1589 * folio_end_writeback - End writeback against a folio.
1590 * @folio: The folio.
1591 */
folio_end_writeback(struct folio * folio)1592 void folio_end_writeback(struct folio *folio)
1593 {
1594 /*
1595 * folio_test_clear_reclaim() could be used here but it is an
1596 * atomic operation and overkill in this particular case. Failing
1597 * to shuffle a folio marked for immediate reclaim is too mild
1598 * a gain to justify taking an atomic operation penalty at the
1599 * end of every folio writeback.
1600 */
1601 if (folio_test_reclaim(folio)) {
1602 folio_clear_reclaim(folio);
1603 folio_rotate_reclaimable(folio);
1604 }
1605
1606 /*
1607 * Writeback does not hold a folio reference of its own, relying
1608 * on truncation to wait for the clearing of PG_writeback.
1609 * But here we must make sure that the folio is not freed and
1610 * reused before the folio_wake().
1611 */
1612 folio_get(folio);
1613 if (!__folio_end_writeback(folio))
1614 BUG();
1615
1616 smp_mb__after_atomic();
1617 folio_wake(folio, PG_writeback);
1618 acct_reclaim_writeback(folio);
1619 folio_put(folio);
1620 }
1621 EXPORT_SYMBOL(folio_end_writeback);
1622
1623 /*
1624 * After completing I/O on a page, call this routine to update the page
1625 * flags appropriately
1626 */
page_endio(struct page * page,bool is_write,int err)1627 void page_endio(struct page *page, bool is_write, int err)
1628 {
1629 struct folio *folio = page_folio(page);
1630
1631 if (!is_write) {
1632 if (!err) {
1633 folio_mark_uptodate(folio);
1634 } else {
1635 folio_clear_uptodate(folio);
1636 folio_set_error(folio);
1637 }
1638 folio_unlock(folio);
1639 } else {
1640 if (err) {
1641 struct address_space *mapping;
1642
1643 folio_set_error(folio);
1644 mapping = folio_mapping(folio);
1645 if (mapping)
1646 mapping_set_error(mapping, err);
1647 }
1648 folio_end_writeback(folio);
1649 }
1650 }
1651 EXPORT_SYMBOL_GPL(page_endio);
1652
1653 /**
1654 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1655 * @folio: The folio to lock
1656 */
__folio_lock(struct folio * folio)1657 void __folio_lock(struct folio *folio)
1658 {
1659 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1660 EXCLUSIVE);
1661 }
1662 EXPORT_SYMBOL(__folio_lock);
1663
__folio_lock_killable(struct folio * folio)1664 int __folio_lock_killable(struct folio *folio)
1665 {
1666 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1667 EXCLUSIVE);
1668 }
1669 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1670
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1671 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1672 {
1673 struct wait_queue_head *q = folio_waitqueue(folio);
1674 int ret = 0;
1675
1676 wait->folio = folio;
1677 wait->bit_nr = PG_locked;
1678
1679 spin_lock_irq(&q->lock);
1680 __add_wait_queue_entry_tail(q, &wait->wait);
1681 folio_set_waiters(folio);
1682 ret = !folio_trylock(folio);
1683 /*
1684 * If we were successful now, we know we're still on the
1685 * waitqueue as we're still under the lock. This means it's
1686 * safe to remove and return success, we know the callback
1687 * isn't going to trigger.
1688 */
1689 if (!ret)
1690 __remove_wait_queue(q, &wait->wait);
1691 else
1692 ret = -EIOCBQUEUED;
1693 spin_unlock_irq(&q->lock);
1694 return ret;
1695 }
1696
1697 /*
1698 * Return values:
1699 * true - folio is locked; mmap_lock is still held.
1700 * false - folio is not locked.
1701 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1702 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1703 * which case mmap_lock is still held.
1704 *
1705 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1706 * with the folio locked and the mmap_lock unperturbed.
1707 */
__folio_lock_or_retry(struct folio * folio,struct mm_struct * mm,unsigned int flags)1708 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1709 unsigned int flags)
1710 {
1711 if (fault_flag_allow_retry_first(flags)) {
1712 /*
1713 * CAUTION! In this case, mmap_lock is not released
1714 * even though return 0.
1715 */
1716 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1717 return false;
1718
1719 mmap_read_unlock(mm);
1720 if (flags & FAULT_FLAG_KILLABLE)
1721 folio_wait_locked_killable(folio);
1722 else
1723 folio_wait_locked(folio);
1724 return false;
1725 }
1726 if (flags & FAULT_FLAG_KILLABLE) {
1727 bool ret;
1728
1729 ret = __folio_lock_killable(folio);
1730 if (ret) {
1731 mmap_read_unlock(mm);
1732 return false;
1733 }
1734 } else {
1735 __folio_lock(folio);
1736 }
1737
1738 return true;
1739 }
1740
1741 /**
1742 * page_cache_next_miss() - Find the next gap in the page cache.
1743 * @mapping: Mapping.
1744 * @index: Index.
1745 * @max_scan: Maximum range to search.
1746 *
1747 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1748 * gap with the lowest index.
1749 *
1750 * This function may be called under the rcu_read_lock. However, this will
1751 * not atomically search a snapshot of the cache at a single point in time.
1752 * For example, if a gap is created at index 5, then subsequently a gap is
1753 * created at index 10, page_cache_next_miss covering both indices may
1754 * return 10 if called under the rcu_read_lock.
1755 *
1756 * Return: The index of the gap if found, otherwise an index outside the
1757 * range specified (in which case 'return - index >= max_scan' will be true).
1758 * In the rare case of index wrap-around, 0 will be returned.
1759 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1760 pgoff_t page_cache_next_miss(struct address_space *mapping,
1761 pgoff_t index, unsigned long max_scan)
1762 {
1763 XA_STATE(xas, &mapping->i_pages, index);
1764
1765 while (max_scan--) {
1766 void *entry = xas_next(&xas);
1767 if (!entry || xa_is_value(entry))
1768 break;
1769 if (xas.xa_index == 0)
1770 break;
1771 }
1772
1773 return xas.xa_index;
1774 }
1775 EXPORT_SYMBOL(page_cache_next_miss);
1776
1777 /**
1778 * page_cache_prev_miss() - Find the previous gap in the page cache.
1779 * @mapping: Mapping.
1780 * @index: Index.
1781 * @max_scan: Maximum range to search.
1782 *
1783 * Search the range [max(index - max_scan + 1, 0), index] for the
1784 * gap with the highest index.
1785 *
1786 * This function may be called under the rcu_read_lock. However, this will
1787 * not atomically search a snapshot of the cache at a single point in time.
1788 * For example, if a gap is created at index 10, then subsequently a gap is
1789 * created at index 5, page_cache_prev_miss() covering both indices may
1790 * return 5 if called under the rcu_read_lock.
1791 *
1792 * Return: The index of the gap if found, otherwise an index outside the
1793 * range specified (in which case 'index - return >= max_scan' will be true).
1794 * In the rare case of wrap-around, ULONG_MAX will be returned.
1795 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1796 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1797 pgoff_t index, unsigned long max_scan)
1798 {
1799 XA_STATE(xas, &mapping->i_pages, index);
1800
1801 while (max_scan--) {
1802 void *entry = xas_prev(&xas);
1803 if (!entry || xa_is_value(entry))
1804 break;
1805 if (xas.xa_index == ULONG_MAX)
1806 break;
1807 }
1808
1809 return xas.xa_index;
1810 }
1811 EXPORT_SYMBOL(page_cache_prev_miss);
1812
1813 /*
1814 * Lockless page cache protocol:
1815 * On the lookup side:
1816 * 1. Load the folio from i_pages
1817 * 2. Increment the refcount if it's not zero
1818 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1819 *
1820 * On the removal side:
1821 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1822 * B. Remove the page from i_pages
1823 * C. Return the page to the page allocator
1824 *
1825 * This means that any page may have its reference count temporarily
1826 * increased by a speculative page cache (or fast GUP) lookup as it can
1827 * be allocated by another user before the RCU grace period expires.
1828 * Because the refcount temporarily acquired here may end up being the
1829 * last refcount on the page, any page allocation must be freeable by
1830 * folio_put().
1831 */
1832
1833 /*
1834 * mapping_get_entry - Get a page cache entry.
1835 * @mapping: the address_space to search
1836 * @index: The page cache index.
1837 *
1838 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1839 * it is returned with an increased refcount. If it is a shadow entry
1840 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1841 * it is returned without further action.
1842 *
1843 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1844 */
mapping_get_entry(struct address_space * mapping,pgoff_t index)1845 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1846 {
1847 XA_STATE(xas, &mapping->i_pages, index);
1848 struct folio *folio;
1849
1850 rcu_read_lock();
1851 repeat:
1852 xas_reset(&xas);
1853 folio = xas_load(&xas);
1854 if (xas_retry(&xas, folio))
1855 goto repeat;
1856 /*
1857 * A shadow entry of a recently evicted page, or a swap entry from
1858 * shmem/tmpfs. Return it without attempting to raise page count.
1859 */
1860 if (!folio || xa_is_value(folio))
1861 goto out;
1862
1863 if (!folio_try_get_rcu(folio))
1864 goto repeat;
1865
1866 if (unlikely(folio != xas_reload(&xas))) {
1867 folio_put(folio);
1868 goto repeat;
1869 }
1870 out:
1871 rcu_read_unlock();
1872
1873 return folio;
1874 }
1875
1876 /**
1877 * __filemap_get_folio - Find and get a reference to a folio.
1878 * @mapping: The address_space to search.
1879 * @index: The page index.
1880 * @fgp_flags: %FGP flags modify how the folio is returned.
1881 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1882 *
1883 * Looks up the page cache entry at @mapping & @index.
1884 *
1885 * @fgp_flags can be zero or more of these flags:
1886 *
1887 * * %FGP_ACCESSED - The folio will be marked accessed.
1888 * * %FGP_LOCK - The folio is returned locked.
1889 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1890 * instead of allocating a new folio to replace it.
1891 * * %FGP_CREAT - If no page is present then a new page is allocated using
1892 * @gfp and added to the page cache and the VM's LRU list.
1893 * The page is returned locked and with an increased refcount.
1894 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1895 * page is already in cache. If the page was allocated, unlock it before
1896 * returning so the caller can do the same dance.
1897 * * %FGP_WRITE - The page will be written to by the caller.
1898 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1899 * * %FGP_NOWAIT - Don't get blocked by page lock.
1900 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1901 *
1902 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1903 * if the %GFP flags specified for %FGP_CREAT are atomic.
1904 *
1905 * If there is a page cache page, it is returned with an increased refcount.
1906 *
1907 * Return: The found folio or %NULL otherwise.
1908 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp)1909 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1910 int fgp_flags, gfp_t gfp)
1911 {
1912 struct folio *folio;
1913
1914 repeat:
1915 folio = mapping_get_entry(mapping, index);
1916 if (xa_is_value(folio)) {
1917 if (fgp_flags & FGP_ENTRY)
1918 return folio;
1919 folio = NULL;
1920 }
1921 if (!folio)
1922 goto no_page;
1923
1924 if (fgp_flags & FGP_LOCK) {
1925 if (fgp_flags & FGP_NOWAIT) {
1926 if (!folio_trylock(folio)) {
1927 folio_put(folio);
1928 return NULL;
1929 }
1930 } else {
1931 folio_lock(folio);
1932 }
1933
1934 /* Has the page been truncated? */
1935 if (unlikely(folio->mapping != mapping)) {
1936 folio_unlock(folio);
1937 folio_put(folio);
1938 goto repeat;
1939 }
1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1941 }
1942
1943 if (fgp_flags & FGP_ACCESSED)
1944 folio_mark_accessed(folio);
1945 else if (fgp_flags & FGP_WRITE) {
1946 /* Clear idle flag for buffer write */
1947 if (folio_test_idle(folio))
1948 folio_clear_idle(folio);
1949 }
1950
1951 if (fgp_flags & FGP_STABLE)
1952 folio_wait_stable(folio);
1953 no_page:
1954 if (!folio && (fgp_flags & FGP_CREAT)) {
1955 int err;
1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1957 gfp |= __GFP_WRITE;
1958 if (fgp_flags & FGP_NOFS)
1959 gfp &= ~__GFP_FS;
1960 if (fgp_flags & FGP_NOWAIT) {
1961 gfp &= ~GFP_KERNEL;
1962 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1963 }
1964
1965 folio = filemap_alloc_folio(gfp, 0);
1966 if (!folio)
1967 return NULL;
1968
1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1970 fgp_flags |= FGP_LOCK;
1971
1972 /* Init accessed so avoid atomic mark_page_accessed later */
1973 if (fgp_flags & FGP_ACCESSED)
1974 __folio_set_referenced(folio);
1975
1976 err = filemap_add_folio(mapping, folio, index, gfp);
1977 if (unlikely(err)) {
1978 folio_put(folio);
1979 folio = NULL;
1980 if (err == -EEXIST)
1981 goto repeat;
1982 }
1983
1984 /*
1985 * filemap_add_folio locks the page, and for mmap
1986 * we expect an unlocked page.
1987 */
1988 if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 folio_unlock(folio);
1990 }
1991
1992 return folio;
1993 }
1994 EXPORT_SYMBOL(__filemap_get_folio);
1995
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1996 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1997 xa_mark_t mark)
1998 {
1999 struct folio *folio;
2000
2001 retry:
2002 if (mark == XA_PRESENT)
2003 folio = xas_find(xas, max);
2004 else
2005 folio = xas_find_marked(xas, max, mark);
2006
2007 if (xas_retry(xas, folio))
2008 goto retry;
2009 /*
2010 * A shadow entry of a recently evicted page, a swap
2011 * entry from shmem/tmpfs or a DAX entry. Return it
2012 * without attempting to raise page count.
2013 */
2014 if (!folio || xa_is_value(folio))
2015 return folio;
2016
2017 if (!folio_try_get_rcu(folio))
2018 goto reset;
2019
2020 if (unlikely(folio != xas_reload(xas))) {
2021 folio_put(folio);
2022 goto reset;
2023 }
2024
2025 return folio;
2026 reset:
2027 xas_reset(xas);
2028 goto retry;
2029 }
2030
2031 /**
2032 * find_get_entries - gang pagecache lookup
2033 * @mapping: The address_space to search
2034 * @start: The starting page cache index
2035 * @end: The final page index (inclusive).
2036 * @fbatch: Where the resulting entries are placed.
2037 * @indices: The cache indices corresponding to the entries in @entries
2038 *
2039 * find_get_entries() will search for and return a batch of entries in
2040 * the mapping. The entries are placed in @fbatch. find_get_entries()
2041 * takes a reference on any actual folios it returns.
2042 *
2043 * The entries have ascending indexes. The indices may not be consecutive
2044 * due to not-present entries or large folios.
2045 *
2046 * Any shadow entries of evicted folios, or swap entries from
2047 * shmem/tmpfs, are included in the returned array.
2048 *
2049 * Return: The number of entries which were found.
2050 */
find_get_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2051 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2052 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2053 {
2054 XA_STATE(xas, &mapping->i_pages, start);
2055 struct folio *folio;
2056
2057 rcu_read_lock();
2058 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2059 indices[fbatch->nr] = xas.xa_index;
2060 if (!folio_batch_add(fbatch, folio))
2061 break;
2062 }
2063 rcu_read_unlock();
2064
2065 return folio_batch_count(fbatch);
2066 }
2067
2068 /**
2069 * find_lock_entries - Find a batch of pagecache entries.
2070 * @mapping: The address_space to search.
2071 * @start: The starting page cache index.
2072 * @end: The final page index (inclusive).
2073 * @fbatch: Where the resulting entries are placed.
2074 * @indices: The cache indices of the entries in @fbatch.
2075 *
2076 * find_lock_entries() will return a batch of entries from @mapping.
2077 * Swap, shadow and DAX entries are included. Folios are returned
2078 * locked and with an incremented refcount. Folios which are locked
2079 * by somebody else or under writeback are skipped. Folios which are
2080 * partially outside the range are not returned.
2081 *
2082 * The entries have ascending indexes. The indices may not be consecutive
2083 * due to not-present entries, large folios, folios which could not be
2084 * locked or folios under writeback.
2085 *
2086 * Return: The number of entries which were found.
2087 */
find_lock_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2089 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2090 {
2091 XA_STATE(xas, &mapping->i_pages, start);
2092 struct folio *folio;
2093
2094 rcu_read_lock();
2095 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2096 if (!xa_is_value(folio)) {
2097 if (folio->index < start)
2098 goto put;
2099 if (folio->index + folio_nr_pages(folio) - 1 > end)
2100 goto put;
2101 if (!folio_trylock(folio))
2102 goto put;
2103 if (folio->mapping != mapping ||
2104 folio_test_writeback(folio))
2105 goto unlock;
2106 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2107 folio);
2108 }
2109 indices[fbatch->nr] = xas.xa_index;
2110 if (!folio_batch_add(fbatch, folio))
2111 break;
2112 continue;
2113 unlock:
2114 folio_unlock(folio);
2115 put:
2116 folio_put(folio);
2117 }
2118 rcu_read_unlock();
2119
2120 return folio_batch_count(fbatch);
2121 }
2122
2123 /**
2124 * filemap_get_folios - Get a batch of folios
2125 * @mapping: The address_space to search
2126 * @start: The starting page index
2127 * @end: The final page index (inclusive)
2128 * @fbatch: The batch to fill.
2129 *
2130 * Search for and return a batch of folios in the mapping starting at
2131 * index @start and up to index @end (inclusive). The folios are returned
2132 * in @fbatch with an elevated reference count.
2133 *
2134 * The first folio may start before @start; if it does, it will contain
2135 * @start. The final folio may extend beyond @end; if it does, it will
2136 * contain @end. The folios have ascending indices. There may be gaps
2137 * between the folios if there are indices which have no folio in the
2138 * page cache. If folios are added to or removed from the page cache
2139 * while this is running, they may or may not be found by this call.
2140 *
2141 * Return: The number of folios which were found.
2142 * We also update @start to index the next folio for the traversal.
2143 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2144 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2145 pgoff_t end, struct folio_batch *fbatch)
2146 {
2147 XA_STATE(xas, &mapping->i_pages, *start);
2148 struct folio *folio;
2149
2150 rcu_read_lock();
2151 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2152 /* Skip over shadow, swap and DAX entries */
2153 if (xa_is_value(folio))
2154 continue;
2155 if (!folio_batch_add(fbatch, folio)) {
2156 unsigned long nr = folio_nr_pages(folio);
2157
2158 if (folio_test_hugetlb(folio))
2159 nr = 1;
2160 *start = folio->index + nr;
2161 goto out;
2162 }
2163 }
2164
2165 /*
2166 * We come here when there is no page beyond @end. We take care to not
2167 * overflow the index @start as it confuses some of the callers. This
2168 * breaks the iteration when there is a page at index -1 but that is
2169 * already broken anyway.
2170 */
2171 if (end == (pgoff_t)-1)
2172 *start = (pgoff_t)-1;
2173 else
2174 *start = end + 1;
2175 out:
2176 rcu_read_unlock();
2177
2178 return folio_batch_count(fbatch);
2179 }
2180 EXPORT_SYMBOL(filemap_get_folios);
2181
2182 static inline
folio_more_pages(struct folio * folio,pgoff_t index,pgoff_t max)2183 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2184 {
2185 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2186 return false;
2187 if (index >= max)
2188 return false;
2189 return index < folio->index + folio_nr_pages(folio) - 1;
2190 }
2191
2192 /**
2193 * filemap_get_folios_contig - Get a batch of contiguous folios
2194 * @mapping: The address_space to search
2195 * @start: The starting page index
2196 * @end: The final page index (inclusive)
2197 * @fbatch: The batch to fill
2198 *
2199 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2200 * except the returned folios are guaranteed to be contiguous. This may
2201 * not return all contiguous folios if the batch gets filled up.
2202 *
2203 * Return: The number of folios found.
2204 * Also update @start to be positioned for traversal of the next folio.
2205 */
2206
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2207 unsigned filemap_get_folios_contig(struct address_space *mapping,
2208 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2209 {
2210 XA_STATE(xas, &mapping->i_pages, *start);
2211 unsigned long nr;
2212 struct folio *folio;
2213
2214 rcu_read_lock();
2215
2216 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2217 folio = xas_next(&xas)) {
2218 if (xas_retry(&xas, folio))
2219 continue;
2220 /*
2221 * If the entry has been swapped out, we can stop looking.
2222 * No current caller is looking for DAX entries.
2223 */
2224 if (xa_is_value(folio))
2225 goto update_start;
2226
2227 if (!folio_try_get_rcu(folio))
2228 goto retry;
2229
2230 if (unlikely(folio != xas_reload(&xas)))
2231 goto put_folio;
2232
2233 if (!folio_batch_add(fbatch, folio)) {
2234 nr = folio_nr_pages(folio);
2235
2236 if (folio_test_hugetlb(folio))
2237 nr = 1;
2238 *start = folio->index + nr;
2239 goto out;
2240 }
2241 continue;
2242 put_folio:
2243 folio_put(folio);
2244
2245 retry:
2246 xas_reset(&xas);
2247 }
2248
2249 update_start:
2250 nr = folio_batch_count(fbatch);
2251
2252 if (nr) {
2253 folio = fbatch->folios[nr - 1];
2254 if (folio_test_hugetlb(folio))
2255 *start = folio->index + 1;
2256 else
2257 *start = folio->index + folio_nr_pages(folio);
2258 }
2259 out:
2260 rcu_read_unlock();
2261 return folio_batch_count(fbatch);
2262 }
2263 EXPORT_SYMBOL(filemap_get_folios_contig);
2264
2265 /**
2266 * find_get_pages_range_tag - Find and return head pages matching @tag.
2267 * @mapping: the address_space to search
2268 * @index: the starting page index
2269 * @end: The final page index (inclusive)
2270 * @tag: the tag index
2271 * @nr_pages: the maximum number of pages
2272 * @pages: where the resulting pages are placed
2273 *
2274 * Like find_get_pages_range(), except we only return head pages which are
2275 * tagged with @tag. @index is updated to the index immediately after the
2276 * last page we return, ready for the next iteration.
2277 *
2278 * Return: the number of pages which were found.
2279 */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)2280 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2281 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2282 struct page **pages)
2283 {
2284 XA_STATE(xas, &mapping->i_pages, *index);
2285 struct folio *folio;
2286 unsigned ret = 0;
2287
2288 if (unlikely(!nr_pages))
2289 return 0;
2290
2291 rcu_read_lock();
2292 while ((folio = find_get_entry(&xas, end, tag))) {
2293 /*
2294 * Shadow entries should never be tagged, but this iteration
2295 * is lockless so there is a window for page reclaim to evict
2296 * a page we saw tagged. Skip over it.
2297 */
2298 if (xa_is_value(folio))
2299 continue;
2300
2301 pages[ret] = &folio->page;
2302 if (++ret == nr_pages) {
2303 *index = folio->index + folio_nr_pages(folio);
2304 goto out;
2305 }
2306 }
2307
2308 /*
2309 * We come here when we got to @end. We take care to not overflow the
2310 * index @index as it confuses some of the callers. This breaks the
2311 * iteration when there is a page at index -1 but that is already
2312 * broken anyway.
2313 */
2314 if (end == (pgoff_t)-1)
2315 *index = (pgoff_t)-1;
2316 else
2317 *index = end + 1;
2318 out:
2319 rcu_read_unlock();
2320
2321 return ret;
2322 }
2323 EXPORT_SYMBOL(find_get_pages_range_tag);
2324
2325 /*
2326 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2327 * a _large_ part of the i/o request. Imagine the worst scenario:
2328 *
2329 * ---R__________________________________________B__________
2330 * ^ reading here ^ bad block(assume 4k)
2331 *
2332 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2333 * => failing the whole request => read(R) => read(R+1) =>
2334 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2335 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2336 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2337 *
2338 * It is going insane. Fix it by quickly scaling down the readahead size.
2339 */
shrink_readahead_size_eio(struct file_ra_state * ra)2340 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2341 {
2342 ra->ra_pages /= 4;
2343 }
2344
2345 /*
2346 * filemap_get_read_batch - Get a batch of folios for read
2347 *
2348 * Get a batch of folios which represent a contiguous range of bytes in
2349 * the file. No exceptional entries will be returned. If @index is in
2350 * the middle of a folio, the entire folio will be returned. The last
2351 * folio in the batch may have the readahead flag set or the uptodate flag
2352 * clear so that the caller can take the appropriate action.
2353 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2354 static void filemap_get_read_batch(struct address_space *mapping,
2355 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2356 {
2357 XA_STATE(xas, &mapping->i_pages, index);
2358 struct folio *folio;
2359
2360 rcu_read_lock();
2361 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2362 if (xas_retry(&xas, folio))
2363 continue;
2364 if (xas.xa_index > max || xa_is_value(folio))
2365 break;
2366 if (xa_is_sibling(folio))
2367 break;
2368 if (!folio_try_get_rcu(folio))
2369 goto retry;
2370
2371 if (unlikely(folio != xas_reload(&xas)))
2372 goto put_folio;
2373
2374 if (!folio_batch_add(fbatch, folio))
2375 break;
2376 if (!folio_test_uptodate(folio))
2377 break;
2378 if (folio_test_readahead(folio))
2379 break;
2380 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2381 continue;
2382 put_folio:
2383 folio_put(folio);
2384 retry:
2385 xas_reset(&xas);
2386 }
2387 rcu_read_unlock();
2388 }
2389
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2390 static int filemap_read_folio(struct file *file, filler_t filler,
2391 struct folio *folio)
2392 {
2393 bool workingset = folio_test_workingset(folio);
2394 unsigned long pflags;
2395 int error;
2396
2397 /*
2398 * A previous I/O error may have been due to temporary failures,
2399 * eg. multipath errors. PG_error will be set again if read_folio
2400 * fails.
2401 */
2402 folio_clear_error(folio);
2403
2404 /* Start the actual read. The read will unlock the page. */
2405 if (unlikely(workingset))
2406 psi_memstall_enter(&pflags);
2407 error = filler(file, folio);
2408 if (unlikely(workingset))
2409 psi_memstall_leave(&pflags);
2410 if (error)
2411 return error;
2412
2413 error = folio_wait_locked_killable(folio);
2414 if (error)
2415 return error;
2416 if (folio_test_uptodate(folio))
2417 return 0;
2418 if (file)
2419 shrink_readahead_size_eio(&file->f_ra);
2420 return -EIO;
2421 }
2422
filemap_range_uptodate(struct address_space * mapping,loff_t pos,struct iov_iter * iter,struct folio * folio)2423 static bool filemap_range_uptodate(struct address_space *mapping,
2424 loff_t pos, struct iov_iter *iter, struct folio *folio)
2425 {
2426 int count;
2427
2428 if (folio_test_uptodate(folio))
2429 return true;
2430 /* pipes can't handle partially uptodate pages */
2431 if (iov_iter_is_pipe(iter))
2432 return false;
2433 if (!mapping->a_ops->is_partially_uptodate)
2434 return false;
2435 if (mapping->host->i_blkbits >= folio_shift(folio))
2436 return false;
2437
2438 count = iter->count;
2439 if (folio_pos(folio) > pos) {
2440 count -= folio_pos(folio) - pos;
2441 pos = 0;
2442 } else {
2443 pos -= folio_pos(folio);
2444 }
2445
2446 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2447 }
2448
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * iter,struct folio * folio)2449 static int filemap_update_page(struct kiocb *iocb,
2450 struct address_space *mapping, struct iov_iter *iter,
2451 struct folio *folio)
2452 {
2453 int error;
2454
2455 if (iocb->ki_flags & IOCB_NOWAIT) {
2456 if (!filemap_invalidate_trylock_shared(mapping))
2457 return -EAGAIN;
2458 } else {
2459 filemap_invalidate_lock_shared(mapping);
2460 }
2461
2462 if (!folio_trylock(folio)) {
2463 error = -EAGAIN;
2464 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2465 goto unlock_mapping;
2466 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2467 filemap_invalidate_unlock_shared(mapping);
2468 /*
2469 * This is where we usually end up waiting for a
2470 * previously submitted readahead to finish.
2471 */
2472 folio_put_wait_locked(folio, TASK_KILLABLE);
2473 return AOP_TRUNCATED_PAGE;
2474 }
2475 error = __folio_lock_async(folio, iocb->ki_waitq);
2476 if (error)
2477 goto unlock_mapping;
2478 }
2479
2480 error = AOP_TRUNCATED_PAGE;
2481 if (!folio->mapping)
2482 goto unlock;
2483
2484 error = 0;
2485 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2486 goto unlock;
2487
2488 error = -EAGAIN;
2489 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2490 goto unlock;
2491
2492 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2493 folio);
2494 goto unlock_mapping;
2495 unlock:
2496 folio_unlock(folio);
2497 unlock_mapping:
2498 filemap_invalidate_unlock_shared(mapping);
2499 if (error == AOP_TRUNCATED_PAGE)
2500 folio_put(folio);
2501 return error;
2502 }
2503
filemap_create_folio(struct file * file,struct address_space * mapping,pgoff_t index,struct folio_batch * fbatch)2504 static int filemap_create_folio(struct file *file,
2505 struct address_space *mapping, pgoff_t index,
2506 struct folio_batch *fbatch)
2507 {
2508 struct folio *folio;
2509 int error;
2510
2511 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2512 if (!folio)
2513 return -ENOMEM;
2514
2515 /*
2516 * Protect against truncate / hole punch. Grabbing invalidate_lock
2517 * here assures we cannot instantiate and bring uptodate new
2518 * pagecache folios after evicting page cache during truncate
2519 * and before actually freeing blocks. Note that we could
2520 * release invalidate_lock after inserting the folio into
2521 * the page cache as the locked folio would then be enough to
2522 * synchronize with hole punching. But there are code paths
2523 * such as filemap_update_page() filling in partially uptodate
2524 * pages or ->readahead() that need to hold invalidate_lock
2525 * while mapping blocks for IO so let's hold the lock here as
2526 * well to keep locking rules simple.
2527 */
2528 filemap_invalidate_lock_shared(mapping);
2529 error = filemap_add_folio(mapping, folio, index,
2530 mapping_gfp_constraint(mapping, GFP_KERNEL));
2531 if (error == -EEXIST)
2532 error = AOP_TRUNCATED_PAGE;
2533 if (error)
2534 goto error;
2535
2536 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2537 if (error)
2538 goto error;
2539
2540 filemap_invalidate_unlock_shared(mapping);
2541 folio_batch_add(fbatch, folio);
2542 return 0;
2543 error:
2544 filemap_invalidate_unlock_shared(mapping);
2545 folio_put(folio);
2546 return error;
2547 }
2548
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2549 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2550 struct address_space *mapping, struct folio *folio,
2551 pgoff_t last_index)
2552 {
2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2554
2555 if (iocb->ki_flags & IOCB_NOIO)
2556 return -EAGAIN;
2557 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2558 return 0;
2559 }
2560
filemap_get_pages(struct kiocb * iocb,struct iov_iter * iter,struct folio_batch * fbatch)2561 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2562 struct folio_batch *fbatch)
2563 {
2564 struct file *filp = iocb->ki_filp;
2565 struct address_space *mapping = filp->f_mapping;
2566 struct file_ra_state *ra = &filp->f_ra;
2567 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2568 pgoff_t last_index;
2569 struct folio *folio;
2570 int err = 0;
2571
2572 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2573 retry:
2574 if (fatal_signal_pending(current))
2575 return -EINTR;
2576
2577 filemap_get_read_batch(mapping, index, last_index, fbatch);
2578 if (!folio_batch_count(fbatch)) {
2579 if (iocb->ki_flags & IOCB_NOIO)
2580 return -EAGAIN;
2581 page_cache_sync_readahead(mapping, ra, filp, index,
2582 last_index - index);
2583 filemap_get_read_batch(mapping, index, last_index, fbatch);
2584 }
2585 if (!folio_batch_count(fbatch)) {
2586 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2587 return -EAGAIN;
2588 err = filemap_create_folio(filp, mapping,
2589 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2590 if (err == AOP_TRUNCATED_PAGE)
2591 goto retry;
2592 return err;
2593 }
2594
2595 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2596 if (folio_test_readahead(folio)) {
2597 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2598 if (err)
2599 goto err;
2600 }
2601 if (!folio_test_uptodate(folio)) {
2602 if ((iocb->ki_flags & IOCB_WAITQ) &&
2603 folio_batch_count(fbatch) > 1)
2604 iocb->ki_flags |= IOCB_NOWAIT;
2605 err = filemap_update_page(iocb, mapping, iter, folio);
2606 if (err)
2607 goto err;
2608 }
2609
2610 return 0;
2611 err:
2612 if (err < 0)
2613 folio_put(folio);
2614 if (likely(--fbatch->nr))
2615 return 0;
2616 if (err == AOP_TRUNCATED_PAGE)
2617 goto retry;
2618 return err;
2619 }
2620
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2621 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2622 {
2623 unsigned int shift = folio_shift(folio);
2624
2625 return (pos1 >> shift == pos2 >> shift);
2626 }
2627
2628 /**
2629 * filemap_read - Read data from the page cache.
2630 * @iocb: The iocb to read.
2631 * @iter: Destination for the data.
2632 * @already_read: Number of bytes already read by the caller.
2633 *
2634 * Copies data from the page cache. If the data is not currently present,
2635 * uses the readahead and read_folio address_space operations to fetch it.
2636 *
2637 * Return: Total number of bytes copied, including those already read by
2638 * the caller. If an error happens before any bytes are copied, returns
2639 * a negative error number.
2640 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2641 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2642 ssize_t already_read)
2643 {
2644 struct file *filp = iocb->ki_filp;
2645 struct file_ra_state *ra = &filp->f_ra;
2646 struct address_space *mapping = filp->f_mapping;
2647 struct inode *inode = mapping->host;
2648 struct folio_batch fbatch;
2649 int i, error = 0;
2650 bool writably_mapped;
2651 loff_t isize, end_offset;
2652
2653 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2654 return 0;
2655 if (unlikely(!iov_iter_count(iter)))
2656 return 0;
2657
2658 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2659 folio_batch_init(&fbatch);
2660
2661 do {
2662 cond_resched();
2663
2664 /*
2665 * If we've already successfully copied some data, then we
2666 * can no longer safely return -EIOCBQUEUED. Hence mark
2667 * an async read NOWAIT at that point.
2668 */
2669 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2670 iocb->ki_flags |= IOCB_NOWAIT;
2671
2672 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2673 break;
2674
2675 error = filemap_get_pages(iocb, iter, &fbatch);
2676 if (error < 0)
2677 break;
2678
2679 /*
2680 * i_size must be checked after we know the pages are Uptodate.
2681 *
2682 * Checking i_size after the check allows us to calculate
2683 * the correct value for "nr", which means the zero-filled
2684 * part of the page is not copied back to userspace (unless
2685 * another truncate extends the file - this is desired though).
2686 */
2687 isize = i_size_read(inode);
2688 if (unlikely(iocb->ki_pos >= isize))
2689 goto put_folios;
2690 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2691
2692 /*
2693 * Once we start copying data, we don't want to be touching any
2694 * cachelines that might be contended:
2695 */
2696 writably_mapped = mapping_writably_mapped(mapping);
2697
2698 /*
2699 * When a read accesses the same folio several times, only
2700 * mark it as accessed the first time.
2701 */
2702 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2703 fbatch.folios[0]))
2704 folio_mark_accessed(fbatch.folios[0]);
2705
2706 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2707 struct folio *folio = fbatch.folios[i];
2708 size_t fsize = folio_size(folio);
2709 size_t offset = iocb->ki_pos & (fsize - 1);
2710 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2711 fsize - offset);
2712 size_t copied;
2713
2714 if (end_offset < folio_pos(folio))
2715 break;
2716 if (i > 0)
2717 folio_mark_accessed(folio);
2718 /*
2719 * If users can be writing to this folio using arbitrary
2720 * virtual addresses, take care of potential aliasing
2721 * before reading the folio on the kernel side.
2722 */
2723 if (writably_mapped)
2724 flush_dcache_folio(folio);
2725
2726 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2727
2728 already_read += copied;
2729 iocb->ki_pos += copied;
2730 ra->prev_pos = iocb->ki_pos;
2731
2732 if (copied < bytes) {
2733 error = -EFAULT;
2734 break;
2735 }
2736 }
2737 put_folios:
2738 for (i = 0; i < folio_batch_count(&fbatch); i++)
2739 folio_put(fbatch.folios[i]);
2740 folio_batch_init(&fbatch);
2741 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2742
2743 file_accessed(filp);
2744
2745 return already_read ? already_read : error;
2746 }
2747 EXPORT_SYMBOL_GPL(filemap_read);
2748
2749 /**
2750 * generic_file_read_iter - generic filesystem read routine
2751 * @iocb: kernel I/O control block
2752 * @iter: destination for the data read
2753 *
2754 * This is the "read_iter()" routine for all filesystems
2755 * that can use the page cache directly.
2756 *
2757 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2758 * be returned when no data can be read without waiting for I/O requests
2759 * to complete; it doesn't prevent readahead.
2760 *
2761 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2762 * requests shall be made for the read or for readahead. When no data
2763 * can be read, -EAGAIN shall be returned. When readahead would be
2764 * triggered, a partial, possibly empty read shall be returned.
2765 *
2766 * Return:
2767 * * number of bytes copied, even for partial reads
2768 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2769 */
2770 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2771 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2772 {
2773 size_t count = iov_iter_count(iter);
2774 ssize_t retval = 0;
2775
2776 if (!count)
2777 return 0; /* skip atime */
2778
2779 if (iocb->ki_flags & IOCB_DIRECT) {
2780 struct file *file = iocb->ki_filp;
2781 struct address_space *mapping = file->f_mapping;
2782 struct inode *inode = mapping->host;
2783
2784 if (iocb->ki_flags & IOCB_NOWAIT) {
2785 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2786 iocb->ki_pos + count - 1))
2787 return -EAGAIN;
2788 } else {
2789 retval = filemap_write_and_wait_range(mapping,
2790 iocb->ki_pos,
2791 iocb->ki_pos + count - 1);
2792 if (retval < 0)
2793 return retval;
2794 }
2795
2796 file_accessed(file);
2797
2798 retval = mapping->a_ops->direct_IO(iocb, iter);
2799 if (retval >= 0) {
2800 iocb->ki_pos += retval;
2801 count -= retval;
2802 }
2803 if (retval != -EIOCBQUEUED)
2804 iov_iter_revert(iter, count - iov_iter_count(iter));
2805
2806 /*
2807 * Btrfs can have a short DIO read if we encounter
2808 * compressed extents, so if there was an error, or if
2809 * we've already read everything we wanted to, or if
2810 * there was a short read because we hit EOF, go ahead
2811 * and return. Otherwise fallthrough to buffered io for
2812 * the rest of the read. Buffered reads will not work for
2813 * DAX files, so don't bother trying.
2814 */
2815 if (retval < 0 || !count || IS_DAX(inode))
2816 return retval;
2817 if (iocb->ki_pos >= i_size_read(inode))
2818 return retval;
2819 }
2820
2821 return filemap_read(iocb, iter, retval);
2822 }
2823 EXPORT_SYMBOL(generic_file_read_iter);
2824
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)2825 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2826 struct address_space *mapping, struct folio *folio,
2827 loff_t start, loff_t end, bool seek_data)
2828 {
2829 const struct address_space_operations *ops = mapping->a_ops;
2830 size_t offset, bsz = i_blocksize(mapping->host);
2831
2832 if (xa_is_value(folio) || folio_test_uptodate(folio))
2833 return seek_data ? start : end;
2834 if (!ops->is_partially_uptodate)
2835 return seek_data ? end : start;
2836
2837 xas_pause(xas);
2838 rcu_read_unlock();
2839 folio_lock(folio);
2840 if (unlikely(folio->mapping != mapping))
2841 goto unlock;
2842
2843 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2844
2845 do {
2846 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2847 seek_data)
2848 break;
2849 start = (start + bsz) & ~(bsz - 1);
2850 offset += bsz;
2851 } while (offset < folio_size(folio));
2852 unlock:
2853 folio_unlock(folio);
2854 rcu_read_lock();
2855 return start;
2856 }
2857
seek_folio_size(struct xa_state * xas,struct folio * folio)2858 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2859 {
2860 if (xa_is_value(folio))
2861 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2862 return folio_size(folio);
2863 }
2864
2865 /**
2866 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2867 * @mapping: Address space to search.
2868 * @start: First byte to consider.
2869 * @end: Limit of search (exclusive).
2870 * @whence: Either SEEK_HOLE or SEEK_DATA.
2871 *
2872 * If the page cache knows which blocks contain holes and which blocks
2873 * contain data, your filesystem can use this function to implement
2874 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2875 * entirely memory-based such as tmpfs, and filesystems which support
2876 * unwritten extents.
2877 *
2878 * Return: The requested offset on success, or -ENXIO if @whence specifies
2879 * SEEK_DATA and there is no data after @start. There is an implicit hole
2880 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2881 * and @end contain data.
2882 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)2883 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2884 loff_t end, int whence)
2885 {
2886 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2887 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2888 bool seek_data = (whence == SEEK_DATA);
2889 struct folio *folio;
2890
2891 if (end <= start)
2892 return -ENXIO;
2893
2894 rcu_read_lock();
2895 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2896 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2897 size_t seek_size;
2898
2899 if (start < pos) {
2900 if (!seek_data)
2901 goto unlock;
2902 start = pos;
2903 }
2904
2905 seek_size = seek_folio_size(&xas, folio);
2906 pos = round_up((u64)pos + 1, seek_size);
2907 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2908 seek_data);
2909 if (start < pos)
2910 goto unlock;
2911 if (start >= end)
2912 break;
2913 if (seek_size > PAGE_SIZE)
2914 xas_set(&xas, pos >> PAGE_SHIFT);
2915 if (!xa_is_value(folio))
2916 folio_put(folio);
2917 }
2918 if (seek_data)
2919 start = -ENXIO;
2920 unlock:
2921 rcu_read_unlock();
2922 if (folio && !xa_is_value(folio))
2923 folio_put(folio);
2924 if (start > end)
2925 return end;
2926 return start;
2927 }
2928
2929 #ifdef CONFIG_MMU
2930 #define MMAP_LOTSAMISS (100)
2931 /*
2932 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2933 * @vmf - the vm_fault for this fault.
2934 * @folio - the folio to lock.
2935 * @fpin - the pointer to the file we may pin (or is already pinned).
2936 *
2937 * This works similar to lock_folio_or_retry in that it can drop the
2938 * mmap_lock. It differs in that it actually returns the folio locked
2939 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2940 * to drop the mmap_lock then fpin will point to the pinned file and
2941 * needs to be fput()'ed at a later point.
2942 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)2943 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2944 struct file **fpin)
2945 {
2946 if (folio_trylock(folio))
2947 return 1;
2948
2949 /*
2950 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2951 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2952 * is supposed to work. We have way too many special cases..
2953 */
2954 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2955 return 0;
2956
2957 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2958 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2959 if (__folio_lock_killable(folio)) {
2960 /*
2961 * We didn't have the right flags to drop the mmap_lock,
2962 * but all fault_handlers only check for fatal signals
2963 * if we return VM_FAULT_RETRY, so we need to drop the
2964 * mmap_lock here and return 0 if we don't have a fpin.
2965 */
2966 if (*fpin == NULL)
2967 mmap_read_unlock(vmf->vma->vm_mm);
2968 return 0;
2969 }
2970 } else
2971 __folio_lock(folio);
2972
2973 return 1;
2974 }
2975
2976 /*
2977 * Synchronous readahead happens when we don't even find a page in the page
2978 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2979 * to drop the mmap sem we return the file that was pinned in order for us to do
2980 * that. If we didn't pin a file then we return NULL. The file that is
2981 * returned needs to be fput()'ed when we're done with it.
2982 */
do_sync_mmap_readahead(struct vm_fault * vmf)2983 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2984 {
2985 struct file *file = vmf->vma->vm_file;
2986 struct file_ra_state *ra = &file->f_ra;
2987 struct address_space *mapping = file->f_mapping;
2988 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2989 struct file *fpin = NULL;
2990 unsigned long vm_flags = vmf->vma->vm_flags;
2991 unsigned int mmap_miss;
2992
2993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2994 /* Use the readahead code, even if readahead is disabled */
2995 if (vm_flags & VM_HUGEPAGE) {
2996 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2997 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
2998 ra->size = HPAGE_PMD_NR;
2999 /*
3000 * Fetch two PMD folios, so we get the chance to actually
3001 * readahead, unless we've been told not to.
3002 */
3003 if (!(vm_flags & VM_RAND_READ))
3004 ra->size *= 2;
3005 ra->async_size = HPAGE_PMD_NR;
3006 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3007 return fpin;
3008 }
3009 #endif
3010
3011 /* If we don't want any read-ahead, don't bother */
3012 if (vm_flags & VM_RAND_READ)
3013 return fpin;
3014 if (!ra->ra_pages)
3015 return fpin;
3016
3017 if (vm_flags & VM_SEQ_READ) {
3018 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3019 page_cache_sync_ra(&ractl, ra->ra_pages);
3020 return fpin;
3021 }
3022
3023 /* Avoid banging the cache line if not needed */
3024 mmap_miss = READ_ONCE(ra->mmap_miss);
3025 if (mmap_miss < MMAP_LOTSAMISS * 10)
3026 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3027
3028 /*
3029 * Do we miss much more than hit in this file? If so,
3030 * stop bothering with read-ahead. It will only hurt.
3031 */
3032 if (mmap_miss > MMAP_LOTSAMISS)
3033 return fpin;
3034
3035 /*
3036 * mmap read-around
3037 */
3038 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3039 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3040 ra->size = ra->ra_pages;
3041 ra->async_size = ra->ra_pages / 4;
3042 ractl._index = ra->start;
3043 page_cache_ra_order(&ractl, ra, 0);
3044 return fpin;
3045 }
3046
3047 /*
3048 * Asynchronous readahead happens when we find the page and PG_readahead,
3049 * so we want to possibly extend the readahead further. We return the file that
3050 * was pinned if we have to drop the mmap_lock in order to do IO.
3051 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3052 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3053 struct folio *folio)
3054 {
3055 struct file *file = vmf->vma->vm_file;
3056 struct file_ra_state *ra = &file->f_ra;
3057 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3058 struct file *fpin = NULL;
3059 unsigned int mmap_miss;
3060
3061 /* If we don't want any read-ahead, don't bother */
3062 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3063 return fpin;
3064
3065 mmap_miss = READ_ONCE(ra->mmap_miss);
3066 if (mmap_miss)
3067 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3068
3069 if (folio_test_readahead(folio)) {
3070 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3071 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3072 }
3073 return fpin;
3074 }
3075
3076 /**
3077 * filemap_fault - read in file data for page fault handling
3078 * @vmf: struct vm_fault containing details of the fault
3079 *
3080 * filemap_fault() is invoked via the vma operations vector for a
3081 * mapped memory region to read in file data during a page fault.
3082 *
3083 * The goto's are kind of ugly, but this streamlines the normal case of having
3084 * it in the page cache, and handles the special cases reasonably without
3085 * having a lot of duplicated code.
3086 *
3087 * vma->vm_mm->mmap_lock must be held on entry.
3088 *
3089 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3090 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3091 *
3092 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3093 * has not been released.
3094 *
3095 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3096 *
3097 * Return: bitwise-OR of %VM_FAULT_ codes.
3098 */
filemap_fault(struct vm_fault * vmf)3099 vm_fault_t filemap_fault(struct vm_fault *vmf)
3100 {
3101 int error;
3102 struct file *file = vmf->vma->vm_file;
3103 struct file *fpin = NULL;
3104 struct address_space *mapping = file->f_mapping;
3105 struct inode *inode = mapping->host;
3106 pgoff_t max_idx, index = vmf->pgoff;
3107 struct folio *folio;
3108 vm_fault_t ret = 0;
3109 bool mapping_locked = false;
3110
3111 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3112 if (unlikely(index >= max_idx))
3113 return VM_FAULT_SIGBUS;
3114
3115 /*
3116 * Do we have something in the page cache already?
3117 */
3118 folio = filemap_get_folio(mapping, index);
3119 if (likely(folio)) {
3120 /*
3121 * We found the page, so try async readahead before waiting for
3122 * the lock.
3123 */
3124 if (!(vmf->flags & FAULT_FLAG_TRIED))
3125 fpin = do_async_mmap_readahead(vmf, folio);
3126 if (unlikely(!folio_test_uptodate(folio))) {
3127 filemap_invalidate_lock_shared(mapping);
3128 mapping_locked = true;
3129 }
3130 } else {
3131 /* No page in the page cache at all */
3132 count_vm_event(PGMAJFAULT);
3133 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3134 ret = VM_FAULT_MAJOR;
3135 fpin = do_sync_mmap_readahead(vmf);
3136 retry_find:
3137 /*
3138 * See comment in filemap_create_folio() why we need
3139 * invalidate_lock
3140 */
3141 if (!mapping_locked) {
3142 filemap_invalidate_lock_shared(mapping);
3143 mapping_locked = true;
3144 }
3145 folio = __filemap_get_folio(mapping, index,
3146 FGP_CREAT|FGP_FOR_MMAP,
3147 vmf->gfp_mask);
3148 if (!folio) {
3149 if (fpin)
3150 goto out_retry;
3151 filemap_invalidate_unlock_shared(mapping);
3152 return VM_FAULT_OOM;
3153 }
3154 }
3155
3156 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3157 goto out_retry;
3158
3159 /* Did it get truncated? */
3160 if (unlikely(folio->mapping != mapping)) {
3161 folio_unlock(folio);
3162 folio_put(folio);
3163 goto retry_find;
3164 }
3165 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3166
3167 /*
3168 * We have a locked page in the page cache, now we need to check
3169 * that it's up-to-date. If not, it is going to be due to an error.
3170 */
3171 if (unlikely(!folio_test_uptodate(folio))) {
3172 /*
3173 * The page was in cache and uptodate and now it is not.
3174 * Strange but possible since we didn't hold the page lock all
3175 * the time. Let's drop everything get the invalidate lock and
3176 * try again.
3177 */
3178 if (!mapping_locked) {
3179 folio_unlock(folio);
3180 folio_put(folio);
3181 goto retry_find;
3182 }
3183 goto page_not_uptodate;
3184 }
3185
3186 /*
3187 * We've made it this far and we had to drop our mmap_lock, now is the
3188 * time to return to the upper layer and have it re-find the vma and
3189 * redo the fault.
3190 */
3191 if (fpin) {
3192 folio_unlock(folio);
3193 goto out_retry;
3194 }
3195 if (mapping_locked)
3196 filemap_invalidate_unlock_shared(mapping);
3197
3198 /*
3199 * Found the page and have a reference on it.
3200 * We must recheck i_size under page lock.
3201 */
3202 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3203 if (unlikely(index >= max_idx)) {
3204 folio_unlock(folio);
3205 folio_put(folio);
3206 return VM_FAULT_SIGBUS;
3207 }
3208
3209 vmf->page = folio_file_page(folio, index);
3210 return ret | VM_FAULT_LOCKED;
3211
3212 page_not_uptodate:
3213 /*
3214 * Umm, take care of errors if the page isn't up-to-date.
3215 * Try to re-read it _once_. We do this synchronously,
3216 * because there really aren't any performance issues here
3217 * and we need to check for errors.
3218 */
3219 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3220 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3221 if (fpin)
3222 goto out_retry;
3223 folio_put(folio);
3224
3225 if (!error || error == AOP_TRUNCATED_PAGE)
3226 goto retry_find;
3227 filemap_invalidate_unlock_shared(mapping);
3228
3229 return VM_FAULT_SIGBUS;
3230
3231 out_retry:
3232 /*
3233 * We dropped the mmap_lock, we need to return to the fault handler to
3234 * re-find the vma and come back and find our hopefully still populated
3235 * page.
3236 */
3237 if (folio)
3238 folio_put(folio);
3239 if (mapping_locked)
3240 filemap_invalidate_unlock_shared(mapping);
3241 if (fpin)
3242 fput(fpin);
3243 return ret | VM_FAULT_RETRY;
3244 }
3245 EXPORT_SYMBOL(filemap_fault);
3246
filemap_map_pmd(struct vm_fault * vmf,struct page * page)3247 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3248 {
3249 struct mm_struct *mm = vmf->vma->vm_mm;
3250
3251 /* Huge page is mapped? No need to proceed. */
3252 if (pmd_trans_huge(*vmf->pmd)) {
3253 unlock_page(page);
3254 put_page(page);
3255 return true;
3256 }
3257
3258 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3259 vm_fault_t ret = do_set_pmd(vmf, page);
3260 if (!ret) {
3261 /* The page is mapped successfully, reference consumed. */
3262 unlock_page(page);
3263 return true;
3264 }
3265 }
3266
3267 if (pmd_none(*vmf->pmd))
3268 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3269
3270 /* See comment in handle_pte_fault() */
3271 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3272 unlock_page(page);
3273 put_page(page);
3274 return true;
3275 }
3276
3277 return false;
3278 }
3279
next_uptodate_page(struct folio * folio,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3280 static struct folio *next_uptodate_page(struct folio *folio,
3281 struct address_space *mapping,
3282 struct xa_state *xas, pgoff_t end_pgoff)
3283 {
3284 unsigned long max_idx;
3285
3286 do {
3287 if (!folio)
3288 return NULL;
3289 if (xas_retry(xas, folio))
3290 continue;
3291 if (xa_is_value(folio))
3292 continue;
3293 if (folio_test_locked(folio))
3294 continue;
3295 if (!folio_try_get_rcu(folio))
3296 continue;
3297 /* Has the page moved or been split? */
3298 if (unlikely(folio != xas_reload(xas)))
3299 goto skip;
3300 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3301 goto skip;
3302 if (!folio_trylock(folio))
3303 goto skip;
3304 if (folio->mapping != mapping)
3305 goto unlock;
3306 if (!folio_test_uptodate(folio))
3307 goto unlock;
3308 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3309 if (xas->xa_index >= max_idx)
3310 goto unlock;
3311 return folio;
3312 unlock:
3313 folio_unlock(folio);
3314 skip:
3315 folio_put(folio);
3316 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3317
3318 return NULL;
3319 }
3320
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3321 static inline struct folio *first_map_page(struct address_space *mapping,
3322 struct xa_state *xas,
3323 pgoff_t end_pgoff)
3324 {
3325 return next_uptodate_page(xas_find(xas, end_pgoff),
3326 mapping, xas, end_pgoff);
3327 }
3328
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3329 static inline struct folio *next_map_page(struct address_space *mapping,
3330 struct xa_state *xas,
3331 pgoff_t end_pgoff)
3332 {
3333 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3334 mapping, xas, end_pgoff);
3335 }
3336
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3337 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3338 pgoff_t start_pgoff, pgoff_t end_pgoff)
3339 {
3340 struct vm_area_struct *vma = vmf->vma;
3341 struct file *file = vma->vm_file;
3342 struct address_space *mapping = file->f_mapping;
3343 pgoff_t last_pgoff = start_pgoff;
3344 unsigned long addr;
3345 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3346 struct folio *folio;
3347 struct page *page;
3348 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3349 vm_fault_t ret = 0;
3350
3351 rcu_read_lock();
3352 folio = first_map_page(mapping, &xas, end_pgoff);
3353 if (!folio)
3354 goto out;
3355
3356 if (filemap_map_pmd(vmf, &folio->page)) {
3357 ret = VM_FAULT_NOPAGE;
3358 goto out;
3359 }
3360
3361 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3362 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3363 do {
3364 again:
3365 page = folio_file_page(folio, xas.xa_index);
3366 if (PageHWPoison(page))
3367 goto unlock;
3368
3369 if (mmap_miss > 0)
3370 mmap_miss--;
3371
3372 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3373 vmf->pte += xas.xa_index - last_pgoff;
3374 last_pgoff = xas.xa_index;
3375
3376 /*
3377 * NOTE: If there're PTE markers, we'll leave them to be
3378 * handled in the specific fault path, and it'll prohibit the
3379 * fault-around logic.
3380 */
3381 if (!pte_none(*vmf->pte))
3382 goto unlock;
3383
3384 /* We're about to handle the fault */
3385 if (vmf->address == addr)
3386 ret = VM_FAULT_NOPAGE;
3387
3388 do_set_pte(vmf, page, addr);
3389 /* no need to invalidate: a not-present page won't be cached */
3390 update_mmu_cache(vma, addr, vmf->pte);
3391 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3392 xas.xa_index++;
3393 folio_ref_inc(folio);
3394 goto again;
3395 }
3396 folio_unlock(folio);
3397 continue;
3398 unlock:
3399 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3400 xas.xa_index++;
3401 goto again;
3402 }
3403 folio_unlock(folio);
3404 folio_put(folio);
3405 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
3407 out:
3408 rcu_read_unlock();
3409 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3410 return ret;
3411 }
3412 EXPORT_SYMBOL(filemap_map_pages);
3413
filemap_page_mkwrite(struct vm_fault * vmf)3414 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3415 {
3416 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3417 struct folio *folio = page_folio(vmf->page);
3418 vm_fault_t ret = VM_FAULT_LOCKED;
3419
3420 sb_start_pagefault(mapping->host->i_sb);
3421 file_update_time(vmf->vma->vm_file);
3422 folio_lock(folio);
3423 if (folio->mapping != mapping) {
3424 folio_unlock(folio);
3425 ret = VM_FAULT_NOPAGE;
3426 goto out;
3427 }
3428 /*
3429 * We mark the folio dirty already here so that when freeze is in
3430 * progress, we are guaranteed that writeback during freezing will
3431 * see the dirty folio and writeprotect it again.
3432 */
3433 folio_mark_dirty(folio);
3434 folio_wait_stable(folio);
3435 out:
3436 sb_end_pagefault(mapping->host->i_sb);
3437 return ret;
3438 }
3439
3440 const struct vm_operations_struct generic_file_vm_ops = {
3441 .fault = filemap_fault,
3442 .map_pages = filemap_map_pages,
3443 .page_mkwrite = filemap_page_mkwrite,
3444 };
3445
3446 /* This is used for a general mmap of a disk file */
3447
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3448 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3449 {
3450 struct address_space *mapping = file->f_mapping;
3451
3452 if (!mapping->a_ops->read_folio)
3453 return -ENOEXEC;
3454 file_accessed(file);
3455 vma->vm_ops = &generic_file_vm_ops;
3456 return 0;
3457 }
3458
3459 /*
3460 * This is for filesystems which do not implement ->writepage.
3461 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3462 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3463 {
3464 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3465 return -EINVAL;
3466 return generic_file_mmap(file, vma);
3467 }
3468 #else
filemap_page_mkwrite(struct vm_fault * vmf)3469 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3470 {
3471 return VM_FAULT_SIGBUS;
3472 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3473 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3474 {
3475 return -ENOSYS;
3476 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3477 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3478 {
3479 return -ENOSYS;
3480 }
3481 #endif /* CONFIG_MMU */
3482
3483 EXPORT_SYMBOL(filemap_page_mkwrite);
3484 EXPORT_SYMBOL(generic_file_mmap);
3485 EXPORT_SYMBOL(generic_file_readonly_mmap);
3486
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3487 static struct folio *do_read_cache_folio(struct address_space *mapping,
3488 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3489 {
3490 struct folio *folio;
3491 int err;
3492
3493 if (!filler)
3494 filler = mapping->a_ops->read_folio;
3495 repeat:
3496 folio = filemap_get_folio(mapping, index);
3497 if (!folio) {
3498 folio = filemap_alloc_folio(gfp, 0);
3499 if (!folio)
3500 return ERR_PTR(-ENOMEM);
3501 err = filemap_add_folio(mapping, folio, index, gfp);
3502 if (unlikely(err)) {
3503 folio_put(folio);
3504 if (err == -EEXIST)
3505 goto repeat;
3506 /* Presumably ENOMEM for xarray node */
3507 return ERR_PTR(err);
3508 }
3509
3510 goto filler;
3511 }
3512 if (folio_test_uptodate(folio))
3513 goto out;
3514
3515 if (!folio_trylock(folio)) {
3516 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3517 goto repeat;
3518 }
3519
3520 /* Folio was truncated from mapping */
3521 if (!folio->mapping) {
3522 folio_unlock(folio);
3523 folio_put(folio);
3524 goto repeat;
3525 }
3526
3527 /* Someone else locked and filled the page in a very small window */
3528 if (folio_test_uptodate(folio)) {
3529 folio_unlock(folio);
3530 goto out;
3531 }
3532
3533 filler:
3534 err = filemap_read_folio(file, filler, folio);
3535 if (err) {
3536 folio_put(folio);
3537 if (err == AOP_TRUNCATED_PAGE)
3538 goto repeat;
3539 return ERR_PTR(err);
3540 }
3541
3542 out:
3543 folio_mark_accessed(folio);
3544 return folio;
3545 }
3546
3547 /**
3548 * read_cache_folio - Read into page cache, fill it if needed.
3549 * @mapping: The address_space to read from.
3550 * @index: The index to read.
3551 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3552 * @file: Passed to filler function, may be NULL if not required.
3553 *
3554 * Read one page into the page cache. If it succeeds, the folio returned
3555 * will contain @index, but it may not be the first page of the folio.
3556 *
3557 * If the filler function returns an error, it will be returned to the
3558 * caller.
3559 *
3560 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3561 * Return: An uptodate folio on success, ERR_PTR() on failure.
3562 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3563 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3564 filler_t filler, struct file *file)
3565 {
3566 return do_read_cache_folio(mapping, index, filler, file,
3567 mapping_gfp_mask(mapping));
3568 }
3569 EXPORT_SYMBOL(read_cache_folio);
3570
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3571 static struct page *do_read_cache_page(struct address_space *mapping,
3572 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3573 {
3574 struct folio *folio;
3575
3576 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3577 if (IS_ERR(folio))
3578 return &folio->page;
3579 return folio_file_page(folio, index);
3580 }
3581
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3582 struct page *read_cache_page(struct address_space *mapping,
3583 pgoff_t index, filler_t *filler, struct file *file)
3584 {
3585 return do_read_cache_page(mapping, index, filler, file,
3586 mapping_gfp_mask(mapping));
3587 }
3588 EXPORT_SYMBOL(read_cache_page);
3589
3590 /**
3591 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3592 * @mapping: the page's address_space
3593 * @index: the page index
3594 * @gfp: the page allocator flags to use if allocating
3595 *
3596 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3597 * any new page allocations done using the specified allocation flags.
3598 *
3599 * If the page does not get brought uptodate, return -EIO.
3600 *
3601 * The function expects mapping->invalidate_lock to be already held.
3602 *
3603 * Return: up to date page on success, ERR_PTR() on failure.
3604 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3605 struct page *read_cache_page_gfp(struct address_space *mapping,
3606 pgoff_t index,
3607 gfp_t gfp)
3608 {
3609 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3610 }
3611 EXPORT_SYMBOL(read_cache_page_gfp);
3612
3613 /*
3614 * Warn about a page cache invalidation failure during a direct I/O write.
3615 */
dio_warn_stale_pagecache(struct file * filp)3616 void dio_warn_stale_pagecache(struct file *filp)
3617 {
3618 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3619 char pathname[128];
3620 char *path;
3621
3622 errseq_set(&filp->f_mapping->wb_err, -EIO);
3623 if (__ratelimit(&_rs)) {
3624 path = file_path(filp, pathname, sizeof(pathname));
3625 if (IS_ERR(path))
3626 path = "(unknown)";
3627 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3628 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3629 current->comm);
3630 }
3631 }
3632
3633 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3634 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3635 {
3636 struct file *file = iocb->ki_filp;
3637 struct address_space *mapping = file->f_mapping;
3638 struct inode *inode = mapping->host;
3639 loff_t pos = iocb->ki_pos;
3640 ssize_t written;
3641 size_t write_len;
3642 pgoff_t end;
3643
3644 write_len = iov_iter_count(from);
3645 end = (pos + write_len - 1) >> PAGE_SHIFT;
3646
3647 if (iocb->ki_flags & IOCB_NOWAIT) {
3648 /* If there are pages to writeback, return */
3649 if (filemap_range_has_page(file->f_mapping, pos,
3650 pos + write_len - 1))
3651 return -EAGAIN;
3652 } else {
3653 written = filemap_write_and_wait_range(mapping, pos,
3654 pos + write_len - 1);
3655 if (written)
3656 goto out;
3657 }
3658
3659 /*
3660 * After a write we want buffered reads to be sure to go to disk to get
3661 * the new data. We invalidate clean cached page from the region we're
3662 * about to write. We do this *before* the write so that we can return
3663 * without clobbering -EIOCBQUEUED from ->direct_IO().
3664 */
3665 written = invalidate_inode_pages2_range(mapping,
3666 pos >> PAGE_SHIFT, end);
3667 /*
3668 * If a page can not be invalidated, return 0 to fall back
3669 * to buffered write.
3670 */
3671 if (written) {
3672 if (written == -EBUSY)
3673 return 0;
3674 goto out;
3675 }
3676
3677 written = mapping->a_ops->direct_IO(iocb, from);
3678
3679 /*
3680 * Finally, try again to invalidate clean pages which might have been
3681 * cached by non-direct readahead, or faulted in by get_user_pages()
3682 * if the source of the write was an mmap'ed region of the file
3683 * we're writing. Either one is a pretty crazy thing to do,
3684 * so we don't support it 100%. If this invalidation
3685 * fails, tough, the write still worked...
3686 *
3687 * Most of the time we do not need this since dio_complete() will do
3688 * the invalidation for us. However there are some file systems that
3689 * do not end up with dio_complete() being called, so let's not break
3690 * them by removing it completely.
3691 *
3692 * Noticeable example is a blkdev_direct_IO().
3693 *
3694 * Skip invalidation for async writes or if mapping has no pages.
3695 */
3696 if (written > 0 && mapping->nrpages &&
3697 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3698 dio_warn_stale_pagecache(file);
3699
3700 if (written > 0) {
3701 pos += written;
3702 write_len -= written;
3703 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3704 i_size_write(inode, pos);
3705 mark_inode_dirty(inode);
3706 }
3707 iocb->ki_pos = pos;
3708 }
3709 if (written != -EIOCBQUEUED)
3710 iov_iter_revert(from, write_len - iov_iter_count(from));
3711 out:
3712 return written;
3713 }
3714 EXPORT_SYMBOL(generic_file_direct_write);
3715
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)3716 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3717 {
3718 struct file *file = iocb->ki_filp;
3719 loff_t pos = iocb->ki_pos;
3720 struct address_space *mapping = file->f_mapping;
3721 const struct address_space_operations *a_ops = mapping->a_ops;
3722 long status = 0;
3723 ssize_t written = 0;
3724
3725 do {
3726 struct page *page;
3727 unsigned long offset; /* Offset into pagecache page */
3728 unsigned long bytes; /* Bytes to write to page */
3729 size_t copied; /* Bytes copied from user */
3730 void *fsdata = NULL;
3731
3732 offset = (pos & (PAGE_SIZE - 1));
3733 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3734 iov_iter_count(i));
3735
3736 again:
3737 /*
3738 * Bring in the user page that we will copy from _first_.
3739 * Otherwise there's a nasty deadlock on copying from the
3740 * same page as we're writing to, without it being marked
3741 * up-to-date.
3742 */
3743 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3744 status = -EFAULT;
3745 break;
3746 }
3747
3748 if (fatal_signal_pending(current)) {
3749 status = -EINTR;
3750 break;
3751 }
3752
3753 status = a_ops->write_begin(file, mapping, pos, bytes,
3754 &page, &fsdata);
3755 if (unlikely(status < 0))
3756 break;
3757
3758 if (mapping_writably_mapped(mapping))
3759 flush_dcache_page(page);
3760
3761 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3762 flush_dcache_page(page);
3763
3764 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3765 page, fsdata);
3766 if (unlikely(status != copied)) {
3767 iov_iter_revert(i, copied - max(status, 0L));
3768 if (unlikely(status < 0))
3769 break;
3770 }
3771 cond_resched();
3772
3773 if (unlikely(status == 0)) {
3774 /*
3775 * A short copy made ->write_end() reject the
3776 * thing entirely. Might be memory poisoning
3777 * halfway through, might be a race with munmap,
3778 * might be severe memory pressure.
3779 */
3780 if (copied)
3781 bytes = copied;
3782 goto again;
3783 }
3784 pos += status;
3785 written += status;
3786
3787 balance_dirty_pages_ratelimited(mapping);
3788 } while (iov_iter_count(i));
3789
3790 return written ? written : status;
3791 }
3792 EXPORT_SYMBOL(generic_perform_write);
3793
3794 /**
3795 * __generic_file_write_iter - write data to a file
3796 * @iocb: IO state structure (file, offset, etc.)
3797 * @from: iov_iter with data to write
3798 *
3799 * This function does all the work needed for actually writing data to a
3800 * file. It does all basic checks, removes SUID from the file, updates
3801 * modification times and calls proper subroutines depending on whether we
3802 * do direct IO or a standard buffered write.
3803 *
3804 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3805 * object which does not need locking at all.
3806 *
3807 * This function does *not* take care of syncing data in case of O_SYNC write.
3808 * A caller has to handle it. This is mainly due to the fact that we want to
3809 * avoid syncing under i_rwsem.
3810 *
3811 * Return:
3812 * * number of bytes written, even for truncated writes
3813 * * negative error code if no data has been written at all
3814 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3815 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3816 {
3817 struct file *file = iocb->ki_filp;
3818 struct address_space *mapping = file->f_mapping;
3819 struct inode *inode = mapping->host;
3820 ssize_t written = 0;
3821 ssize_t err;
3822 ssize_t status;
3823
3824 /* We can write back this queue in page reclaim */
3825 current->backing_dev_info = inode_to_bdi(inode);
3826 err = file_remove_privs(file);
3827 if (err)
3828 goto out;
3829
3830 err = file_update_time(file);
3831 if (err)
3832 goto out;
3833
3834 if (iocb->ki_flags & IOCB_DIRECT) {
3835 loff_t pos, endbyte;
3836
3837 written = generic_file_direct_write(iocb, from);
3838 /*
3839 * If the write stopped short of completing, fall back to
3840 * buffered writes. Some filesystems do this for writes to
3841 * holes, for example. For DAX files, a buffered write will
3842 * not succeed (even if it did, DAX does not handle dirty
3843 * page-cache pages correctly).
3844 */
3845 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3846 goto out;
3847
3848 pos = iocb->ki_pos;
3849 status = generic_perform_write(iocb, from);
3850 /*
3851 * If generic_perform_write() returned a synchronous error
3852 * then we want to return the number of bytes which were
3853 * direct-written, or the error code if that was zero. Note
3854 * that this differs from normal direct-io semantics, which
3855 * will return -EFOO even if some bytes were written.
3856 */
3857 if (unlikely(status < 0)) {
3858 err = status;
3859 goto out;
3860 }
3861 /*
3862 * We need to ensure that the page cache pages are written to
3863 * disk and invalidated to preserve the expected O_DIRECT
3864 * semantics.
3865 */
3866 endbyte = pos + status - 1;
3867 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3868 if (err == 0) {
3869 iocb->ki_pos = endbyte + 1;
3870 written += status;
3871 invalidate_mapping_pages(mapping,
3872 pos >> PAGE_SHIFT,
3873 endbyte >> PAGE_SHIFT);
3874 } else {
3875 /*
3876 * We don't know how much we wrote, so just return
3877 * the number of bytes which were direct-written
3878 */
3879 }
3880 } else {
3881 written = generic_perform_write(iocb, from);
3882 if (likely(written > 0))
3883 iocb->ki_pos += written;
3884 }
3885 out:
3886 current->backing_dev_info = NULL;
3887 return written ? written : err;
3888 }
3889 EXPORT_SYMBOL(__generic_file_write_iter);
3890
3891 /**
3892 * generic_file_write_iter - write data to a file
3893 * @iocb: IO state structure
3894 * @from: iov_iter with data to write
3895 *
3896 * This is a wrapper around __generic_file_write_iter() to be used by most
3897 * filesystems. It takes care of syncing the file in case of O_SYNC file
3898 * and acquires i_rwsem as needed.
3899 * Return:
3900 * * negative error code if no data has been written at all of
3901 * vfs_fsync_range() failed for a synchronous write
3902 * * number of bytes written, even for truncated writes
3903 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3904 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3905 {
3906 struct file *file = iocb->ki_filp;
3907 struct inode *inode = file->f_mapping->host;
3908 ssize_t ret;
3909
3910 inode_lock(inode);
3911 ret = generic_write_checks(iocb, from);
3912 if (ret > 0)
3913 ret = __generic_file_write_iter(iocb, from);
3914 inode_unlock(inode);
3915
3916 if (ret > 0)
3917 ret = generic_write_sync(iocb, ret);
3918 return ret;
3919 }
3920 EXPORT_SYMBOL(generic_file_write_iter);
3921
3922 /**
3923 * filemap_release_folio() - Release fs-specific metadata on a folio.
3924 * @folio: The folio which the kernel is trying to free.
3925 * @gfp: Memory allocation flags (and I/O mode).
3926 *
3927 * The address_space is trying to release any data attached to a folio
3928 * (presumably at folio->private).
3929 *
3930 * This will also be called if the private_2 flag is set on a page,
3931 * indicating that the folio has other metadata associated with it.
3932 *
3933 * The @gfp argument specifies whether I/O may be performed to release
3934 * this page (__GFP_IO), and whether the call may block
3935 * (__GFP_RECLAIM & __GFP_FS).
3936 *
3937 * Return: %true if the release was successful, otherwise %false.
3938 */
filemap_release_folio(struct folio * folio,gfp_t gfp)3939 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3940 {
3941 struct address_space * const mapping = folio->mapping;
3942
3943 BUG_ON(!folio_test_locked(folio));
3944 if (folio_test_writeback(folio))
3945 return false;
3946
3947 if (mapping && mapping->a_ops->release_folio)
3948 return mapping->a_ops->release_folio(folio, gfp);
3949 return try_to_free_buffers(folio);
3950 }
3951 EXPORT_SYMBOL(filemap_release_folio);
3952